14.06.2015 Views

CDOP2 Product Requirement Document - Version 1.0 - H-SAF

CDOP2 Product Requirement Document - Version 1.0 - H-SAF

CDOP2 Product Requirement Document - Version 1.0 - H-SAF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 1/66<br />

EUMETSAT Satellite Application Facility<br />

on Support to Operational Hydrology<br />

and Water Management<br />

(H-<strong>SAF</strong>)<br />

CDOP-2 <strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Reference Number:<br />

<strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue/Revision Index: Issue <strong>1.0</strong><br />

Last Change: 11/12/2012


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 2/66<br />

DOCUMENT SIGNATURE TABLE<br />

Name Date Signature<br />

Prepared by : H-<strong>SAF</strong> Project Team 11/12/2012<br />

Approved by :<br />

H-<strong>SAF</strong> Project Manager<br />

DOCUMENT CHANGE RECORD<br />

Issue / Revision Date Description<br />

0.1 23/11/2012 Preliminary version prepared for <strong>CDOP2</strong><br />

<strong>1.0</strong> 11/12/2012 Baseline version approved by Steering Group (<strong>CDOP2</strong> SG2) on 11<br />

December 2012


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 3/66<br />

DISTRIBUTION LIST<br />

Country Organization Name Contact<br />

Austria TU-Wien Stefan Hasenauer sh@ipf.tuwien.ac.at<br />

Wolfgang Wagner<br />

ww@ipf.tuwien.ac.at<br />

ZAMG Alexander Jann alexander.jann@zamg.ac.at<br />

Barbara Zeiner<br />

b.zeiner@zamg.ac.at<br />

Belgium IRM Emmanuel Roulin emmanuel.roulin@oma.be<br />

Bulgary NIMH/BAS Gergana Kozinarova Gergana.Kozinarova@meteo.bg<br />

Finland FMI Jouni Pulliainen jouni.pulliainen@fmi.fi<br />

Ali Nadir Arslan<br />

Ali.nadir.arslan@fmi.fi<br />

Kari Luojus<br />

Kari.luojus.fmi.fi<br />

Kati Anttila<br />

kati.anttila@fmi.fi<br />

Matias Takala<br />

Matias.Takala@fmi.fi<br />

Niilo Siljamo<br />

niilo.siljamo@fmi.fi<br />

Panu Lahtinen<br />

panu.lahtinen@fmi.fi<br />

Terhikki Manninen<br />

terhikki.manninen@fmi.fi<br />

France Météo France Jean-Christophe Calvet jean-christophe.calvet@meteo.fr<br />

Germany BfG Peter Krahe krahe@bafg.de<br />

Claudia Rachimow<br />

rachimow@bafg.de<br />

Hungary OMSZ Judit Kerenyi kerenyi.j@met.hu<br />

International ECMWF Lars Isaksen lars.isaksen@ecmwf.int<br />

Patricia de Rosnay<br />

patricia.rosnay@ecmwf.int<br />

Clément Albergel<br />

Clement.Albergel@ecmwf.int<br />

International EUMETSAT Dominique Faucher dominique.faucher@eumetsat.int<br />

Frédéric Gasiglia<br />

frederic.gasiglia@eumetsat.int<br />

Jochen Grandell<br />

jochen.grandell@eumetsat.int<br />

Lorenzo Sarlo<br />

Lorenzo.Sarlo@eumetsat.int<br />

Lothar Schueller<br />

Lothar.Schueller@eumetsat.int<br />

Stefano Geraci<br />

stefano.geraci@eumetsat.int<br />

Volker Gaertner<br />

volker.gaertner@eumetsat.int<br />

Italy CNMCA Antonio Vocino a.vocino@meteoam.it<br />

Daniele Biron<br />

d.biron@meteoam.it<br />

Davide Melfi<br />

d.melfi@meteoam.it<br />

Francesco Zauli<br />

f.zauli@meteoam.it<br />

Leonardo Facciorusso l.facciorusso@meteoam.it<br />

USAM Luigi De Leonibus deleonibus@meteoam.it<br />

Paolo Rosci<br />

rosci@meteoam.it<br />

CNR-ISAC Alberto Mugnai a.mugnai@isac.cnr.it<br />

Giulia Panegrossi<br />

giulia.panegrossi@artov.isac.cnr.it


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 4/66<br />

Stefano Dietrich<br />

Vincenzo Levizzani<br />

Elsa Cattani<br />

s.dietrich@isac.cnr.it<br />

v.levizzani@isac.cnr.it<br />

e.cattani@isac.cnr.it<br />

Sante Laviola<br />

s.laviola@isac.cnr.it<br />

DPC Paola Pagliara paola.pagliara@protezionecivile.it<br />

Angelo Rinollo<br />

Silvia Puca<br />

angelo.rinollo@protezionecivile.it<br />

silvia.puca@protezionecivile.it<br />

Telespazio Emiliano Agosta emiliano.agosta@telespazio.com<br />

Flavio Gattari<br />

flavio.gattari@telespazio.com<br />

UniFerrara Federico Porcu' porcu@fe.infn.it<br />

Marco Petracca<br />

marco.petracca84@libero.it<br />

Poland IMWM Michal Kasina michal.kasina@imgw.pl<br />

Piotr Struzik<br />

piotr.struzik@imgw.pl<br />

Slovakia SHMÚ Ján Kaňák jan.kanak@shmu.sk<br />

Sweden SMHI Stefan Nilsson stefan.nilsson@smhi.se<br />

Turkey ITU Ahmet Öztopal oztopal@itu.edu.tr<br />

METU Zuhal Akyurek zakyurek@metu.edu.tr<br />

Serdar Surer<br />

Kenan Bolat<br />

serdarsurer@gmail.com<br />

kenan23@gmail.com<br />

TSMS Sezel Karayusufoglu skarayusufoglu@dmi.gov.tr<br />

Fatih Demýr<br />

fdemir@dmi.gov.tr<br />

AU Aynur Sensoy asensoy@anadolu.edu.tr<br />

OMU Ibrahim Sonmez isonmez@dmi.gov.tr


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 5/66<br />

TABLE OF CONTENTS<br />

1 INTRODUCTION .......................................................................................................... 7<br />

1.1 Purpose of the document ...................................................................................... 7<br />

1.2 Scope .................................................................................................................... 7<br />

2 H-<strong>SAF</strong> PRODUCTS...................................................................................................... 8<br />

2.1 <strong>Product</strong>s list ........................................................................................................... 8<br />

2.2 General requirements .......................................................................................... 10<br />

3 PRODUCT REQUIREMENTS .................................................................................... 10<br />

3.1 Precipitation products requirements .................................................................... 10<br />

3.1.1 Precipitation Accuracy Values ...................................................................... 10<br />

3.1.1 Precipitation <strong>Product</strong>s <strong>Requirement</strong>s ........................................................... 13<br />

3.2 Soil Moisture products ......................................................................................... 39<br />

3.2.1 Soil Moisture Accuracy Values ..................................................................... 39<br />

3.2.2 Soil Moisture products requirements ............................................................ 41<br />

3.3 Snow products .................................................................................................... 46<br />

3.3.1 Snow Accuracy Values ................................................................................ 46<br />

3.3.1 Snow products requirements........................................................................ 47<br />

APPENDIX 1 GLOSSARY .............................................................................................. 57<br />

APPENDIX 2 REFERENCES ......................................................................................... 62<br />

2.1 Applicable documents ......................................................................................... 62<br />

2.2 Reference documents ......................................................................................... 62<br />

2.3 Scientific References ........................................................................................... 62<br />

APPENDIX 3 TBC/TBD LIST .......................................................................................... 65


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 6/66<br />

LIST OF TABLES<br />

Table 1 H-<strong>SAF</strong> products list ........................................................................................................... 10<br />

Table 2: RMSE% and standard deviation of interpolation algorithms for 3 different regular grids.<br />

(VS 11_P01 Evaluation on accuracy of precipitation data” ) ................................................... 11<br />

Table 3 RMSE% AND STANDARD DEVIATION OF INTERPOLATION ALGORITHMS FOR 3<br />

DIFFERENT IRREGULARLY SAMPLED DATA GRID. (VS 11_P01 Evaluation on accuracy of<br />

precipitation data” ) ................................................................................................................ 12<br />

Table 4 SUMMARY TABLE. RMSE MEAN VALUES % OBTAINED BY DIFFERENT<br />

INTERPOLATION METHODS AND STEPS FOR HOURLY IRREGULARLY SAMPLED DATA<br />

GRID. (VS 11_P01 Evaluation on accuracy of precipitation data” ) ........................................ 12


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 7/66<br />

1 Introduction<br />

1.1 Purpose of the document<br />

This document shows the <strong>Product</strong> <strong>Requirement</strong>s of the Satellite Application Facility on<br />

Support to Operational Hydrology and Water Management (H-<strong>SAF</strong>).<br />

PRD document is released for the beginning of the CDOP-2 phase.<br />

1.2 Scope<br />

PRD includes the H-<strong>SAF</strong> products requirements in terms of:<br />

- General information:<br />

o <strong>Product</strong> acronym, name, identificator<br />

o Targeted applications and users<br />

o Characteristics and methods<br />

o Input satellite data<br />

o Validation method<br />

- <strong>Requirement</strong>s on:<br />

o Generation frequency<br />

o Dissemination: format, means and type of dissemination<br />

o Accuracy: Threshold, Target and Optimal accuracy<br />

o Coverage, resolution and timeliness: Spatial coverage, spatial resolution,<br />

vertical resolution and timeliness.<br />

o Format<br />

References or comments are also included in each of the product requirement.<br />

The PRD documents the committed target for development and operations within the<br />

Second Continuous Development and Operations Phase (CDOP-2) based on the<br />

cooperation agreement between the Leading Entity (USAM) and EUMETSAT. It is the<br />

main reference document for all development related reviews and it provides the basis for<br />

information given to users, what can be expected from the H-<strong>SAF</strong> after completion of<br />

planned developments.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 8/66<br />

2 H-<strong>SAF</strong> <strong>Product</strong>s<br />

2.1 <strong>Product</strong>s list<br />

<strong>Product</strong><br />

identifier<br />

<strong>Product</strong><br />

acronym<br />

Precipitation products<br />

<strong>Product</strong> name<br />

H01 PR-OBS-1 Precipitation rate at ground by MW conical scanners<br />

H02A PR-OBS-2A Precipitation rate at ground by MW cross-track scanners<br />

H02B PR-OBS-2B Precipitation rate at ground by MW cross-track scanners<br />

H03A PR-OBS-3A Precipitation rate at ground by GEO/IR supported by LEO/MW<br />

H03B PR-OBS-3B Precipitation rate at ground by GEO/IR supported by LEO/MW<br />

H40A PR-OBS-3-FCI-A Precipitation rate at ground by GEO/IR supported by LEO/MW and MTG FCI<br />

H40B PR-OBS-3-FCI-B Precipitation rate at ground by GEO/IR supported by LEO/MW and MTG FCI<br />

H04A PR-OBS-4A Precipitation rate at ground by LEO/MW supported by GEO/IR<br />

H04B PR-OBS-4B Precipitation rate at ground by LEO/MW supported by GEO/IR<br />

H41A PR-OBS-4-FCI-A Precipitation rate at ground by LEO/MW supported by GEO/IR<br />

H41B PR-OBS-4-FCI-B Precipitation rate at ground by LEO/MW supported by GEO/IR and MTG FCI<br />

H05A PR-OBS-5A Accumulated precipitation at ground by blended MW and IR<br />

H05B PR-OBS-5B Accumulated precipitation at ground by blended MW and IR<br />

H42A PR-OBS-5-FCI-A Accumulated precipitation at ground by blended MW and IR and MTG FCI<br />

H42B PR-OBS-5-FCI-B Accumulated precipitation at ground by blended MW and IR and MTG FCI<br />

H15A PR-OBS-6A Blended SEVIRI Convection area / LEO MW Convective Precipitation<br />

H15B PR-OBS-6B Blended SEVIRI Convection area / LEO MW Convective Precipitation<br />

H17 PR-OBS-1 ver2 Precipitation rate at ground by MW conical scanners ver. 2<br />

H18 PR-OBS-2 ver2 Precipitation rate at ground by MW cross-track scanners ver. 2


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 9/66<br />

<strong>Product</strong><br />

identifier<br />

H19<br />

H20<br />

H21<br />

<strong>Product</strong><br />

acronym<br />

PR-OBS-7<br />

PR-OBS-8<br />

PR-OBS-9<br />

<strong>Product</strong> name<br />

Rainfall intensity from GMI (Global Precipitation Measurement - Microwave<br />

Imager) [Bayesian algorithm]<br />

Rainfall intensity from GMI (Global Precipitation Measurement - Microwave<br />

Imager) [Neural Network algorithm]<br />

High frequency MW delineation of cloud areas with new development of<br />

hydrometeors<br />

H22 PR-OBS-10 Snowfall intensity<br />

H50 PR-OBS-11 Rainfall intensity from MTG LI<br />

Soil Moisture products<br />

H08<br />

H14<br />

SM-DIS-1<br />

(ex SM-OBS-2)<br />

SM-DAS-2<br />

(ex SM-ASS-2)<br />

Small-scale surface soil moisture by radar scatterometer [1 km,<br />

ASCAT/SAR]<br />

Soil Moisture Profile Index in the roots region retrieved by surface wetness<br />

scatterometer assimilation method<br />

H16 SM-OBS-3 Large-scale surface soil moisture by radar scatterometer (25 km, ASCAT)<br />

