10.07.2015 Views

Dispersal and transient dynamics in metapopulations - IEB

Dispersal and transient dynamics in metapopulations - IEB

Dispersal and transient dynamics in metapopulations - IEB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ecology Letters, (2003) 6: 197–204REPORT<strong>Dispersal</strong> <strong>and</strong> <strong>transient</strong> <strong>dynamics</strong> <strong>in</strong> <strong>metapopulations</strong>Fabio A. Labra, Nelson A. Lagos<strong>and</strong> Pablo A. Marquet*Center for Advanced Studies <strong>in</strong>Ecology <strong>and</strong> Biodiversity, <strong>and</strong>Departamento de Ecología,Facultad de Ciencias Biológicas,Pontificia Universidad Católicade Chile, Casilla 114-D,Santiago, Chile*Correspondence: E-mail:pmarquet@genes.bio.puc.clAbstractRecent studies of spatially explicit metapopulation models have shown the existence ofcomplex <strong>transient</strong> behaviour (super<strong>transient</strong>s <strong>and</strong> meso<strong>transient</strong>s) characterized byspontaneous changes <strong>in</strong> the system’s <strong>dynamics</strong> after thous<strong>and</strong>s or hundreds ofgenerations, respectively. Their detection <strong>in</strong> simple ecological models has been taken asevidence that <strong>transient</strong> <strong>dynamics</strong> may be common <strong>in</strong> nature. In this study, we explore thegenerality of these phenomena <strong>in</strong> a simple one-dimensional spatially explicit metapopulationmodel. We <strong>in</strong>vestigate how frequently super<strong>transient</strong> behaviour emerges <strong>in</strong>relation to the shape <strong>and</strong> type of the dispersal kernel used (normal <strong>and</strong> Laplace), systemsize, boundary conditions <strong>and</strong> how sensitive they are to <strong>in</strong>itial conditions. Our resultsshow that super<strong>transient</strong>s are rare, are heavily affected by <strong>in</strong>itial conditions <strong>and</strong> occur fora small set of dispersal parameter values, which vary accord<strong>in</strong>g to kernel type, systemsize, <strong>and</strong> boundary conditions. Similarly, meso<strong>transient</strong>s emerge over a very narrowrange of dispersal parameter values <strong>and</strong> are rare under all circumstances. Thus, <strong>transient</strong><strong>dynamics</strong> are not likely to be either common or widespread <strong>in</strong> simple models ofecological systems.KeywordsTransient <strong>dynamics</strong>, dispersal kernel, spatial model, coupled map lattice, <strong>metapopulations</strong>.Ecology Letters (2003) 6: 197–204INTRODUCTIONThe study of spatial population <strong>dynamics</strong> <strong>and</strong> persistencehas received renewed attention <strong>in</strong> the past few years (Maurer1994; Tilman & Kareiva 1997; Bascompte & Solé 1998a,b;Turch<strong>in</strong> 1998; Keymer et al. 2000), <strong>and</strong> has been the sourceof many new <strong>in</strong>sights to ecological phenomena (Paradis et al.2000; Williams & Liebhold 2000). One of the most popularforms of spatial population models considers <strong>metapopulations</strong>,or ensembles of local populations coupled bydispersal. These simple models, known as coupled maplattices (CML) (Kaneko 1989, 1998) predict a range ofspatiotemporal patterns, some of which have been found <strong>in</strong>nature (Maron & Harrison 1997; Ranta et al. 1997; Lamb<strong>in</strong>et al. 1998; Solé & Bascompte 1998; Blasius et al. 1999), <strong>and</strong>have been extensively used <strong>in</strong> the study of complex systems(Kaneko & Tsuda 2000). Theoretical studies of CMLs havesuggested that the population <strong>dynamics</strong> we observe <strong>in</strong>nature may well correspond to a <strong>transient</strong> dynamicalbehaviour, which shows spontaneous changes fromapparent chaotic <strong>dynamics</strong> to cyclic behaviour <strong>and</strong> viceversa occurr<strong>in</strong>g at time scales longer than a typical ecologicaltime series (Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994). Recently, Saraviaet al. (2000) noted that CML may show sudden changes <strong>in</strong>behaviour at shorter temporal scales, similar to that ofecological studies, <strong>and</strong> have suggested that these mesoscalechanges <strong>in</strong> <strong>dynamics</strong> (termed Ômeso<strong>transient</strong>sÕ by theauthors) may be of greater relevance than longer <strong>transient</strong>behaviour. These claims contrast with the traditionalemphasis on the analysis of long-term solutions (asymptoticstates) <strong>in</strong> the study of ecological models (Hast<strong>in</strong>gs &Higg<strong>in</strong>s 1994; Hast<strong>in</strong>gs 1998; Earn & Rohani 1999). If<strong>transient</strong> behaviour is common <strong>in</strong> nature, then ecologicalsystems might often be <strong>in</strong> a <strong>transient</strong> state, <strong>and</strong> changes <strong>in</strong>their <strong>dynamics</strong> might be compounded by <strong>in</strong>tr<strong>in</strong>sic dynamicaleffects <strong>and</strong> also by changes <strong>in</strong> the environment where<strong>in</strong> theyare embedded.The first step towards determ<strong>in</strong><strong>in</strong>g whether we can expectsuch complex <strong>transient</strong> behaviour to be common <strong>in</strong> natureis the assessment of their generality <strong>in</strong> model ecologicalsystems. It is known that super<strong>transient</strong> <strong>dynamics</strong> are likelyto appear when coupled local populations are <strong>in</strong> a chaoticregime (Kaneko 1989; Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994; Ruxton &Doebeli 1996) <strong>and</strong> that average <strong>transient</strong> length <strong>in</strong>creaseswith system size <strong>and</strong> the degree of global coupl<strong>in</strong>g betweenpopulations (Kaneko 1990, 1998; Hast<strong>in</strong>gs 1998). InÓ2003 Blackwell Publish<strong>in</strong>g Ltd/CNRS


