10.07.2015 Views

Fire resistance of RHS beam-column - Steel-stainless.org

Fire resistance of RHS beam-column - Steel-stainless.org

Fire resistance of RHS beam-column - Steel-stainless.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Job No. OSM 466 Sheet 1 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006DESIGN EXAMPLE 10 - AXIALLY LOADED COLUMN IN FIREDesign an unprotected rectangular hollow section subject to axial load and bending for30 minutes fire <strong>resistance</strong>.The <strong>column</strong> length is 2,7 m and is subject to axial load from the end reaction <strong>of</strong> a floor<strong>beam</strong> at an eccentricity <strong>of</strong> 90 mm from the narrow face <strong>of</strong> the <strong>column</strong>.yhPoint <strong>of</strong> application<strong>of</strong> loadzbz90 mmySection A - AAAFloor <strong>beam</strong>2,7 mColumnActionsThis eccentricity is taken to be 90 mm + h/2, where h is the depth <strong>of</strong> the section. Thus the<strong>beam</strong> introduces a bending moment about the <strong>column</strong>’s major axis.The unfactored actions are: Permanent action: 6 kNVariable action: 7 kNThe <strong>column</strong> will initially be checked at the ultimate limit state (LC1) and subsequently atthe fire limit state (LC2) for a fire duration <strong>of</strong> 30 minutes. The loadcases are as follows:169


Job No. OSM 466 Sheet 2 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006LC1 (ultimate limit state)∑jγ G, j = 1,35 (unfavourable effects)γ Q,1 = 1,5γ + γ Q,1 QEqn. 2.3k,1G, j G k,LC2 (fire limit state)∑γ + ψjGA, jGk,j 1,1Qk,1γGA= 1,0Values for ψ 1, 1 are given in EN 1990 and NA for EN 1990, but for this exampleconservatively assume ψ 1, 1 = 1,0jSection 2.3.2Design at the Ultimate Limit State (LC1)Loading on the corner <strong>column</strong> due to shear force at end <strong>of</strong> <strong>beam</strong> (LC1):Axial force N Ed = 1,35 × 6 +1,5 × 7 = 18,6 kNTry 100 × 50 × 6 Rectangular Hollow SectionMajor axis bending moment (due to eccentricity <strong>of</strong> shear force from centroid <strong>of</strong> <strong>column</strong>),M y,Ed = 18,6 × (0,09+0,10/2) = 2,60 kNmMaterial propertiesUse material grade 1.44010,2% pro<strong>of</strong> stress = 220 N/mm 2 and f u = 530 N/mm 2 Table 3.1Take f y as the 0,2% pro<strong>of</strong> stress = 220 N/mm 2 Section 3.2.4E = 200 000 N/mm 2 and G = 76 900 N/mm 2 Section 3.2.4Cross-section properties – 100 x 50 x 6 mm <strong>RHS</strong>W el,y = 32,58 × 10 3 mm 3 i y = 32,9 mmW pl,y = 43,75 × 10 3 mm 3 i z = 19,1 mmA g = 1500 mm 2 t = 6 mmClassification <strong>of</strong> the cross-sectionε = 1,01 Table 4.2Assume conservatively that c = h − 2t = 100 − 12 = 88 mm for webWebs subject to compression:For Class 1,ct≤25,7εct=886= 14,7= 25,96 ∴ Web is Class 1Table 4.2170


Job No. OSM 466 Sheet 3 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006By inspection, if the web is Class 1 subject to compression, then the flange will also beClass 1. ∴ Cross-section is Class 1Partial safety factorsThe following partial safety factors are used throughout the design example for LC1: Table 2.1γ M0 = 1,1γ M1 = 1,1Buckling <strong>resistance</strong> to axial compression Section 5.3.3Resistance to flexural buckling about the z-z axis:χ z AgfyEq. 5.2aN b,z,Rd = For Class 1, 2 and 3 cross-sectionsγM 1χ = reduction factor to account for buckling =2ϕ = 0,5( 1 α ( λ − λ ) + λ )λ z =L crλ z =Licrz1π012 2[ ϕ − ]ϕ + λ0,5≤1Eq. 5.3+ Eq. 5.4f yE= buckling length <strong>of</strong> <strong>column</strong>, taken conservatively as 1,0 × <strong>column</strong> length = 2,7 m2700 119,1 π220200000= 1,492Eq. 5.5aFor hollow sections subject to flexural buckling, α = 0,49 and λ 0 = 0,40 Table 5.12( 1,492 )ϕ = ,5 1 0,49( 1,492 − 0,4)χ z =0 + + = 1,8811,881 +12 2[ 1,881 −1,492]0,5≤ 1χ z = 0,33050 ,3305×1500×220N b,z,Rd == 99,15 kN1,1(Resistance to torsional buckling will not be critical for a rectangular hollow section witha h/b ratio <strong>of</strong> 2.)= 18,6 kN Buckling <strong>resistance</strong> <strong>of</strong> cross-section is OKN EdSection 5.3.1171