H25 SM-OBS-4 ASCAT Large-scale surface soil moisture(25 Km)<br />

H27<br />

SM-DAS-3<br />

(ex SM-ASS-3)<br />

Soil Wetness Index in the roots region by scatterometer assimilation in a<br />

NWP model<br />

Snow Parameter products<br />

H10 SN-OBS-1 Snow detection (snow mask) by VIS/IR radiometry<br />

H11 SN-OBS-2 Snow status (dry/wet) by MW radiometry<br />

H12 SN-OBS-3 Effective snow cover by VIS/IR radiometry<br />

H13 SN-OBS-4 Snow water equivalent by MW radiometry<br />

H31<br />

H32<br />

H33<br />

SN-OBS-0G<br />

SN-OBS-0P<br />

SN-OBS-0M<br />

Snow detection for flat land (snow mask) by VIS/NIR [current operational<br />

SEVIRI based LSA-<strong>SAF</strong> snow product]<br />

Snow detection for flat land (snow mask) by VIS/NIR [current preoperational<br />

Metop/AVHRR based LSA-<strong>SAF</strong> snow product]<br />

Merged MSG and EPS Snow Cover [current in-development Merged<br />

MSG/Seviri-Metop/AVHRR based LSA-<strong>SAF</strong> snow product]<br />

H34 SN-OBS-1G Snow detection (snow mask) by VIS/NIR of SEVIRI [From H10 + H31]<br />

H35<br />

SN-OBS-1P<br />

Snow detection (snow mask) and Effective snow cover by VIS/NIR of<br />

AVHRR [From H12 + H32]<br />

H43 SN-OBS-0G-FCI Snow detection (snow mask) by VIS/NIR of MTG FCI<br />

Suffix “A”: H-<strong>SAF</strong> area; Suffix “B”: area extended to Africa and Southern Atlantic


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 10/66<br />

Table 1 H-<strong>SAF</strong> products list<br />

2.2 General requirements<br />

UR.GE.01 - H-<strong>SAF</strong> shall generate and disseminate satellite-derived products according to<br />

the detailed product requirements presented in section 3.<br />

UR.GE.04 - The H-<strong>SAF</strong> products shall cover as a minimum all EUMETSAT member and<br />

cooperating States and associated costal zones. The nominal H-<strong>SAF</strong> area coverage<br />

stretches from latitude 25°N to 75°N, longitude 25°W to 45°E.<br />

UR.GE.05 - The distributed H-<strong>SAF</strong> products shall be associated with characterisation of<br />

their error structure so that users will be guided to appropriate utilisation. Guidance to<br />

utilisation will also be supported by education and training activities on the nature of the<br />

products and their applicability in hydrology and water management.<br />

UR.GE.06 - All products generated in H-<strong>SAF</strong> shall be collected in near-real-time in the<br />

central archive (real or virtual), and shall be made available to the user community through<br />

the EUMETSAT Data Centre.<br />

UR.GE.13 - In order to enable reconstruction of time series, or re-calibration and/or reprocessing<br />

by advanced algorithms, raw data shall be archived at the acquisition sites<br />

(either physically or virtually) and made accessible to the H-<strong>SAF</strong> central archive.<br />

UR.GE.14 - The system shall be designed to deal with emergency management such as<br />

recovering missed real time production. The options range from the generation of products<br />

at the closest possible time (though delayed), to highly-delayed recovery only for the<br />

purpose of reconstructing time series, to acceptance of a definitive gap if the recovery is<br />

impossible or not sufficiently cost-effective.<br />

UR.GE.15 - The H-<strong>SAF</strong> shall install and maintain a H-<strong>SAF</strong> web site and maintain a help<br />

desk. The web site will provide general public information on H-<strong>SAF</strong>, H-<strong>SAF</strong> products<br />

description, rolling information on the H-<strong>SAF</strong> implementation status, the publication of<br />

product images, and all related documentation.<br />

UR.GE.DOC.1 - The H-<strong>SAF</strong> shall make available updated user documentation related to<br />

its (pre-) operational products: ATBD, <strong>Product</strong> User Manual and Validation Reports.<br />

3 <strong>Product</strong> <strong>Requirement</strong>s<br />

3.1 Precipitation products requirements<br />

3.1.1 Precipitation Accuracy Values<br />

<strong>Product</strong> requirements for accuracy are adopted on the basis of the principle that values be<br />

unified for each sub type of product family and by making use of the following criteria for<br />

the three values:


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 11/66<br />

OPTIMAL: About intensity precipitation products, the impact of the statistic<br />

characteristics of the parameter/phenomena onto the best available observations<br />

(raingauges) was referred as from the WMO report on “field intercomparison of rainfall<br />

intensity gauges”. That report shows that rain-gauges adopting the time sampling of 1<br />

minute give a percentage error from the reference raingauge of about 30% and only<br />

with specific laboratory tuning of the instruments it is possible to achieve the 5% error.<br />

These results are related to rainfall intensity of about 12mm/hr as inferred by the<br />

observation of mechanical raingauges (the greatest majority of the operational<br />

instruments).<br />

Considering what above the optimal accuracy requirements for precipitation intensity has<br />

been revised as following:<br />

10mm/hr 25%<br />

10mm/hr


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 13/66<br />

3.1.1 Precipitation <strong>Product</strong>s <strong>Requirement</strong>s<br />

H01 Precipitation rate at ground by MW conical scanners PR-OBS-1<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

Comments<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated from MW images taken by conical scanners on<br />

operational satellites in sun-synchronous orbits processed soon after each satellite pass.<br />

The retrieval algorithm is based on physical retrieval supported by a pre-computed cloudradiation<br />

database built from meteorological situations simulated by a cloud resolving model<br />

followed by a radiative transfer model<br />

Precipitation rate from conical scanning instruments will be derived from SSMIS radiometers<br />

onboard DMSP satellites.<br />

Timeliness conditioned by limited access to DMSP (via NOAA and UKMO)<br />

Foreseen 1h timeliness as a long term requirement - SSM/I on DMSP up to 15 - SSMIS on<br />

DMSP from 16 onward<br />

Generation frequency<br />

Up to six passes/day in the intervals 06-12 and 18-24 UTC<br />

Observing cycle over Europe: ~ 10 h<br />

Input satellite data<br />

SSMI and SSMIS on DMSP (SSMI until Nov. 2011 – no longer available)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital<br />

projection (BUFR)<br />

Accuracy<br />

FTP, EUMETCast<br />

NRT<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

90% for > 10 mm/h,<br />

120% for 1-10 mm/h,<br />

240% for < 1 mm/h<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with precipitation type:<br />

80% for > 10 mm/h,<br />

105% for 1-10 mm/h,<br />

145% for < 1 mm/h<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

50% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to<br />

45°E longitude<br />

Resolution changing with precipitation type: 30<br />

km in average<br />

Sampling: 16 km<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 14/66<br />

H01 new<br />

rel.<br />

Type<br />

Precipitation rate at ground by MW conical scanners (new<br />

rel.)<br />

NRT <strong>Product</strong><br />

PR-OBS-1 new rel.<br />

Application and users<br />

Characteristics and<br />

Methods<br />

Comments<br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated from passive MW images taken by conical scanners<br />

on operational satellites in sun-synchronous orbits processed soon after each satellite pass.<br />

The retrieval algorithm is based on physically-based Bayesian approach supported by a precomputed<br />

cloud/dynamic-radiation database (CDRD) built from meteorological situations<br />

simulated by a cloud resolving model followed by a radiative transfer model<br />

References: [RD 14, 15, 16] (Section 3)<br />

Timeliness conditioned by limited access to DMSP (via NOAA and UKMO);<br />

Foreseen 1h timeliness as a long term requirement - SSM/I on DMSP up to 15 - SSMIS on<br />

DMSP from 16 onward<br />

Generation frequency<br />

Up to six passes/day in the intervals 06-12 and 18-24 UTC<br />

Observing cycle over Europe: ~ 10 h<br />

Input satellite data<br />

SSMI and SSMIS on DMSP (SSMI until Nov. 2011 – no longer available)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital<br />

projection (BUFR)<br />

Accuracy<br />

FTP, EUMETCast<br />

NRT<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

90% for > 10 mm/h,<br />

120% for 1-10 mm/h,<br />

240% for < 1 mm/h<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with precipitation type:<br />

80% for > 10 mm/h,<br />

105% for 1-10 mm/h,<br />

145% for < 1 mm/h<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

50% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to<br />

45°E longitude) extended to Africa and southern<br />

Atlantic<br />

30 km until Dec. 2012 - 15 km since Jan. 2013<br />

Sampling: 12.5 km<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 15/66<br />

H02A Precipitation rate at ground by MW cross-track scanners PR-OBS-2A<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated from MW images taken by cross-track scanners<br />

on operational satellites in sun-synchronous orbits processed soon after each satellite pass.<br />

Before undertaking retrieval the AMSU-A resolution is enhanced by blending with AMSU-<br />

B/MHS.<br />

The retrieval algorithm is based on a neural network trained by means of a pre-computed<br />

cloud-radiation database built from meteorological situations simulated by a cloud resolving<br />

model followed by a radiative transfer model<br />

Comments<br />

Generation frequency<br />

Precipitation rate from cross-track scanning instruments will be derived from AMSU-A and<br />

MHS radiometers onboard NOAA and Metop operational satellites. Nevertheless, PR-OBS-2<br />

will keep exploiting AMSU-A/B (on NOAA-15 & -16) measurements until available<br />

Up to six passes/day with somewhat irregular distribution across the day.<br />

Observing cycle over Europe: ~ 5 h<br />

Input satellite data<br />

AMSU-A and AMSU/B on NOAA (up to NOAA-17)<br />

AMSU/A and MHS on Metop-A (and MetOp-B when available) and NOAA 18/19<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital projection (BUFR) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

90 % for > 10 mm/h,<br />

120 % for 1-10 mm/h,<br />

240 % for < 1 mm/h<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with precipitation type:<br />

80% for > 10 mm/h,<br />

105% for 1-10 mm/h,<br />

145% for < 1 mm/h<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

25% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to<br />

75°N latitude, 25°W<br />

to 45°E longitude)<br />

Resolution changing with precipitation type: 40 km in average<br />

Sampling: 16 km<br />

1 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 16/66<br />

H02A new<br />

rel<br />

Type<br />

Precipitation rate at ground by MW cross-track scanners (new rel.)<br />

NRT <strong>Product</strong><br />

PR-OBS-2A new rel.<br />

Application and users<br />

Characteristics and<br />

Methods<br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated from passive MW images taken by cross-track<br />

scanners on operational satellites in sun-synchronous orbits processed soon after each<br />

satellite pass. Before undertaking retrieval the AMSU-A resolution is enhanced by blending<br />

with AMSU-B/MHS.<br />

The retrieval algorithm is based on a neural network trained by means of a pre-computed<br />

cloud-radiation database built from meteorological situations simulated by a cloud resolving<br />

model followed by a radiative transfer model<br />

References: [RD 12], (Section 3)<br />

Comments<br />

Generation frequency<br />

Timeliness refers to data in the acquisition range of Rome - Outside is ~ 1 h (EARS)<br />

Up to six passes/day with somewhat irregular distribution across the day.<br />

Observing cycle over Europe: ~ 5 h<br />

Input satellite data<br />

AMSU-A and AMSU/B on NOAA (up to NOAA-17)<br />

AMSU/A and MHS on Metop-A (and MetOp-B when available) and NOAA 18/19<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital projection (BUFR) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

90 % for > 10 mm/h,<br />

120 % for 1-10 mm/h,<br />

240 % for < 1 mm/h<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with precipitation type:<br />

80% for > 10 mm/h,<br />

105% for 1-10 mm/h,<br />

145% for < 1 mm/h<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

25% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area Resolution changing along the scan: varying from 16 x 16 km 2 /<br />

circular at nadir to 26 x 52 km 2 / oval at scan edge<br />

1 h<br />

Sampling: 16 km


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 17/66<br />

H02B Precipitation rate at ground by MW cross-track scanners PR-OBS-2B<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated from passive MW images taken by cross-track<br />

scanners on operational satellites in sun-synchronous orbits processed soon after each<br />

satellite pass. Before undertaking retrieval the AMSU-A resolution is enhanced by blending<br />

with AMSU-B/MHS.<br />

The retrieval algorithm is based on a neural network trained by means of a pre-computed<br />

cloud-radiation database built from meteorological situations simulated by a cloud resolving<br />

model followed by a radiative transfer model<br />

References: [RD 12], (Section 3)<br />

Comments<br />

Generation frequency<br />

Timeliness refers to data in the acquisition range of Rome - Outside is ~ 1 h (EARS)<br />

Up to six passes/day with somewhat irregular distribution across the day.<br />

Observing cycle over Europe: ~ 5 h<br />

Input satellite data<br />

AMSU-A and AMSU/B on NOAA (up to NOAA-17)<br />

AMSU/A and MHS on Metop-A (and MetOp-B when available) and NOAA 18/19<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital projection (BUFR) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