198 F. A. Labra, N. A. Lagos <strong>and</strong> P. A. Marquetecological models, however, coupl<strong>in</strong>g has only beenmodelled assum<strong>in</strong>g a normal (gaussian) dispersal kernel<strong>and</strong> for a restricted set of dispersal <strong>in</strong>tensities <strong>and</strong> spatialranges (Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994; Ruxton & Doebeli 1996;but see Saravia et al. 2000). However, many organisms, suchas plants or aquatic <strong>in</strong>vertebrates <strong>and</strong> vertebrates, might bebetter represented by a fat-tailed, leptokurtic kernel such asLaplace dispersal kernel (Neubert et al. 1995; Clark et al.1999; Fraser et al. 2001), where settlement is probabilistic(i.e. there is a failure rate or hazard function).In this paper, we explore the generality of bothsuper<strong>transient</strong> <strong>and</strong> meso<strong>transient</strong> <strong>dynamics</strong> <strong>in</strong> terms ofdispersal (kernel type <strong>and</strong> coupl<strong>in</strong>g), system size, boundaryconditions <strong>and</strong> sensitivity to <strong>in</strong>itial conditions. We do this byanalys<strong>in</strong>g a model system for which both complex <strong>transient</strong>behaviours has been reported. Our results show thatsuper<strong>transient</strong> <strong>dynamics</strong> are a rare phenomenon emerg<strong>in</strong>gfor a restricted set of dispersal parameter values, whichnonetheless vary between kernels, <strong>and</strong> is affected by systemsize, boundary conditions <strong>and</strong> depends heavily on <strong>in</strong>itialconditions. Meso<strong>transient</strong>s on the other h<strong>and</strong> are seen tooccur for a smaller range of dispersal parameter values. Wediscuss the implications of these results both for theoretical<strong>and</strong> empirical population <strong>dynamics</strong>.MATERIALS AND METHODSFollow<strong>in</strong>g Hast<strong>in</strong>gs (1998), we modelled a small set of Mdiscrete local populations, of a semelparous species,distributed along a l<strong>in</strong>early structured environment, suchas may be found along a stretch of coastl<strong>in</strong>e. In each ofthese populations, reproduction occurs synchronously <strong>in</strong> adensity-dependent fashion. At the start of a given generationt, population size <strong>in</strong> the ith population is denoted N [t,i] . Thereproductive events generate a larval stage, L, whichdisperses among the local populations. Abundance of larvae<strong>in</strong> each population L [t,i] , after reproduction <strong>and</strong> before theydisperse, is given by (see Maynard-Smith & Slatk<strong>in</strong> 1973;Ruxton & Doebeli 1996),L ½t;iŠ ¼ N ½t;iŠ f ðN ½t;iŠ Þ¼kN ½t;iŠ1 þ aN½t;iŠbð1ÞThe parameter k is the growth rate, a is the <strong>in</strong>verse of theenvironmental carry<strong>in</strong>g capacity <strong>and</strong> b describes the <strong>in</strong>tensityof density dependence (for further discussion of this modelsee Hassell 1975; Bellows 1981; Doebeli 1995). All larvae areproduced synchronously <strong>and</strong> settlement is simultaneousthroughout the metapopulation. Larvae are redistributed <strong>in</strong> adensity-<strong>in</strong>dependent fashion accord<strong>in</strong>g either to Laplace ornormal kernel, which reflect different dispersal strategies oflarvae. In comparison with the normal kernel, larvae underLaplace kernel have at the same time a higher probability ofrema<strong>in</strong><strong>in</strong>g at the source <strong>and</strong> of dispers<strong>in</strong>g over a longerrange (Fig. 1). For the normal dispersal kernel (Neubertet al. 1995), the proportion of the larvae on patch i thatmove to patch j is:P ½i;jŠ ¼ p 12 ffiffiffiffiffi e4r 1 ði jÞ2 ð2ÞprIn the case of Laplace dispersal kernel (Neubert et al. 1995),the proportion of the larvae on patch i which moves topatch j is:P ½i;jŠ ¼ 12r e1 r jði jÞj ð3ÞFor both dispersal kernels the shape of the dispersal curve,which is controlled by the parameter r, gives the <strong>in</strong>tensity<strong>and</strong> extent of dispersal: the smaller the parameter, the largerthe proportion of <strong>in</strong>dividuals that will rema<strong>in</strong> <strong>in</strong> the parentalhabitat <strong>and</strong> more local populations will rema<strong>in</strong> unconnected(Fig. 1). High values of r will result <strong>in</strong> greater spatial spreadof the <strong>in</strong>dividuals with lower <strong>in</strong>tensity.The model assumes non-overlapp<strong>in</strong>g