11.07.2015 Views

Download Thesis in Pdf Format - Theoretical Nuclear Physics and ...

Download Thesis in Pdf Format - Theoretical Nuclear Physics and ...

Download Thesis in Pdf Format - Theoretical Nuclear Physics and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FACULTEIT WETENSCHAPPENRegge-plus-resonance approach tostrangeness production from the deuteronPieter VancraeyveldPromotor: Prof. Dr. Jan RyckebuschProefschrift <strong>in</strong>gediend tot het behalen van de academische graad vanDoctor <strong>in</strong> de Wetenschappen: FysicaUniversiteit GentFaculteit WetenschappenVakgroep Fysica en SterrenkundeAcademiejaar 2010-2011


PrefaceOp de kaft staat dat dit proefschrift wordt <strong>in</strong>gediend tot het behalen van de graad van doctor <strong>in</strong> dewetenschappen. Maar zoals Michaelis, de ticket-of-leave apostle, zegt <strong>in</strong> Joseph Conrad’s The SecretAgent: “All idealization makes life poorer. To beautify it is to take away its character of complexity –it is to destroy it.” Dit proefschrift betekent dan ook veel meer dan twee letters en een puntje voormijn naam. Het staat symbool voor vele uren pe<strong>in</strong>zen, wroeten, prutsen en herbeg<strong>in</strong>nen, briljanteideeën die even later doorprikt worden, dagenlang zoeken naar off-by-one errors, maar ook bergenchocola uit Nancy’s kolenschoph<strong>and</strong>en, p<strong>in</strong>g-pongpartijtjes, wetenschappelijke (?!) discussies tijdensde koffiepauze, happy hours, . . . Zonder de hulp, raad en vriendschap van de mensen om mij heenzou dit boekje nu niet voor u liggen.Jan, bedankt om me destijds de kans te geven bij u te mogen thesissen en vervolgens te doctoreren. Uwbegeester<strong>in</strong>g voor fysica en de boeiende gesprekken over vreemdheid, complexiteit en meer wereldsezaken waren een verrijk<strong>in</strong>g. Lesley, jarenlang hebben we samengehokt, de één zwetend, de <strong>and</strong>errillend, samen gevloekt op strangecalc, samen gejuicht bij grote en m<strong>in</strong>der grote successen. Het wasmij een waar genoegen. Nu lua de top-20 van meest gebruikte programmeertalen is b<strong>in</strong>nengedrongen,heb ik niets meer te zeggen behalve merci! Tamara, dankzij jou heb ik een vliegende start kunnenmaken. In dat eerste jaar, terwijl je zelf je thesis aan het schrijven was, heb je je ontelbare kerenmoeten omdraaien, omdat dat koorknaapje weer met een prangende vraag zat. Sorry voor het storenen bedankt voor je geduld. Tim, motard en orakel van het INW, bedankt voor jouw cynische blik,stevige schouderklopjes en antwoorden op alles. In mijn hart blijf je voor altijd de key to happ<strong>in</strong>ess.Dave, thank you for the <strong>in</strong>sightful discussions <strong>and</strong> (perhaps unknow<strong>in</strong>gly) help<strong>in</strong>g us revamp ourcode; your <strong>in</strong>itial wrapper of strangecalc paved the way. I wish to thank Prof. Wally Van Orden<strong>and</strong> Prof. Franz Gross for shar<strong>in</strong>g their relativistic deuteron wave functions. I am <strong>in</strong>debted to Prof.Johann Haidenbauer who provided the Jülich-model hyperon-nucleon partial-wave amplitudes thatare a crucial <strong>in</strong>put to this work. Sergey, many thanks for the nice collaboration <strong>and</strong> giv<strong>in</strong>g methe opportunity to explore kaon capture. Model calculations are so much more mean<strong>in</strong>gful whenthey can be confronted with experimental data. In this regard, I wish to express my gratitude toProf. Hashimoto, Prof. Maeda, Prof. K<strong>and</strong>a <strong>and</strong> Dr. Futatsukawa, who were so k<strong>in</strong>d to share theirprelim<strong>in</strong>ary results, <strong>and</strong> thus effectively quadruple the amount of data <strong>in</strong> the f<strong>in</strong>al chapter of thiswork.Without the f<strong>in</strong>ancial support of the Research Foundation – Fl<strong>and</strong>ers (FWO), this work could nothave been carried out. A substantial portion of the calculations presented <strong>in</strong> Chapter 6 were carriedout us<strong>in</strong>g the Stev<strong>in</strong> Supercomputer Infrastructure at Ghent University, which is funded by Ghentv


viPrefaceUniversity, the Hercules Foundation <strong>and</strong> the Flemish Government – department EWI. I wish toacknowledge the excellent technical support from the ICT Department of Ghent University.Het INW, idyllisch gelegen tussen verbr<strong>and</strong><strong>in</strong>gscentrale, spoorwegberm en autosnelweg, is een uniekewerkplek. Zonder zijn bewoners had de productiveit bij momenten misschien iets hoger gelegen,maar zou doctoreren toch nooit hetzelfde geweest zijn. Allereerst een woord van dank voor zij dietechnische ondersteun<strong>in</strong>g boden: Rol<strong>and</strong> om mijn twee l<strong>in</strong>kerh<strong>and</strong>en bij te staan wanneer mijn stalenros het liet afweten, Daniella en L<strong>in</strong>da voor het opkuisen van mijn occasioneel geknoei <strong>in</strong> SAP, Rudyvoor drukwerk allerh<strong>and</strong>e, Bart om te hulp te snellen wanneer virtuele (en <strong>and</strong>ere) servers het weerlieten afweten. Klaas, bedankt dat ik je geduld zo vaak op de proef mocht stellen. Arne, Klaas,Lesley en S<strong>and</strong>er, bedankt voor de vele discussies over git versus svn, OO versus procedural, luaversus de wereld, . . . Arne, Karim, Ola en Tom, sorry voor de ontelbare keren dat ik jullie bureaub<strong>in</strong>nenstormde om mijn caffeïneniveau opnieuw op peil te brengen en bedankt om altijd klaar testaan met een verkwikkende babbel. Iedereen die zich samen met mij gewaagd heeft aan de hautecuis<strong>in</strong>e van het UZ, bedankt. Alle afvalligen die veilig boterhammetjes aten, en mij sporadisch lietenaanschuiven aan hun tafel, ook bedankt. Bart, Bright, Christophe, Freija, Lesley, Marc, Matthias,Piet, Simon, Tim, Tom, Ward en Wim, thanks for keep<strong>in</strong>g it ma<strong>in</strong>stream.De vrienden uit de ‘echte’ wereld stonden altijd klaar om het fysicagebeuren <strong>in</strong> perspectief te plaatsen.Bedankt daarvoor en uiteraard ook voor de, via jullie belast<strong>in</strong>gsformulier, <strong>in</strong>direct geleverde bijdragen.“Ohne Musik wäre das Leben e<strong>in</strong> Irrtum”, aldus Nietzsche. Gelukkig waren Broccoli en The JealousGays daar om dat te onderschrijven. Mama, papa, vanuit de grond van mijn hart bedankt vooralle steun, logistiek en <strong>and</strong>ers. Meestal laat ik het niet genoeg blijken, maar ik ben jullie one<strong>in</strong>digdankbaar om me altijd de kans te geven om mijn d<strong>in</strong>g te doen. Sylvie, al die jaren ben je er altijdgeweest voor mij, soms dichtbij, te vaak veraf. Bedankt om alles kleur te geven.


viiiContents5.1 K<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625.1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625.1.2 Independent variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.2 Transition amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.2.1 Electroproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.2.2 Lorentz transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.2.3 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3 Photoproduction observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3.1 Differential cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3.2 Polarisation observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.4 Electroproduction observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.5 Deuteron wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.5.1 Covariant Dnp-vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.5.2 Non-relativistic wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . 795.5.3 Relativistic wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.6 Relativistic impulse approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.6.1 Different contributions to the relativistic impulse approximation . . . . . . . 835.6.2 Relativistic plane-wave impulse approximation . . . . . . . . . . . . . . . . . 845.6.3 Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teraction . . . . . . . . . . . . . . . . . . . . . . 866 Results for kaon production from the deuteron 916.1 Relativistic plane-wave impulse approximation . . . . . . . . . . . . . . . . . . . . . 926.1.1 Non-relativistic spectator-nucleon approximation . . . . . . . . . . . . . . . . 926.1.2 Off-shell extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.1.3 Wave-function sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966.1.4 Helicity-amplitude dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 976.2 Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractions . . . . . . . . . . . . . . . . . . . . . . . . . 976.3 Photoproduction data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.4 Electroproduction data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117 Conclusions <strong>and</strong> outlook 113A Notations <strong>and</strong> conventions 117A.1 Four-vectors <strong>and</strong> tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117A.2 Rotations <strong>and</strong> Lorentz transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 118A.3 Pauli <strong>and</strong> Dirac matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120A.4 Dirac sp<strong>in</strong>ors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121B Biquaternions 123B.1 Def<strong>in</strong>ition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124B.2 Representation of the Lorentz group . . . . . . . . . . . . . . . . . . . . . . . . . . . 124C Helicity sp<strong>in</strong>ors 127C.1 Def<strong>in</strong>ition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127C.2 Lorentz transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128D Feynman rules 131D.1 Cross sections <strong>and</strong> decay rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131D.2 Transition amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132D.3 Effective fields <strong>and</strong> <strong>in</strong>teractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132D.3.1 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133