50 % for > 10 mm/h,<br />

60 % for 1-10 mm/h,<br />

120 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with precipitation type:<br />

30% for > 10 mm/h,<br />

40% for 1-10 mm/h,<br />

80% for < 1 mm/h<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

15% for > 10 mm/h,<br />

20% for 1-10 mm/h,<br />

40% for < 1 mm/h<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area extended to<br />

Africa and southern Atlantic<br />

Resolution changing along the scan: varying from 16 x 16 km 2 /<br />

circular at nadir to 26 x 52 km 2 / oval at scan edge<br />

Sampling 16 km<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 18/66<br />

H03A Precipitation rate at ground by GEO/IR supported by LEO/MW PR-OBS-3A<br />

Type<br />

Application and users<br />

Characteristics and Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated by IR images from operational<br />

geostationary satellites “calibrated” by precipitation measurements from PMW<br />

satellite sensors in sun-synchronous orbits, processed soon after each acquisition<br />

of a new image from GEO (“Rapid Update”).<br />

The calibrating lookup tables are updated after each new pass of a MW-equipped<br />

satellite<br />

References: [RD 11], (Section 4 pp.65-79)<br />

Comments<br />

Generation frequency<br />

<strong>Product</strong> mostly suitable for convective precipitation<br />

Every new SEVIRI image (at 15 min intervals)<br />

Observing cycle over Europe: 15 min<br />

Input satellite data<br />

SEVIRI on MSG (Meteosat-9)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

90% for > 10 mm/h,<br />

120% for 1-10 mm/h,<br />

240% for < 1 mm/h<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with precipitation type:<br />

80% for > 10 mm/h,<br />

105% for 1-10 mm/h,<br />

145% for < 1 mm/h<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

50% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area<br />

Resolution changing cross Europe: 8 km in average<br />

Sampling: 5 km in average<br />

15 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 19/66<br />

H03B Precipitation rate at ground by GEO/IR supported by LEO/MW PR-OBS-3B<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated by IR images from operational geostationary<br />

satellites “calibrated” by precipitation measurements from PMW satellite sensors in sunsynchronous<br />

orbits, processed soon after each acquisition of a new image from GEO (“Rapid<br />

Update”).<br />

The calibrating lookup tables are updated after each new pass of a MW-equipped satellite<br />

References: [RD 11], (Section 4 pp.65-79)<br />

Comments<br />

Generation frequency<br />

<strong>Product</strong> mostly suitable for convective precipitation<br />

Every new SEVIRI image (at 15 min intervals)<br />

Observing cycle over Europe: 15 min<br />

Input satellite data<br />

SEVIRI on MSG (Meteosat-9)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

100% for > 10 mm/h,<br />

190% for 1-10 mm/h,<br />

N. A. for < 1 mm/h<br />

POD, FAR TBD<br />

Changing with precipitation type:<br />

40% for > 10 mm/h,<br />

80% for 1-10 mm/h,<br />

N. A. % for < 1 mm/h<br />

Changing with precipitation type:<br />

20% for > 10 mm/h,<br />

40% for 1-10 mm/h,<br />

N. A. % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge (TBC)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area extended to Africa and southern<br />

Atlantic<br />

Resolution changing cross Europe: 8 km in average<br />

Sampling: 5 km in average<br />

15 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 20/66<br />

H40A<br />

Type<br />

Precipitation rate at ground by GEO/IR supported by LEO/MW and MTG<br />

FCI<br />

NRT <strong>Product</strong><br />

PR-OBS-3-FCI-A<br />

Application and users<br />

Characteristics and<br />

Methods<br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Instantaneous precipitation maps generated by IR images from operational geostationary<br />

satellites “calibrated” by precipitation measurements from PMW satellite sensors in sunsynchronous<br />

orbits, processed soon after each acquisition of a new image from GEO<br />

(“Rapid Update”).<br />

The calibrating lookup tables are updated after each new pass of a MW-equipped<br />

satellite<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

It is assumed that the commissioning phase of MTG will start at the end of CDOP-2,<br />

however the prototype of product can be designed on the requirement of MTG service<br />

and simulated data can be used. If the simulated data or a simulator will be available,<br />

the H-<strong>SAF</strong> will produce a data set based on simulated data and the product will be<br />

tested.<br />

TBD<br />

FCI on MTG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP - EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

80 % for > 10 mm/h,<br />

160 % for 1-10 mm/h,<br />

N/A for < 1 mm/h<br />

POD, FAR: TBD<br />

Validation method<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h,<br />

80 % for 1-10 mm/h,<br />

N/A for < 1 mm/h<br />

Meteorological radar, rain gauge<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h,<br />

40 % for 1-10 mm/h,<br />

N/A for < 1 mm/h<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> Area<br />

Resolution dependent from IFOV of FCI<br />

Sampling: 5 km in average<br />

15 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 21/66<br />

H40B<br />

Type<br />

Precipitation rate at ground by GEO/IR supported by LEO/MW and MTG<br />

FCI<br />

NRT <strong>Product</strong><br />

PR-OBS-3-FCI-B<br />

Application and users<br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by IR images from operational geostationary<br />

satellites “calibrated” by precipitation measurements from PMW satellite sensors in sunsynchronous<br />

orbits, processed soon after each acquisition of a new image from GEO<br />

(“Rapid Update”).<br />

The calibrating lookup tables are updated after each new pass of a MW-equipped satellite<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

It is assumed that the commissioning phase of MTG will start at the end of CDOP-2,<br />

however the prototype of product can be designed on the requirement of MTG service and<br />

simulated data can be used. If the simulated data or a simulator will be available, the H-<br />

<strong>SAF</strong> will produce a data set based on simulated data and the product will be tested.<br />

TBD<br />

FCI on MTG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP - EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

100% for > 10 mm/h<br />

190 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h<br />

80 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

Validation method<br />

Meteorological radar, rain gauge (TBC from validation team)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

To extend to Africa and southern Atlantic<br />

Resolution dependent from IFOV of FCI<br />

Sampling: 5 km in average<br />

25 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 22/66<br />

H04A Precipitation rate at ground by LEO/MW supported by GEO/IR PR-OBS-4A<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Hydrology<br />

Climate monitoring<br />

Risk Management<br />

Meteorology<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by PMW satellite sensors from operational<br />

satellites in sun-synchronous orbits, time-interpolated by exploiting the dynamical<br />

information observed on IR images from GEO.<br />

The algorithm performs the interpolation soon after the acquisition of a new image from<br />

LEO. This method (“Morphing”) is particularly suited for computing accumulated<br />

precipitation of use in hydrology.<br />

Comments<br />

<strong>Product</strong> primarily designed for climatology.<br />

Applicability in an operational framework to be assessed.<br />

Input data are merged into one product file<br />

Generation frequency<br />

Input satellite data<br />

12 times per day<br />

SEVIRI on MSG;<br />

H-<strong>SAF</strong> PR-OBS-01<br />

H-<strong>SAF</strong> PR-OBS-02<br />

Dissemination<br />

Format Means Type<br />

Equidistant cylindrical or Plate Carree (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

90% for > 10 mm/h,<br />

120% for 1-10 mm/h,<br />

240% for < 1 mm/h<br />

Changing with precipitation type:<br />

80% for > 10 mm/h,<br />

105% for 1-10 mm/h,<br />

145% for < 1 mm/h<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

50% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge (TBC from validation team)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E<br />

longitude) (degradation expected at very high<br />

latitudes)<br />

Resolution: 30 km in average<br />

Sampling: 8 km in average<br />

4 hours


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 23/66<br />

H04B Precipitation rate at ground by LEO/MW supported by GEO/IR PR-OBS-4B<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Climatological community<br />

National meteorological services (to be assessed)<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by PMW satellite sensors from operational<br />

satellites in sun-synchronous orbits, time-interpolated by exploiting the dynamical<br />

information observed on IR images from GEO.<br />

The algorithm performs the interpolation soon after the acquisition of a new image from<br />

LEO. This method (“Morphing”) is particularly suited for computing accumulated<br />

precipitation of use in hydrology.<br />

Comments<br />

<strong>Product</strong> primarily designed for climatology.<br />

Applicability in an operational framework to be assessed.<br />

Generation frequency<br />

Input satellite data<br />

12 times per day<br />

SEVIRI on MSG<br />

H-<strong>SAF</strong> PR-OBS-01<br />

H-<strong>SAF</strong> PR-OBS-02<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

50 % for > 10 mm/h<br />

60 % for 1-10 mm/h<br />

120 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

30 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

80 % for < 1 mm/h<br />

Changing with precipitation type:<br />

15 % for > 10 mm/h<br />

20 % for 1-10 mm/h<br />

40 % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge (TBC from validation team)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

To extend to Africa and southern Atlantic<br />

Resolution: 30 km in average<br />

Sampling: 8 km in average<br />

5 hours


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 24/66<br />

H41A<br />

Type<br />

Precipitation rate at ground by LEO/MW supported by GEO/IR and MTG<br />

FCI<br />

NRT <strong>Product</strong><br />

PR-OBS-4-FCI-A<br />

Application and users<br />

Climatological community<br />

National meteorological services (to be assessed)<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by PMW satellite sensors from operational<br />

satellites in sun-synchronous orbits, time-interpolated by exploiting the dynamical<br />

information observed on IR images from GEO.<br />

The algorithm performs the interpolation soon after the acquisition of a new image from<br />

LEO. This method (“Morphing”) is particularly suited for computing accumulated<br />

precipitation of use in hydrology.<br />

Comments<br />

See the comments about the product retrieved by SEVIRI.<br />

We are assuming that the commissioning phase of MTG will start at the end of CDOP-<br />

2, however the prototype of product can be designed on the requirement of MTG<br />

service and simulated data can be used. If the simulated data or a simulator will be<br />

available, the H-<strong>SAF</strong> will produce a data set based on simulated data and the product<br />

will be tested.<br />

Generation frequency<br />

Input satellite data<br />

12 times per day<br />

FCI on MTG<br />

H-<strong>SAF</strong> PR-OBS-01<br />

H-<strong>SAF</strong> PR-OBS-02<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

50 % for > 10 mm/h<br />

60 % for 1-10 mm/h<br />

120 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

30 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

80 % for < 1 mm/h<br />

Changing with precipitation type:<br />

15 % for > 10 mm/h<br />

20 % for 1-10 mm/h<br />

40 % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge (TBC from validation team)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E<br />

longitude) (degradation expected at very high latitudes)<br />

Resolution: ~ 30 km<br />

Sampling dependent of FCI IFOV<br />

4 hours


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 25/66<br />

H41B<br />

Type<br />

Precipitation rate at ground by LEO/MW supported by GEO/IR and MTG<br />

FCI<br />

NRT <strong>Product</strong><br />

PR-OBS-4-FCI-B<br />

Application and users<br />

Climatological community<br />

National meteorological services (to be assessed)<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by PMW satellite sensors from operational<br />

satellites in sun-synchronous orbits, time-interpolated by exploiting the dynamical information<br />

observed on IR images from GEO.<br />

The algorithm performs the interpolation soon after the acquisition of a new image from LEO.<br />

This method (“Morphing”) is particularly suited for computing accumulated precipitation of use<br />

in hydrology.<br />

Comments<br />

See the comments about the product retrieved by SEVIRI.<br />

We are assuming that the commissioning phase of MTG will start at the end of CDOP-2,<br />

however the prototype of product can be designed on the requirement of MTG service and<br />

simulated data can be used. If the simulated data or a simulator will be available, the H-<strong>SAF</strong><br />

will produce a data set based on simulated data and the product will be tested.<br />

Generation frequency<br />

Input satellite data<br />

12 times per day<br />

FCI on MTG;<br />

H-<strong>SAF</strong> PR-OBS-01<br />

H-<strong>SAF</strong> PR-OBS-02<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

50 % for > 10 mm/h<br />

60 % for 1-10 mm/h<br />

120 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

30 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

80 % for < 1 mm/h<br />

Changing with precipitation type:<br />

25% for > 10 mm/h,<br />

50% for 1-10 mm/h,<br />

90% for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge (TBC from validation team)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

To extend to Africa and southern Atlantic<br />

Resolution: ~ 30 km<br />

Sampling dependent of FCI IFOV<br />

5 hours


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 26/66<br />

H05A Accumulated precipitation at ground by blended MW+IR PR-OBS-5A<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Derived from precipitation maps generated by merging MW images from operational sunsynchronous<br />

satellites and IR images from geostationary satellites (i.e., products PR-OBS-<br />

3 and, later, PR-OBS-4).<br />

Integration is performed over 3, 6, 12 and 24 h. In order to reduce biases, the satellitederived<br />

field is forced to match raingauge observations and, in future, the accumulated<br />

precipitation field outputted from a NWP model<br />

Comments<br />

Accuracy improves (at the expense of timeliness) moving input from PR-OBS-3 to PR-<br />

OBS-4.<br />

Timeliness longer when input PR-OBS-4<br />

Generation frequency<br />

Four products (integrals over 3, 6, 12 and 24 h) every three hours (rolling)<br />

Observing cycle over Europe: 3 h<br />

Input satellite data<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with integration interval:<br />

120% for 3-h accumulation,<br />

100% for 24-h accumulation<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with integration interval:<br />