generations, <strong>and</strong> soall adult <strong>in</strong>dividuals die at the end of the reproductiveperiod. Local population size at the next generation is theresult of the recruitment of all the larvae dispersed from allFigure 1 <strong>Dispersal</strong> kernels used <strong>in</strong> this study. Note the leptokurticshape of the Laplace distribution. The figure shows the proportionof propagules dispersed to different distances from a central focalpopulation (site 25) for r ¼ 1, r ¼ 5 <strong>and</strong> r ¼ 10 (a) normaldispersal kernel <strong>and</strong> (b) Laplace dispersal kernel. Note that for asmall system size (M ¼ 10) large values of dispersal result <strong>in</strong> loss ofpropagules from the system under dissipative boundary conditionswhile periodic boundaries result <strong>in</strong> essentially a more platikurticredistribution kernel.σσσÓ2003 Blackwell Publish<strong>in</strong>g Ltd/CNRS


Transient <strong>dynamics</strong> <strong>in</strong> <strong>metapopulations</strong> 199subpopulations. The number of <strong>in</strong>dividuals <strong>in</strong> each population<strong>in</strong> the next generation is given by the sum of thelarvae dispersed over the entire ensemble to that particularpopulation.N ½tþ1;iŠ ¼ XMj¼0L ½t;jŠ p ½j;iŠð4ÞOn the other h<strong>and</strong>, total population abundance for themetapopulation at generation t is given by the sum of<strong>in</strong>dividuals present <strong>in</strong> the metapopulation after dispersal <strong>and</strong>prior to reproduction. Previous studies (Hast<strong>in</strong>gs & Higg<strong>in</strong>s1994; Ruxton & Doebeli 1996) have assumed dissipativeboundary conditions (but see Hast<strong>in</strong>gs 1998). This meansthat a fraction of the larvae disperse beyond the edges of theensemble <strong>and</strong> do not <strong>in</strong>fluence the <strong>dynamics</strong> of the system.It may be argued that this loss of <strong>in</strong>dividuals may lower thelocal growth rate, thus lower<strong>in</strong>g the likelihood of observ<strong>in</strong>g<strong>transient</strong> <strong>dynamics</strong>. To assess the importance of larval losswe compared, for each dispersal kernel, the effect ofdissipative vs. periodic boundary conditions. To allow easiercomparison of the results we set the parameters a ¼ 1,b ¼ 4.8 <strong>and</strong> k ¼ 7, as used by Ruxton & Doebeli (1996).Under these parameter values, isolated local populationsshow chaotic <strong>dynamics</strong>. Initial local population abundances(i.e. <strong>in</strong>itial conditions) were drawn <strong>in</strong>dependently from ar<strong>and</strong>om uniform distribution between 0 <strong>and</strong> 4. In eachsimulation, the model was iterated for 10 000 generations,<strong>and</strong> the <strong>dynamics</strong> exam<strong>in</strong>ed for the occurrence of <strong>transient</strong><strong>dynamics</strong> (Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994). This procedure wasperformed for both dispersal kernels us<strong>in</strong>g two ranges of thedispersal parameter (r), from 0.01 to 5 <strong>and</strong> from 5.01 to10.00 (with <strong>in</strong>crements of 0.01 with each range) <strong>and</strong> for twodifferent system sizes M ¼ 10 <strong>and</strong> M ¼ 50. To assess theeffect of each factor <strong>in</strong> isolation <strong>and</strong> the <strong>in</strong>teraction amongfactors (i.e. kernel, boundary, r, <strong>and</strong> lattice size) on theemergence of <strong>transient</strong> behaviour, we used a full factorialexperimental design (Qu<strong>in</strong>n & Keough 2002) consider<strong>in</strong>gthe two levels of r (r £ 5 <strong>and</strong> r > 5). All factorialcomb<strong>in</strong>ations of factors resulted <strong>in</strong> 16 different scenarios.Twenty replicates were run for each of them.To evaluate the effect of <strong>in</strong>itial conditions of localabundance on the observed results, we also carried out 50simulations with different <strong>in</strong>itial conditions for a subset ofparameter values (r), uniformly spread between 0.01 <strong>and</strong>10. We report the proportion of the 50 replicates for eachvalue of s, which exhibited <strong>transient</strong> behaviour undernormal <strong>and</strong> Laplace kernels <strong>and</strong> for both boundaryconditions.Follow<strong>in</strong>g Hast<strong>in</strong>gs & Higg<strong>in</strong>s (1994) <strong>and</strong> Saravia et al.(2000), <strong>transient</strong> <strong>dynamics</strong> were identified by not<strong>in</strong>g theexistence of abrupt <strong>and</strong> spontaneous changes betweendifferent dynamic regimes with time scales of hundreds ofiterations (meso<strong>transient</strong>s) <strong>and</strong> with a time scale greater thanone thous<strong>and</strong> iterations (super<strong>transient</strong>s). Detection of thesechanges was carried out by calculat<strong>in</strong>g the ratio of variances(RV) between two adjacent halves of a slid<strong>in</strong>g w<strong>in</strong>dow ofsize W (Saravia et al. 2000). Both RV <strong>and</strong> W weredeterm<strong>in</strong>ed empirically to allow detection of super<strong>transient</strong>s(RV ¼ 10, W ¼ 1000) <strong>and</strong> meso<strong>transient</strong>s (RV ¼ 20,W ¼ 100). For a