03.06.2015 Views

Advances in Solid-State Joining at EWI

Advances in Solid-State Joining at EWI

Advances in Solid-State Joining at EWI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Advances</strong> <strong>in</strong> <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong><br />

Jo<strong>in</strong><strong>in</strong>g <strong>at</strong> <strong>EWI</strong><br />

Jerry E. Gould<br />

Technology Leader<br />

Resistance and <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Jo<strong>in</strong><strong>in</strong>g<br />

ph: 614-688-5121<br />

e-mail: jgould@ewi.org<br />

Brian Thompson<br />

Applic<strong>at</strong>ions Eng<strong>in</strong>eer<br />

Friction Stir Weld<strong>in</strong>g<br />

ph: 614-688-5235<br />

e-mail: bthompson@ewi.org


Resistance and <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Technologies<br />

<br />

Resistance Weld<strong>in</strong>g<br />

─ Spot<br />

─ Th<strong>in</strong> m<strong>at</strong>erials<br />

─ Conductive he<strong>at</strong><br />

─ Embossed projection<br />

─ Seam<br />

─ Pipe cladd<strong>in</strong>g<br />

─ Mash seam<br />

─ Dissimilar m<strong>at</strong>erials<br />

─ Flash butt<br />

─ Resistance butt<br />

─ TAUW<br />

─ Electro-spark<br />

deposition<br />

─ Percussive<br />

─ Braz<strong>in</strong>g<br />

<br />

<strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Weld<strong>in</strong>g<br />

─ Friction<br />

─ Friction stir<br />

─ Inertia<br />

─ Alum<strong>in</strong>um to steel<br />

─ Hot upset<br />

─ Cold pressure<br />

─ Friction stir<br />

─ <strong>Solid</strong> projection<br />

─ Magnetic pulse<br />

─ Diffusion<br />

─ Stud<br />

<br />

Ancillary<br />

Technologies<br />

─ Design-ofexperiments<br />

methods<br />

─ Instrument<strong>at</strong>ion and<br />

control<br />

─ Mechanical<br />

fasten<strong>in</strong>g<br />

─ Model<strong>in</strong>g and<br />

simul<strong>at</strong>ion


Inertia Friction Weld<strong>in</strong>g Large<br />

Section Alum<strong>in</strong>um to Steel Jo<strong>in</strong>ts<br />

Alum<strong>in</strong>um and steel samples<br />

prepared for weld<strong>in</strong>g<br />

Welded sample with OD and<br />

ID Turned<br />

Welded specimen extracted<br />

from fixture<br />

Segment removed for tensile<br />

test<strong>in</strong>g<br />

Friction weld<strong>in</strong>g<br />

Al to steel a<br />

production<br />

process<br />

Production<br />

applic<strong>at</strong>ions t<strong>in</strong><br />

walled tube<br />

Need for scal<strong>in</strong>g<br />

to pipe sections<br />

Work here on<br />

120-mmdiameter<br />

pipe<br />

8-mm pipe wall<br />

Al-6061 to 1010<br />

Steel


RPM<br />

Pressure Mpa<br />

Displacement CM x 250<br />

Process and Metallurgical<br />

Response of Case Welds<br />

350<br />

Weld SS-51<br />

Average Strength 306 Mpa<br />

RPM<br />

Displacement<br />

Pressure<br />

30<br />

Average Tensile =<br />

306 Mpa<br />

300<br />

25<br />

250<br />

20<br />

200<br />

150<br />

100<br />

70 ms<br />

350ms<br />

15<br />

10<br />

50<br />

5<br />

<br />

<br />

<br />

0<br />

0<br />

0 50 100 150 200 250 300 350<br />

-50<br />

-5<br />

Milliseconds<br />

Process designed to achieve<br />

low overall cycle times<br />

Improved weld quality with<br />

─<br />

─<br />

─<br />

Shortened weld times<br />

High specific weld force<br />

Coarse texture 0.06-mm amplitude<br />

Bend and tensile test<strong>in</strong>g - jo<strong>in</strong>t<br />

fails <strong>in</strong> the parent alum<strong>in</strong>um<br />

280 Milliseconds


Transl<strong>at</strong>ionally Assisted <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong><br />

