09.06.2015 Views

Beamline G3 at DESY: Materials X-ray Imaging

Beamline G3 at DESY: Materials X-ray Imaging

Beamline G3 at DESY: Materials X-ray Imaging

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Beamline</strong> <strong>G3</strong> <strong>at</strong> <strong>DESY</strong>:<br />

M<strong>at</strong>erials X-<strong>ray</strong> <strong>Imaging</strong><br />

Juraj Ďurišin<br />

DTE, FEI TU in Kosice


Why beamline <strong>G3</strong>?<br />

The majority of typical diffraction experiments determine<br />

microstructures probing larger parts of the specimen and thus<br />

averaging over the sample.<br />

But the microstructure might vary over the sample especially if it<br />

is of inhomogeneous composition or has been inhomogeneously<br />

processed (e.g. soldering, welding, brazing).


Why beamline <strong>G3</strong>?<br />

<strong>Beamline</strong> <strong>G3</strong> enables:<br />

l<strong>at</strong>eral resolution of the microstructure in direct space,<br />

visual evalu<strong>at</strong>ion of distribution of crystal phases, size of crystallites,<br />

texture or strain, structure discontinuities like surfaces, interfaces, phase<br />

or grain boundaries.<br />

crystallite<br />

1 mm<br />

Fig. 1. Crystallites of β-Sn(312)<br />

on surface of solder joint


DORIS III <strong>at</strong> <strong>DESY</strong><br />

DORIS III: storage ring for charged<br />

particles - positrons or electrons <strong>at</strong> an<br />

energy of 4.45 GeV, typically oper<strong>at</strong>es<br />

in 5 bunch mode.<br />

Beam current between 90-140 mA.<br />

Synchrotron radi<strong>at</strong>ion is produced in<br />

the bendings of the ring, where the<br />

insertion devices are loc<strong>at</strong>ed (wigglers,<br />

undul<strong>at</strong>ors, and bending magnets).<br />

The spectrum of DORIS III ranges<br />

from infrared radi<strong>at</strong>ion to hard X-<strong>ray</strong>s,<br />

and is extreme intense particularly in<br />

the X-<strong>ray</strong> range.<br />

31 beamlines.<br />

Circumference of 289 meters.<br />

It is<br />

here!<br />

Fig. 2. DORIS III<br />

[http://hasylab.desy.de]


Basic Parameters of <strong>Beamline</strong> <strong>G3</strong><br />

Monochrom<strong>at</strong>or: fixed-exit double-crystal Ge (111), also further<br />

crystals available Ge (311), Si (111), Si (511), Si (400).<br />

Wavelength range: 1 Å < λ < 2.2 Å with mirror, down to 0.5 Å<br />

without mirror (standard Ge (111) crystal).<br />

Beam dimensions <strong>at</strong> monochrom<strong>at</strong>or: ~4x16 mm 2 .<br />

Flux <strong>at</strong> the sample: ~10 8 sec -1 (depending on monochrom<strong>at</strong>or<br />

crystal and chosen energy range).


<strong>Beamline</strong> <strong>G3</strong>: Experimental St<strong>at</strong>ion<br />

Monochrom<strong>at</strong>or, slit system, air pressure shutter, scintill<strong>at</strong>ion counter,<br />

gold mirror.<br />

air pressure scintill<strong>at</strong>ion<br />

gold mirror<br />

shutter counter monochrom<strong>at</strong>or 1 st slit<br />

2 nd slit<br />

Fig. 3a. <strong>G3</strong> experimental st<strong>at</strong>ion<br />

[Rothkirch]


<strong>Beamline</strong> <strong>G3</strong>: Experimental St<strong>at</strong>ion<br />

Beam tube, gold mirror, 2 detectors, 4 circle diffractometer.<br />

detectors<br />

gold mirror<br />

4 circle<br />

diffractometer<br />

beam tube<br />

Fig. 3b. <strong>G3</strong> experimental st<strong>at</strong>ion<br />

[http://hasylab.desy.de]


<strong>Beamline</strong> <strong>G3</strong>: Monochrom<strong>at</strong>or<br />

Fixed-exit double-crystal Ge (111), also further crystals available Ge<br />

(311), Si (111), Si (511), Si (400).<br />

All movements of the monochrom<strong>at</strong>or are driven by stepper motors.<br />