given simulation, <strong>transient</strong> length wasdef<strong>in</strong>ed by the time <strong>in</strong>terval at which the maximum value ofRV was observed. The changes <strong>in</strong> metapopulation <strong>dynamics</strong>were corroborated by the <strong>in</strong>spection of the temporal<strong>dynamics</strong> <strong>and</strong> return maps (Hast<strong>in</strong>g & Higg<strong>in</strong>s 1994; Saraviaet al. 2000).RESULTSIn agreement with previous studies, we observed super<strong>transient</strong><strong>dynamics</strong> <strong>in</strong> this simple metapopulation model(Fig. 2a). These changes occurred once or several times <strong>in</strong>Figure 2 Example of <strong>dynamics</strong> for the total metapopulationabundance observed for: (a) normal dispersal kernel with periodicboundaries <strong>and</strong> r ¼ 9.01. (b) Laplace dispersal kernel withdissipative boundaries <strong>and</strong> r ¼ 8.44. (c) A subset of the <strong>dynamics</strong>shown <strong>in</strong> (b). In all simulations only the dispersal parameter value<strong>and</strong> boundary conditions were changed <strong>and</strong> the follow<strong>in</strong>gparameter values were used: a ¼ 1, b ¼ 4.8, k ¼ 7, M ¼ 50.Ó2003 Blackwell Publish<strong>in</strong>g Ltd/CNRS


200 F. A. Labra, N. A. Lagos <strong>and</strong> P. A. Marquetthe time series (Fig. 2b). Similarly, meso<strong>transient</strong>s were alsoobserved (Fig. 2c). However, despite us<strong>in</strong>g local chaoticconditions of density dependence (k ¼ 7), we observed<strong>transient</strong>s <strong>in</strong> a small proportion of the total number of thesimulations. For simulations us<strong>in</strong>g M ¼ 50 <strong>and</strong> a normaldispersal kernel, we found super<strong>transient</strong>s <strong>in</strong> 10.9 <strong>and</strong> 2.6%of the simulations across the range of r-values used <strong>and</strong> forperiodic <strong>and</strong> dissipative boundary conditions, respectively,while for Laplace kernel we observed 3.7 <strong>and</strong> 4.9% forperiodic <strong>and</strong> dissipative boundary conditions. For a smallersystem size (M ¼ 10), the normal kernel showed super<strong>transient</strong>s<strong>in</strong> 3 <strong>and</strong> 13% of the simulations (periodic <strong>and</strong>dissipative boundary conditions, respectively) while Laplacekernel showed 0.8 <strong>and</strong> 13% (periodic <strong>and</strong> dissipativeboundary conditions, respectively). In contrast, meso<strong>transient</strong>soccurred <strong>in</strong>


Transient <strong>dynamics</strong> <strong>in</strong> <strong>metapopulations</strong> 201A system is highly dependent on <strong>in</strong>itial conditions if for aspecific set of parameter values, simulations orig<strong>in</strong>at<strong>in</strong>g withdifferent <strong>in</strong>itial numbers of <strong>in</strong>dividuals at different placeslead the system to different types of <strong>dynamics</strong>. If this werethe case, then we would f<strong>in</strong>d that for the same set ofparameter values, some of the trajectories show <strong>transient</strong>swhile some do not, hence the results shown <strong>in</strong> Figs 3 <strong>and</strong> 4might not accurately reflect the effect of parameter valuesupon the emergence of <strong>transient</strong> <strong>dynamics</strong>. As shown <strong>in</strong>Fig. 5, <strong>in</strong> most cases the proportion of simulations thatshowed either super<strong>transient</strong>s or meso<strong>transient</strong>s, for thesame parameter values but for chang<strong>in</strong>g <strong>in</strong>itial conditions,was highly variable <strong>and</strong> heavily affected by the value of r.For a large system size (M ¼ 50) <strong>and</strong> for both dispersalkernels, super<strong>transient</strong>s seemed to be more robust underperiodic boundary conditions than under dissipative boundaryconditions (Figs 5a,b) follow<strong>in</strong>g a patterns similar to thatshown <strong>in</strong> Fig. 3(a,b). However, <strong>in</strong> general the averageproportion of simulations show<strong>in</strong>g super<strong>transient</strong>s was low,rang<strong>in</strong>g between 0.16 <strong>and</strong> 0.05 for the periodic boundaryconditions under the normal <strong>and</strong> Laplace dispersal kernels,respectively. Under dissipative boundary conditions thisrange was between 0.02 <strong>and</strong> 0.01 for normal <strong>and</strong> Laplacekernels, respectively. Meso<strong>transient</strong> <strong>dynamics</strong>, on the otherh<strong>and</strong>, are more likely to be observed for <strong>in</strong>termediate valuesof r rang<strong>in</strong>g between 2 <strong>and</strong> 6-under periodic boundaryconditions, <strong>and</strong> for values of r rang<strong>in</strong>g between 4 <strong>and</strong> 7(a)(b)Figure 5 Effect of <strong>in</strong>itial conditions on the occurrence ofsuper<strong>transient</strong>s <strong>and</strong> meso<strong>transient</strong>s as a function of r. (a) <strong>and</strong>(b) show the proportion of 50 simulations with different <strong>in</strong>itialconditions that show super<strong>transient</strong>s for normal <strong>and</strong> Laplacekernels, respectively. (c) <strong>and</strong> (d) show the proportion ofsimulations that show meso<strong>transient</strong>s <strong>dynamics</strong> for normal <strong>and</strong>Laplace kernels, respectively. Dissipative boundary conditions arerepresented by open symbols, while filled symbols representperiodic boundaries. Parameter value as <strong>in</strong> Figure 3.