ContentsixD.3.2 Effective Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133D.3.3 N(γ, K)Y transition amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . 134E Lorentz-<strong>in</strong>variant cross sections 137E.1 Dalitz cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138E.2 Chew-Low cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139F Density matrix 141F.1 Def<strong>in</strong>ition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141F.2 Sp<strong>in</strong>-1/2 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142F.3 Sp<strong>in</strong>-1 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142F.4 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145G Parametrisations of the deuteron wave function 147G.1 Non-relativistic wave-function parametrisation . . . . . . . . . . . . . . . . . . . . . 147G.2 Relativistic wave-function parametrisation I . . . . . . . . . . . . . . . . . . . . . . . 149G.3 Relativistic wave-function parametrisation II . . . . . . . . . . . . . . . . . . . . . . 149H Connect<strong>in</strong>g (non-)relativistic wave functions with the covariant Dnp-vertex 153I Parameters of the Regge-plus-resonance model 157J Experimental data 161K Hyperon-nucleon <strong>in</strong>teraction 165K.1 K<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165K.2 Transition amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166K.3 Off-shell scatter<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167K.4 Jülich model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Samenvatt<strong>in</strong>g 171List of publications 181Bibliography 183Nomenclature 199


xContents


CHAPTER 1IntroductionConventional wisdom states that one should use the right tool for the right job. This statementis extremely relevant <strong>in</strong> physics. The first <strong>and</strong> most important step towards underst<strong>and</strong><strong>in</strong>g anyphenomenon boils down to identify<strong>in</strong>g the relevant degrees of freedom.The physics of hadrons confronts us with a prodigious diversity of processes <strong>and</strong> one cannot readilyidentify the appropriate <strong>in</strong>gredients to address them <strong>in</strong> a s<strong>in</strong>gle, unified picture. At the low-energyend of the spectrum resides the deuteron, a proton-neutron pair, bound by only a fraction of its restmass. At the other end, one encounters the rich phenomena occurr<strong>in</strong>g <strong>in</strong> the depths of space whichwe pa<strong>in</strong>stak<strong>in</strong>gly try to reproduce <strong>in</strong> particle accelerators. Underly<strong>in</strong>g all this is the theory of thestrong force, quantum chromodynamics (QCD), <strong>and</strong> its elementary fields, quarks <strong>and</strong> gluons.The strong <strong>in</strong>teraction challenges our mathematical toolbox <strong>and</strong> defies our <strong>in</strong>tuition. Contrary tothe other fundamental forces <strong>in</strong> nature, it is asymptotically weak as <strong>in</strong>teract<strong>in</strong>g particles approacheach other. When they move apart, <strong>in</strong>ter-particle energy grows, thus forc<strong>in</strong>g them to be conf<strong>in</strong>ed<strong>in</strong>to colourless objects. The quick variation, or runn<strong>in</strong>g, of the strong coupl<strong>in</strong>g constant with thelength <strong>and</strong> time scale, calls for ever-chang<strong>in</strong>g degrees of freedom.The nucleon is the prevail<strong>in</strong>g manifestation of quark conf<strong>in</strong>ement. Through deep-<strong>in</strong>elastic scatter<strong>in</strong>g,many details about its <strong>in</strong>tricate structure have been uncovered. Structure functions, parton distributionfunctions, <strong>and</strong> form factors reveal that gluons carry up to half of the nucleon’s momentum <strong>and</strong>that strange quarks <strong>in</strong> the sea make a significant contribution to the total sp<strong>in</strong>. Yet, on average,this complex system can be <strong>in</strong>terpreted as a bound state of three valence quarks. Constituent-quarkmodels (CQM) encapsulate this perspective <strong>and</strong> their success <strong>in</strong> describ<strong>in</strong>g hadron spectra, magneticmoments <strong>and</strong> electromagnetic form factors is uncontested. Nevertheless, one needs to ask where theboundaries of this mean-field description lie <strong>and</strong> how they emerge from partonic degrees of freedom.1


2 Chapter 1. IntroductionNucleon spectroscopyMapp<strong>in</strong>g out the baryonic spectrum rema<strong>in</strong>s a paramount issue <strong>in</strong> hadron physics. The masses,widths, <strong>and</strong> transition form factors of the nucleon’s excited states are <strong>in</strong>valuable tests of models aimedat underst<strong>and</strong><strong>in</strong>g the <strong>in</strong>ternal structure of baryons. The experimental knowledge on excited nucleonstates is gathered bi-yearly by the Particle Data Group <strong>in</strong> the Review of Particle <strong>Physics</strong> (RPP) [1].Their major source of <strong>in</strong>formation stems from partial-wave analyses (PWA) of πN scatter<strong>in</strong>g data. Inparticular, the PWA performed by the Karlsruhe – Hels<strong>in</strong>ki [2], Carnegie-Mellon – Berkeley [3] <strong>and</strong>George-Wash<strong>in</strong>gton – Virg<strong>in</strong>ia-Polytechnic-Institute (SAID) [4] groups. Resonances are identified byexam<strong>in</strong><strong>in</strong>g the fitted amplitudes for poles <strong>in</strong> the complex energy plane. Alternatively, the amplitudesserve as <strong>in</strong>put to coupled-channels (CC) PWA [5–10]. Besides the fitted elastic πN amplitudes,these analyses <strong>in</strong>clude data on <strong>in</strong>elastic channels <strong>and</strong>, <strong>in</strong> some cases, photon-<strong>in</strong>duced processes toconstra<strong>in</strong> their results. Despite partial-wave solutions of comparable goodness of fit, one often obta<strong>in</strong>sconflict<strong>in</strong>g <strong>in</strong>formation on the resonant content. Beyond the first few established nucleon excitations,many states are debated <strong>and</strong> the overall view on the resonance spectrum rema<strong>in</strong>s unclear [11].A similar observation can be made when the experimental picture is confronted with nucleon spectrapredicted by CQMs. The description of low-ly<strong>in</strong>g states is adequate. Yet, beyond the 1800-MeVmass range, an excessively dense spectrum is predicted. It is said that a number of resonances are“miss<strong>in</strong>g”. This might be an <strong>in</strong>dication of the fact that the effective degrees of freedom should bere-exam<strong>in</strong>ed, s<strong>in</strong>ce alternative nucleon-structure models, such as quark-diquark models [12], envisionfar fewer resonant states. On the other h<strong>and</strong>, the miss<strong>in</strong>g-resonance conundrum could be a directconsequence of the unbalanced contribution of πN data to PWA.Strangeness productionElectromagnetic (EM) kaon production plays a key role <strong>in</strong> the ongo<strong>in</strong>g theoretical <strong>and</strong> experimentalefforts to explore the dynamics of QCD <strong>in</strong> the conf<strong>in</strong>ement regime. S<strong>in</strong>ce the production mechanism<strong>in</strong>evitably <strong>in</strong>volves quark-antiquark components of the nucleon’s sea, the reaction has the potentialto probe unexplored aspects of the nucleon’s structure. Hence, the presence of open strangeness<strong>in</strong> the f<strong>in</strong>al state holds out the prospect of f<strong>in</strong>d<strong>in</strong>g some elusive resonant states. Several quarkmodelresults <strong>in</strong>dicate that a number of unobserved resonances couple weakly to the πN f<strong>in</strong>al state,but have considerable branch<strong>in</strong>g fractions to alternative reaction channels, <strong>in</strong>clud<strong>in</strong>g those withstrangeness [13–15].The earliest work on EM strangeness production can be dated back to the sixties of the previouscentury [16–18]. These studies were held back by the limited accuracy of the data available atthat time. It was not until the advent of high-duty-cycle, high-<strong>in</strong>tensity electron acceleratorsthat the theoretical <strong>in</strong>terest <strong>in</strong> kaon production was rek<strong>in</strong>dled. Adelseck et al. constructed a kaonphotoproductionoperator us<strong>in</strong>g a diagrammatic technique based on purely hadronic degrees offreedom [19]. This approach is known as the isobar model <strong>and</strong> has been applied to the analysisof kaon production <strong>in</strong> numerous studies [19–30]. In a different approach, quark models have beenused directly to describe the reaction dynamics [31–37]. Focus<strong>in</strong>g on a correct high-energy limitfor the kaon-production operator, a number of studies <strong>in</strong>spired by Regge phenomenology havebeen published [38–42]. In recent years, several groups have undertaken the task of <strong>in</strong>corporat<strong>in</strong>gstrangeness production <strong>in</strong> CC formalisms [5, 10, 43–48]. Motivated by the prospect of a complete


Chapter 1. Introduction 3σ (µb)γp totala)γp totalb)10 2 pπ 010110 -1pηpη’c)γp totalΛK + Σ 0 K +Σ + K 0d)γp total10 2 0 1 2101pπ + π − pπ + π − π 0pπ 0 π 0 pηπ 0pρpω10 -1pφΛK *0 1 2E γ[GeV]E γ[GeV]Figure 1.1 – Total photo-absorption cross section <strong>and</strong> exclusive cross sections for s<strong>in</strong>gle- <strong>and</strong> multi-mesonproduction. Figure taken from Ref. [11].kaon-production experiment, some exploratory multipole analyses have been carried out [49–51]. Atpresent, however, one is not yet able to extract a unique multipole solution from the data.Lead<strong>in</strong>g experimental facilities 1 at ELSA (Bonn University, Germany), ESFR (Grenoble, France),Jefferson Lab (Newport News, Virg<strong>in</strong>ia), MAMI (Ma<strong>in</strong>z, Germany) <strong>and</strong> SPr<strong>in</strong>g-8 (Osaka, Japan)have bestowed us with a large database of cross sections <strong>and</strong> polarisation observables, predom<strong>in</strong>antlyfor the p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 reaction channels. The self-analys<strong>in</strong>g weak decay of hyperonsis an enormous asset, s<strong>in</strong>ce it facilitates the determ<strong>in</strong>ation of the recoil<strong>in</strong>g particle’s polarisation.Hence, a wide range of s<strong>in</strong>gle- <strong>and</strong> double-polarisation observables can be accessed <strong>in</strong> comb<strong>in</strong>ationwith a polarised beam or target. This paves the way for the determ<strong>in</strong>ation of a “complete” set ofobservables. Along with the unpolarised differential cross section, this requires the measurementof seven carefully chosen s<strong>in</strong>gle- <strong>and</strong> double-polarisation observables [51, 53, 54]. Ideally, this leadsto an unambiguous determ<strong>in</strong>ation of the reaction amplitude <strong>and</strong>, as such, str<strong>in</strong>gent constra<strong>in</strong>ts ondynamical models.Build<strong>in</strong>g models for kaon productionConsider the total photo-absorption cross section on the proton given <strong>in</strong> Figure 1.1. At low energies,where s<strong>in</strong>gle-pion production dom<strong>in</strong>ates, one can clearly discern peaks, which are unambiguousmanifestations of the formation of nucleon resonances. Here, a description <strong>in</strong> terms of hadronicdegrees of freedom is appropriate. S<strong>in</strong>ce mesons, baryons <strong>and</strong> their excited states cannot be describedwith<strong>in</strong> a fundamental theory, one takes recourse to a field-theoretical framework adopt<strong>in</strong>g effective1 for a review see Refs. [11, 52].


