22.06.2015 Views

Chapter 07.03 Simpson's 1/3 Rule for Integration-More Examples ...

Chapter 07.03 Simpson's 1/3 Rule for Integration-More Examples ...

Chapter 07.03 Simpson's 1/3 Rule for Integration-More Examples ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>07.03</strong><br />

Simpson’s 1/3 <strong>Rule</strong> <strong>for</strong> <strong>Integration</strong>-<strong>More</strong> <strong>Examples</strong><br />

Civil Engineering<br />

Example 1<br />

The concentration of benzene at a critical location is given by<br />

where<br />

<br />

c 1.75 erfc<br />

erfc<br />

x<br />

<br />

x<br />

<br />

<br />

e<br />

32.73<br />

0.6560<br />

e erfc5.758<br />

2<br />

z<br />

dz<br />

So in the above <strong>for</strong>mula<br />

Since<br />

erfc<br />

2<br />

z<br />

0.6560<br />

<br />

<br />

2<br />

z<br />

0.6560<br />

e dz<br />

e decays rapidly as z , we will approximate<br />

0.6560<br />

.6560<br />

e<br />

<br />

5<br />

2<br />

z<br />

erfc 0 dz<br />

a) Use Simpson’s 1/3 <strong>Rule</strong> to find the value of 0.6560<br />

b) Find the true error, E<br />

t<br />

, <strong>for</strong> part (a).<br />

c) Find the absolute relative true error <strong>for</strong> part (a).<br />

Solution<br />

b a a b <br />

a) erfc0<br />

.6560<br />

f a<br />

4 f f b <br />

6<br />

a 5<br />

b 0. 6560<br />

a b<br />

2.8280<br />

2<br />

2<br />

z<br />

f z<br />

e<br />

2<br />

5<br />

f 5 e<br />

1.388810<br />

f<br />

<br />

0.6560<br />

<br />

<br />

<br />

11<br />

0.6560<br />

e<br />

0.65029<br />

2<br />

<br />

<br />

2<br />

<br />

<br />

<br />

erfc .<br />

<strong>07.03</strong>.1


<strong>07.03</strong>.2 <strong>Chapter</strong> 07.02<br />

<br />

<br />

2<br />

2.8280<br />

f 2.8280 e<br />

4<br />

3.362710<br />

b a <br />

a b <br />

erfc0<br />

.6560<br />

<br />

f a<br />

4 f f b <br />

6 <br />

2 <br />

0.6560 5 <br />

f<br />

5 4 f 2.8280<br />

f 0.6560<br />

6 <br />

4.3440<br />

<br />

11<br />

4<br />

1.388810<br />

43.3627<br />

10<br />

<br />

0.65029<br />

6 <br />

0.47178<br />

b) The exact value of the above integral cannot be found. For calculating the true error and<br />

relative true error, we assume the value obtained by adaptive numerical integration using<br />

Maple as the exact value.<br />

0.6560<br />

.6560<br />

e<br />

<br />

5<br />

2<br />

z<br />

erfc 0 dz<br />

0.31333<br />

so the true error is<br />

True Value Approximate Value<br />

E t<br />

<br />

0.31333<br />

0.47178<br />

0.15846<br />

c) The absolute relative true error, <br />

t<br />

, would then be<br />

True Error<br />

t<br />

<br />

100<br />

True Value<br />

0.15846<br />

100<br />

0.31333<br />

50.573 %<br />

<br />

Example 2<br />

The concentration of benzene at a critical location is given by<br />

where<br />

<br />

c 1.75 erfc<br />

erfc<br />

x<br />

<br />

x<br />

<br />

<br />

e<br />

32.73<br />

0.6560<br />

e erfc5.758<br />

2<br />

z<br />

dz<br />

So in the above <strong>for</strong>mula<br />

Since<br />

erfc<br />

2<br />

z<br />

0.6560<br />

<br />

<br />

2<br />

z<br />

0.6560<br />

e dz<br />

e decays rapidly as z , we will approximate


Simpson’s 1/3 <strong>Rule</strong> <strong>for</strong> <strong>Integration</strong>-<strong>More</strong> <strong>Examples</strong>: Civil Engineering <strong>07.03</strong>.3<br />