(c)(d)under dissipative boundary conditions <strong>and</strong> normal dispersal(Fig. 5c). On the other h<strong>and</strong>, for Laplace dispersalmeso<strong>transient</strong>s were more common for large values of r,particularly under dissipative boundary conditions (Fig. 5d).In general, the average proportion of simulations show<strong>in</strong>gmeso<strong>transient</strong>s was low (0.09) for the periodic boundaryconditions under the normal <strong>and</strong> Laplace dispersal kernels.Under dissipative boundary conditions, the average proportionof simulations show<strong>in</strong>g meso<strong>transient</strong>s ranged between0.12 <strong>and</strong> 0.05 for Laplace <strong>and</strong> normal kernels, respectively.Although these results cannot be readily applied to assessthe uncerta<strong>in</strong>ty of the results reported <strong>in</strong> Figs 3 <strong>and</strong> 4,because of the different values <strong>and</strong> <strong>in</strong>tervals of r used <strong>in</strong>both analysis, they consistently show that for a given set ofparameter values the emergence of <strong>transient</strong> behaviour ishighly dependent on <strong>in</strong>itial conditions. A similar result wasobserved for a smaller system size (M ¼ 10, not shown).In summary, our results show that both super<strong>transient</strong>s<strong>and</strong> meso<strong>transient</strong>s <strong>dynamics</strong> are rare; their emergencedepends strongly on the kernel type, dispersal, boundaryconditions <strong>and</strong> system size, <strong>and</strong> the <strong>in</strong>teraction among thesefactors. Furthermore, we show that <strong>transient</strong> <strong>dynamics</strong> arestrongly affected by <strong>in</strong>itial conditions.DISCUSSIONIt is known that long <strong>transient</strong>s can occur <strong>in</strong> spatialecological models with multiple attractors <strong>and</strong> hencechaotic saddles (Kaneko 1990; Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994;Hast<strong>in</strong>gs 1998) even <strong>in</strong> the presence of noise (Hast<strong>in</strong>gs1998). The existence of super<strong>transient</strong>s rema<strong>in</strong>ed amathematical eccentricity until Hast<strong>in</strong>gs <strong>and</strong> coworkers(Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994; Hast<strong>in</strong>gs 1998, 2001) arguedthat <strong>transient</strong> dynamic behaviour is widespread <strong>in</strong> nature,suggest<strong>in</strong>g that its emergence <strong>in</strong> spatial ecological models islikely to be the rule rather than the exception. Further, thefact that <strong>transient</strong> behaviour usually lasts for manygenerations implies that the <strong>transient</strong> state of the systemcould be potentially more important than its f<strong>in</strong>al attractor(Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994). Thus, if <strong>transient</strong>s are the rulerather than the exception for ecological systems, thentraditional theoretical models based on asymptotic equilibriumbehaviour might be of little relevance as tools forunderst<strong>and</strong><strong>in</strong>g.In this paper, we showed that the emergence ofsuper<strong>transient</strong> <strong>dynamics</strong> is a rare event, which dependsstrongly on the type, extent <strong>and</strong> <strong>in</strong>tensity of dispersal, as wellas on the system size <strong>and</strong> boundary conditions. Ruxton &Doebeli (1996) first made the po<strong>in</strong>t that the shape of thedispersal kernel (as measured by r) affected the emergenceof super<strong>transient</strong>s <strong>in</strong> simple spatial models, but providedno systematic assessment of its effect, <strong>and</strong> restrictedtheir analysis to a normal kernel. Similarly, Saravia et al.Ó2003 Blackwell Publish<strong>in</strong>g Ltd/CNRS


202 F. A. Labra, N. A. Lagos <strong>and</strong> P. A. Marquet(2000) po<strong>in</strong>t out that super<strong>transient</strong>s required a particularcomb<strong>in</strong>ation of k, b <strong>and</strong> r, to emerge but did not explicitlytest for the effect of dispersal <strong>and</strong> also restricted theiranalysis to a normal dispersal kernel. Our analysis showsthat, contrary to Ruxton & DoebeliÔs (1996) f<strong>in</strong>d<strong>in</strong>gs,super<strong>transient</strong>s can emerge for high values of the dispersalparameter r, depend<strong>in</strong>g on the size of the system (Figs 3<strong>and</strong> 4). However, these super<strong>transient</strong>s may be highlysensitive to <strong>in</strong>itial conditions (Fig. 5), strengthen<strong>in</strong>g ourconclusion that they are not the rule <strong>in</strong> simple ecologicalmodels.Our results also po<strong>in</strong>t out the importance of boundaryconditions <strong>and</strong> system size for the emergence of <strong>transient</strong><strong>dynamics</strong>. It may be expected that loss of <strong>in</strong>dividualsthrough dissipative