The monochrom<strong>at</strong>or is w<strong>at</strong>er cooled.<br />

The tilted gold mirror (7 mrad) is used for the suppression of higher<br />

harmonics.<br />

monochrom<strong>at</strong>ic<br />

1. monocrystal beam<br />

1 st slit<br />

scintill<strong>at</strong>ion<br />

counter<br />

DORIS<br />

III<br />

polychrom<strong>at</strong>ic<br />

beam<br />

gold<br />

mirror<br />

monochrom<strong>at</strong>or<br />

box<br />

2. monocrystal<br />

(travelling)<br />

Fig. 4. <strong>G3</strong> monochrom<strong>at</strong>or<br />

2 nd slit


<strong>Beamline</strong> <strong>G3</strong>: 4 Circle Diffractometer<br />

Allows rot<strong>at</strong>ion in 4 angles: 2θ,<br />

ω, φ , χ (sample tilt: 0°< χ< 90°).<br />

Sample table enables<br />

transl<strong>at</strong>ions along x, y (±100 mm)<br />

axes and z axis (±10 mm).<br />

A sphere of 66 mm radius<br />

around the center of the<br />

diffractometer is free of<br />

mechanical components.<br />

The detector arm is equipped<br />

with a traverse allowing a radial<br />

transl<strong>at</strong>ion of the detectors of up<br />

to 380 mm.<br />

The diffractometer holds CCD<br />

detector with the MCP and<br />

point scintill<strong>at</strong>ion detector with<br />

Soller collim<strong>at</strong>or.<br />

θ/ω<br />

χ<br />

φ<br />

Ψ<br />

2θ<br />

detector arm<br />

sample table<br />

detectors<br />

Fig. 5. 4 circle diffr<strong>at</strong>ometer and detectors<br />

[http://hasylab.desy.de]


<strong>Beamline</strong> <strong>G3</strong>: Detectors<br />

Soller<br />

collim<strong>at</strong>or<br />

scintill<strong>at</strong>ion<br />

detector<br />

detector<br />

arm<br />

20.4°<br />

Fig. 5. <strong>G3</strong> detectors<br />

[http://hasylab.desy.de]<br />

microchannel<br />

pl<strong>at</strong>e<br />

CCD<br />

detector<br />

Fig. 6. Scheme of the detectors position<br />

(side view)<br />

traverse<br />

On the pl<strong>at</strong>form for the CCD/MCP detector, inclined by about 20.4º,<br />

a scintill<strong>at</strong>ion counter with Soller collim<strong>at</strong>or in front is mounted.


<strong>Beamline</strong> <strong>G3</strong>: Detectors<br />

CCD camera<br />

Hamam<strong>at</strong>su 4880,<br />

1024 x 1024 pixels (13 µm),<br />

Peltier-cooled CCD chip (-65ºC),<br />

the MCP is in contact<br />

with capton foil of the CCD camera.<br />

capton foil<br />

MCP<br />

Fig. 7. CCD camera - front view<br />

[Rothkirch]<br />

Point scintill<strong>at</strong>ion detector<br />

Ortec LABR-1X1,<br />

lanthanum bromide (LaBr 3 (Ce))<br />

detector.<br />

Fig. 8. Scintill<strong>at</strong>ion detector<br />

[www.ortec-online.com ]


<strong>Beamline</strong> <strong>G3</strong>: Microchannel pl<strong>at</strong>e<br />

The microchannel pl<strong>at</strong>e (MCP) consists of millions of very-thin, conductive<br />

glass capillaries fused together and sliced into a thin pl<strong>at</strong>e.<br />

MCP is a collim<strong>at</strong>or ar<strong>ray</strong> between the sample and a position-sensitive<br />

detector (CCD camera).<br />

Each channel of the MCP acts as a collim<strong>at</strong>or tube pointing to a certain<br />

loc<strong>at</strong>ion of the sample, channels arranged in hexagonal l<strong>at</strong>tice.<br />

Diameter of channels is 10 µm, 12.5 µm between their centers.<br />

12.5 µm<br />

Fig. 9. Microchannel pl<strong>at</strong>e<br />

(front view)<br />

[www.hamam<strong>at</strong>su.com ]<br />

Fig. 10. Scheme of the<br />

microchannel pl<strong>at</strong>e (front view)<br />

10 µm<br />

Fig. 11. Detail<br />

of hexagonal l<strong>at</strong>tice<br />

(front view)