80% for 3-h accumulation,<br />

70% for 24-h accumulation<br />

Meteorological radar and rain gauge<br />

Changing with integration interval:<br />

25% for 3-h accumulation,<br />

25% for 24-h accumulation<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E<br />

longitude) (degradation expected at very high latitudes)<br />

Resolution: ~ 30 km<br />

Sampling: 5 km in average<br />

3 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 27/66<br />

H05B Accumulated precipitation at ground by blended MW+IR PR-OBS-5B<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Derived from precipitation maps generated by merging MW images from operational sunsynchronous<br />

satellites and IR images from geostationary satellites (i.e., products PR-OBS-<br />

3 and, later, PR-OBS-4).<br />

Integration is performed over 3, 6, 12 and 24 h. In order to reduce biases, the satellitederived<br />

field is forced to match raingauge observations and, in future, the accumulated<br />

precipitation field outputted from a NWP model<br />

Comments<br />

Accuracy improves (at the expense of timeliness) moving input from PR-OBS-3 to PR-<br />

OBS-4.<br />

Timeliness longer when input PR-OBS-4<br />

Generation frequency<br />

Four products (integrals over 3, 6, 12 and 24 h) every three hours (rolling)<br />

Observing cycle over Europe: 3 h<br />

Input satellite data<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with integration interval:<br />

150 % for 3-h accumulation<br />

90 % for 24-h accumulation<br />

POD, FAR: TBD<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with integration interval:<br />

60 % for 3-h accumulation<br />

40 % for 24-h accumulation<br />

Meteorological radar and rain gauge<br />

Changing with integration interval:<br />

30 % for 3-h accumulation<br />

20 % for 24-h accumulation<br />

Spatial coverage Spatial resolution Timeliness<br />

To extend to Africa and southern Atlantic<br />

Resolution: ~ 30 km<br />

Sampling: 5 km in average<br />

25 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 28/66<br />

H42A Accumulated precipitation at ground by blended MW+IR and MTG FCI PR-OBS-5-FCI-A<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Derived from precipitation maps generated by merging MW images from operational sunsynchronous<br />

satellites and IR images from geostationary satellites (i.e., products PR-OBS-<br />

3 and, later, PR-OBS-4).<br />

Integration is performed over 3, 6, 12 and 24 h. In order to reduce biases, the satellitederived<br />

field is forced to match raingauge observations and, in future, the accumulated<br />

precipitation field outputted from a NWP model<br />

Comments<br />

See the comments about the product retrieved by SEVIRI.<br />

We are assuming that the commissioning phase of MTG will start at the end of CDOP-2,<br />

however the prototype of product can be designed on the requirement of MTG service and<br />

simulated data can be used. If the simulated data or a simulator will be available, the H-<br />

<strong>SAF</strong> will produce a data set based on simulated data and the product will be tested.<br />

Generation frequency<br />

Four products (integrals over 3, 6, 12 and 24 h) every three hours (rolling)<br />

Observing cycle over Europe: 3 h<br />

Input satellite data<br />

FCI on MTG<br />

AMSU-A/B (NOAA 15/16)<br />

MHS (Metop, NOAA 18/19)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with integration interval:<br />

120 % for 3-h accumulation<br />

80 % for 24-h accumulation<br />

POD, FAR: TBD<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with integration interval:<br />

60 % for 3-h accumulation<br />

40 % for 24-h accumulation<br />

Meteorological radar and rain gauge<br />

Changing with integration interval:<br />

30 % for 3-h accumulation<br />

20 % for 24-h accumulation<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E longitude)<br />

(degradation expected at very high latitudes)<br />

Resolution: ~ 30 km<br />

Sampling dependent of FCI IFOV<br />

15 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 29/66<br />

H42B Accumulated precipitation at ground by blended MW+IR and MTG FCI PR-OBS-5-FCI-B<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Derived from precipitation maps generated by merging MW images from operational sunsynchronous<br />

satellites and IR images from geostationary satellites (i.e., products PR-OBS-3<br />

and, later, PR-OBS-4).<br />

Integration is performed over 3, 6, 12 and 24 h. In order to reduce biases, the satellitederived<br />

field is forced to match raingauge observations and, in future, the accumulated<br />

precipitation field outputted from a NWP model<br />

Comments<br />

See the comments about the product retrieved by SEVIRI.<br />

We are assuming that the commissioning phase of MTG will start at the end of CDOP-2,<br />

however the prototype of product can be designed on the requirement of MTG service and<br />

simulated data can be used. If the simulated data or a simulator will be available, the H-<br />

<strong>SAF</strong> will produce a data set based on simulated data and the product will be tested.<br />

Generation frequency<br />

Four products (integrals over 3, 6, 12 and 24 h) every three hours (rolling)<br />

Observing cycle over Europe: 3 h<br />

Input satellite data<br />

FCI on MTG<br />

AMSU-A/B (NOAA 15/16)<br />

MHS (Metop, NOAA 18/19)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with integration interval:<br />

150 % for 3-h accumulation<br />

90 % for 24-h accumulation<br />

POD, FAR: TBD<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Changing with integration interval:<br />

60 % for 3-h accumulation<br />

40 % for 24-h accumulation<br />

Meteorological radar and rain gauge<br />

Changing with integration interval:<br />

30 % for 3-h accumulation<br />

20 % for 24-h accumulation<br />

Spatial coverage Spatial resolution Timeliness<br />

To extend to Africa and southern Atlantic<br />

Resolution: ~ 30 km<br />

Sampling dependent of FCI IFOV<br />

25 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 30/66<br />

H15A Blended SEVIRI Convection area/LEO MW Convective Precipitation PR-OBS-6A<br />

Type<br />

Application and users<br />

<strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by IR images from operational geostationary<br />

satellites “calibrated” by precipitation measurements from MW images in sun-synchronous<br />

orbits, processed soon after each acquisition of a new image from GEO (“Rapid Update”).<br />

The calibrating lookup tables are updated after each new pass of a MW-equipped satellite<br />

Comments<br />

Generation frequency<br />

<strong>Product</strong> mostly suitable for convective precipitation<br />

Every new SEVIRI image (at 15 min intervals)<br />

Observing cycle over Europe: 15 min<br />

Input satellite data<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

80 % for > 10 mm/h<br />

160 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

TBC<br />

Validation method<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h<br />

80 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

TBC<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

TBC<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to<br />

45°E longitude) (degradation expected at very<br />

high latitudes)<br />

Resolution changing cross Europe: 8 km in average<br />

Sampling: 5 km in average<br />

15 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 31/66<br />

H15B Blended SEVIRI Convection area/LEO MW Convective Precipitation PR-OBS-6B<br />

Type<br />

Application and users<br />

<strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Instantaneous precipitation maps generated by IR images from operational geostationary<br />

satellites “calibrated” by precipitation measurements from MW images in sun-synchronous<br />

orbits, processed soon after each acquisition of a new image from GEO (“Rapid Update”).<br />

The calibrating lookup tables are updated after each new pass of a MW-equipped satellite<br />

Comments<br />

Generation frequency<br />

<strong>Product</strong> mostly suitable for convective precipitation<br />

Every new SEVIRI image (at 15 min intervals)<br />

Observing cycle over Europe: 15 min<br />

Input satellite data<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (GRIB-2) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

80 % for > 10 mm/h<br />

160 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

TBC<br />

Validation method<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h<br />

80 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

TBC<br />

Meteorological radar and rain gauge<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

N/A for < 1 mm/h<br />

TBC<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

To extend to Africa and southern Atlantic<br />

Resolution changing cross Europe: 8 km in average<br />

Sampling: 5 km in average<br />

25 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 32/66<br />

H17 Precipitation rate at ground by MW conical scanners ver. 2 PR-OBS-1 ver2<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

Modified Bayesian retrieval PR-OBS-1 algorithm to make use of SSI<br />

(Statistical Significance Index)<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

TBD<br />

SSMIS on DMSP<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified<br />

coordinates in the orbital projection<br />

(BUFR)<br />

Accuracy<br />

FTP - EUMETCast<br />

NRT<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h<br />

60 % for 1-10 mm/h<br />

200 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

100 % for < 1 mm/h<br />

Changing with precipitation type:<br />

10 % for > 10 mm/h<br />

20 % for 1-10 mm/h<br />

50 % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

H-<strong>SAF</strong> area<br />

extended to Africa<br />

and southern<br />

Atlantic<br />

Resolution: 15 km in average<br />

Sampling: 12.5 km<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 33/66<br />

H18 Precipitation rate at ground by MW cross-track scanners ver. 3 PR-OBS-2 ver3<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

Re-train the CDRD-based ANN network with additional SSI input<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

TBD<br />

AMSU-A and MHS on NOAA and EPS (MetOp) satellites<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified<br />

coordinates in the orbital projection<br />

(BUFR)<br />

Accuracy<br />

FTP - EUMETCast<br />

NRT<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h<br />

60 % for 1-10 mm/h<br />

200 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

100 % for < 1 mm/h<br />

Changing with precipitation type:<br />

10 % for > 10 mm/h<br />

20 % for 1-10 mm/h<br />

50 % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

H-<strong>SAF</strong> area<br />

extended to Africa<br />

and southern<br />

Atlantic<br />

Resolution changing along the<br />

scan: varying from 16 x 16 km 2 /<br />

circular at nadir to 26 x 52 km 2 /<br />

oval at scan edge<br />

Sampling: 16 km<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 34/66<br />

H19 Rainfall intensity from GMI (Global Precipitation Measurement -<br />

Microwave Imager) [Bayesian algorithm]<br />

PR-OBS-7<br />

Type<br />

Application and users<br />

Offline <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

Bayesian algorithm<br />

Comments<br />

Generation frequency N. A.<br />

Input satellite data<br />

GMI and DPR on GPM observatory<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified<br />

coordinates in the orbital projection<br />

(BUFR)<br />

Accuracy<br />

FTP<br />

Offline<br />

Threshold Target Optimal<br />

TBD TBD TBD<br />

Validation method<br />

Meteorological radar and rain gauge<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

Global for low and<br />

middle latitudes up<br />

to 62°<br />

Resolution: 4.4 X 7.3 Km N. A.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 35/66<br />

H20 Rainfall intensity from GMI (Global Precipitation Measurement -<br />

Microwave Imager) [Neural Network algorithm]<br />

PR-OBS-8<br />

Type<br />

Application and users<br />

Offline <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

Neural Network algorithm<br />

Comments<br />

Generation frequency N. A.<br />

Input satellite data<br />

GMI and DPR on GPM observatory<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified<br />

coordinates in the orbital projection<br />

(BUFR)<br />

Accuracy<br />

FTP<br />

Offline<br />

Threshold Target Optimal<br />

TBD TBD TBD<br />

Validation method<br />

Meteorological radar and rain gauge<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

Global for low and<br />

middle latitudes up<br />

to 62°<br />

Resolution: 4.4 X 7.3 Km N. A.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 36/66<br />

H21<br />

Type<br />

High frequency MW delineation of cloud areas with new development of<br />

hydrometeors<br />

NRT <strong>Product</strong><br />

PR-OBS-9<br />

Application and users<br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

Threshold method calibrated with mid-latitude radar dataset.<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

TBD<br />

AMSU-B and MHS on NOAA, EPS, and MetOp<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified<br />

coordinates in the orbital projection<br />

(BUFR)<br />

Accuracy<br />

FTP<br />

NRT<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

100 % for > 10 mm/h<br />

110 % for 1-10 mm/h<br />

170 % for < 1 mm/h<br />

POD, FAR: TBD<br />

Changing with precipitation type:<br />

30 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

80 % for < 1 mm/h<br />

Changing with precipitation type:<br />

15 % for > 10 mm/h<br />

20 % for 1-10 mm/h<br />

40 % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

H-<strong>SAF</strong> area<br />

extended to Africa<br />

and southern<br />

Atlantic<br />

Resolution: 30 km in average<br />

Sampling: 16 km<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 37/66<br />

H22 Snowfall intensity PR-OBS-10<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

Threshold method calibrated with mid- and high-latitude radar dataset.<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

TBD<br />

AMSU-B and MHS on NOAA,EPS, and MetOp<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified<br />

coordinates in the orbital projection<br />

(BUFR)<br />

Accuracy<br />

FTP<br />

NRT<br />

Threshold Target Optimal<br />

POD (≥ 1 mm/h) 0.3<br />

FAR (≥ 1 mm/h) 0.7<br />

Validation method<br />

Coverage, resolution and timeliness<br />

POD (≥ 1 mm/h) 0.6<br />

FAR (≥ 1 mm/h) 0.4<br />

Meteorological radar and rain gauge<br />

POD (≥ 1 mm/h) 0.8<br />

FAR (≥ 1 mm/h) 0.2<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

H-<strong>SAF</strong> area<br />

extended to Africa<br />

and southern<br />

Atlantic<br />

Resolution: 30 km in average<br />

Sampling: 16 km (at nadir)<br />

2.5 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 38/66<br />

H50 Rainfall intensity from MTG LI PR-OBS-11<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Operational oceanographic units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Characteristics and Methods<br />

nstantaneous precipitation maps generated by LI data maps from<br />

operational geostationary satellites “calibrated” by precipitation<br />

measurements. The preliminary activities will be done with simulated data<br />

from data of LAMPINET (the Italian network lightning).<br />

The methods is based on the Tapia concept and a initial calibration has to be<br />

performed. During the development phase will be evaluated the impact of<br />

First guess.<br />

The output will show the field of convective rainfall linked to lightning .<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