Job No. OSM 466 Sheet 4 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006Axial compression and bending <strong>resistance</strong>Cross sectional <strong>resistance</strong> interaction check Section 4.7.6N M y,Ed + N Ed eNyMEdz,Ed + N Ed eNzprEN 1993-++≤ 1N c,Rd M c,y,RdM1-3, Clausec,z,Rd6.1.9A g f y 1500 × 220Eq. 4.25N c,Rd = == 300 kNγ1,1M0e Ny = e NZ = 0M z,Ed = 0W pl , yfyM c,y,Rd = =γNNEdc,Rd+MMM 0y,Edc,y,Rd=43,75×101,1∴ Resistance <strong>of</strong> cross-section is OK3 ×220= 8,75 kNm18 ,6 2,60 + = 0,062 + 0,297 = 0,359 < 1,00300 8,75Eq. 4.27Buckling <strong>resistance</strong> interaction check Section 5.5.2N ⎛ M y,Ed + N Ed eNy⎞Ed+ k ⎜⎟y≤( N b,Rd )minW,y pl,y y /⎝ β W f γ M1 ⎠β W,y = 1,0 for Class 1 cross-sectionsk( − 0. )NEdy = 1,0 + 2 λ y 5 butN b,Rd,y1⎛⎜N1.2 ≤ k y ≤ 1,2 + 2⎝NEdb,Rd,yDetermine N b,Rd,y using the same method used to calculate N b,Rd,z given on sheet 3.⎞⎟⎠Eq. 5.40For hollow sections subject to flexural buckling, α = 0,49 and λ 0 = 0,40 Table 5.1λ y =Lifcr y=y1πE2700 132,9 πϕ = ,5 1 0,49( 0,866 − 0,4)χ y =2202000002( 0,866 )= 0,8660 + + = 0,9890,989 +χ y = 0,682 < 1,0N b,Rd,y =122[ 0,989 − 0,866 ]0,50 ,682×1500×220= 204,6 kN1,1≤1172


Job No. OSM 466 Sheet 5 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006k( − 0. )y 1,0 + 2 y 5= λNNEdb,Rd,yk y = 1,0 + 218,6204,6


Job No. OSM 466 Sheet 6 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006Initial steel temperature, θ a = 20°CResultant emissivity, ε res = 0,2Unit mass <strong>of</strong> <strong>stainless</strong> steel, ρ a = 7850 kg/m 3Configuration factor, ϕ = 1,0The specific heat is temperature-dependent and is given by the following expression:c a = 450 + 0,28θ a – 2,91 × 10 -4 2θ a + 1,34 × 10 -7 3θ a J/kgK Eq. 7.4∆t = 2 secondsThe above formulae and initial input information were coded in an Excel spreadsheet andthe following steel temperature, after a fire duration <strong>of</strong> 30 minutes, was obtained.θ a = 811°CReduction <strong>of</strong> mechanical properties at elevated temperatureThe following reduction factors are required for calculation <strong>of</strong> <strong>resistance</strong> at elevatedtemperatures.Young’s modulus retention factor k E, θ = E θ /E0,2% pro<strong>of</strong> strength retention factor k 0,2pro<strong>of</strong>,θ = f 0,2pro<strong>of</strong>,θ /f yUltimate tensile strength retention factor k u,θ = f u,θ /f uThe value <strong>of</strong> the 2% yield strength at elevated temperature is also required for <strong>resistance</strong>calculations. This is given by the following expression:f g f − fEq. 7.1f 2,θ = ( )0,2pro<strong>of</strong>, θ + 2, θ u, θ 0,2pro<strong>of</strong>, θThe values for the retention factors at 811°C are obtained by linear interpolation. Table 7.1k 0,2pro<strong>of</strong>,θ = 0,377k u,θ = 0,322k E, θ = 0,610g 2θ = 0,353Thusf 2,θ = 0,377 × 220 + 0,353 × (0,322 × 530 – 0,377 × 220)= 113,9 N/mm 2k 2,θ = 113,9/220 = 0,518Partial safety factorγ M,fi = 1,0 Section 7.1Buckling <strong>resistance</strong> Section 7.4.3N b,fi,t,Rd = χ z,fi A g k 0,2pro<strong>of</strong>,θ f y / γ M,fi Eq. 7.8174