Jo<strong>in</strong><strong>in</strong>g Processes<br />

<br />

<br />

<br />

Technologies us<strong>in</strong>g l<strong>at</strong>eral forg<strong>in</strong>g<br />

as a mechanism to assist bond<strong>in</strong>g<br />

─ Transl<strong>at</strong>ional friction weld<strong>in</strong>g<br />

─ Transl<strong>at</strong>ionally assisted upset weld<strong>in</strong>g<br />

Candid<strong>at</strong>e applic<strong>at</strong>ions<br />

─ Blisks<br />

─ Aircraft structural elements<br />

─ Wheels<br />

─ Pipe connections<br />

─ Rail road rail<br />

─ Non circular sections<br />

M<strong>at</strong>erials<br />

─ Titanium alloys<br />

─ Nickel-based alloys<br />

─ Steels<br />

Blisk assembly with LFW <strong>at</strong>tached blades<br />

(Courtesy MTU Aero Eng<strong>in</strong>es)<br />

Stamped and welded truck<br />

wheel rims (Courtesy<br />

Accuride Wheels)


L<strong>in</strong>ear Friction Weld<strong>in</strong>g<br />

<br />

<br />

<br />

New technology<br />

─ Concepts derived from direct-drive<br />

friction weld<strong>in</strong>g<br />

─ Young technology, developed only ~15<br />

years ago<br />

─ Modern systems largely hydraulically<br />

based<br />

Process <strong>in</strong>puts<br />

─ Normal force<br />

─ Transl<strong>at</strong>ional frequency<br />

─ Transl<strong>at</strong>ional displacement<br />

─ Deceler<strong>at</strong>ion sequence for align<strong>in</strong>g parts<br />

Advantages<br />

─ High deform<strong>at</strong>ions (~10s of thousands<br />

of percent) along bond l<strong>in</strong>e<br />

─ Weld morphologies similar to other<br />

friction welds<br />

─ Rapid (seconds) cycle times<br />

L<strong>in</strong>ear friction weld<strong>in</strong>g system (Courtesy Thompson<br />

Friction Weld<strong>in</strong>g Mach<strong>in</strong>es)<br />

Schem<strong>at</strong>ic Diagram of the l<strong>in</strong>ear friction weld<strong>in</strong>g<br />

process (Courtesy APCI Inc.)


L<strong>in</strong>ear Friction Welds <strong>in</strong> Titanium<br />

Alloys - Characteristics<br />

Macrosection of a Ti-6Al-4V L<strong>in</strong>ear Friction<br />

Weld. Note the localized deform<strong>at</strong>ion zone<br />

and high apparent bond l<strong>in</strong>e stra<strong>in</strong>s. (Courtesy<br />

APCI Inc.)<br />

Microstructure of a Ti-6Al-4V L<strong>in</strong>ear Friction<br />

Weld Bond L<strong>in</strong>e. Note the ref<strong>in</strong>ed<br />

microstructure along the bond l<strong>in</strong>e as well as<br />

apparent resolutioniz<strong>in</strong>g. (Courtesy APCI Inc.)


L<strong>in</strong>ear Friction Welds <strong>in</strong> High Carbon<br />

Steels - Characteristics<br />

Macrosection of a 1080 Steel L<strong>in</strong>ear<br />

Friction Weld. Note localized crack<strong>in</strong>g <strong>at</strong> the<br />

weld edges rel<strong>at</strong>ed to high residual hardness.<br />

(Courtesy APCI Inc.)<br />

Microstructure of a Ti-6Al-4V L<strong>in</strong>ear Friction<br />

Weld Bond L<strong>in</strong>e. Note the rapid transition<br />

from pearlite to martensite <strong>at</strong> the far HAZ<br />

boundary. (Courtesy APCI Inc.)