We are assuming that the commissioning phase of MTG will start at the end<br />

of CDOP-2, however the prototype of product can be designed on the<br />

requirement of MTG service and simulated data can be used. If the<br />

simulated data or a simulator will be available the H-<strong>SAF</strong> will produce a<br />

data set based on simulated LI data and the data set will tested with the<br />

validation procedure. A report will be presented.<br />

TBD<br />

LI on MTG<br />

Dissemination<br />

Format Means Type<br />

BUFR FTP NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Changing with precipitation type:<br />

40 % for > 10 mm/h<br />

60 % for 1-10 mm/h<br />

200 % for < 1 mm/h<br />

Changing with precipitation type:<br />

20 % for > 10 mm/h<br />

40 % for 1-10 mm/h<br />

100 % for < 1 mm/h<br />

Changing with precipitation type:<br />

10 % for > 10 mm/h<br />

20 % for 1-10 mm/h<br />

50 % for < 1 mm/h<br />

Validation method<br />

Meteorological radar and rain gauge<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Vertical resolution Timeliness<br />

Europe >20Km 15 min.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 39/66<br />

3.2 Soil Moisture products<br />

3.2.1 Soil Moisture Accuracy Values<br />

During Development Phase and CDOP1, Accuracy <strong>Requirement</strong>s for products H14 SM-<br />

DAS-2 and H08 SM-OBS-2 have been given in volumetric unit (m3m-3) and the main<br />

score to be evaluated was the Root Mean Square Difference, supportive scores being: the<br />

Mean Error (or bias, ME), the Standard Deviation (SD) and the Correlation Coefficient<br />

(CC).<br />

The first definition of H-<strong>SAF</strong> soil moisture validation goals stems to a large extent from the<br />

efforts to build the SMOS and SMAP satellites that both aim to retrieve the absolute<br />

volumetric soil moisture content with an RMSD of 0.04 m3m-3. But considering the<br />

evolution of the literature on this topic over the last few years one can clearly see a shift in<br />

the way of how the validation of remotely sensed / modelled soil moisture data is being<br />

regarded. RMSD by itself is not sufficient, other measures such as CC are also important,<br />

and for some applications even more important than the RMSD (Entekhabi et al., 2010;<br />

Brocca et al., 2011).<br />

Several authors have demonstrated that local measurements could be used to validate<br />

model output as well as remotely-sensed soil moisture (SM) at a different scale (e.g.<br />

Albergel et al, 2009, 2010; Rüdiger et al., 2009; Brocca et al., 2010a; 2011). However,<br />

spatial variability of SM is very high and can vary from centimetres to metres. Precipitation,<br />

evapotranspiration, soil texture, topography, vegetation and land use could either enhance<br />

or reduce the spatial variability of soil moisture depending on how it is distributed and<br />

combined with other factors (Famiglietti et al., 2008; Brocca et al., 2010b, 2012).<br />

Differences in soil properties could imply important variations in the mean and variance of<br />

soil moisture, even over small distances. Each soil moisture data set is characterized by its<br />

specific mean value, variability and dynamical range. Saleem and Salvucci (2002) and<br />

Koster et al. (2009, 2011) suggested that the true information content of modelled soil<br />

moisture does not necessarily rely on their absolute magnitudes but instead on their time<br />

variation. The latter represents the time-integrated impacts of antecedent meteorological<br />

forcing on the hydrological state of the soil system within the model.<br />

The high spatial variability of in situ SM used for validation as well as SM data set specific<br />

characteristics suggest that the Correlation Coefficient (CC) should be the main score to<br />

be evaluated. On this basis the soil moisture products development and validation groups<br />

propose to change the main score to evaluate the "<strong>Product</strong> <strong>Requirement</strong>s" for H08 and<br />

H14 products from the RMSD to the CC. The following values are proposed as accuracy<br />

thresholds:<br />

• Threshold accuracy: 0.50<br />

• Target accuracy 0.65


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 40/66<br />

• Optimal accuracy 0.80<br />

It is noted that a sufficiently long period of time is needed to calculate the scores (periods<br />

of at least 12 months are needed).<br />

For references on the matter, see Appendix 2, references from [RD 18] to [RD 29].


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 41/66<br />

3.2.2 Soil Moisture products requirements<br />

H08 Small–scale surface soil moisture by radar scatterometer SM-DIS-1<br />

(ex SM-OBS-2)<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

Climatology<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Comments<br />

Derived from the CAF Global ASCAT SM product limited to the H-<strong>SAF</strong> area. Maps of the<br />

soil moisture content in the surface layer (0-2 cm) generated from the Metop scatterometer<br />

(ASCAT) processed shortly after each satellite orbit completion. It is generated by<br />

disaggregating the large-scale product (25 km resolution), to 0.5-km sampling with<br />

downscaling parameters derived from ENVISAT ASAR (C-band).<br />

Processing implying heavy support from external data, including SAR imagery, for building<br />

the database.<br />

Generation frequency On completion of each orbit at 100 min intervals, through the intervals 07-11 and 17-23<br />

UTC<br />

Observing cycle over Europe: 36 h<br />

Input satellite data<br />

ASCAT on Metop<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital projection (BUFR) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Correlation coefficient (CC): 0.50 Correlation coefficient (CC): 0.65 Correlation coefficient (CC): 0,80<br />

Validation method<br />

In-situ measurements (e.g. Time Domain Reflectometers (TDR)), Output of hydrometeorological<br />

models, Satellite data (e.g. SMOS)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude,<br />

25°W to 45°E longitude)<br />

Resolution resulting from disaggregation starting from 25 km<br />

Sampling: 0.5 km<br />

130 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 42/66<br />

H14<br />

Type<br />

Soil Moisture Profile Index in the roots region retrieved by surface<br />

wetness scatterometer assimilation method<br />

NRT <strong>Product</strong><br />

SM-DAS-2<br />

(ex SM-ASS-2)<br />

Application and users<br />

Operational hydrological units<br />

Climatology<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Analysed liquid soil moisture profile index for four different soil layers (covering the root<br />

zone from the surface to ~ 3 metres) generated by the ECMWF soil moisture assimilation<br />

system at 24 hour time steps.<br />

The analysed soil moisture fields are based on a modelled first guess, the screen-level<br />

temperature and humidity analyses, and the ASCAT-derived surface soil moisture. They<br />

are then re-scaled soil wetness index by normalising by the saturated soil moisture value as<br />

a function of soil type.<br />

The Global product is generated starting from the Global surface soil moisture product<br />

(CAF product, SM-OBS-3 when becomes available)<br />

Comments<br />

Generation frequency<br />

<strong>Product</strong> development initially based on ERS-1/2 AMI-SCAT.<br />

Model output at 24-h intervals<br />

Observing cycle ~ 24 h (NWP model assimilation / stabilisation process)<br />

Input satellite data<br />

ASCAT on Metop<br />

Dissemination<br />

Format Means Type<br />

Values in grid points on a Gaussian grid FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Correlation coefficient (CC): 0.50 Correlation coefficient (CC): 0.65 Correlation coefficient (CC): 0,80<br />

Validation method<br />

Comparison with in situ measurements (e.g. Time Domain Reflectometers<br />

(TDR)).<br />

Comparison with SMOS<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

global<br />

Horizontal resolution: 25km<br />

Vertical resolution: 4 layers in the range surface to2.89m: layer-1 (0-7cm),<br />

layer-2 (7-28cm), layer-3 (28-100cm) and layer-4 (100-289cm).<br />

24 to 36 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 43/66<br />

H16 Large-scale surface soil moisture by radar scatterometer SM-OBS-3<br />

Type<br />

Application and users<br />

<strong>Product</strong><br />

Operational hydrological units<br />

Climatology<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Comments<br />

Generation frequency<br />

It refers to the soil moisture content in the surface layer (0.5-2 cm) generated from the Metop<br />

scatterometer (ASCAT). It is a coarse-resolution product (25 km), controlled by the<br />

instrument IFOV.<br />

Existing ASCAT product developed in cooperation between EUMETSAT and TU Wien within<br />

CAF<br />

On completion of each orbit, at 100 min intervals, through the whole day<br />

Observing cycle over Europe: 36 h<br />

Input satellite data<br />

ASCAT on Metop<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of specified coordinates in the orbital projection (BUFR) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Correlation coefficient (CC): 0.50 Correlation coefficient (CC): 0.65 Correlation coefficient (CC): 0,80<br />

Validation method<br />

In-situ measurements (e.g. Time Domain Reflectometers (TDR)<br />

Output of hydro-meteorological models<br />

Satellite data (e.g. SMOS, AMSU, SMAP)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

global<br />

Resolution: 25 km<br />

Sampling: 12.5 km<br />

2 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 44/66<br />

H25 ASCAT Large-scale surface soil moisture(25 Km) SM-OBS-4<br />

Type<br />

Application and users<br />

Offline <strong>Product</strong><br />

Operational hydrological units<br />

Climatology<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Comments<br />

Time series of ASCAT large-scale surface soil moisture<br />

Currently a TU WIen product<br />

Generation frequency N. A.<br />

Input satellite data<br />

ASCAT on Metop<br />

Dissemination<br />

Format Means Type<br />

various scientific file formats FTP Offline<br />

Accuracy<br />

Threshold Target Optimal<br />

Correlation coefficient (CC): 0.50 Correlation coefficient (CC): 0.65 Correlation coefficient (CC): 0,80<br />

Validation method<br />

In-situ measurements (e.g. Time Domain Reflectometers (TDR))<br />

Output of hydro-meteorological models<br />

Satellite data (e.g. SMOS)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

Global<br />

Resolution: 25 km<br />

Sampling: 12.5 km<br />

N. A.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 45/66<br />

H27<br />

Type<br />

Soil Wetness Index in the roots region by scatterometer assimilation in a<br />

NWP model<br />

Offline <strong>Product</strong><br />

SM-DAS-3<br />

(ex SM-ASS-3)<br />

Application and users<br />

Operational hydrological units<br />

Climatology<br />

Research & development activities<br />

Characteristics and<br />

Methods<br />

Re-analysed liquid soil moisture profile index for four different soil layers (covering the<br />

root zone from the surface to ~ 3 metres) generated by the ECMWF land surface reanalysis<br />

system at 24 hour time steps. H-27 provides a consistent time series of both<br />

surface and root zone soil moisture with a daily global coverage which is highly relevant<br />

for hydrological applications and water budget investigations.<br />

The analysed soil moisture fields are based on a modelled first guess, the screen-level<br />

temperature and humidity analyses, and the ASCAT-derived surface soil moisture. They<br />

are then re-scaled to soil wetness index by normalising by the saturated soil moisture<br />

value as a function of soil type.<br />

The Global product is generated using the re-analysed Global surface soil moisture<br />

product assimilated in the ECMWF land surface re-analysis suite. This product will be<br />

developed in CDOP-2 based on CDOP developments. . Data assimilation is indeed the<br />

only approach that enables to retrieve both surface and root zone soil moisture from<br />

satellite surface swath data.<br />

Comments<br />

Re-analysis of SM-ASS-2 using consistent production algorithm to provide long time<br />

series of the root zone soil wetness profile index<br />

Generation frequency N. A.<br />

Input satellite data<br />

Satellites used in NWP<br />

ASCAT on Metop<br />

Dissemination<br />

Format Means Type<br />

Values in grid points on a Gaussian grid FTP Offline<br />

Accuracy<br />

Threshold Target Optimal<br />

Correlation coefficient (CC): 0.50 Correlation coefficient (CC): 0.65 Correlation coefficient (CC): 0,80<br />

Validation method<br />

Comparison with in situ measurements (e.g. Time Domain Reflectometers<br />

(TDR)).<br />

Comparison with SMOS<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

Global Horizontal resolution: ~16 km N. A.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 46/66<br />

3.3 Snow products<br />

3.3.1 Snow Accuracy Values<br />

<strong>Product</strong> requirements for accuracy were adopted taking in consideration the actual<br />

performances achievable as demonstrated by continuous validation and taking in<br />

consideration the baseline proposed requirement values have not been tested before.<br />

Especially in the mountainous areas, 5 km x 5 km spatial resolution of the product can not<br />

be represented by the distribution of the available ground data. During the validation<br />

analysis simple satellite-ground comparison is performed. When automatic snow<br />

observation stations (specially established at most proper sites for snow measurement in<br />

Turkey) which are used in the comparison at high altitudes (elevation >2000 m) 90% POD<br />

values are obtained. However between 750 m and 2000m due to morphology of snow<br />

changes rapidly and the distribution of the ground observations are synoptic, the results<br />

are decreasing due to the available limitations.<br />

In Remote Sensing Community the question of the acceptable level of accuracy is often<br />

answered by reference to the seminal work of Anderson et al. (1976) who outline the<br />

criteria for an effective land use and land cover classification scheme for use in<br />

conjunction with remotely sensed data. Specifically, Anderson et al. (1976, p. 5), citing the<br />

earlier work of Anderson (1971), state that “the minimum level of interpretation accuracy in<br />

the identification of land use and land cover categories from remote sensor data should be<br />

at least 85 percent”. Therefore, although an 85% accuracy target is widely accepted by the<br />

remote sensing community as a benchmark, as several recent examples indicate (Foody<br />