Job No. OSM 466 Sheet 7 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006χfi =θ12θϕ + ϕ − λ2θ2ϕ θ = 0,5( 1 + ( λ θ − λ 0 ) + λ θ )λ = [ ] z0, 5z,θEq. 7.10but ≤ 1,0α Eq. 7.11λ k k = 1,492 × (0,377/0,610)0,5 = 1,173 Eq. 7.120,2pro<strong>of</strong>, θE, θFor flexural buckling <strong>of</strong> a hollow section, α = 0,49 and λ 0 = 0, 4Table 5.12( 1.173 )ϕ z,θ = ,5 1 0.49( 1.173 − 0.4)χ z,fi =1,377 +0 + + = 1,37711,3772−1,1732= 0,477N b,fi,t,Rd = 0,477 × 1500 × 0,377 × 220/1,0 = 59,3 kNN fi,Ed= 13,0 kN , buckling <strong>resistance</strong> <strong>of</strong> member is OKAxial compression and bending momentThe following expression for a class 1 cross section must be satisfiedχmin,fiIn whichN⎛⎜ A kg⎝fi,Ed0,2pro<strong>of</strong>, θγfyM,fi⎞⎟⎠+kyMMy,fi,Edy,fi, θ,Rd+kzMMz,fi,Edz,fi, θ,Rd≤1Eq. 7.24µ yNfi,EdEq. 7.28k y = 1−≤ 3fyχ y,fiAgk0,2,pro<strong>of</strong>,θγM,fiµ y = (,2− 3) λ θ + 0,44β− 0,29 0, 8β Eq. 7.291 M, y y,M, y ≤λ y = 0,866 Sheet 4λ = y [ k k ] 0, 5y,θλ = 0,866 × (0,377/0,610)0,5 = 0,681 Eq. 7.120,2pro<strong>of</strong>, θE, θAssume the <strong>column</strong> is fixed at the base, a triangular bending moment distribution occursand β M = 1,8µ y = ( 1,2 × 1,8 − 3) × 0,681+0,44×1,8 − 0, 29= −0,0702( 1 + 0,681 )ϕ y,θ = 0,5 0,49( 0,681−0,4)χ y,fi =0,801++ = 0,80110,80122− 0,681= 0,818Table 7.3175


Job No. OSM 466 Sheet 8 <strong>of</strong> 8 Rev BSilwood Park, Ascot, Berks SL5 7QNTelephone: (01344) 623345Fax: (01344) 622944CALCULATION SHEETJob TitleSubjectClientECSCECSC Stainless <strong>Steel</strong> Valorisation ProjectDesign Example 10 – Axially loaded <strong>column</strong> in fireMade by SMH Date Aug 2001Checked by NRB Date Nov 2001Revised by MEB Date April 2006( −0,07)× 13,0 × 10k y = 1− = 1,009 < 3,02200,818×1500×0,377×1,00Interaction expression:χMmin,fiN⎛⎜Agk⎝fi,Ed0,2pro<strong>of</strong>, θγfyM,fi⎞⎟⎠+kyMM3y,fi,Edy,fi, θ,Rd⎛ ⎞⎜γ M0 ⎟⎛ 1,1 ⎞θ M Rd = 0,518×⎜ ⎟× 8,75 4,99 kNm⎝ γ M, fi ⎠⎝1,0⎠y, fi, θ,Rd= k2,=13,0 × 100,477 × 1500×0,377 ×32201,01,009×1,82+4.99= 0,219 + 0,368 = 0,5870,587 < 1,00Thus section is OK in fire conditions for combined axial load and bendingEq. 7.13176

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!