Transl<strong>at</strong>ionally Assisted Upset Weld<strong>in</strong>g (TAUW) –<br />

New Gener<strong>at</strong>ion <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Weld<strong>in</strong>g<br />

<br />

<br />

<br />

Technology based on<br />

resistance butt weld<strong>in</strong>g<br />

Transl<strong>at</strong>ional action to improve<br />

bond l<strong>in</strong>e stra<strong>in</strong>s<br />

Independent forg<strong>in</strong>g and<br />

scrubb<strong>in</strong>g cyl<strong>in</strong>ders<br />

<br />

<br />

Independent action of<br />

─ Current pulse<br />

─ Transl<strong>at</strong>ional action<br />

─ Upset action<br />

Independent control of surface<br />

stra<strong>in</strong>s and he<strong>at</strong> content


Transl<strong>at</strong>ionally Assisted Upset<br />

Weld<strong>in</strong>g - Characteristics<br />

As Welded Specimen<br />

Show<strong>in</strong>g M<strong>in</strong>imal<br />

Flash Curl<br />

Bond L<strong>in</strong>e Macrograph<br />

Show<strong>in</strong>g Flash Curl<br />

and Bond L<strong>in</strong>e Profile<br />

Details of the Bond L<strong>in</strong>e Show<strong>in</strong>g<br />

Re-Solutionized Microstructure


Development of Multi-M<strong>at</strong>erial Thermal Protection<br />

Systems - Introduction<br />

<br />

<br />

<br />

<br />

<br />

Large area TPS applic<strong>at</strong>ion<br />

Large temper<strong>at</strong>ure gradient<br />

applic<strong>at</strong>ion<br />

Core of resistance welded<br />

bimetallic honeycomb panel<br />

─<br />

─<br />

─<br />

High thermal resistance<br />

Low density<br />

Secondary fabricability<br />

Bi-m<strong>at</strong>erial solution to<br />

accomplish desired<br />

temper<strong>at</strong>ure gradient<br />

─<br />

─<br />

High-temper<strong>at</strong>ure refractory<br />

m<strong>at</strong>erial outer<br />

Lower temper<strong>at</strong>ure m<strong>at</strong>erial <strong>in</strong>ner<br />

Metallurgical consider<strong>at</strong>ions for<br />

dissimilar m<strong>at</strong>erial jo<strong>in</strong>ts<br />

─<br />

─<br />

Must be weld<strong>in</strong>g comp<strong>at</strong>ible<br />

Must avoid thermal transitions <strong>at</strong><br />

weld l<strong>in</strong>e<br />

11


Development of Multi-M<strong>at</strong>erial Thermal<br />

Protection Systems - Fabric<strong>at</strong>ion Steps<br />

Foil<br />

manufactur<strong>in</strong>g<br />

Foil<br />

form<strong>in</strong>g<br />

Honeycomb<br />

manufactur<strong>in</strong>g<br />

Ceramic to<br />

refractory metal<br />

Refractory metal<br />

to refractory<br />

core braz<strong>in</strong>g<br />

Ti (SS) sheet to<br />

core braz<strong>in</strong>g<br />

Adhesive<br />

bond<strong>in</strong>g<br />

Prototype TPS<br />

section<br />

12


Current (A)<br />

Electro-Spark Deposition (ESD) Process<br />

<br />

<br />

<br />

<br />

ESD process<strong>in</strong>g characteristics<br />

─ Repe<strong>at</strong> fire capacitive discharge power<br />

supply<br />

─ Discharge pulse widths on the order of 35<br />

μs<br />

─ Peak currents on the order of 100s of<br />

amps<br />

ESD torch<br />

─ Hand held<br />

─ Rot<strong>at</strong><strong>in</strong>g electrode<br />

Short circuit spark<strong>in</strong>g<br />

Transfer of small metal volumes<br />

(microns <strong>in</strong> diameter) to substr<strong>at</strong>e<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 20 40 60 80 100<br />

-50<br />

Time (micro-seconds)


Temp (deg C)<br />

Cool<strong>in</strong>g r<strong>at</strong>e (deg C/sec)<br />

Thermal Analysis of Various<br />

Localized Deposition Processes<br />

1600<br />

1400<br />

1200<br />

1000<br />

GTAW<br />

PAW<br />

PTA<br />

LBW<br />

ESD<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

GTAW<br />

PAW<br />

PTA<br />

LBW<br />

ESD<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 0.005 0.01 0.015 0.02 0.025<br />