0.6560<br />

.6560<br />

e<br />

<br />

z<br />

erfc 0 dz<br />

5<br />

2<br />

a) Use four segment Simpson’s 1/3 <strong>Rule</strong> to find the value of erfc 0.6560.<br />

b) Find the true error, E<br />

t<br />

, <strong>for</strong> part (a).<br />

c) Find the absolute relative true error <strong>for</strong> part (a).<br />

Solution<br />

<br />

b a<br />

3n<br />

<br />

<br />

n1<br />

n2<br />

0 i<br />

2 <br />

i1<br />

i2<br />

iodd<br />

ieven<br />

a) erfc0<br />

.6560<br />

f z<br />

<br />

4 f z<br />

<br />

f z<br />

<br />

f z<br />

<br />

n 4<br />

a 5<br />

b 0. 6560<br />

b a<br />

h <br />

n<br />

0.6560<br />

5<br />

<br />

4<br />

1.0860<br />

2<br />

z<br />

f ( z)<br />

e<br />

i<br />

n<br />

<br />

<br />

<br />

<br />

So<br />

z 0<br />

f 5<br />

2<br />

5<br />

5 e<br />

f <br />

f<br />

f<br />

f<br />

f<br />

f<br />

f<br />

f<br />

1.388810<br />

f 5 1.0860<br />

f 3.9140<br />

11<br />

z1 <br />

<br />

2<br />

3.9140<br />

3.9140 e<br />

7<br />

2.222610<br />

f 3.9140 1.0860<br />

f 2.8280<br />

z2 <br />

<br />

2<br />

2.8280<br />

2.8280 e<br />

4<br />

3.3627 10<br />

2.8280 1.0860<br />

z3 f <br />

f 1.7420<br />

2<br />

1.7420<br />

1.7420 e<br />

0.048096


<strong>07.03</strong>.4 <strong>Chapter</strong> 07.02<br />

z4<br />

<br />

f z n<br />

<br />

f <br />

f<br />

0.6560<br />

2<br />

0.6560<br />

f (0.6560) e<br />

0.65029<br />

<br />

<br />

n1<br />

n2<br />

b a<br />

erfc0<br />

.6560<br />

f z<br />

<br />

<br />

<br />

<br />

0<br />

4<br />

f zi<br />

2 f zi<br />

f zn<br />

3n<br />

<br />

i1<br />

i2<br />

<br />

iodd<br />

ieven<br />

<br />

<br />

<br />

3<br />

2<br />

0.6560 5<br />

f 5 4 <br />

<br />

<br />

f zi<br />

2 f zi<br />

f 0.6560<br />

3 4<br />

<br />

i1<br />

i2<br />

<br />

iodd<br />

ieven<br />

<br />

4.3440<br />

f<br />

5 4 f z1 <br />

4 f z3<br />

<br />

2 f z2<br />

<br />

f 0.6560<br />

12<br />

4.3440 f 5 4 f 3.9140<br />

4 f 1.7420<br />

<br />

12<br />

<br />

<br />

<br />

<br />

2 f 2.8280 f 0.6560 <br />

11<br />

7<br />

4.3440 1.388810<br />

42.222610<br />

<br />

40.048096<br />

<br />

<br />

4<br />

12<br />

<br />

2 3.3627 10<br />

0.65029<br />

<br />

0.30529<br />

b) The exact value of the above integral cannot be found. For calculating the true error and<br />

relative true error, we assume the value obtained by adaptive numerical integration using<br />

Maple as the exact value.<br />

0.6560<br />

.6560<br />

e<br />

<br />

z<br />

erfc 0 dz<br />

0.31333<br />

so the true error is<br />

True Value Approximate Value<br />

E t<br />

5<br />

<br />

0.31333<br />

0.30529<br />

0.0080347<br />

c) The absolute relative true error, <br />

t<br />

, would then be<br />

True Error<br />

t<br />

<br />

100<br />

True Value<br />

0.0080347<br />

<br />

100<br />

0.31333<br />

2.5643 %<br />

2


Simpson’s 1/3 <strong>Rule</strong> <strong>for</strong> <strong>Integration</strong>-<strong>More</strong> <strong>Examples</strong>: Civil Engineering <strong>07.03</strong>.5<br />

Table 1 Values of Simpson’s 1/3 <strong>Rule</strong> <strong>for</strong> Example 2 with multiple segments.<br />

n Approximate Value E<br />

t<br />

2<br />

4<br />

6<br />

8<br />

10<br />

0.47178<br />

0.30529<br />

0.30678<br />

0.31110<br />

0.31248<br />

0.15846<br />

0.0080347<br />

0.0065444<br />

0.0022249<br />

0.00084868<br />

<br />

t<br />

%<br />

50.573<br />

2.5643<br />

2.0887<br />

0.71009<br />

0.27086

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!