4 Chapter 1. IntroductionFigure 1.2 – Tree-level contributions to the N(γ (∗) , K)Y amplitude. The ∆ ∗ -exchange term is forbiddenfor Λ production. The diagram <strong>in</strong> the bottom-left corner is resonant. The others are considered backgroundcontributions.<strong>in</strong>teraction Lagrangians that reflect essential symmetry properties <strong>and</strong> conservation laws of theunderly<strong>in</strong>g fundamental <strong>in</strong>teraction. The f<strong>in</strong>ite spatial extension of the hadrons is <strong>in</strong>corporatedus<strong>in</strong>g phenomenological form factors. Care has to be taken, because this procedure breaks the vitalproperty of gauge <strong>in</strong>variance [55].In the so-called isobar approach, the reaction dynamics are restricted to tree-level amplitudes,consist<strong>in</strong>g of two <strong>in</strong>teraction vertices <strong>and</strong> one propagator. The considered diagrams are presented <strong>in</strong>Figure 1.2 <strong>and</strong> can be classified accord<strong>in</strong>g to several aspects. Consider<strong>in</strong>g the diagrams <strong>in</strong> Figure 1.2per column, we dist<strong>in</strong>guish between the exchange of a non-strange baryon (N, N ∗ , ∆ ∗ ), a kaon (K)or a hyperon (Y , Y ∗ ), labelled s-, t- <strong>and</strong> u-channel respectively. The contributions <strong>in</strong> the top row areknown as Born terms <strong>and</strong> <strong>in</strong>volve the exchange of a ground-state hadron (p, n, K, Λ, Σ). F<strong>in</strong>ally, adiagram can be either resonant or non-resonant. In EM kaon production, the k<strong>in</strong>ematical conditionsare such that the <strong>in</strong>termediary particle <strong>in</strong> the N ∗ - <strong>and</strong> ∆ ∗ -exchange amplitudes can be on mass shell.Consequently, the propagator goes through a pole <strong>and</strong> produces resonant structures <strong>in</strong> the observables.In the rema<strong>in</strong><strong>in</strong>g diagrams of Figure 1.2, on the other h<strong>and</strong>, the exchanged particles cannot reachtheir resonant pole. As our <strong>in</strong>terest <strong>in</strong> strangeness production is generated by the discovery potentialfor miss<strong>in</strong>g resonances, the contributions of the non-resonant diagrams are considered a background.Contrary to fundamental field theories, effective Lagrangians represent parametrisations of the mesonbaryon<strong>in</strong>teraction <strong>in</strong> terms of unknown coupl<strong>in</strong>g constants. A phenomenological analysis <strong>in</strong> the isobarapproach faces the challenge of determ<strong>in</strong><strong>in</strong>g the resonant content of a reaction while simultaneouslyfix<strong>in</strong>g the unknown effective coupl<strong>in</strong>g strengths. This dual situation of model selection <strong>and</strong> modeloptimisation can be addressed via a Bayesian approach [56] at a substantial computational cost. Inany case, because the parameters of the resonant <strong>and</strong> background contributions are simultaneouslyfitted to the data, they are <strong>in</strong>evitably strongly correlated.The isobar framework has met with considerable success <strong>and</strong> has dom<strong>in</strong>ated the analysis of EM


Chapter 1. Introduction 5meson-production processes <strong>in</strong> the resonance region. Its application to strangeness-productionreactions should be regarded with caution. As seen <strong>in</strong> Figure 1.1, the total cross section lacksclear resonant structures, imply<strong>in</strong>g that resonant contributions do not dom<strong>in</strong>ate. For this reason,background diagrams make up a crucial element of the reaction dynamics. In the isobar approach,these non-resonant terms diverge as energy <strong>in</strong>creases [57]. Over the years, several mechanisms toremedy this unrealistic behaviour have been proposed. The extracted resonance coupl<strong>in</strong>gs, however,heavily depend on the background model [27, 58].The tree-level diagrams of Figure 1.2, considered <strong>in</strong> the isobar model, <strong>in</strong>fer a perturbation serieswhich is truncated at lowest order. In practise, the effective coupl<strong>in</strong>g constants at the <strong>in</strong>teractionvertices are by no means small, imply<strong>in</strong>g rescatter<strong>in</strong>g effects need to be taken <strong>in</strong>to account. Numerousanalyses of kaon production have been performed <strong>in</strong> different CC frameworks. Nevertheless, we wishto stress the cont<strong>in</strong>ued relevance of s<strong>in</strong>gle-channel descriptions.An attractive quality of the CC approach is its natural fulfilment of unitarity. For this to hold true,however, all possible meson-baryon channels have to be considered. In view of the dom<strong>in</strong>ance of twopion-productionchannels <strong>in</strong> the photo-absorption process as seen <strong>in</strong> Figure 1.1, troublesome channelssuch as ππN, with the <strong>in</strong>herent three-body cut, cannot be circumvented. S<strong>in</strong>ce CC models <strong>in</strong>volvenumerous reaction channels, the number of free parameters that need to be fitted is substantiallylarger than <strong>in</strong> s<strong>in</strong>gle-channel approaches. Therefore, the task of optimis<strong>in</strong>g the model is far frombe<strong>in</strong>g trivial. In addition, compar<strong>in</strong>g the different γp → X reactions <strong>in</strong> Figure 1.1, one immediatelyobserves that the kaon-production channel is several orders of magnitude smaller than the dom<strong>in</strong>antπN, ππN, <strong>and</strong> ρN f<strong>in</strong>al states. Due to the reduced size <strong>and</strong> quality of the strangeness-productiondatabase <strong>in</strong> comparison to these channels, constra<strong>in</strong><strong>in</strong>g the model parameters to the kaon-productionresults is complicated.Because CC models still require tree-level amplitudes as <strong>in</strong>put, many conceptual ambiguities relatedto the isobar approach rema<strong>in</strong> relevant. Issues, such as the restoration of gauge <strong>in</strong>variance [55, 59, 60],cont<strong>in</strong>ue to be pert<strong>in</strong>ent [10] <strong>and</strong> can be more easily addressed at the level of a s<strong>in</strong>gle-channel reactionmodel.The Regge model <strong>and</strong> beyondDespite the publication of a large body of high-quality p(γ (∗) , K)Y data <strong>in</strong> recent years, phenomenologicalanalyses have not led to an unequivocal outcome. Disentangl<strong>in</strong>g the relevant resonantcontributions is challeng<strong>in</strong>g, because of the large number of compet<strong>in</strong>g resonances above the kaonproduction threshold. Moreover, the smooth energy dependence of the measured observables h<strong>in</strong>tsat a dom<strong>in</strong>ant role for the background, i.e. non-resonant, processes. Hence, the treatment of thebackground is pivotal for any model.At sufficiently high energies, the isobar description is no longer optimal. Whereas empirical <strong>in</strong>formation<strong>in</strong>dicates a smooth fall off for the cross section as one moves away from threshold, hadrodynamicalmodels reveal a pathological rise. It comes as no surprise that the use of hadronic degrees of freedomcannot be justified above centre-of-mass energies of a few GeV, which corresponds to length scalesbelow 0.1 fm. In this energy region, the kaon-production amplitude can be elegantly describedwith<strong>in</strong> the Regge framework, characterised by the exchange of whole families of particles, <strong>in</strong>stead of<strong>in</strong>dividual hadrons [38]. The Regge formalism boasts a number of attractive properties. Its amplitude