boundaries would result <strong>in</strong> a lower<strong>in</strong>g ofthe local growth rates <strong>and</strong> hence <strong>in</strong> the likelihood ofobserv<strong>in</strong>g super<strong>transient</strong>s. For a small system size, however,super<strong>transient</strong>s were more common precisely under thisscenario. Thus, loss of <strong>in</strong>dividuals through dispersal may stillallow super<strong>transient</strong>s to emerge. However, system size,boundary conditions <strong>and</strong> <strong>in</strong>itial conditions <strong>in</strong>teract <strong>in</strong>complex ways such that for a large system size (M ¼ 50)<strong>transient</strong> <strong>dynamics</strong> tend to be less affected by <strong>in</strong>itialconditions under periodic boundaries, while the reverse istrue when the system is smaller (M ¼ 10, F. Labra,unpublished results). In a recent paper (Hast<strong>in</strong>gs 2001), itis reported that super<strong>transient</strong>s occur more frequently whenthe <strong>in</strong>itial condition <strong>in</strong>cludes empty patches. The <strong>in</strong>clusionof empty sites <strong>in</strong> our simulations agree with this result.However, the observed <strong>in</strong>crease <strong>in</strong> <strong>transient</strong>s only occursunder dissipative conditions, <strong>and</strong> only for super<strong>transient</strong>sbut not for meso<strong>transient</strong>s. To assess the relative importanceof each of these factors is beyond the scope of thepresent paper <strong>and</strong> deserves further <strong>in</strong>vestigation. However,this complex dependency strengthens our po<strong>in</strong>t; theemergence of <strong>transient</strong> dynamic behaviour <strong>in</strong> simpleecological models is not a common phenomenon butoccurs for a restricted set of conditions. Saravia et al. (2000),us<strong>in</strong>g the same model we used, reached a similar conclusionafter relax<strong>in</strong>g the assumption of global synchrony <strong>in</strong>reproduction <strong>and</strong> dispersal. This implies that the set ofconditions that lead to <strong>transient</strong> <strong>dynamics</strong> are likely to beeven more restricted than we report here. Although for thesake of comparability we have followed previous authors <strong>in</strong>study<strong>in</strong>g a one-dimensional cha<strong>in</strong> of <strong>in</strong>teract<strong>in</strong>g populations(e.g. Hast<strong>in</strong>gs & Higg<strong>in</strong>s 1994; Ruxton & Doebeli 1996;Saravia et al. 2000) it is likely that system dimensionality willalso have an effect on the emergence of <strong>transient</strong> behaviour.However, further <strong>in</strong>vestigations on two-dimensional systemsare necessary.Most previous studies have not reported an exhaustiveexploration of the parameters that may result <strong>in</strong> <strong>transient</strong><strong>dynamics</strong>. We found that under both dispersal kernels,super<strong>transient</strong> <strong>dynamics</strong> occur <strong>in</strong> very low frequency <strong>in</strong> spiteof strong local nonl<strong>in</strong>earity. From this perspective, <strong>and</strong>consider<strong>in</strong>g that its emergence also depends, as <strong>in</strong> our case,on the <strong>in</strong>itial conditions used <strong>in</strong> the simulations (see alsoRuxton & Doebeli 1996) <strong>and</strong> the value of the parameters k,b <strong>and</strong> r, it can be argued that super<strong>transient</strong>s, contrary toHast<strong>in</strong>gs & Higg<strong>in</strong>s (1994) <strong>and</strong> Hast<strong>in</strong>gs (1998, 2001), mightnot be a common feature of spatial models, let alone realecological systems <strong>and</strong> especially so, if chaotic <strong>dynamics</strong> arenot common <strong>in</strong> nature (see Rai & Schaffer 2001; below).The range of dispersal we have explored here ranges fromlocal coupl<strong>in</strong>g, when r is very low, to nearly global coupl<strong>in</strong>gwhen r is very high <strong>and</strong> periodic boundaries are imposed onthe system. In agreement with Hast<strong>in</strong>gs (1998), who used asystem of size M ¼ 10, we found that super<strong>transient</strong>s wereharder to f<strong>in</strong>d when dispersal conditions tended to besimilar to global coupl<strong>in</strong>g (large r-values). However, this istrue only for a small system size (M ¼ 10) (compare Figs 3<strong>and</strong> 4) <strong>and</strong> not all small <strong>and</strong> <strong>in</strong>termediate values of r result<strong>in</strong> super<strong>transient</strong>s, <strong>and</strong> of those that do, several are sensitiveto <strong>in</strong>itial conditions.It should be noted, however, that we observed super<strong>transient</strong>smuch more frequently than Saravia et al. (2000)did. This discrepancy arises because their study encompassesparameter comb<strong>in</strong>ations that span regions of stable,cyclic <strong>and</strong> chaotic <strong>dynamics</strong>. However, super<strong>transient</strong>s ariseonly <strong>in</strong> the latter regime <strong>and</strong> for strong nonl<strong>in</strong>earity(Kaneko 1989, 1990; Kaneko & Tsuda 2000). Simulationscarried out with a different set of