Distance (mm)<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

1.E+00<br />

0 200 400 600 800 1000 1200 1400<br />

Temp (deg C)<br />

Arc and Laser Processes:<br />

2<br />

ESD:<br />

T T T T erf<br />

m m o<br />

x<br />

x<br />

Q<br />

T e T<br />

2 KR<br />

sp<br />

C T T<br />

p m o<br />

H<br />

m<br />

V R x<br />

1<br />

o<br />

Arc and Laser Processes:<br />

dT<br />

dt<br />

ESD:<br />

2 Cp<br />

x H<br />

2<br />

sp<br />

m<br />

dT<br />

dt<br />

T<br />

m<br />

V<br />

2 K T To<br />

T<br />

o<br />

2<br />

Q<br />

2


Current (A)<br />

Electro-Spark Deposition<br />

Weld<strong>in</strong>g Trials<br />

<br />

<br />

<br />

<br />

Weld<strong>in</strong>g of ½ tensile specimens<br />

Weld prep<br />

Deposition practice:<br />

─ Hastelloy X electrode (1.5-mm diameter)<br />

─ 40-μF capacitance<br />

─ 120-V charg<strong>in</strong>g voltage<br />

─ 500-Hz fir<strong>in</strong>g r<strong>at</strong>e<br />

Three specimens for m<strong>at</strong>erials comb<strong>in</strong><strong>at</strong>ion<br />

─ One for metallographic sections<br />

─<br />

─<br />

─<br />

─<br />

Fill p<strong>at</strong>terns<br />

Internal fill quality<br />

Intermetallic form<strong>at</strong>ion<br />

Two samples each for mechanical test<strong>in</strong>g<br />

Jo<strong>in</strong>t Prepar<strong>at</strong>ion and Electrode Orient<strong>at</strong>ion<br />

for the ESD Welds made <strong>in</strong> this Study<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50 0 20 40 60 80 100 120 140 160 180 200<br />