6 Chapter 1. Introductionnaturally fulfils analyticity, cross<strong>in</strong>g symmetry <strong>and</strong> unitarity. In addition, only a limited number offree parameters are required. The applicability of the Regge formalism is obviously not limited tokaon production. Successful Regge-based models have been considered for the EM production ofpions [38, 61, 62], η mesons [63, 64], K ∗ mesons [65] <strong>and</strong> Λ(1520) hyperons [66].Interest<strong>in</strong>gly, the Regge model, a high-energy theory by construction, allows to describe the grossfeatures of the data <strong>in</strong> the resonance region [39, 40, 67]. Extrapolat<strong>in</strong>g the Regge model to <strong>in</strong>termediateenergies results <strong>in</strong> a reliable account of the kaon-production background. Additional support for thevalidity of the Regge approach <strong>in</strong> the resonance region was furnished <strong>in</strong> a recent study, where scal<strong>in</strong>gcompatible with Regge-trajectory exchange was clearly observed [68]. Near threshold, however, theenergy dependence of the measured observables exhibits structures which h<strong>in</strong>t at the presence ofresonances <strong>and</strong> cannot be reproduced by a pure background model.In Refs. [41, 42], a phenomenological mix<strong>in</strong>g of the isobar <strong>and</strong> Regge descriptions is proposed. In theresonance region a traditional hadrodynamical model is constructed <strong>and</strong> as energy rises the isobaramplitude makes a smooth transition to the Regge model. In a different approach [39, 40, 69], theRegge amplitude is constra<strong>in</strong>ed by the available data at high energies <strong>and</strong> subsequently enrichedwith a carefully chosen selection of resonance-exchange diagrams. This gives way to a hybrid modelthat <strong>in</strong>corporates resonant features ak<strong>in</strong> with the isobar approach <strong>and</strong> simultaneously ma<strong>in</strong>ta<strong>in</strong>s thecorrect high-energy limit. The result<strong>in</strong>g formalism was co<strong>in</strong>ed Regge-plus-resonance (RPR) <strong>and</strong> isschematically illustrated <strong>in</strong> Figure 1.3.The major virtue of the RPR formalism lies <strong>in</strong> the economical parametrisation of the non-resonantpart of the reaction amplitude. The isobar model requires the exchange of vector mesons <strong>in</strong> thet-channel, hyperon resonances <strong>in</strong> the u-channel <strong>in</strong> addition to the three Born diagrams to deal withthe em<strong>in</strong>ent background of kaon production. The Regge model, by contrast, manages an effectivedescription us<strong>in</strong>g two t-channel exchange diagrams <strong>and</strong> a mere three coupl<strong>in</strong>g constants. Moreover,these free parameters can be fixed at high energies, thus effectively decoupl<strong>in</strong>g the evaluation of thebackground <strong>and</strong> resonant contributions to the reaction dynamics.The deuteron as effective neutron targetThus far, the lion’s share of research efforts has been directed towards reactions off proton targets. Thecurrent EM kaon-production database is heavily dom<strong>in</strong>ated by the p(γ (∗) , K + )Λ <strong>and</strong> p(γ (∗) , K + )Σ 0channels. A comprehensive survey of the four rema<strong>in</strong><strong>in</strong>g reactions, namely n(γ, K 0 )Λ, p(γ, K 0 )Σ + ,n(γ, K 0 )Σ 0 <strong>and</strong> n(γ, K + )Σ − , would provide useful complementary <strong>in</strong>formation to elucidate thestrangeness-production reaction mechanism. In the absence of a free neutron target, a trustworthydescription of kaon production from the deuteron is of chief importance, for the deuteron’s weakb<strong>in</strong>d<strong>in</strong>g energy makes it a prime c<strong>and</strong>idate as effective neutron target.Our underst<strong>and</strong><strong>in</strong>g of the nucleon-nucleon <strong>in</strong>teraction is on solid ground [70] <strong>and</strong> the description ofthe EM <strong>in</strong>teraction with deuterons <strong>in</strong> elastic electron scatter<strong>in</strong>g <strong>and</strong> breakup reactions is reliable [71].Deuterium is often used as an effective neutron target. Deuteron electrodis<strong>in</strong>tegration with eitherpolarised targets, beams or ejectiles has allowed for the extraction of the neutron’s electric <strong>and</strong>magnetic form factors, while <strong>in</strong> deep-<strong>in</strong>elastic scatter<strong>in</strong>g the neutron’s structure functions havebeen determ<strong>in</strong>ed. In all these cases, corrections due to the deuteron structure <strong>and</strong> to the reactionmechanism were shown to be either negligible, or calculable [72].


Chapter 1. Introduction 7+ +Figure 1.3 – Illustration of the RPR approach to EM strangeness production from the nucleon. Athigh energy, the structureless cross section is described via the exchange of K(494) <strong>and</strong> K ∗ (892) Reggetrajectories<strong>in</strong> the t-channel. This amplitude serves as an effective parametrisation of the non-resonantpart of the reaction dynamics <strong>in</strong> the resonance region. An improved description of the data is realised byadd<strong>in</strong>g nucleon-resonance exchange <strong>in</strong> the s-channel. Figure adapted from Ref. [69].The dom<strong>in</strong>ant contribution to kaon photoproduction off deuterium is expected to come from the quasielasticprocess. The <strong>in</strong>cident photon <strong>in</strong>teracts with a s<strong>in</strong>gle nucleon <strong>in</strong>side the deuteron produc<strong>in</strong>gthe strange meson <strong>and</strong> baryon. All f<strong>in</strong>al-state particles subsequently leave the region of <strong>in</strong>teractionunperturbed as plane waves. As such, the kaon-production operator on a quasi-free neutron canreadily be extracted. The <strong>in</strong>fluence of medium effects, however, significantly complicates this picture.The photoproduced hyperon <strong>and</strong> the spectator nucleon <strong>in</strong> the f<strong>in</strong>al state can undergo elastic <strong>and</strong><strong>in</strong>elastic rescatter<strong>in</strong>gs before reach<strong>in</strong>g the detector systems. This f<strong>in</strong>al-state <strong>in</strong>teraction (FSI) can beconsidered a curse <strong>in</strong> case one wishes to exam<strong>in</strong>e elementary strangeness production. Yet, it alsopresents unique opportunities.A wealth of <strong>in</strong>formation is available with regard to the <strong>in</strong>teraction between nucleons. Yet, as Adelseck<strong>and</strong> Wright [73] elegantly put it, ‘In order to obta<strong>in</strong> a comprehensive underst<strong>and</strong><strong>in</strong>g of the strong<strong>in</strong>teraction, it is essential that any theory reflect the underly<strong>in</strong>g symmetry which is unveiled <strong>in</strong> themultiplet structure of the particles. Thus, it is <strong>in</strong>dispensable to go beyond the nucleon-nucleonsector <strong>and</strong> <strong>in</strong>corporate <strong>and</strong> utilise aspects furnished by other members of the baryon multiplet,among them the Λ <strong>and</strong> Σ hyperon.’. The hyperon-nucleon (Y N) <strong>in</strong>teraction is currently only poorlyconstra<strong>in</strong>ed by experimental data. Direct measurements are held back by the challenges of build<strong>in</strong>g<strong>and</strong> operat<strong>in</strong>g a stable hyperon beam. A different possibility to study the Y N <strong>in</strong>teraction is offeredby simultaneous production <strong>and</strong> scatter<strong>in</strong>g <strong>in</strong> the same target [74]. Hypernuclear spectroscopy is anactive field <strong>and</strong> puts str<strong>in</strong>gent constra<strong>in</strong>ts on our knowledge of the ΛN <strong>and</strong> ΣN potentials [74–76].Exploit<strong>in</strong>g hyperon-nucleon FSI <strong>in</strong> the kaon-production reaction gives access to an even largerdynamical range of the Y N <strong>in</strong>teraction. By focus<strong>in</strong>g on k<strong>in</strong>ematic regions where one expectsimportant contributions from hyperons rescatter<strong>in</strong>g off the spectator nucleon, one can ga<strong>in</strong> access tothe elusive hyperon-nucleon <strong>in</strong>teraction.


8 Chapter 1. IntroductionRenard <strong>and</strong> Renard were among the pioneers to study kaon production on the nucleon <strong>and</strong> alsoled the way <strong>in</strong> strangeness reactions from the deuteron [77, 78]. In their work, they employeda simple parametrisation of the Y N <strong>in</strong>teraction. Modern hyperon-nucleon potentials based onone-boson exchange were used <strong>in</strong> Refs. [73, 79, 80]. Yamamura et al. were the first to revisit thereaction adopt<strong>in</strong>g a modern elementary kaon-production operator optimised aga<strong>in</strong>st high-qualitydata [81]. Includ<strong>in</strong>g the effect of hyperon-nucleon FSI with the Nijmegen Y N potential, the <strong>in</strong>clusive<strong>and</strong> exclusive charged-kaon-production cross sections were studied. At a later time, polarisationobservables <strong>in</strong> exclusive kaon photoproduction were <strong>in</strong>vestigated [82]. The approach was extended <strong>in</strong>Refs. [83, 84] to <strong>in</strong>clude two-step production <strong>and</strong> kaon-nucleon rescatter<strong>in</strong>g. Adopt<strong>in</strong>g this model,neutral-kaon photoproduction has been studied. Refs. [85, 86] have focused on the extraction of theelementary amplitude. A different study on the <strong>in</strong>fluence of Y N rescatter<strong>in</strong>g us<strong>in</strong>g the P -matrixapproach was presented <strong>in</strong> Ref. [87]. Maxwell considered a host of rescatter<strong>in</strong>g diagrams where a π,η or K meson is exchanged between the active nucleon, which absorbs the <strong>in</strong>com<strong>in</strong>g photon, <strong>and</strong> thespectator nucleon [28, 88]. In Refs. [89, 90], kaon photoproduction from deuteron is <strong>in</strong>vestigated us<strong>in</strong>ga variety of isobar models <strong>in</strong> the non-relativistic plane-wave impulse approximation, demonstrat<strong>in</strong>gthe importance of a reliable elementary-production operator. Gasparyan et al. studied the possibilityto extract the low-energy Λn scatter<strong>in</strong>g parameters [91]. They <strong>in</strong>vestigated specific polarisationobservables <strong>and</strong> k<strong>in</strong>ematics needed to isolate the s<strong>in</strong>glet <strong>and</strong> triplet states of Λn scatter<strong>in</strong>g. Likewise,Laget identifies well-def<strong>in</strong>ed regions <strong>in</strong> phase space where KN <strong>and</strong> Y N rescatter<strong>in</strong>g dom<strong>in</strong>ate whilethe elementary amplitude is on shell <strong>and</strong> the momentum of the spectator nucleon is low [92, 93]. Todate, very few studies have considered electron-<strong>in</strong>duced strangeness production from the deuteron.Hsiao <strong>and</strong> Cotanch [94, 95] used the elementary-production operator of Thom [17]. In Ref. [96] theSaclay-Lyon model [22] was adopted.Outl<strong>in</strong>eIn this work, we present a covariant formalism for the photo- <strong>and</strong> electroproduction of kaons <strong>and</strong>hyperons from the deuteron, thereby account<strong>in</strong>g for hyperon-nucleon rescatter<strong>in</strong>g.In Chapter 2, the elementary-production operator is <strong>in</strong>troduced. We beg<strong>in</strong> our discussion with anoverview of the k<strong>in</strong>ematics <strong>and</strong> observables relevant to EM kaon production from the nucleon. Then,we turn our attention to the RPR formalism. At high-energies, an adequate description of the datais realised us<strong>in</strong>g the Regge model. The Reggeization procedure is discussed <strong>and</strong> an elegant recipeto guarantee a gauge-<strong>in</strong>variant amplitude is outl<strong>in</strong>ed. In a next step, a model <strong>in</strong>clud<strong>in</strong>g resonanceexchangediagrams is optimised to the resonance-region data, while the three free parameters ofthe Regge model are held fixed. Successful descriptions of the K + Λ- <strong>and</strong> K + Σ 0 -production dataobta<strong>in</strong>ed before 2007 are realised. We conclude this chapter with a critical discussion of the RPRmodel as it was published <strong>in</strong> Refs. [39, 40, 69, 97]. Recent developments of the RPR formalism arehighlighted <strong>and</strong> comparisons with the latest photo- <strong>and</strong> electroproduction results are shown. Thisillustrates the descriptive <strong>and</strong> predictive power of the RPR model <strong>in</strong> the data-rich reaction channels.Chapter 3 is devoted to those kaon-production channels where little or no experimental results areat h<strong>and</strong>. A formalism is presented <strong>in</strong> order to transform the RPR transition amplitude that wasfitted to p(γ (∗) , K + )Λ <strong>and</strong> p(γ (∗) , K + )Σ 0 to the other N(γ (∗) , K)Y reaction channels. At the strong<strong>in</strong>teractionvertices, one can rely on SU(2) isosp<strong>in</strong> symmetry. The conversion of the EM coupl<strong>in</strong>gconstants, on the other h<strong>and</strong>, requires experimental <strong>in</strong>put. The result<strong>in</strong>g RPR-model predictions