2002, Reese et al. 2002, Fuller et al. 2003, Tømmervik et al. 2003), its usefulness as a<br />

standard is unclear. Others have also questioned the validity of the 85% target (Laba et al.<br />

2002, p. 453). The accuracy assessments of several recently completed regional-scale<br />

land cover mapping projects indicate that producer's and user's accuracies are stabilizing<br />

in the50-70% range, independent of level of taxonomic detail or methodological<br />

approaches (Edwards et al. 1998, Ma et al. 2001, Zhu et al. 2000). Additional<br />

improvements in accuracy are not likely, and that only through the use of sensors with high<br />

spectral, spatial, and temporal resolution will map accuracies approach 80%.<br />

The appropriate accuracy assessment protocol often develops from consideration of the<br />

following question: Is the product sufficiently accurate for a specific application? The<br />

understanding is that not all applications require the same level of accuracy to be<br />

successfully accomplished, and therefore the same level of effort need not be expended to<br />

determine product accuracy for different possible applications. For hydrological<br />

applications 85% POD and 15% FAR would be ideal in using the snow cover maps for<br />

runoff generation.<br />

Furthermore, different threshold requirements for flat/forested areas and mountainous<br />

areas should be identified. Revised threshold values are 0.8 POD for flat and forested<br />

areas and 0.6 POD for mountainous areas. For the target values, the proposed<br />

requirement is 0.85 POD for the flat and forested areas, and 0.7 for the mountainous area.<br />

Regarding the FAR, the threshold is 0.2 for flat area and 0.3 for mountainous area, and for<br />

the target value: for 0.15 for flat area and 0.2 for mountainous area.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 47/66<br />

With this respect, following table summarizes product requirements for Snow products.<br />

3.3.1 Snow products requirements<br />

H10 Snow detection (snow mask) by VIS/IR radiometry SN-OBS-1<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

Comments<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Binary map of snow / no-snow situation. VIS/IR images from GEO are used. The product may<br />

be processed in different ways and have different quality depending on the surface being flat,<br />

forested or mountainous. The algorithm is based on thresholding of several channels of<br />

SEVIRI, the most important being those in short-wave, thus the product is generated in<br />

daylight. In order to search for cloud-free pixels, multi-temporal analysis is performed over all<br />

images available in 24 hours (in daylight)<br />

Different methods used for flat/forested and mountainous regions.<br />

Timeliness is intended as delay after acquisition of the last image utilised in the multi-temporal<br />

analysis<br />

Generation frequency<br />

Input satellite data<br />

Output result every 24 h<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (HDF5) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Probability Of Detection (POD):<br />

Flat / Forested areas: 80 %<br />

Mountainous areas: 60%<br />

False Alarm Rate (FAR):<br />

Flat / Forested areas: 20 %<br />

Mountainous areas: 30%<br />

Validation method<br />

Coverage, resolution and timeliness<br />

Probability Of Detection (POD):<br />

Flat / Forested areas: 85 %<br />

Mountainous areas: 70%<br />

False Alarm Rate (FAR):<br />

Flat / Forested areas: 15 %<br />

Mountainous areas: 20%<br />

Snow observing stations<br />

Probability Of Detection (POD): 99 %<br />

False Alarm Rate (FAR): 5 %<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E<br />

longitude) (degradation expected at very high<br />

latitudes)<br />

SEVIRI pixel resolution and grid<br />

30 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 48/66<br />

H11 Snow status (dry/wet) by MW radiometry SN-OBS-2<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

This product indicates the status of the snow mantle, whether it is wet or dry and, in time<br />

series, thawing or freezing.<br />

Multi-channel MW observations are used (middle frequencies), and the algorithm is based<br />

on thresholding.<br />

In order to remove ambiguity between wet snow and bare soil, use is made of product SN-<br />

OBS-1 for preventive snow recognition, and of exploitation of change detection<br />

Comments<br />

AMRS-E failed on 4 Oct 2011 : input data replaced with SSMIS<br />

Before failure: timeliness controlled by the delay in accessing AMSR-E data from NASA by<br />

FTP, intended as delay after acquisition of the last image utilised in the multi-temporal<br />

analysis.<br />

Generation frequency<br />

Input satellite data<br />

After each orbit, but then merging with daily SN-OBS-1 maps; therefore: output result every<br />

24 h<br />

SSMIS on DMSP<br />

Dissemination<br />

Format Means Type<br />

GRIB2 FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Hit Rate (HR): 60 %<br />

False Alarm Rate (FAR): 20 %<br />

Validation method<br />

Hit Rate (HR): 80 %<br />

False Alarm Rate (FAR): 10 %<br />

Snow observing stations<br />

Hit Rate (HR): 90 %<br />

False Alarm Rate (FAR): 5 %<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E longitude)<br />

Resolution: ~ 20 km<br />

Sampling: 0.25 degrees<br />

6 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 49/66<br />

H12 Effective snow cover by VIS/IR radiometry SN-OBS-3<br />

Type<br />

Application and<br />

users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

The combined effect, within a product resolution element, of fractional snow cover and other<br />

reflective contributors is used to estimate the fractional cover at resolution element level.<br />

The product may be processed in different ways and have different quality depending on the<br />

surface being flat, forested or mountainous.<br />

The algorithm is based on multi-channel analysis of AVHRR, the most important being those in<br />

short-wave, thus the product is generated in daylight.<br />

The “deficit” of brightness in respect of the maximum one is correlated to the lack of snow in the<br />

product resolution element. In the case of forests, the signal attenuation due to forest canopy<br />

obstruction is taken in to account by application of transmissivity map assembled in advance using<br />

MODIS and GlobCover land cover data.<br />

In order to search for cloud-free pixels, multi-temporal analysis is performed over all images<br />

available in 24 hours (in daylight)<br />

Comments<br />

Different methods used for flat/forested and mountainous regions.<br />

Timeliness is intended as delay after acquisition of the last image utilised in the multi-temporal<br />

analysis<br />

Generation<br />

frequency<br />

Input satellite data<br />

After each AVHRR pass, then multi-temporal analysis for cloud-free pixels<br />

Output result every 24 h<br />

AVHRR (NOAA, Metop)<br />

Dissemination<br />

Format Means Type<br />

GRIB2 FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

45% (Overall accuracy) 65% (Overall Accuracy) 95% (Overall Accuracy)<br />

Validation method<br />

Snow observing stations<br />

Better spatial resolution satellite data (Landsat)<br />

Snow courses<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N<br />

latitude, 25°W to 45°E longitude)<br />

Resolution: 1 - 2 km,<br />

Sampling:0.01 degrees<br />

30 min<br />

Timeliness is intended as delay after acquisition of the<br />

last image utilised in the multi-temporal analysis


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 50/66<br />

H13 Snow water equivalent by MW radiometry SN-OBS-4<br />

Type<br />

Application and<br />

users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Maps of snow water equivalent derived from MW measurements sensitive to snow thickness and<br />

density.<br />

The product may be processed in different ways and have different quality depending on the<br />

surface being flat, forested or mountainous.<br />

The algorithm is based on assimilating MW brightness temperatures of several channels at<br />

frequencies with different penetration in snow, into a first-guess field built by the (sparse) network<br />

of stations measuring snow depth for flat areas, for mountainous areas snow depth measured at<br />

stations is not used directly in the algorithm<br />

Comments<br />

AMRS-E failed on 4 Oct 2011 : input data replaced with SSMIS<br />

Before failure: timeliness controlled by the delay in accessing AMSR-E data from NASA by FTP,<br />

intended as delay after acquisition of the last image utilised in the multi-temporal analysis.<br />

Different methods used for flat/forested and mountainous regions.<br />

Generation<br />

frequency<br />

Input satellite data<br />

Assimilation of SSMI/S brightness temperatures in a background field<br />

Output result every 24 h<br />

SSMI/S<br />

Dissemination<br />

Format Means Type<br />

GRIB2 FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Flat / Forested areas: 40mm<br />

Mountainous areas: 45mm<br />

Validation method<br />

Flat / Forested areas: 20mm<br />

Mountainous areas: 25mm<br />

Snow observing stations<br />

Flat / Forested areas: 10mm<br />

Mountainous areas: 15mm<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

H-<strong>SAF</strong> area (25°N to 75°N latitude, 25°W to 45°E longitude)<br />

Resolution: ~ 20 km<br />

Sampling: 0.25 degrees<br />

6 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 51/66<br />

H31 Snow detection for flat land by VIS/NIR of SEVIRI SN-OBS-0G<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

NWP<br />

Climate Monitoring<br />

Carbon Models<br />

Characteristics and Methods<br />

Multichannel (VIS, NIR, IR) analysis<br />

<strong>Product</strong> generated for all land pixels, accuracy requirements for the flat<br />

land pixels of the product<br />

Comments<br />

LSA <strong>SAF</strong> <strong>Product</strong> LSA-13 until CDOP1<br />

Generation frequency<br />

Input satellite data<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

HDF5 FTP - EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

False Alarm: 25%<br />

Hit Rate: 70%%<br />

False Alarm: 15%<br />

Hit Rate: 80%<br />

False Alarm: 5%<br />

Hit Rate: 90%<br />

Validation method<br />

SYNOP, other satellite snow products, such as NOAA/NESDIS IMS or<br />

MODIS<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

MSG Disk SEVIRI pixel resolution and grid 3 hours


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 52/66<br />

H32 Snow detection by VIS/NIR of AVHRR SN-OBS-0P<br />

Type<br />

Application and users<br />

NRT <strong>Product</strong><br />

NWP<br />

Climate Monitoring<br />

Carbon Models<br />

Characteristics and Methods<br />

Multichannel (VIS, NIR, IR) analysis<br />

<strong>Product</strong> generated for all land pixels, accuracy requirements for the flat<br />

land pixels of the product<br />

Comments<br />

LSA <strong>SAF</strong> <strong>Product</strong> LSA-14 until CDOP1<br />

Generation frequency<br />

Input satellite data<br />

AVHRR on Metop, and AVHRR on NOAA, if feasible<br />

Dissemination<br />

Format Means Type<br />

HDF5 FTP - EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

False Alarm: 25%<br />

Hit Rate: 70%%<br />

False Alarm: 15%<br />

Hit Rate: 80%<br />

False Alarm: 5%<br />

Hit Rate: 90%<br />

Validation method<br />

SYNOP, other satellite snow products, such as NOAA/NESDIS IMS or<br />

MODIS<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

Global 0.01° x 0.01° 3 hours


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 53/66<br />

H33<br />

Type<br />

Merged MSG and EPS Snow Cover [current in-development Merged<br />

MSG/Seviri-Metop/AVHRR based LSA-<strong>SAF</strong> snow product]<br />

NRT <strong>Product</strong><br />

SN-OBS-0M<br />

Application and users<br />

NWP<br />

Climate Monitoring<br />

Carbon Models<br />

Characteristics and Methods<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

Multichannel (VIS, NIR, IR), multisensor analysis<br />

LSA <strong>SAF</strong> <strong>Product</strong> LSA-15 until CDOP1<br />

1 day<br />

Metop/AVHRR<br />

MSG/SEVIRI<br />

Dissemination<br />

Format Means Type<br />

HDF5 EUMETCast, HTTP NRT, offline<br />

Accuracy<br />

Threshold Target Optimal<br />

False Alarm: 25%<br />

Hit Rate: 70%%<br />

False Alarm: 15%<br />

Hit Rate: 80%<br />

False Alarm: 5%<br />

Hit Rate: 90%<br />

Validation method<br />

in situ observations, other satellite products (such as IMS, MODIS)<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

Europe & High latitutes 0.05°x0.05° 3 h


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 54/66<br />

H34 Snow detection (snow mask) by VIS/NIR of SEVIRI SN-OBS-1G<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

Comments<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Binary map of snow / no-snow situation. VIS/IR images from GEO are used. The product may<br />

be processed in different ways and have different quality depending on the surface being flat,<br />

forested or mountainous. The algorithm is based on thresholding of several channels of<br />

SEVIRI, the most important being those in short-wave, thus the product is generated in<br />

daylight. In order to search for cloud-free pixels, multi-temporal analysis is performed over all<br />

images available in 24 hours (in daylight)<br />

Different methods used for flat/forested and mountainous regions.<br />

Timeliness is intended as delay after acquisition of the last image utilised in the multi-temporal<br />

analysis<br />

Generation frequency<br />

Input satellite data<br />

Output result every 24 h<br />

SEVIRI on MSG<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the Meteosat projection (HDF5) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

Probability Of Detection (POD):<br />

Flat / Forested areas: 80 %<br />

Mountainous areas: 60%<br />

False Alarm Rate (FAR):<br />

Flat / Forested areas: 20 %<br />

Mountainous areas: 30%<br />

Probability Of Detection (POD):<br />

Flat / Forested areas: 85 %<br />

Mountainous areas: 70%<br />

False Alarm Rate (FAR):<br />

Flat / Forested areas: 15 %<br />

Mountainous areas: 20%<br />

Probability Of Detection (POD): 99 %<br />

False Alarm Rate (FAR): 5 %<br />

Validation method<br />

Snow observing stations, other satellite snow products, such as NOAA/NESDIS<br />