Time (microsec)<br />

Power Supply: ASAP<br />

Capacitance: 40 microF<br />

Frequency: 500<br />

ESD Weld Current Waveform Taken from a<br />

Represent<strong>at</strong>ive Deposit


Electro-Spark Deposition Weld<strong>in</strong>g – Mo-<br />

47%Re to Hastelloy X<br />

<br />

<br />

<br />

<br />

<br />

F<strong>in</strong>al Geometry of a ESD Jo<strong>in</strong>t<br />

Procedure <strong>in</strong>cluded<br />

─ Fill of <strong>in</strong>itial groove<br />

─ Form<strong>at</strong>ion of back groove<br />

─ Fill<strong>in</strong>g back groove<br />

─ Sidepl<strong>at</strong>es used to improve jo<strong>in</strong>t<br />

geometry<br />

Fill nom<strong>in</strong>ally >99% dense<br />

Spl<strong>at</strong> size nom<strong>in</strong>ally 10-μm thick<br />

Fill showed good adhesion to both<br />

components<br />

Process<strong>in</strong>g time: 8 hr/specimen<br />

Cross Section of a Mo-47%Re to<br />

Hastelloy X ESD Weld<br />

Microstructural Details of the Hastelloy<br />

X Deposit


Electro-Spark Deposition Weld<strong>in</strong>g – Mo-<br />

47%Re to Hastelloy X<br />

<br />

<br />

Hastelloy X/deposit <strong>in</strong>terface<br />

─<br />

─<br />

─<br />

Good adhesion of deposited<br />

m<strong>at</strong>erial<br />

No degrad<strong>at</strong>ion of base m<strong>at</strong>erial<br />

noted<br />

Spl<strong>at</strong> size <strong>in</strong> deposit on the<br />

order of the BM gra<strong>in</strong> size<br />

Mo-47%Re/deposit <strong>in</strong>terface<br />

─<br />

─<br />

─<br />

Good deposit adhesion noted<br />

Little or no dillution with base<br />

metal<br />

No evidence of second phases<br />

Details of the Hastelloy X/Deposit<br />

Interface<br />

Details of the Mo-47%Re/Deposit<br />

Interface


Electro-Spark Deposition Weld<strong>in</strong>g – Mo-<br />

47%Re to MarM 247<br />

<br />

<br />

Jo<strong>in</strong>t macrostructure<br />

─<br />

─<br />

─<br />

Fill characteristics similar to th<strong>at</strong><br />

for other ESD welds<br />

Apparent adherence to both the<br />

Mo-47%Re and MarM 247<br />

m<strong>at</strong>erials<br />

Two-side deposition evident<br />

MarM 247/deposit <strong>in</strong>terface<br />

─<br />

─<br />

─<br />

─<br />

Good adhesion of deposited<br />

m<strong>at</strong>erial<br />

Apparent reaction zone between<br />

the base metal and deposited<br />

spl<strong>at</strong>s<br />

Interface morphology similar to<br />

th<strong>at</strong> seen for magnetic pulse welds<br />

Reaction zone on the order of<br />

microns thick<br />

Cross Section of a Mo-47%Re to<br />

MarM 247 ESD Weld<br />

Details of the MarM/Deposit<br />

Interface


Tensile Shear Force (N)<br />

Use of Thermal Constructs for Prelim<strong>in</strong>ary Cost<br />

Scal<strong>in</strong>g of New Technologies<br />

<br />

<br />

<br />

<br />

Applic<strong>at</strong>ion: High-speed <strong>in</strong>direct resistance braz<strong>in</strong>g<br />

of <strong>in</strong>ternally re<strong>in</strong>forced panels<br />

─<br />

─<br />

Th<strong>in</strong>-gauge construction<br />

Automotive customer<br />

Development of roll braz<strong>in</strong>g technology<br />

─<br />

─<br />

Resistively he<strong>at</strong>ed rolls<br />

Flood cool<strong>in</strong>g to control overall thermal cycle<br />

Integr<strong>at</strong>ion of low-cost m<strong>at</strong>erials<br />

─<br />

─<br />

Mild and AHSS steels<br />

Galvanized co<strong>at</strong><strong>in</strong>g as the braze alloy<br />

Prelim<strong>in</strong>ary trials on resistance braz<strong>in</strong>g us<strong>in</strong>g the<br />

galvanized co<strong>at</strong><strong>in</strong>g<br />

─<br />

─<br />

Reflow with s<strong>in</strong>gle po<strong>in</strong>t resistance he<strong>at</strong><strong>in</strong>g<br />

Jo<strong>in</strong>t strengths ~50% th<strong>at</strong> of full spot welds<br />

Schem<strong>at</strong>ic Represent<strong>at</strong>ion of a Roll Braz<strong>in</strong>g System<br />

for Low Cost Honeycomb Panel Construction<br />

(Courtesy CellTech Metals)<br />

600<br />

500<br />

400<br />

Shear<br />

Z<strong>in</strong>c<br />

Micros<br />

300<br />

200<br />

100<br />

Z<strong>in</strong>c re-flow <strong>at</strong> the center of a braze<br />

jo<strong>in</strong>t <strong>at</strong> best practice conditions<br />

(Courtesy CellTech Metals)<br />

Z<strong>in</strong>c re-flow <strong>at</strong> the edge of a braze<br />

jo<strong>in</strong>t <strong>at</strong> best practice conditions<br />

(Courtesy CellTech Metals)<br />

0<br />

1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00<br />

Peak Weld Current (KA)<br />

Strengths for Jo<strong>in</strong>ts made <strong>at</strong> Increas<strong>in</strong>g Currents<br />

Show<strong>in</strong>g the Transit<strong>in</strong>o from Braz<strong>in</strong>g to Weld<strong>in</strong>g<br />

(Courtesy CellTech Metals)