parameters (a ¼ 0.5,b ¼ 30 <strong>and</strong> k ¼ 2), which produce chaotic <strong>dynamics</strong>, failedto produce either of the two complex behaviours understudy when simulations were carried out for a large systemsize (M ¼ 50). On the other h<strong>and</strong>, for a second parametersett<strong>in</strong>g (M ¼ 50, a ¼ 0.5, b ¼ 15 <strong>and</strong> k ¼ 7), the occurrenceof super<strong>transient</strong>s <strong>in</strong>creased under both kernels to 8.2<strong>and</strong> 19.5% for normal dispersal (periodic <strong>and</strong> dissipativeboundary conditions) while for Laplace kernel they occurred<strong>in</strong> 19.5 <strong>and</strong> 6.6% (periodic <strong>and</strong> dissipative boundaryconditions, respectively). If super<strong>transient</strong>s occur only forfully developed spatiotemporal chaos, then the questionshould be how common are they <strong>in</strong> this regime. As wediscussed above, they are not very common.Meso<strong>transient</strong>s, on the other h<strong>and</strong>, were seen <strong>in</strong> lowfrequency, <strong>and</strong> emerged over a narrower range of dispersalparameter values, especially for the large system. For thetwo additional parameter sett<strong>in</strong>gs we explored, meso<strong>transient</strong>swere completely absent <strong>in</strong> the first sett<strong>in</strong>g, while forthe second parameter sett<strong>in</strong>g they were found <strong>in</strong>


Transient <strong>dynamics</strong> <strong>in</strong> <strong>metapopulations</strong> 203<strong>in</strong>termittent chaos (Doebeli 1994; Cavalieri & Koçak 1995;Gavrilets & Hast<strong>in</strong>gs 1995; Strogatz 1997) <strong>and</strong> spatiotemporal<strong>in</strong>termittency (Kaneko 1985, 1989). We are not awareof any formal attempt to ascerta<strong>in</strong> if meso<strong>transient</strong> <strong>dynamics</strong>are <strong>in</strong> fact <strong>in</strong>termittent chaos or spatiotemporal <strong>in</strong>termittency.If it turns out to be the same to either of them, thenits prevalence <strong>and</strong> relevance <strong>in</strong> spatial ecological modelsmight be determ<strong>in</strong>ed more clearly.In conclusion, we show that super<strong>transient</strong> <strong>and</strong> meso<strong>transient</strong><strong>dynamics</strong> are not likely to be either common orwidespread <strong>in</strong> ecological systems be<strong>in</strong>g heavily affected bydispersal <strong>in</strong>tensity, boundary conditions, system size <strong>and</strong><strong>in</strong>itial conditions.ACKNOWLEDGEMENTSF.L. <strong>and</strong> N.L. acknowledge a doctoral scholarship providedby Conicyt. F.L. would like to thank I. Labra, I. Rodriguez<strong>and</strong> C. Huerta for their support <strong>and</strong> encouragement. P.M.acknowledges the f<strong>in</strong>ancial support of grants FONDECYT1990144 <strong>and</strong> FONDAP-FONDECYT 1501–0001. J. Velasco-Hernández,provided cogent criticisms, <strong>and</strong> suggestionsto an early draft of this manuscript. We speciallythank Michael Hochberg, Mercedes Pascual <strong>and</strong> fiveanonymous reviewers for their constructive criticisms <strong>and</strong>for mak<strong>in</strong>g us to realize that super<strong>transient</strong>s, far frombe<strong>in</strong>g a theoretical curiosity, can also be a real lifeexperience.REFERENCESBascompte, J. & Solé, R. (1998a). Spatiotemporal patterns <strong>in</strong> nature.Trends Ecol. Evol., 13, 173–174.Bascompte, J. & Solé, R. (1998b). Model<strong>in</strong>g Spatiotemporal Dynamics <strong>in</strong>Ecology. Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>.Bellows, T.S. (1981). The descriptive properties of some modelsfor density dependence. J. Anim. Ecol., 50, 139–156.Blasius, B., Huppert, A. & Stone, L. (1999). Complex <strong>dynamics</strong> <strong>and</strong>phase synchronization <strong>in</strong> spatially extended ecological systems.Nature, 399, 354–359.Cavalieri, L.F. & Koçak, H. (1995). Intermittent transition betweenorder <strong>and</strong> chaos <strong>in</strong> an <strong>in</strong>sect pest population. J. Theor. Biol., 175,231–234.Clark, J.S., Silman, M., Kern, R., Mackl<strong>in</strong>, E. & HilleRisLambers,J. (1999). Seed dispersal near <strong>and</strong> far: patterns across temperate<strong>and</strong> tropical forests. Ecology, 80, 1475–1494.Doebeli, M. (1994). Intermittent chaos <strong>in</strong> population <strong>dynamics</strong>.J. Theor. Biol., 166, 325–330.Doebeli, M. (1995). <strong>Dispersal</strong> <strong>and</strong> <strong>dynamics</strong>. Theor. Pop. Biol., 47,82–106.Earn, D.J.D. & Rohani, P. (1999). Complex <strong>dynamics</strong> <strong>in</strong> ecology.Trends Ecol. Evol., 14, 43–44.Fraser, D.F., William, J.F., Daley, M.J., Le, A.N. & Skalski, G.(2001). Expla<strong>in</strong><strong>in</strong>g leptokurtic movement distributions:Intrapopulation variation <strong>in</strong> boldness <strong>and</strong> exploration. Am. Nat.,158, 124–135.Gavrilets, S. & Hast<strong>in</strong>gs, A. (1995). Intermittency <strong>and</strong> <strong>transient</strong>chaos from simple frequency-dependent selection. Proc. R. Soc.Lond. B, 261, 233–238.Hassell, M. (1975). Density-dependence <strong>in</strong> s<strong>in</strong>gle-species populations.J. Anim. Ecol., 44, 283–295.Hast<strong>in</strong>gs, A. (1998). Transients <strong>in</strong> spatial ecological models. In:Model<strong>in</strong>g Spatiotemporal Dynamics <strong>in</strong> Ecology (eds Bascompte, J.