Chapter 1. Introduction 9are set aga<strong>in</strong>st the world data for K + Σ − production from the neutron <strong>and</strong> K 0 Σ + production fromthe proton. The sensitivity to the errors bars of the applied photocoupl<strong>in</strong>g helicity amplitudes is<strong>in</strong>vestigated.In Chapter 4, we make a small digression. The Regge model is employed <strong>in</strong> a exploratory study ofnew results on radiative kaon capture. This reaction is related to kaon photoproduction throughcross<strong>in</strong>g symmetry <strong>and</strong> is sensitive to the excited states of Λ <strong>and</strong> Σ hyperons.After hav<strong>in</strong>g established the RPR framework, we turn our attention to strangeness production fromthe deuteron <strong>in</strong> Chapter 5. The k<strong>in</strong>ematics are reviewed <strong>and</strong> the observables of the reaction aredef<strong>in</strong>ed <strong>in</strong> terms of the transition amplitude. The deuteron wave function is an essential <strong>in</strong>gredient ofthe reaction dynamics <strong>and</strong> is discussed at length. We exam<strong>in</strong>e relativistic <strong>and</strong> non-relativistic wavefunctions <strong>and</strong> <strong>in</strong>troduce a covariant vertex operator for the deuteron-neutron-proton transition. Thetransition amplitude is given <strong>in</strong> the relativistic impulse approximation. We def<strong>in</strong>e the plane-waveapproximation <strong>and</strong> provide a non-relativistic reduction. In addition, the contribution of hyperonnucleonrescatter<strong>in</strong>g is derived. We f<strong>in</strong>d that it can be decomposed <strong>in</strong> two parts. The first term hasall rescatter<strong>in</strong>g particles on mass shell, while the other <strong>in</strong>volves off-mass-shell particles <strong>and</strong> allows forsub-threshold production.Chapter 6 is dedicated to the numerical results of the calculations. In a first step, the relativistic planewaveimpulse approximation is thoroughly <strong>in</strong>vestigated. We study the sensitivity of the computedobservables to relativistic effects, to the deuteron wave function, <strong>and</strong> to the off-shell extrapolation ofthe elementary-production operator. In addition, the propagation of the uncerta<strong>in</strong>ties related to kaonproduction from the neutron is <strong>in</strong>vestigated. Subsequently, the dynamics of the hyperon-nucleonrescatter<strong>in</strong>g contribution are exam<strong>in</strong>ed. In the f<strong>in</strong>al section, we confront our predictions with theavailable experimental results. We state our conclusions <strong>in</strong> Chapter 7 <strong>and</strong> <strong>in</strong>dicate directions forfuture work.For reasons of readability, many technical details have been diverted to the appendices. Appendix Aestablishes the notations <strong>and</strong> conventions assumed <strong>in</strong> this dissertation. In Appendix B, we briefly<strong>in</strong>troduce the number system of biquaternions <strong>and</strong> their applicability as representation of the Lorentzgroup.Ow<strong>in</strong>g to their elegant transformation properties under Lorentz transformations, helicity sp<strong>in</strong>ors playan important role <strong>in</strong> our formalism. Appendix C is devoted to the subject. Appendix D summarisesthe rules <strong>and</strong> <strong>in</strong>gredients needed to compute cross sections. We list the <strong>in</strong>teraction Lagrangiansadopted <strong>in</strong> this work, as well as the transition amplitudes for the Feynman diagrams considered <strong>in</strong>the RPR model.In Appendix E, the derivation of two Lorentz-<strong>in</strong>variant forms of the 2 H(γ, KY )N cross section isgiven. The density-matrix formalism is the topic of Appendix F. Density matrices play an importantrole <strong>in</strong> the construction of polarisation observables.This work makes use of a number of deuteron wave functions. Their parametrisations are provided <strong>in</strong>Appendix G. Subsequently, Appendix H retraces the connection between these wave functions <strong>and</strong> thecovariant Dnp-vertex. In Appendix I, we tabulate the coupl<strong>in</strong>g constants of the adopted RPR modelfor all six strangeness-production reaction channels. An overview of the published experimental datafor kaon photoproduction from the nucleon is given <strong>in</strong> Appendix J. Lastly, Appendix K presentssome details about the hyperon-nucleon <strong>in</strong>teraction <strong>and</strong> more specifically the Jülich potential.


10 Chapter 1. Introduction


CHAPTER 2The Regge-plus-resonance formalismIt comes as no surprise that a trustworthy model for elementary kaon production is an essential<strong>in</strong>gredient <strong>in</strong> the description of strangeness production from the deuteron. With this <strong>in</strong> m<strong>in</strong>d, weprovide a detailed discussion of the RPR formalism <strong>in</strong> this chapter. Section 2.1 gives an overviewof the k<strong>in</strong>ematics of the N(γ (∗) , K)Y reaction <strong>and</strong> def<strong>in</strong>es the relevant observables for photo- <strong>and</strong>electroproduction. In the high-energy limit, pseudo-scalar meson production can be elegantlydescribed via the exchange of Regge trajectories. In Section 2.2, we present a Regge model for boththe p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 reaction channels. Extrapolat<strong>in</strong>g this Regge model <strong>in</strong>to the resonanceregion provides an efficient parametrisation of the non-resonant contributions to the transitionamplitude. By enrich<strong>in</strong>g the Regge-model amplitude with a number of s-channel nucleon-resonanceexchange diagrams, a satisfactory account of the available kaon-production data <strong>in</strong> the resonanceregion can be achieved. This is the topic of Section 2.3.The RPR model that we are about to <strong>in</strong>troduce, dubbed RPR-2007, was the subject of T. Corthals’doctoral thesis [69]. The results for Λ <strong>and</strong> Σ photoproduction have been presented <strong>in</strong> Refs. [39, 40].The formalism was extended to electroproduction reactions <strong>in</strong> Ref. [97]. Follow<strong>in</strong>g the publication ofthese results, a considerable amount of additional experimental results have been made available(see Appendix J for an overview). These new data sets have confirmed the predictive power of theRPR formalism, <strong>in</strong> spite of its apparent simplicity. Nevertheless, a number of shortcom<strong>in</strong>gs exist. InSection 2.4, the merits <strong>and</strong> weaknesses of the current RPR model are identified. The reader shouldbe aware that the RPR model is the subject of cont<strong>in</strong>uous efforts <strong>and</strong> is constantly be<strong>in</strong>g improved.For recent developments, we refer the reader to Refs. [56, 98, 99] for more <strong>in</strong>formation.11


12 2.1. K<strong>in</strong>ematics <strong>and</strong> observablesFigure 2.1 – Schematic representation of an electron scatter<strong>in</strong>g from a nucleon at rest, produc<strong>in</strong>g a kaon<strong>and</strong> hyperon <strong>in</strong> the f<strong>in</strong>al state.2.1 K<strong>in</strong>ematics <strong>and</strong> observables2.1.1 Reference framesElectron-<strong>in</strong>duced kaon production from a free nucleon assum<strong>in</strong>g the OPE approximation is illustratedschematically <strong>in</strong> Figure 2.1. The <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g electrons, with four-momenta k(E e , ⃗ k)<strong>and</strong> k ′ (E ′ e, ⃗ k ′ ) respectively, radiate a virtual photon with four-momentum p γ (E γ , ⃗p γ ) = k − k ′ <strong>and</strong>virtuality Q 2 = −p γ ·p γ = |⃗p γ | 2 −E 2 γ. This photon <strong>in</strong>teracts with a nucleon p N(E N , ⃗p N) <strong>and</strong> producestwo outgo<strong>in</strong>g particles, i.e. the kaon <strong>and</strong> hyperon, which are labelled p K(E K , ⃗p K) <strong>and</strong> p Y(E Y , ⃗p Y)respectively. The three-vectors ⃗ k <strong>and</strong> ⃗ k ′ span the lepton plane, whereas the three-momenta of thephoton, nucleon, kaon <strong>and</strong> hyperon lie <strong>in</strong> the reaction plane. The relative <strong>in</strong>cl<strong>in</strong>ation of both planesis given by the angle φ. For kaon photoproduction, this angle is arbitrary <strong>and</strong> the photon’s virtualityQ 2 vanishes.The N(γ (∗) , K)Y reaction can be readily described <strong>in</strong> the KY-CM frame. Three different referenceframes are commonly adopted <strong>in</strong> order to express the particles’ four-momenta <strong>and</strong> polarisations.They are <strong>in</strong>dicated <strong>in</strong> Figure 2.2. All three choices have their y axis perpendicular to the reactionplane. For the unprimed reference frame, we take the z axis along the photon three-momentum. Theother reference frames have the z ′ (l) axis parallel to the kaon (hyperon). Explicitly we have,⃗z = ⃗p γ|⃗p γ | ,⃗y = ⃗p γ × ⃗p K, ⃗x = ⃗y × ⃗z , (2.1)|⃗p γ × ⃗p K|⃗z ′ = ⃗p K|⃗p K| , ⃗y ′ = ⃗y , ⃗x ′ = ⃗y ′ × ⃗z ′ , (2.2)⃗ l =⃗p Y|⃗p Y| , ⃗n = ⃗y , ⃗t = ⃗n × ⃗ l . (2.3)In addition, a fourth double-primed reference frame is def<strong>in</strong>ed <strong>in</strong> Figure 2.1, which has its y ′′ axisperpendicular to the lepton plane.⃗z ′′ = ⃗p γ|⃗p γ | , ⃗y ′′ = ⃗ k × ⃗ k ′| ⃗ k × ⃗ k ′ | , ⃗x ′′ = ⃗y ′′ × ⃗z ′′ . (2.4)Variables that are expressed <strong>in</strong> the KY-CM frame are labelled with an asterisk to make the dist<strong>in</strong>ctionwith those declared <strong>in</strong> the LAB frame where the target nucleon is at rest.