<strong>Beamline</strong> <strong>G3</strong>: Microchannel pl<strong>at</strong>e<br />

The thickness of the pl<strong>at</strong>e is 4 mm resulting in an angular acceptance<br />

of 2.5 mrad full width and, considering the circular shape of the<br />

channels, a FWHM of 1 mrad.<br />

Typical sample to detector distance is 12 mm resulting in a sp<strong>at</strong>ial<br />

resolution of 13 µm which is also the size of each of 1024 x 1024 pixels<br />

of the CCD detector.<br />

10 µm<br />

diffracted<br />

X-<strong>ray</strong>s/<br />

fluoresence<br />

4 mm<br />

Fig. 12. Detail of hexagonal l<strong>at</strong>tice<br />

(side view)


<strong>Beamline</strong> <strong>G3</strong>: Principle of Diffraction <strong>Imaging</strong><br />

Principle of diffraction imaging lies in applic<strong>at</strong>ion of the MCP.<br />

The MCP prevents detection of crossfire<br />

from diffracted X-<strong>ray</strong>s.<br />

Sp<strong>at</strong>ial distribution of crystal phases, ...<br />

crossfire<br />

CCD<br />

camera<br />

incident<br />

beam<br />

MCP<br />

θ<br />

crossfire<br />

sample<br />

ω<br />

Fig. 13. Principle of diffraction imaging


<strong>Beamline</strong> <strong>G3</strong>: Principle of Fluorescence <strong>Imaging</strong><br />

Vari<strong>at</strong>ion of applied beam wavelength by crystal monochrom<strong>at</strong>or.<br />

The MCP prevents detection of “crossfire”<br />

from fluorescent X-<strong>ray</strong>s.<br />

Sp<strong>at</strong>ial distribution<br />

of chemical<br />

elements.<br />

crossfire<br />

CCD<br />

camera<br />

incident<br />

beam<br />

MCP<br />

Fig. 14. Effect of<br />

fluorescence<br />

crossfire<br />

sample<br />

ω<br />

Fig. 15. Principle of fluorescence imaging


<strong>Beamline</strong> <strong>G3</strong>: Parallel polycapillaries<br />

Length of 300 mm, diameter of 30 µm, arranged in a hexagonal ar<strong>ray</strong> of<br />

8 mm distance between opposing sides.<br />

Lower angular acceptance - 30 µm/ 300 mm.<br />

Small angle sc<strong>at</strong>tering - CCD does not move into the primary beam.<br />

High energy imaging - total reflection <strong>at</strong> the capillary walls is much<br />

less pronounced <strong>at</strong> high X-<strong>ray</strong> energies.<br />

parallel<br />

polycapillaries<br />

sample<br />

Fig. 16. Parallel polycapillaries <strong>at</strong> <strong>G3</strong> diffractometer<br />

[Wroblewski, Bjeoumikhov]


<strong>Beamline</strong> <strong>G3</strong>: Solid-Liquid Phase Transitions<br />

Includes applic<strong>at</strong>ion of additional monocrystal Ge (111).<br />

The monocrystal enables measurements of liquid samples.<br />

Liquid samples can not be tilted.<br />

incident<br />

beam<br />

monocrystal<br />

sample<br />

table<br />

Fig. 17. Monocrystal mounted on 4 circle<br />

diffractometer<br />

[Donges, Ovchinnikov]


<strong>Beamline</strong> <strong>G3</strong>: Solid-Liquid Phase Transitions<br />

Includes applic<strong>at</strong>ion of additional monocrystal Ge (111).<br />

Tilt angle of the monochrom<strong>at</strong>or depends on applied wavelength.<br />

end of<br />

beam<br />

tube<br />

θ 0<br />

monocrystal<br />

scintill<strong>at</strong>ion/CCD<br />

detector<br />

diffracted<br />

beam<br />

incident<br />

beam<br />

deflected<br />

beam<br />

2θ<br />

pot with<br />

liquid sample<br />

sample table<br />

(cooling/he<strong>at</strong>ing stage)<br />

Fig. 18. Principle of liquid samples measurement


<strong>Beamline</strong> <strong>G3</strong>: Solder Alloy Measurement<br />

Solder alloy: 96.5Sn3Ag0.5Cu (wt. %).<br />

The alloy was soldered on copper (Cu) foil.<br />

Goal of the measurement: visualiz<strong>at</strong>ion of distribution and<br />

orient<strong>at</strong>ion of crystal phases of the solder (β-Sn, intermetallics –<br />