& Solé, R.). Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>, pp. 189–198.Hast<strong>in</strong>gs, A. (2001). Transient <strong>dynamics</strong> <strong>and</strong> persistence of ecologicalsystems. Ecol. Lett., 4, 215–220.Hast<strong>in</strong>gs, A. & Higg<strong>in</strong>s, K. (1994). Persistence of <strong>transient</strong>s <strong>in</strong>spatially structured ecological models. Science, 263, 1133–1136.Kaneko, K. (1985). Spatiotemporal <strong>in</strong>termittency <strong>in</strong> Coupled MapLattices. Prog. Theor. Phys., 74, 1033–1044.Kaneko, K. (1989). Pattern <strong>dynamics</strong> <strong>in</strong> spatiotemporal chaos.Physica D, 34, 1–41.Kaneko, K. (1990). Super<strong>transient</strong>s, spatiotemporal <strong>in</strong>termittency<strong>and</strong> stability of fully developed spatiotemporal chaos. Phys. Lett.A, 149, 105–112.Kaneko, K. (1998). Diversity, stability <strong>and</strong> meta<strong>dynamics</strong>: remarksfrom coupled map studies. Transients <strong>in</strong> spatial ecologicalmodels. In: Model<strong>in</strong>g Spatiotemporal Dynamics <strong>in</strong> Ecology (eds Bascompte,J. & Solé, R.). Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>, pp. 27–46.Kaneko, K. & Tsuda, I. (2000). Complex Systems: Chaos <strong>and</strong> Beyond.Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.Keymer, J.E., Marquet, P.A., Velasco-Hernández, J.X. & Lev<strong>in</strong>,S.A. (2000). Ext<strong>in</strong>ction thresholds <strong>and</strong> metapopulation persistence<strong>in</strong> dynamic l<strong>and</strong>scapes. Am. Nat., 156, 478–494.Lamb<strong>in</strong>, X., Elston, D.A., Petty, S.J. & MacK<strong>in</strong>non, J.L. (1998).Spatial asynchrony <strong>and</strong> periodic travel<strong>in</strong>g waves <strong>in</strong> cyclicpopulations of field voles. Proc. R. Soc. Lond. B, 265, 1491–1496.Maron, J.L. & Harrison, S. (1997). Spatial pattern formation <strong>in</strong> an<strong>in</strong>sect host-parasitoid system. Science, 278, 1619–1621.Maurer, B.A. (1994). Geographical Population Analysis: Tools for theAnalysis of Biodiversity. Blackwell Scientific Publications, Oxford.Maynard-Smith, J. & Slatk<strong>in</strong>, J. (1973). The stability of predatorpreysystems. Ecology, 54, 384–391.Neubert, M., Kot, M., Lewis, M. et al. (1995). <strong>Dispersal</strong> <strong>and</strong> patternformation <strong>in</strong> a discrete-time predator-prey model. Theor. Popul.Biol., 48, 7–43.Paradis, E., Baillie, S.R., Sutherl<strong>and</strong>, W.J. & Gregory, R.D. (2000).Spatial synchrony <strong>in</strong> populations of birds: effects of habitat,population trend, <strong>and</strong> spatial scale. Ecology, 81, 2112–2125.Qu<strong>in</strong>n, G. & Keough, M.J. (2002). Experimental Design <strong>and</strong> DataAnalysis for Biologists. Cambridge University Press, Cambridge.Rai, V. & Schaffer, W.M. (2001). Chaos <strong>in</strong> ecology. Chaos, SolitonsFractals, 12, 197–203.Ranta, E., Kaitala, V. & Lundberg, P. (1997). The spatial dimension<strong>in</strong> populations fluctuations. Science, 278, 1621–1623.Ruxton, G. & Doebeli, M. (1996). Spatial self-organization <strong>and</strong>persistence of <strong>transient</strong>s <strong>in</strong> a metapopulation model. Proc. R. Soc.Lond. B, 263, 1153–1158.Saravia, L.A., Ruxton, G.M. & Coviella, C.E. (2000). Theimportance of <strong>transient</strong>sÕ <strong>dynamics</strong> <strong>in</strong> spatially extended populations.Proc. R. Soc. Lond. B, 267, 1781–1786.Solé, R. & Bascompte, J. (1998). Emergent phenomena <strong>in</strong> spatiallyextended model ecosystems. In: Model<strong>in</strong>g Spatiotemporal Dynamics<strong>in</strong> Ecology (eds Bascompte, J. & Solé, R.). Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>,pp. 1–26.Ó2003 Blackwell Publish<strong>in</strong>g Ltd/CNRS


204 F. A. Labra, N. A. Lagos <strong>and</strong> P. A. MarquetStrogatz, S.H. (1997). Nonl<strong>in</strong>ear Dynamics <strong>and</strong> Chaos. With Applicationsto Physics, Biology, Chemistry <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g. Addison-WesleyPublish<strong>in</strong>g Co., New York.Tilman, D. & Kareiva, P. (1997). Spatial Ecology: The Role of Space <strong>in</strong>Population Dynamics <strong>and</strong> Interspecific Interactions. Pr<strong>in</strong>ceton UniversityPress, Pr<strong>in</strong>ceton, NJ.Turch<strong>in</strong>, P. (1998). Quantitative Analysis of Movement: Measur<strong>in</strong>g <strong>and</strong>Model<strong>in</strong>g Population Redistribution <strong>in</strong> Plants <strong>and</strong> Animals. S<strong>in</strong>auerAssociates, Sunderl<strong>and</strong>, MA.Williams, D.W. & Liebhold, A.M. (2000). Spatial synchrony ofspruce budworm outbreaks <strong>in</strong> eastern North America. Ecology,81, 2753–2766.Manuscript received 11 September 2002First decision made 22 October 2002Manuscript accepted 11 November 2002Ó2003 Blackwell Publish<strong>in</strong>g Ltd/CNRS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!