Chapter 2. The Regge-plus-resonance formalism 13Figure 2.2 – Orientation of the different reference frames (x, y, z), (x ′ , y ′ , z ′ ) <strong>and</strong> (t, n, l) for the N(γ, K)Yreaction <strong>in</strong> the KY-CM frame.2.1.2 Independent variablesThe CM scatter<strong>in</strong>g angle of the kaon θK ∗ <strong>and</strong> the system’s <strong>in</strong>variant mass√W KY = (p γ + p N) 2 = −Q 2 + m 2 N + 2E γ m N , (2.5)determ<strong>in</strong>e the N(γ (∗) , K)Y k<strong>in</strong>ematics unambiguously. The photon energy <strong>in</strong> the CM <strong>and</strong> LABframes are connected through a Lorentz transformationE ∗ γ = W 2 KY − m2 N − Q22W KY. (2.6)By solv<strong>in</strong>g the energy-conservation relation <strong>in</strong> the KY-CM√√Eγ ∗ + Q 2 + Eγ∗2 + m 2 N = |⃗pK ∗ |2 + m 2 K√|⃗p + K ∗ |2 + m 2 Y , (2.7)the kaon momentum |⃗pK ∗ | can be determ<strong>in</strong>ed.Three M<strong>and</strong>elstam variables are def<strong>in</strong>eds KY = (p γ + p N ) 2 ,t = (p γ − p K ) 2 ,u = (p γ − p Y ) 2 .(2.8)An elegant relation exists between these Lorentz-<strong>in</strong>variant variabless KY + t + u = −Q 2 + m 2 N + m 2 K + m 2 Y . (2.9)2.1.3 Transition amplitudeThe dynamics of the kaon-production reaction are conta<strong>in</strong>ed <strong>in</strong> the hadronic transition amplitudeT λγλ N λ Y≡ 〈p K ; p Y , λ Y | ɛ λγµ Ĵ µ |p N , λ N 〉 . (2.10)This is the expectation value of the transition current operator Ĵ µ evaluated between the normalisedstates of the <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g particles with def<strong>in</strong>ite polarisation. The polarisation vector ɛ λγfor a l<strong>in</strong>early polarised photon along the x or y axis readsɛ λγ=x = (0, 1, 0, 0) , or ɛ λγ=y = (0, 0, 1, 0) . (2.11)


14 2.1. K<strong>in</strong>ematics <strong>and</strong> observablesFor circularly polarised photons, one hasɛ λγ=±1 = ∓ 1 √2(0, 1, ±i, 0) , (2.12)whereas virtual photons can also have a longitud<strong>in</strong>al polarisationɛ λγ=0 = (0, 0, 0, 1) . (2.13)The transition current operator can be constructed from a set of relevant Feynman diagrams. InSections 2.2 <strong>and</strong> 2.3, the structure of this operator <strong>in</strong> the RPR formalism will be discussed <strong>in</strong> depth.The transition matrix elements fulfil the follow<strong>in</strong>g useful property [100]T -λγ-λ N -λ Y= (−1) 1+λγ−λ N −λ YT λγλ N λ Y, for λ γ = 0, ±1 , (2.14)ow<strong>in</strong>g to the reaction’s <strong>in</strong>variance under space <strong>in</strong>versions <strong>and</strong> rotations. This relation reduces thenumber of <strong>in</strong>dependent amplitudes by a factor of two. In the transversity basis for real photonreactions, one chooses the follow<strong>in</strong>g set of <strong>in</strong>dependent amplitudesb 1 = T y ,+ 1 2 ,+ 1 2b 2 = T y ,− 1 2 ,− 1 2b 3 = T x − 1 2 ,+ , 12(2.15)b 4 = T x + 1 2 ,− , 12where photons have a l<strong>in</strong>ear polarisation <strong>and</strong> the baryon polarisations are quantised along the y axis,i.e. normal to the reaction plane.2.1.4 Photoproduction observablesThe differential cross section for the most general scatter<strong>in</strong>g reaction is given <strong>in</strong> Eq. (D.1). Apply<strong>in</strong>gthis to the kaon photoproduction reaction, one f<strong>in</strong>dsdσ =1 ∑√|T |2 d 3 ⃗p K d 3 ⃗p Y2 λ(s KY , 0, m 2 N ) 2E K (2π) 3 2E Y (2π) 3 (2π)4 δ (4) (p γ + p N − p K − p Y ) . (2.16)Here, the symbol ∑ implies that one sums (averages) over the polarisations of the outgo<strong>in</strong>g (<strong>in</strong>com<strong>in</strong>g)particles. After <strong>in</strong>tegrat<strong>in</strong>g out the energy-momentum conserv<strong>in</strong>g delta function, one commonlyexpresses the differential cross section asd 2 σdΩ ∗ K= 1 |⃗pK ∗ | ∑|T | 264π 2 EγW ∗ KY2 . (2.17)At higher energies, where the reaction becomes diffractive, the cross section is often reported <strong>in</strong> thefollow<strong>in</strong>g Lorentz-<strong>in</strong>variant formdσdt = 1 1 ∑|T | 264π Eγ ∗2 WKY2 . (2.18)


Chapter 2. The Regge-plus-resonance formalism 15In experiments where one or more external particles have a def<strong>in</strong>ite polarisation, one commonlypresents the results <strong>in</strong> terms of asymmetries. Ow<strong>in</strong>g to the tremendous advances <strong>in</strong> accelerator<strong>and</strong> detector technology, <strong>in</strong> addition to the self-analys<strong>in</strong>g weak-decay property of hyperons, kaonproduction offers a unique opportunity to measure a comprehensive set of polarisation observables.At lead<strong>in</strong>g experimental facilities, such research programs are currently be<strong>in</strong>g pursued [101, 102].Given the differential cross section supplemented with seven well-chosen asymmetries, the transitionamplitude can uniquely be deduced [51, 53, 54]. This is often referred to as a complete measurement.One should realise, however, that uncerta<strong>in</strong>ties <strong>in</strong>herent to experimental observables set restrictionson the theoretical completeness of a measurement [103].The prospect of a complete experiment has fostered a large number of studies that aim at study<strong>in</strong>g themost general expression for the differential pseudo-scalar meson-production cross section [20, 51, 104–107]. Among these works, some disagreements exist [51]. These arise from different sign conventionsfor the polarisation states. In this work, we adopt the def<strong>in</strong>itions provided by Adelseck <strong>and</strong> Saghai [20],who express all observables <strong>in</strong> terms of the transversity amplitudes (2.15).S<strong>in</strong>gle-polarisation asymmetries are def<strong>in</strong>ed asDouble-polarisation asymmetries adopt the formdσ (+) − dσ (−)dσ (+) . (2.19)+ dσ (−)dσ (++) + dσ (−−) − dσ (+−) − dσ (−+)dσ (++) + dσ (−−) + dσ (+−) . (2.20)+ dσ (−+)Here, dσ (±) <strong>and</strong> dσ (±±) denote cross sections where one or two particles have a def<strong>in</strong>ite polarisation.The polarisation state of the <strong>in</strong>com<strong>in</strong>g photon is determ<strong>in</strong>ed by the polarisation vectors given <strong>in</strong>Eqs. (2.11)–(2.13). For the hadrons <strong>in</strong>volved <strong>in</strong> the reaction, the polarisations are (anti-)parallel totheir respective quantisation axes. The complete list of quantisation axes per polarisation asymmetryis given <strong>in</strong> Table II of Ref.[20]. For experiments that <strong>in</strong>volve one polarised particle, one def<strong>in</strong>es thephoton-beam (Σ), recoil (P ) <strong>and</strong> target asymmetries (T )Σ = N −1 × ( |b 1 | 2 + |b 2 | 2 − |b 3 | 2 − |b 4 | 2) ,P = N −1 × ( |b 1 | 2 − |b 2 | 2 + |b 3 | 2 − |b 4 | 2) ,T = N −1 × ( |b 1 | 2 − |b 2 | 2 − |b 3 | 2 + |b 4 | 2) ,(2.21)withN = |b 1 | 2 + |b 2 | 2 + |b 3 | 2 + |b 4 | 2 . (2.22)For double polarisation experiments, a total of twelve asymmetries exist. Here, we restrict ourselvesto provid<strong>in</strong>g the def<strong>in</strong>ition of those <strong>in</strong>volv<strong>in</strong>g beam <strong>and</strong> recoil polarisationsC x ′ = −2N −1 × I (b 1 b ∗ 4 − b 2 b ∗ 3) ,C z ′ = 2N −1 × R (b 1 b ∗ 4 + b 2 b ∗ 3) ,O x ′ = 2N −1 × R (b 1 b ∗ 4 − b 2 b ∗ 3) ,O z ′ = 2N −1 × I (b 1 b ∗ 4 + b 2 b ∗ 3) .(2.23)The notation C x ′ ,z ′ (O x ′ ,z′) refers to circularly (l<strong>in</strong>early) polarised photons. The former can alsobe expressed with the quantisation axis along the unprimed axes def<strong>in</strong>ed <strong>in</strong> Eq. (2.1). Apply<strong>in</strong>g a