Ag 3 Sn, Cu 6 Sn 5 ) via CCD camera.<br />

Samples - 2 solder spots.<br />

Ag 3 Sn<br />

β-Sn<br />

Cu 6 Sn 5<br />

Fig. 19. PCB p<strong>at</strong>tern<br />

Fig. 20. Microstructure<br />

of the solder alloy<br />

[IMR SAS]


<strong>Beamline</strong> <strong>G3</strong>: Solder Alloy Measurement<br />

1. step<br />

point scintill<strong>at</strong>ion detector,<br />

Bragg-Brentano geometry,<br />

2θ range: 30º-105º, ∆2θ=0.04º, λ = 1.54187 Å (Cu K_alpha),<br />

the solder spots positioned on the sample table of 4 circle diffractometer,<br />

Time reduction of CCD camera measurement.<br />

Intensity Intenzita [arbitrary [-]<br />

units]<br />

spot 1<br />

spot 2<br />

β-Sn<br />

Ag 3 Sn<br />

Cu 6 Sn 5<br />

Fig. 21. Diffraction p<strong>at</strong>terns of 2 solder spots


<strong>Beamline</strong> <strong>G3</strong>: Solder Alloy Measurement<br />

2. step<br />

CCD camera (detector),<br />

λ = 1.54187 Å (Cu K_alpha),<br />

2θ range selection: 2θ=60-100º, but measured was only in limit<br />

of width of Bragg peaks <strong>at</strong> their basis,<br />

∆2θ=0.04º ≈ 300 seconds.<br />

β-Sn (112)<br />

2θ = 62,52<br />

β-Sn (400)<br />

2θ = 63,64<br />

β-Sn (321)<br />

2θ = 64,44<br />

HAL spot 1000 1 HAL spot 1000 1 HAL spot 1000 1<br />

spot HAL 0 2 HAL spot 0 2 HAL spot 0 2<br />

5 mm<br />

5 mm<br />

5 mm<br />

Fig. 22. Diffraction imaging of solder spots<br />

<strong>at</strong> selected angles


<strong>Beamline</strong> <strong>G3</strong>: Solder Alloy Measurement<br />

Ag 3 Sn (032)<br />

2θ = 69,16<br />

β-Sn (420)<br />

2θ = 72,24<br />

Cu 6 Sn 5 (-733)<br />

2θ = 74,84<br />

spot 1<br />

HAL 1000<br />

spot 2<br />

HAL 0<br />

spot 1 spot 1<br />

HAL 1000<br />

HAL 1000<br />

HAL spot 0 2 HAL spot 0 2<br />

5 mm<br />

5 mm<br />

5 mm<br />

Fig. 23. Diffraction imaging of solder spots<br />

<strong>at</strong> selected angles


<strong>Beamline</strong> <strong>G3</strong>: Solder Alloy Measurement<br />

Ag 3 Sn (223)<br />

2θ = 74,80<br />

β-Sn (312)<br />

2θ = 79,48<br />

Ag 3 Sn (024)<br />

2θ = 84,98<br />

HAL 1000<br />

HAL 1000<br />

HAL spot 1000 1 spot 1 spot 1<br />

HAL 0<br />

HAL 0<br />

spot HAL 0 2 spot 2 spot 2<br />

5 mm<br />

5 mm 5 mm<br />

Fig. 24. Diffraction imaging of solder spots<br />

<strong>at</strong> selected angles


<strong>Beamline</strong> <strong>G3</strong>: Solder Alloy Measurement<br />

Brief summary<br />

<br />

<br />

Non-uniform distribution of β-Sn crystals (if crystal orient<strong>at</strong>ion<br />

taken into consider<strong>at</strong>ion),<br />

size of β-Sn crystals: ≈10 1 -10 2 µm,<br />

uniform distribution of intermetallics – Ag 3 Sn, Cu 6 Sn 5 .


Acknowledgement<br />

Thomas Wroblewski,<br />

Jörn Donges,<br />

André Rothkirch,<br />

Karel Saksl<br />

and Hermann Franz.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!