IMS or MODIS<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

MSG disk SEVIRI pixel resolution and grid 30 min


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 55/66<br />

H35<br />

Snow detection (snow mask) and Effective snow cover by VIS/NIR of<br />

AVHRR<br />

SN-OBS-1P<br />

Type<br />

Application and users<br />

Characteristics and<br />

Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

The combined effect, within a product resolution element, of fractional snow cover and other<br />

reflective contributors is used to estimate the fractional cover at resolution element level.<br />

The product may be processed in different ways and have different quality depending on the<br />

surface being flat, forested or mountainous.<br />

The algorithm is based on multi-channel analysis of AVHRR, the most important being those in<br />

short-wave, thus the product is generated in daylight.<br />

The “deficit” of brightness in respect of the maximum one is correlated to the lack of snow in the<br />

product resolution element. In the case of forests, the expected maximum brightness (or the<br />

“transmissivity”) is evaluated in advance by a high-resolution instrument (MODIS).<br />

In order to search for cloud-free pixels, multi-temporal analysis is performed over all images<br />

available in 24 hours (in daylight)<br />

Comments<br />

Derived from H12 and H32<br />

Different methods used for flat/forested and mountainous regions.<br />

Timeliness is intended as delay after acquisition of the last image utilised in the multi-temporal<br />

analysis<br />

Generation frequency<br />

Input satellite data<br />

AVHRR (NOAA, Metop)<br />

Dissemination<br />

Format Means Type<br />

Values in grid points of the equal-latitude/longitude projection (HDF5) FTP, EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

45% (Overall accuracy) 65% (Overall Accuracy) 95% (Overall Accuracy)<br />

Validation method<br />

Snow observing stations, other satellite snow products, such as NOAA/NESDIS<br />

IMS or MODIS<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

Global<br />

Resolution: ~ 8 km<br />

Sampling: ~ 5 km<br />

30 min<br />

Timeliness is intended as delay after acquisition of the last<br />

image utilised in the multi-temporal analysis


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 56/66<br />

H43 Snow detection (snow mask) by VIS/NIR of MTG FCI SN-OBS-0G-FCI<br />

Type<br />

Application and users<br />

Characteristics and Methods<br />

NRT <strong>Product</strong><br />

Operational hydrological units<br />

National meteorological services<br />

Civil defense<br />

Research & development activities<br />

Multichannel (VIS, NIR, IR) analysis<br />

Comments<br />

Generation frequency<br />

Input satellite data<br />

TBD<br />

FCI on MTG<br />

Dissemination<br />

Format Means Type<br />

HDF5 FTP - EUMETCast NRT<br />

Accuracy<br />

Threshold Target Optimal<br />

TBD TBD TBD<br />

Validation method<br />

TBD<br />

Coverage, resolution and timeliness<br />

Spatial coverage Spatial resolution Timeliness<br />

MTG Disk TBD TBD


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 57/66<br />

Appendix 1 Glossary<br />

AAPP AVHRR and ATOVS Processing Package<br />

ADEOS Advanced Earth Observation Satellite (I and II)<br />

ALOS Advanced Land Observing Satellite<br />

AMIR Advanced Microwave Imaging Radiometer<br />

AMSR Advanced Microwave Scanning Radiometer (on ADEOS-II)<br />

AMSR-E Advanced Microwave Scanning Radiometer - E (on EOS-Aqua)<br />

AMSU-A Advanced Microwave Sounding Unit - A (on NOAA satellites and EOS-Aqua)<br />

AMSU-B Advanced Microwave Sounding Unit - B (on NOAA satellites up to NOAA-17)<br />

API<br />

Application Program(ming) Interface<br />

ASAR Advanced SAR (on ENVISAT)<br />

ASCAT Advanced Scatterometer (on MetOp)<br />

ASI<br />

Agenzia Spaziale Italiana<br />

ATDD Algorithms Theoretical Definition <strong>Document</strong><br />

ATMS Advanced Technology Microwave Sounder (on NPP and NPOESS)<br />

ATOVS Advanced TIROS Operational Vertical Sounder (on NOAA and MetOp)<br />

AU<br />

Anatolian University<br />

AVHRR Advanced Very High Resolution Radiometer (on NOAA and MetOp)<br />

BAMPR Bayesian Algorithm for Microwave Precipitation Retrieval<br />

BfG<br />

Bundesanstalt für Gewässerkunde<br />

BRDF Bi-directional Reflectance Distribution Function<br />

BVA<br />

Boundary Value Analysis<br />

CASE Computer Aided System Engineering<br />

CDA<br />

Command and Data Acquisition (EUMETSAT station at Svalbard)<br />

CDD<br />

Component Design <strong>Document</strong><br />

CDR<br />

Critical Design Review<br />

CESBIO Centre d'Etudes Spatiales de la BIOsphere (of CNRS)<br />

CETP Centre d’études des Environnements Terrestres et Planétaires (of CNRS)<br />

CI<br />

Configuration Item<br />

CMIS Conical-scanning Microwave Imager/Sounder (on NPOESS)<br />

CMP Configuration Management Plan<br />

CNMCA Centro Nazionale di Meteorologia e Climatologia Aeronautica<br />

CNR<br />

Consiglio Nazionale delle Ricerche<br />

CNRM Centre Nationale de la Recherche Météorologique (of Météo-France)<br />

CNRS Centre Nationale de la Recherche Scientifique<br />

COTS Commercial-off-the-shelf<br />

CPU<br />

Central Processing Unit<br />

CR<br />

Component <strong>Requirement</strong>


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 58/66<br />

CRD<br />

Component <strong>Requirement</strong> <strong>Document</strong><br />

CVERF Component Verification File<br />

CVS<br />

Concurrent <strong>Version</strong>s System<br />

DCOM Distributed Component Object Model<br />

DEM Digital Elevation Model<br />

DFD<br />

Data Flow Diagram<br />

DMSP Defense Meteorological Satellite Program<br />

DOF<br />

Data Output Format<br />

DPC<br />

Dipartimento della Protezione Civile<br />

DWD Deutscher Wetterdienst<br />

E&T<br />

Education and Training<br />

EARS EUMETSAT Advanced Retransmission Service (station)<br />

ECMWF European Centre for Medium-range Weather Forecasts<br />

ECSS European Cooperation on Space Standardization<br />

EGPM European contribution to the GPM mission<br />

EOS<br />

Earth Observing System<br />

EPS<br />

EUMETSAT Polar System<br />

ERS European Remote-sensing Satellite (1 and 2)<br />

ESA<br />

European Space Agency<br />

EUR<br />

End-User <strong>Requirement</strong>s<br />

FAR<br />

False Alarm Ratio<br />

FMI<br />

Finnish Meteorological Institute<br />

FOC<br />

Full Operational Chain<br />

FTP<br />

File Transfer Protocol<br />

GEO<br />

Geostationary Earth Orbit<br />

GIS<br />

Geographical Information System<br />

GMES Global Monitoring for Environment and Security<br />

GOMAS Geostationary Observatory for Microwave Atmospheric Sounding<br />

GOS<br />

Global Observing System<br />

GPM Global Precipitation Measurement mission<br />

GPROF Goddard Profiling algorithm<br />

GTS<br />

Global Telecommunication System<br />

HMS Hungarian Meteorological Service<br />

HRU Hydrological Response Unit<br />

H-<strong>SAF</strong> <strong>SAF</strong> on support to Operational Hydrology and Water Management<br />

HSB<br />

Humidity Sounder for Brazil (on EOS-Aqua)<br />

HTML Hyper Text Markup Language<br />

HTTP Hyper Text Transfer Protocol<br />

HUT/LST Helsinki University of Technology / Laboratory of Space Technology


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 59/66<br />

HV<br />

Hydrovalidation (referred to Hydro Validation Subsystem items, e.g.: reports, components etc.)<br />

HVR<br />

Hydrological Validation Review<br />

HYDRO Preliminary results of Hydrological validation<br />

HYDROS Hydrosphere State Mission<br />

HW<br />

Hardware<br />

ICD<br />

Interface Control <strong>Document</strong><br />

IFS<br />

Integrated Forecast System<br />

INWM Institute of Meteorology and Water Management (of Poland)<br />

IPF<br />

Institut für Photogrammetrie und Fernerkundung<br />

ISAC Istituto di Scienze dell’Atmosfera e del Clima (of CNR)<br />

ISO<br />

International Standards Organization<br />

IT<br />

Information Technology<br />

ITU<br />

Istanbul Technical University<br />

JPS<br />

Joint Polar System (MetOp + NOAA/NPOESS)<br />

KOM Kick-Off Meeting<br />

LAI<br />

Leaf Area Index<br />

LEO<br />

Low Earth Orbit<br />

LIS<br />

Lightning Imaging Sensor (on TRMM)<br />

LST<br />

Solar Local Time (of a sun-synchronous satellite)<br />

MARS Meteorological Archive and Retrieval System<br />

MetOp Meteorological Operational satellite<br />

METU Middle East Technical University (of Turkey)<br />

MHS Microwave Humidity Sounder (on NOAA N/N’ and MetOp)<br />

MIMR Multi-frequency Imaging Microwave Radiometer<br />

MODIS Moderate-resolution Imaging Spectro-radiometer (on EOS Terra and Aqua)<br />

MSG Meteosat Second Generation<br />

MTBF Mean Time Between Failure<br />

MTG Meteosat Third Generation<br />

MTTR Mean Time To Repair<br />

MVIRI Meteosat Visible Infra-Red Imager (on Meteosat 1 to 7)<br />

N/A<br />

Not Available<br />

N.A.<br />

Not Applicable<br />

NASA National Aeronautics and Space Administration<br />

NATO North Atlantic Treaty Organisation<br />

NIMH National Institute for Meteorology and Hydrology of Bulgaria<br />

NMS National Meteorological Service<br />

NOAA National Oceanic and Atmospheric Organisation (intended as a satellite series)<br />

NPOESS National Polar-orbiting Operational Environmental Satellite System<br />

NPP<br />

NPOESS Preparatory Programme


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 60/66<br />

NRT<br />

Near-Real Time<br />

NWP Numerical Weather Prediction<br />

OFL<br />

Off-line<br />

OM<br />

Offline Monitoring (referred to Offline Monitoring Subsystem items, e.g.: components)<br />

OMG Object Management Group<br />

OO<br />

Object Oriented<br />

OP<br />

Proposal for H-<strong>SAF</strong> Operational phase<br />

OPS<br />

Operational <strong>Product</strong> Segment<br />

ORB<br />

Object Request Broker<br />

ORR<br />

Operations Readiness Review<br />

PAC<br />

Prototype Algorithm Code<br />

PALSAR Phased Array L-band Synthetic Aperture Radar (on ALOS)<br />

PAW Plant Available Water<br />

PDR<br />

Preliminary Design Review<br />

POD<br />

Probability of Detection<br />

PP<br />

Project Plan<br />

PR<br />

Precipitation (referred to Precipitation Subsystem items, e.g.: products, components etc.)<br />

QoS<br />

Quality of Service<br />

R&D Research and Development<br />

REP<br />

Report<br />

RMI<br />

Royal Meteorological Institute (of Belgium)<br />

RMSE Root Mean Square Error<br />

RR<br />

<strong>Requirement</strong>s Review<br />

RT<br />

Real Time<br />

<strong>SAF</strong><br />

Satellite Application Facility<br />

SAG<br />

Science Advisory Group<br />

SAR<br />

Synthetic Aperture Radar<br />

SCA<br />

Snow Covered Area<br />

SCAT Scatterometer (on ERS-1 and 2)<br />

SD<br />

Snow depth<br />

SDAS Surface Data Assimilation System<br />

SDD<br />

System Design <strong>Document</strong><br />

SEVIRI Spinning Enhanced Visible Infra-Red Imager (on MSG)<br />

SHW State Hydraulic Works of Turkey<br />

SHFWG <strong>SAF</strong> Hydrology Framework Working Group<br />

SHMI Slovakian Hydrological and Meteorological Institute<br />

SIRR<br />

System Integration Readiness Review<br />

SIVVP System Integration, Verification & Validation Plan<br />

SLAs Service-Level Agreements


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 61/66<br />

SM<br />

SMART<br />

SMMR<br />

SMOS<br />

SN<br />

SP<br />

SR<br />

SRD<br />

SSM/I<br />

SSMIS<br />

SSVD<br />

STRR<br />

SVALF<br />

SVERF<br />

SVRR<br />

SW<br />

SWE<br />

SYKE<br />

TBC<br />

TBD<br />

TKK/LST<br />

TLE<br />

TMI<br />

TRMM<br />

TSMS<br />

TU Wien<br />

U-MARF<br />

UML<br />

UR<br />

URD<br />

VIIRS<br />

WMO<br />

WP<br />

WPD<br />

WS<br />

XMI<br />

ZAMG<br />

Soil Moisture (referred to Soil Moisture Subsystem items, e.g.: products, components etc.)<br />

Service Migration and Reuse Technique<br />

Scanning Multichannel Microwave Radiometer (on SeaSat and Nimbus VII)<br />

Soil Moisture and Ocean Salinity<br />

Snow Parameters (referred to Snow Parameters Subsystem products)<br />

Snow Parameters (referred to Snow Parameters Subsystem items, e.g.: components)<br />