Temper<strong>at</strong>ure, C<br />

L<strong>in</strong>e Speed (m/m<strong>in</strong>)<br />

Prelim<strong>in</strong>ary Assessments of the High-Speed<br />

Manufactur<strong>in</strong>g System for Automotive Panel<br />

<br />

<br />

<br />

Thermal analyses for predict<strong>in</strong>g strip he<strong>at</strong><strong>in</strong>g and<br />

cool<strong>in</strong>g<br />

─<br />

─<br />

─<br />

─<br />

Closed form solutions<br />

Geometric and m<strong>at</strong>erial property effects<br />

Estim<strong>at</strong>es of he<strong>at</strong><strong>in</strong>g and cool<strong>in</strong>g dynamics<br />

Temper<strong>at</strong>ure-time rel<strong>at</strong>ionships <strong>at</strong> each <strong>in</strong>terface<br />

Estim<strong>at</strong>es of process<strong>in</strong>g requirements<br />

─<br />

─<br />

─<br />

─<br />

Total thermal cycles on the order of 10s of milliseconds<br />

Speeds <strong>in</strong> the range of m/m<strong>in</strong><br />

Influence of panel design<br />

Estim<strong>at</strong>es of currents and voltages<br />

Demonstr<strong>at</strong>ion trials underway<br />

w<br />

n<br />

4<br />

w<br />

( 1) (2n<br />

1)<br />

exp<br />

2 2<br />

2<br />

n 0 2n<br />

1 4(<br />

1 2) v<br />

Equ<strong>at</strong>ion Def<strong>in</strong><strong>in</strong>g Conductive He<strong>at</strong><strong>in</strong>g Associ<strong>at</strong>ed with<br />

the Hot Roll Technology (Courtesy CellTech Metals)<br />

0<br />

(<br />

h<br />

0<br />

)exp<br />

v<br />

2<br />

v<br />

2<br />

Equ<strong>at</strong>ion Def<strong>in</strong><strong>in</strong>g Cool<strong>in</strong>g Associ<strong>at</strong>ed with the Hot Roll<br />

Technology (Courtesy CellTech Metals)<br />

2<br />

K<br />

1<br />

(<br />

1<br />

H<br />

x<br />

2<br />

R)<br />

x<br />

700<br />

12<br />

600<br />

500<br />

400<br />

300<br />

10<br />

8<br />

6<br />

0.5-mm core<br />

1.0-mm core<br />

1.5-mm core<br />

200<br />

4<br />

100<br />

2<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05<br />

Loc<strong>at</strong>ion <strong>in</strong> X Direction, m<br />

He<strong>at</strong><strong>in</strong>g and Cool<strong>in</strong>g Profile for a 1.5-mm<br />

Thick Panel Dur<strong>in</strong>g Resistance Roll<br />

Braz<strong>in</strong>g (Courtesy CellTech Metals)<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

Strip Thickness (mm)<br />

Rel<strong>at</strong>ionships Between Panel Geometry<br />

Factors and L<strong>in</strong>e Speed for Resistance Roll<br />

Braz<strong>in</strong>g (Courtesy CellTech Metals)


Friction Stir Weld<strong>in</strong>g of High-<br />

Temper<strong>at</strong>ure Alloys<br />

<br />

<br />

<br />

<br />

Third body friction weld<strong>in</strong>g<br />

process<br />

Necessary <strong>in</strong>teractions between<br />

tool and substr<strong>at</strong>e m<strong>at</strong>erials<br />

Refractory metal and ceramic<br />

tool systems<br />

Bond l<strong>in</strong>e stra<strong>in</strong>s def<strong>in</strong>ed by<br />

plastic zone<br />

<br />

<br />

<br />

<br />

Thermal cycles def<strong>in</strong>ed by<br />

process<strong>in</strong>g speeds<br />

Initial work done on titanium<br />

alloys<br />

Current focus is on steels<br />

Prelim<strong>in</strong>ary studies on nickel<br />

base alloys<br />

W<strong>at</strong>er cooled<br />

tool holder<br />

Inert gas<br />

shield box<br />

FSW on 13-mm Ti 6Al-4V


Demonstr<strong>at</strong>or Structure<br />

Fabric<strong>at</strong>ion<br />

FSW Corner and T-Jo<strong>in</strong>ts<br />

S<strong>in</strong>gle pass (no <strong>in</strong>ter-pass clean<strong>in</strong>g<br />