16 2.1. K<strong>in</strong>ematics <strong>and</strong> observablesstraightforward rotation, they readC x = C x ′ cos θ ∗ K + C z ′ s<strong>in</strong> θ ∗ K ,C z = −C x ′ s<strong>in</strong> θ ∗ K + C z ′ cos θ ∗ K .(2.24)2.1.5 Electroproduction observablesStart<strong>in</strong>g from the general expression (D.1), one f<strong>in</strong>ds the N(e, e ′ K)Y differential cross section can bewritten <strong>in</strong> the follow<strong>in</strong>g factorised form 1d 5 σdE ′ edΩ ′ edΩ ∗ K= Γ d2 σ ∗dΩ ∗ , (2.25)KwhereΓ =α2π 2 E ′ eE eK HQ 2 11 − ɛ , (2.26)is the virtual photon flux factor <strong>and</strong>K H = E γ −Q22m N, (2.27)the equivalent-real-photon laboratory energy. The most general form for the virtual-photon crosssection reads [105]d 2 σ ∗dΩ ∗ K= P N α P Y βwith h the electron-beam helicity <strong>and</strong>|⃗pK ∗ | [( )|⃗p γ ∗ R βαT|+ ɛRβα L+ ɛ cR βαT T cos 2φ + s R βαT T s<strong>in</strong> 2φ+ √ ( )ɛ(1 + ɛ) cR βαLT cos φ + s R βαLT s<strong>in</strong> φ+ h √ 1 − ɛ 2 R βαT ′ + h √ ɛ(1 − ɛ)ɛ =(1 + 2|⃗p γ| 2Q 2(cR βαLTcos φ + s R βα′ LTs<strong>in</strong> φ) ] ,′(2.28)tan 2 θ ) −1e, (2.29)2the transverse l<strong>in</strong>ear polarisation of the virtual photon. In the expression for the virtual-photon crosssection, a summation over the Greek <strong>in</strong>dices (α, β = 0, 1, 2, 3) is implied. The operatorsP i µ ≡ (1, ⃗ P i ) , with i = N, Y , (2.30)are given <strong>in</strong> terms of the polarisation vectors P ⃗ N <strong>and</strong> P ⃗ Y of the nucleon <strong>and</strong> hyperon respectively.The polarisations of these baryons can be evaluated <strong>in</strong> any of the frames presented <strong>in</strong> Figure 2.2.The dynamics of the EM kaon-production reaction is conta<strong>in</strong>ed <strong>in</strong> the response functions, which are1 A detailed account of the factorisation of the electroproduction cross section for EM kaon production from thedeuteron is given <strong>in</strong> Section 5.4. The derivation of the results given <strong>in</strong> Eqs. (2.25)–(2.31) proceeds along similar l<strong>in</strong>es.


Chapter 2. The Regge-plus-resonance formalism 17def<strong>in</strong>ed by(R βαT = χ˜∑α,β|T + | 2 + |T − | 2) , R βαL = 2χ˜∑α,β |T 0 | 2 ,c R βαT T = −2χ˜∑α,β R (T + T −†) ,c R βαLT = −2χ˜∑α,β R (T 0 ( T + − T −) † ) ,c R βαLT ′ = −2χ˜∑α,β R (R βαT ′ = χ˜∑α,βT 0 ( T + + T −) † ) ,(|T + | 2 − |T − | 2) ,s R βαT T = 2χ˜∑α,β I (T + T −†) ,s R βαLT = −2χ˜∑ (I T 0 ( T + + T −) ) †, (2.31)α,β(s R βαLT= −2χ˜∑I T 0 ( T + − T +) ) †,′ α,βwithχ =|⃗p ∗ γ |(16π) 2 m N W KY K H. (2.32)The response functions R βαiare expressed <strong>in</strong> terms of the hadronic transition amplitudes (2.10) <strong>and</strong>are evaluated <strong>in</strong> the CM of the kaon-hyperon system at φ = 0. For convenience, we have droppedthe polarisation states λ N <strong>and</strong> λ Y from our notation for the transition amplitude. The symbol ˜∑α,βdenotes the bil<strong>in</strong>ear products are summed over the nucleon (hyperon) polarisation when α(β) = 0,e.g.R 00L= 2χ ∑|Tλ 0N λ Y| 2 . (2.33)λ N λ YFor α, β ≠ 0, the difference between the polarisation states is implied, e.g.R y0L = 2χ ∑ λ Y(|T0λN =+y,λ Y| 2 − |T 0λ N =−y,λ Y| 2) . (2.34)Ow<strong>in</strong>g to parity conservation (2.14), some response functions vanish identically (see Table I ofRef. [105] for an overview).The expression (2.28) is of limited use s<strong>in</strong>ce exclusive measurements with all <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>gparticles polarised are extremely challeng<strong>in</strong>g. For undeterm<strong>in</strong>ed target <strong>and</strong> recoil polarisations, thecomponents of the polarisation vectors P ⃗ N <strong>and</strong> P ⃗ Y vanish <strong>and</strong> the cross section reduces tod 2 σ ∗dΩ ∗ K= d2 σ TdΩ ∗ K+ ɛ d2 σ LdΩ ∗ K+ ɛ d2 σ T TdΩ ∗ Kcos 2φ + √ ɛ(1 + ɛ) d2 σ LTdΩ ∗ Kcos φ + h √ ɛ(1 − ɛ) d2 σ LT ′dΩ ∗ Ks<strong>in</strong> φ , (2.35)withd 2 σ idΩ ∗ Kd 2 σ idΩ ∗ K= |⃗p ∗ K ||⃗p ∗ γ | R00 i , for i = T, L ,= |⃗p K ∗ | c|⃗p γ ∗ R 00i , for i = T T, LT , (2.36)|<strong>and</strong>d 2 σ LT ′dΩ ∗ K= |⃗p K ∗ | s|⃗p γ ∗ R 00LT|′ . (2.37)


18 2.2. Kaon production <strong>in</strong> the Regge limitAnother expression of practical use <strong>in</strong>volves the comb<strong>in</strong>ation of a polarised beam imp<strong>in</strong>g<strong>in</strong>g on anunpolarized target <strong>and</strong> a measurement which determ<strong>in</strong>es the polarisation of the outgo<strong>in</strong>g hyperon.For this situation, the virtual-photon cross section can be parametrised asd 2 σ ∗dΩ ∗ K= σ unpol(1 + hA LT ′ + P x ⃗x · ⃗P Y + P y ⃗y · ⃗P Y + P z ⃗z · ⃗P Y ) , (2.38)where σ unpol is the unpolarized differential cross section. The recoil-polarisation P i , <strong>in</strong> turn, can beexpressed as the sum of an <strong>in</strong>duced polarisation Pi 0 <strong>and</strong> a transferred polarisation P i′P i = P 0i + hP ′i , for i = x, y, z . (2.39)By equat<strong>in</strong>g the Eqs. (2.28) <strong>and</strong> (2.38), it is possible to express the <strong>in</strong>duced <strong>and</strong> transferredpolarisations <strong>in</strong> terms of the response functions. In practise, the statistics of an experiment can beimproved by <strong>in</strong>tegrat<strong>in</strong>g over the angle φ between the lepton <strong>and</strong> reaction plane. This implies thatthe azimuthal-angle dependence of Eq. (2.28) can be <strong>in</strong>tegrated out. As such the number of terms isgreatly reduced. After some easy algebra, one f<strong>in</strong>ds for the φ-<strong>in</strong>tegrated polarisations 2Px 0 = Pz 0 = P y ′ = 0 ,Py 0 = 1 √ɛ(1 + ɛ)K−102P x ′ = 1 √ɛ(1 − ɛ)K−102P ′ z = √ 1 − ɛ 2 K −10( )sR x′ 0LT cos θK ∗ + c R y′ 0LT + s R z′ 0LT s<strong>in</strong> θK∗ ,( )cR x′ 0LT ′ cos θ∗ K − s R y′ 0LT+ c R ′ z′ 0LT ′ s<strong>in</strong> θ∗ K ,)T ′ s<strong>in</strong> θ∗ K + R z′ 0T ′ cos θ∗ K ,(−R x′ 0(2.40)where K 0 = R 00T+ ɛR00 L .2.2 Kaon production <strong>in</strong> the Regge limitThe study of kaon production, <strong>and</strong> by extension all meson-production reactions, is primarily motivatedby the exploration of the nucleon-resonance spectrum. Therefore, analyses of experimental datafocus on the so-called resonance region, which roughly corresponds to W KY 2.5 GeV. Nevertheless,one cannot ignore the contribution of non-resonant diagrams that are looked on as a backgroundwith an eye to extract<strong>in</strong>g nucleon-resonance <strong>in</strong>formation. The kaon-production cross section lacksclear <strong>in</strong>dications of dom<strong>in</strong>ant resonant states which h<strong>in</strong>ts that background contributions are by nomeans subord<strong>in</strong>ate to resonance exchange. As such, the description of the background is crucial<strong>in</strong> order to extract reliable <strong>in</strong>formation on the nucleon-resonance spectrum. The RPR formalismtakes an uncommon approach <strong>and</strong> first focuses on modell<strong>in</strong>g kaon production at energies beyond theresonance region where only non-resonant diagrams subsist.At high energies, hadronic scatter<strong>in</strong>g processes can be elegantly described <strong>in</strong> the framework of Reggetheory. Based on the observation that it is useful to regard angular momentum as a complex variablewhen discuss<strong>in</strong>g solutions of the Schröd<strong>in</strong>ger equation for non-relativistic potential scatter<strong>in</strong>g [108], asuccessful theory was developed. It describes a large variety of concepts <strong>and</strong> results <strong>in</strong> high-energy2 In literature, one commonly adopts the notation Pi 0 <strong>and</strong> P i ′ for the φ-<strong>in</strong>tegrated <strong>in</strong>duced <strong>and</strong> transferred polarisations.This notation can lead to confusion with the Pi 0 /P i ′ that feature <strong>in</strong> the cross-section decomposition of Eq. (2.38). Forthe rema<strong>in</strong>der of this work, the symbols Pi0 <strong>and</strong> P i ′ will refer to φ-<strong>in</strong>tegrated observables.