System <strong>Requirement</strong><br />

System <strong>Requirement</strong>s <strong>Document</strong><br />

Special Sensor Microwave / Imager (on DMSP up to F-15)<br />

Special Sensor Microwave Imager/Sounder (on DMSP starting with F-16)<br />

System/Software <strong>Version</strong> <strong>Document</strong><br />

System Test Results Review<br />

System Validation File<br />

System Verification File<br />

System Validation Results Review<br />

Software<br />

Snow Water Equivalent<br />

Finnish Environment Institute<br />

To be confirmed<br />

To be defined<br />

Helsinki University of Technology / Laboratory of Space Technology<br />

Two-line-element (telemetry data format)<br />

TRMM Microwave Imager (on TRMM)<br />

Tropical Rainfall Measuring Mission<br />

Turkish State Meteorological Service<br />

Technische Universität Wien<br />

Unified Meteorological Archive and Retrieval Facility<br />

Unified Modelling Language<br />

User <strong>Requirement</strong><br />

User <strong>Requirement</strong>s <strong>Document</strong><br />

Visible/Infrared Imager Radiometer Suite (on NPP and NPOESS)<br />

World Meteorological Organization<br />

Work Package<br />

Work Package Description<br />

Workshop<br />

XML (eXtensible Markup Language ) Metadata Interchange<br />

Zentral Anstalt für Meteorologie und Geodynamik


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 62/66<br />

Appendix 2<br />

References<br />

2.1 Applicable documents<br />

[AD 1]<br />

[AD 2]<br />

[AD 3]<br />

Cooperation Agreement between EUMETSAT and the NMS of Italy on the Continuous<br />

Development and Operations Phase of the Satellite Application Facility on Support to<br />

Hydrology and Operational Water Management (Ref.: EUM/C/70/DOC/10)<br />

H-<strong>SAF</strong> Project Plan (PP). Ref.:<strong>SAF</strong>/H<strong>SAF</strong>/PP/2.2<br />

Definition of <strong>Product</strong> Status Categories for the <strong>SAF</strong> Network Ref:<br />

EUM/PPS/TEN/07/0036<br />

2.2 Reference documents<br />

[RD 1]<br />

[RD 2]<br />

Soutter M, R. Caloz and A. Beney, 2001: “Potential Contribution of EUMETSAT Space<br />

Systems in the Fields of Hydrology and Water Management”. Final report to<br />

EUMETSAT dated 21 August 2001.<br />

Conclusions from the Working Group on a Potential <strong>SAF</strong> on Support to Operational<br />

Hydrology and Water Management - Annex 1 to EUM/C/53/03/DOC/48, 2002.<br />

[RD 3] Summary Report of the <strong>SAF</strong> Hydrology Framework Working Group -<br />

EUM/PPS/REP/04/0002.<br />

[RD 4]<br />

Proposal for the development of a “Satellite Application Facility on Support to<br />

Operational Hydrology and Water Management (H-<strong>SAF</strong>)”, submitted by the Italian<br />

Meteorological Service on behalf of the H-<strong>SAF</strong> Consortium - Issue 2.1 dated 15 May<br />

2005<br />

[RD 5] Definition of <strong>Product</strong> Status Categories for the <strong>SAF</strong> Network. EUM/PPS/TEN/07/0036 -<br />

Issue v1A dated 14 May 2007<br />

2.3 Scientific References<br />

[RD 6]<br />

[RD 7]<br />

[RD 8]<br />

[RD 9]<br />

Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., Wagner, W. (2009): An improved soil<br />

moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE<br />

Transactions on Geoscience and Remote Sensing, 47 (7), pp. 1999-2013<br />

Wagner, W., G. Lemoine, H. Rott (1999): A Method for Estimating Soil Moisture from<br />

ERS Scatterometer and Soil Data, Remote Sensing of Environment, Volume 70, Issue<br />

2, pp. 191-207<br />

Wagner, W., C. Pathe, M. Doubkova, D. Sabel, A. Bartsch, S. Hasenauer, G. Blöschl,<br />

K. Scipal, J. Martínez-Fernández, A. Löw (2008): Temporal stability of soil moisture<br />

and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR),<br />

Sensors, Volume 8, pp. 1174-1197<br />

Mugnai, A., D. Casella, M. Formenton, P. Sanò, G.J. Tripoli, W.Y. Leung, E.A. Smith,<br />

and A. Mehta, 2009: Generation of an European Cloud-Radiation Database to be used


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 63/66<br />

for PR-OBS-1 (Precipitation Rate at Ground by MW Conical Scanners), H-<strong>SAF</strong> VS 310<br />

Activity Report, 39 pp<br />

[RD 10]<br />

Joyce, R.J., J.E. Janowiak, P.A. Arkin, and P. Xie, 2004: CMORPH: A method that<br />

produces global precipitation estimates from passive microwave and infrared data at<br />

high spatial and temporal resolution. J. Hydrometeor., 5, 487-503.<br />

[RD 11] Turk, F.J., G. Rohaly, J. Hawkins, E.A. Smith, F.S. Marzano, A. Mugnai, and V.<br />

Levizzani, 2000: Meteorological applications of precipitation estimation from combined<br />

SSM/I, TRMM and geostationary satellite data. In: Microwave Radiometry and Remote<br />

Sensing of the Earth's Surface and Atmosphere, P. Pampaloni and S. Paloscia Eds.,<br />

VSP Int. Sci. Publisher, Utrecht (The Netherlands), 353-363.<br />

[RD 12]<br />

[RD 13]<br />

[RD 14]<br />

[RD 15]<br />

Surussavadee, C., and D.H. Staelin, 2006: Comparison of AMSU millimeterwave<br />

satellite observations, MM5/TBSCAT predicted radiances, and electromagnetic models<br />

for hydrometeors. IEEE Trans. Geosci. Remote Sens., 44, 2667-2678.<br />

H. Van de Vyver and E. Roulin: Scale-recursive estimation for merging precipitation<br />

data from radar and microwave cross-track scanners’.<br />

Sanò, P., Casella, D., Mugnai, A., Schiavon, G., Smith, E.A., and Tripoli, G.J.:<br />

Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive<br />

microwave measurements, Part 1: Algorithm description and testing, IEEE Trans.<br />

Geosci. Remote Sens., in press, 2012.<br />

Casella, D., Panegrossi, G., Sanò, P., Mugnai, A., Smith, E.A., Tripoli, G.J., Dietrich,<br />

S., Formenton, M., Di Paola, F., Leung, H. W.-Y., and Mehta, A.V.: Transitioning from<br />

CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave<br />

measurements, Part 2: Overcoming database profile selection ambiguity by<br />

consideration of meteorological control on microphysics, IEEE Trans. Geosci. Remote<br />

Sens., submitted, 2012.<br />

[RD 16]<br />

[RD 17]<br />

Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Levizzani, V., Panegrossi,<br />

G., Petracca, M., Sanò, P., Di Paola, F., Biron, D., De Leonibus, L., Melfi, D., Rosci, P.,<br />

Vocino, A., Zauli, F., Puca, S., Rinollo, A., Milani, L., Porcù, F., and Gattari, F.:<br />

Precipitation products from the Hydrology <strong>SAF</strong>, Nat. Hazards Earth Syst. Sci., Special<br />

Issue on Plinius 13, submitted, 2012a.<br />

Mugnai, A., Smith, E.A., Tripoli, G.J., Bizzarri, D., Casella, D., Dietrich, S., Di Paola, F.,<br />

Panegrossi, G., and Sanò, P.: CDRD and PNPR satellite passive microwave<br />

precipitation retrieval algorithms: EuroTRMM / EURAINSAT origins and H-<strong>SAF</strong><br />

operations, Nat. Hazards Earth Syst. Sci., Special Issue on Plinius 13, submitted,<br />

2012b.<br />

[RD 18] Albergel, C., C. Rüdiger, D. Carrer, J.-C. Calvet, N. Fritz, V. Naeimi, Z. Bartalis, and S.<br />

Hasenauer, 2009: An evaluation of ASCAT surface soil moisture products with in situ<br />

observations in Southwestern France, Hydrol. Earth Syst. Sci., 13, 115–124,<br />

doi:10.5194/hess-13-115-2009.


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 64/66<br />

[RD 19] Albergel, C., J.-C. Calvet, P. de Rosnay, G. Balsamo, W. Wagner, S. Hasenauer, V.<br />

Naemi, E. Martin, E. Bazile F. Bouyssel, and Mahfouf, J.-F., 2010: Cross-evaluation of<br />

modelled and remotely sensed surface soil moisture with in situ data in southwestern<br />

France, Hydrol. Earth Syst. Sci., 14, 2177-2191, doi:10.5194/hess-14-2177-2010.<br />

[RD 20]<br />

[RD 21]<br />

[RD 22]<br />

[RD 23]<br />

[RD 24]<br />

[RD 25]<br />

[RD 26]<br />

[RD 27]<br />

[RD 28]<br />

[RD 29]<br />

Brocca, L., F. Melone, T. Moramarco, W. Wagner and S. Hasenauer, 2010a: ASCAT<br />

soil wetness index validation through in situ and modelled soil moisture data in central<br />

Italy. Remote Sens. Environ., 114(11), 2745-2755, doi:10.1016/j.rse.2010.06.009.<br />

Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2010b: Spatial-temporal<br />

variability of soil moisture and its estimation across scales. Water Resour. Res., 46,<br />

W02516, doi:10.1029/2009WR008016.<br />

Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo,<br />

W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., Bittelli, M.,<br />

2011: Soil moisture estimation through ASCAT and AMSR-E sensors: an<br />

intercomparison and validation study across Europe. Remote Sensing of Environment,<br />

115, 3390-3408, doi:10.1016/j.rse.201<strong>1.0</strong>8.003.<br />

Brocca, L., Tullo, T., Melone, F., Moramarco, T., Morbidelli, R., 2012: Catchment scale<br />

soil moisture spatial-temporal variability. Journal of Hydrology, 422-423, 71-83,<br />

doi:10.1016/j.jhydrol.2011.12.039.<br />

Entekhabi, D., Reichle, R.H., Koster, R.D. And Crow, W.T., 2010: Performance metrics<br />

for soil moisture retrievals and application requirements. J. Hydrometeorol., 11 (3),<br />

832-840.<br />

Famiglietti, J.S., D. Ryu, A.A. Berg, M. Rodell and T.J. Jackson 2008: Field<br />

observations of soil moisture variability across scales, Water Resour. Res., 44,<br />

W01423, doi:10.1029/2006WR005804.<br />

Koster R.D., Z. Guo, R. Yang, P.A. Dirmeyer, K. Mitchell and M.J. Puma 2009: On the<br />

nature of soil moisture in Land Surface Model, Journal of Climate, 22, 4322-4334,<br />

doi:10.1175/2009JCLI2832.1.<br />

Koster, R.D, S. P. P. Mahanama, T. J. Yamada, G. Balsamo, A. A. Berg, M. Boisserie,<br />

P. A. Dirmeyer, F. J. Doblas-Reyes, G. Drewitt, C. T. Gordon, Z. Guo, J.-H. Jeong, W.-<br />

S. Lee, Z. Li, L. Luo, S. Malyshev, W. J. Merryfield, S. I. Seneviratne, T. Stanelle, B. J.<br />

J. M. van den Hurk, F. Vitart and E. F. Wood., 2011: The Second Phase of the Global<br />

Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal<br />

Forecast Skill. J. Hydrometeor. 12:5, 805-822<br />

Rüdiger, C., J.-C. Calvet, C. Gruhier, T. Holmes, R. De Jeu, and W. Wagner, 2009: An<br />

intercomparison of ERS-Scat and AMSR-E soil moisture observations with model<br />

simulations over France, J. Hydrometeorol., 10(2), 431–447,<br />

doi:10.1175/2008JHM997.1.<br />

Saleem, J.A., and G.D. Salvucci, 2002: Comparison of soil wetness indices for inducing<br />

functional similarity of hydrologic response across sites in Illinois. J. Hydrometeor., 3,<br />

80–


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 65/66<br />

Appendix 3<br />

TBC/TBD List<br />

Item<br />

Section/Paragraph Resolution date<br />

Accuracy and Timeliness<br />

characteristics for Precipitation<br />

product H15<br />

Accuracy POD and FAR for<br />

Precipitation product H02B, H03B,<br />

H04B, H41A, H41B, H05B, H42A,<br />

H42B<br />

Generation Frequency and Accuracy<br />

POD and FAR for Precipitation<br />

product H40A and H40B, H17, H18,<br />

H21, H22, H50<br />

Accuracy values for Precipitation<br />

product H19, H20,<br />

Generation Frequency, Accuracy<br />

values, Validation method, Spatial<br />

resolution and Timeliness for Snow<br />

product H43<br />

Section 3.1<br />

Section 3.1<br />

Section 3.1<br />

Section 3.1<br />

Section 3.3.1<br />

Within <strong>CDOP2</strong> ORR<br />

Within <strong>CDOP2</strong> ORR<br />

Within <strong>CDOP2</strong> ORR<br />

Within <strong>CDOP2</strong> ORR<br />

Within <strong>CDOP2</strong> ORR


<strong>Product</strong> <strong>Requirement</strong> <strong>Document</strong><br />

Doc. No: <strong>SAF</strong>/H<strong>SAF</strong>/<strong>CDOP2</strong>/PRD/<strong>1.0</strong><br />

Issue: <strong>Version</strong> <strong>1.0</strong><br />

Date: 11/12/2012<br />

Page: 66/66<br />

- END OF THE DOCUMENT -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!