issues)<br />

Low distortion<br />

Cycle time reduction (1 pass ~100-<br />

mm/m<strong>in</strong> versus 4 passes <strong>at</strong> ~500-<br />

mm/m<strong>in</strong> w/GMAW<br />

Simple jo<strong>in</strong>t prepar<strong>at</strong>ion<br />

FSW Corner Jo<strong>in</strong>t 13-mm Ti 6Al-4V<br />

FSW


Height (<strong>in</strong>ches)<br />

Tool Evalu<strong>at</strong>ions for Weld<strong>in</strong>g X80<br />

Steel<br />

<br />

<br />

<br />

Tungsten-based tool<br />

m<strong>at</strong>erials<br />

─ 99% W, 1% La 2 O 3<br />

─ 75% W, 25% Re<br />

─ 70% W, 20% Re, 10% HfC<br />

Extreme tests<br />

─ Hot process<strong>in</strong>g conditions<br />

─ No external cool<strong>in</strong>g<br />

─ Intended to exacerb<strong>at</strong>e wear<br />

Mechanisms of wear<br />

─ Deform<strong>at</strong>ion<br />

─ Tw<strong>in</strong>n<strong>in</strong>g<br />

─ Intergranular failure<br />

Best demonstr<strong>at</strong>ed m<strong>at</strong>erial –<br />

70%W, 20%Re, 10%HfC<br />

─ Negligible deform<strong>at</strong>ion<br />

─ M<strong>in</strong>imal abrasive wear<br />

─ Excellent tool shape stability<br />

M<strong>at</strong>l. C Edge Effect<br />

M<strong>at</strong>erial C Measurement D<strong>at</strong>a<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0 200 400 600 800 1000<br />

Sample Number<br />

M<strong>at</strong>l. C Tool After<br />

Weld<strong>in</strong>g<br />

Post Weld<br />

Pre Weld<br />

M<strong>at</strong>l. C Digital Profilometry D<strong>at</strong>a


Resistance and <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Technologies<br />

– Summary<br />

<br />

Resistance Weld<strong>in</strong>g<br />

─ Spot<br />

─ Th<strong>in</strong> m<strong>at</strong>erials<br />

─ Conductive he<strong>at</strong><br />

─ Embossed projection<br />

─ Seam<br />

─ Pipe cladd<strong>in</strong>g<br />

─ Mash seam<br />

─ Dissimilar m<strong>at</strong>erials<br />

─ Flash butt<br />

─ Resistance butt<br />

─ TAUW<br />

─ Electro-spark<br />

deposition<br />

─ Percussive<br />

─ Braz<strong>in</strong>g<br />

<br />

<strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Weld<strong>in</strong>g<br />

─ Friction<br />

─ Friction stir<br />

─ Inertia<br />

─ Alum<strong>in</strong>um to steel<br />

─ Hot upset<br />

─ Cold pressure<br />

─ Friction stir<br />

─ <strong>Solid</strong> projection<br />

─ Magnetic pulse<br />

─ Diffusion<br />

─ Stud<br />

<br />

Ancillary<br />

Technologies<br />

─ Design-ofexperiments<br />

methods<br />

─ Instrument<strong>at</strong>ion and<br />

control<br />

─ Mechanical<br />

fasten<strong>in</strong>g<br />

─ Model<strong>in</strong>g and<br />

simul<strong>at</strong>ion


Questions?<br />

Jerry E. Gould<br />

Technology Leader<br />

Resistance and <strong>Solid</strong>-<strong>St<strong>at</strong>e</strong> Jo<strong>in</strong><strong>in</strong>g<br />

ph: 614-688-5121<br />

e-mail: jgould@ewi.org<br />

Brian Thompson<br />

Applic<strong>at</strong>ions Eng<strong>in</strong>eer<br />

Friction Stir Weld<strong>in</strong>g<br />

ph: 614-688-5235<br />

e-mail: bthompson@ewi.org

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!