Chapter 2. The Regge-plus-resonance formalism 19scatter<strong>in</strong>g experiments. A comprehensive discussion of Regge phenomenology falls beyond the scope ofthis dissertation <strong>and</strong> we refer the <strong>in</strong>terested reader to the works of Coll<strong>in</strong>s [109] <strong>and</strong> Donnachie [110].Start<strong>in</strong>g from the general pr<strong>in</strong>ciples of unitarity, analyticity <strong>and</strong> cross<strong>in</strong>g symmetry, Regge theoryputs forward a l<strong>in</strong>k between the existence of bound states <strong>in</strong> direct scatter<strong>in</strong>g reactions <strong>and</strong> theexchange of unstable particles <strong>in</strong> the crossed channels. This l<strong>in</strong>k is manifested by the existence ofso-called Regge trajectories, which unify families of particles that share identical <strong>in</strong>ternal quantumnumbers. Each trajectory represents an analytic relation J = α(m 2 ) between the mass m <strong>and</strong>the sp<strong>in</strong> J of particles with even (odd) sp<strong>in</strong> that belong to the same family. This relation can beconveniently visualised <strong>in</strong> a Chew-Frautschi plot (see Figure 3.9 for examples). Experimentally,the Regge trajectories for baryons <strong>and</strong> mesons turn out to be l<strong>in</strong>ear to a good approximation <strong>and</strong>appear to have a universal slope [111]. Conventionally, Regge trajectories are named after their firstmaterialisation.Build<strong>in</strong>g upon the work of Guidal, Laget <strong>and</strong> V<strong>and</strong>erhaeghen [38, 112], we model the high-energyp(γ, K + )Y amplitude by means of K + (494) <strong>and</strong> K ∗+ (892) Regge-trajectory exchange <strong>in</strong> the t-channel. A gauge-<strong>in</strong>variant amplitude is obta<strong>in</strong>ed by add<strong>in</strong>g the Reggeized electric part of thenucleon s-channel Born diagram [69]. The strong forward-peaked character of the differential crosssection, as shown <strong>in</strong> Figure 2.3, provides strong support for this approach. The exchange of a l<strong>in</strong>earkaon Regge-trajectoryα K (∗)+(t) = α K (∗)+ ,0 + ( ) α′ K t − m2(∗)+ K , (2.41)(∗)+with m K (∗)+ <strong>and</strong> α K (∗)+ ,0 the kaon’s mass <strong>and</strong> sp<strong>in</strong>, is realised through a Reggeized amplitude thatcomb<strong>in</strong>es elements of the Regge formalism <strong>and</strong> a tree-level effective-Lagrangian model. Reggeizationamounts to replac<strong>in</strong>g the st<strong>and</strong>ard Feynman (t − m 2 ) −1 propagator by the correspond<strong>in</strong>g ReggeK (∗)+propagator( )P K+ (494) sαK + (t)Regge(s, t) =s 0{( )P K∗+ (892) sαK ∗+ (t)−1Regge(s, t) =s 01e −iπα K + (t)}s<strong>in</strong> ( πα K +(t) ) παK ′ +Γ ( 1 + α K +(t) ) ,{}1e −iπα K ∗+ (t)s<strong>in</strong> ( πα K ∗+(t) ) παK ′ ∗+with s 0 = 1 GeV 2 a scale factor. The Regge trajectories are parametrised asα K +(t) = 0.70 (t − m 2 K + ) ,α K ∗+(t) = 1 + 0.85 (t − m 2 K ∗+ ) ,Γ ( α K ∗+(t) ) , (2.42)(2.43)when t <strong>and</strong> m 2 K (∗)+ are expressed <strong>in</strong> units of GeV 2 . The data [113, 114] <strong>in</strong>dicate that the trajectoriesare strongly degenerate. Consequently, the Regge propagators (2.42) have either a constant (1)or rotat<strong>in</strong>g (e −iπα(t) ) phase. These phases cannot be deduced from first pr<strong>in</strong>ciples <strong>and</strong> need to bedeterm<strong>in</strong>ed from data.In our implementation of the Regge model, the operatorial structure of the transition amplitudes isdictated by an effective Lagrangian approach 3 , <strong>in</strong> which the t-channel propagators are replaced bythe correspond<strong>in</strong>g Regge ones, i.e.Ĵ K(∗)+Regge = ĴK(∗)+ Feynman × P K(∗)+Regge × ( t − m 2 K (∗)+ ). (2.44)3 Our choice of strong <strong>and</strong> electromagnetic <strong>in</strong>teraction Lagrangians can be found <strong>in</strong> Section D.3.2.


20 2.2. Kaon production <strong>in</strong> the Regge limit)2dσ/dt (µb/GeV10 ­110 ­2101­310 ­4+p(γ,K )Λ1­1­2­3­45 GeV8 GeV11 GeV16 GeV+ 0p(γ,K )Σ0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.02­t (GeV )Figure 2.3 – Differential cross section as a function of the momentum transfer |t| at four photon LABenergies E γ = 5, 8, 11 <strong>and</strong> 16 GeV. For the p(γ, K + )Λ channel (left panel), the Regge-2 model is shown.The p(γ, K + )Σ 0 results (right panel) are obta<strong>in</strong>ed with the Regge-3 (solid l<strong>in</strong>e) <strong>and</strong> Regge-4 (dashed l<strong>in</strong>e)models. Data from Ref. [113].Photon­beam asymmetry Σ1.51.00.50.0­0.5­1.01.51.00.50.0+ ­0.5+ 0p(γ,K )Λp(γ,K )Σ­1.00.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.02­t (GeV )Figure 2.4 – Photon-beam asymmetry as a function of the momentum transfer |t| at photon LAB energyE γ = 16 GeV. For p(γ, K + )Λ results (left panel) are the Regge-2 model. The p(γ, K + )Σ 0 results (rightpanel) are obta<strong>in</strong>ed with the Regge-3 (solid l<strong>in</strong>e) <strong>and</strong> Regge-4 (dashed l<strong>in</strong>e) models. Data from Ref. [114].As a consequence, the amplitude correspond<strong>in</strong>g to K (∗)+ exchange <strong>in</strong> the t-channel effectively<strong>in</strong>corporates the transfer of an entire trajectory. When consider<strong>in</strong>g the exchange of K + (494) <strong>and</strong>K ∗+ (892) trajectories, the Regge model for p(γ, K + )Y has a mere three parametersg K + Y p , <strong>and</strong> G v,tK ∗+ = κ K ∗+ K + × gv,t K ∗+ Y p , (2.45)with g K + Y p, g v K ∗+ Y p <strong>and</strong> gt K ∗+ Y p the coupl<strong>in</strong>g constants at the strong-<strong>in</strong>teraction vertex <strong>and</strong> κ K ∗+ K +the K ∗+ (892)’s transition magnetic moment (see Paragraph D.3.3).A crucial constra<strong>in</strong>t for the kaon-production amplitude is gauge <strong>in</strong>variance. It is well-known that thet-channel Born diagram by itself does not conserve electric charge. In Ref. [38], an elegant recipeto correct for this was outl<strong>in</strong>ed. Add<strong>in</strong>g the electric part of a Reggeized s-channel Born diagramensures that the amplitude is gauge <strong>in</strong>variant. Thus, the transition current operator for high-energykaon production <strong>in</strong> the Regge limit readsĴ K+ (494) (892)Regge+ ĴK∗+ Regge+ ĴBorn-s,elecFeynman× P K+ (494)Regge× ( t − m 2 )K . (2.46)+At sufficiently high energies (E γ 4 GeV), a limited amount of p(γ, K + )Y data po<strong>in</strong>ts are available.For the K + Λ channel a total of 72 data po<strong>in</strong>ts exist, compris<strong>in</strong>g 56 differential-cross-sectiondata po<strong>in</strong>ts [113], 9 photon-beam asymmetries [114], <strong>and</strong> 7 recoil asymmetries [115]. Even fewerdata is available for K + Σ 0 production: 48 differential cross sections [113] <strong>and</strong> 9 photon-beam


Chapter 2. The Regge-plus-resonance formalism 21Recoil asymmetry P1.00.50.0­0.5­1.0E γ= 5 GeV0.0 0.2 0.4 0.6 0.8 1.02­t (GeV )Figure 2.5 – Hyperon-recoil asymmetry for the p(γ, K + )Λ channel as function of the momentum transfer|t| at photon LAB energy E γ = 5 GeV. Data from Ref. [115].asymmetries [114]. In Refs. [39, 40], these data sets have been adopted to constra<strong>in</strong> the three freeparameters (2.45) of the Regge model, as well as the phases of the exchanged trajectories. Becauseof the meagre database, a unique <strong>and</strong> optimal model could not be established <strong>and</strong> several modelvariants atta<strong>in</strong> a comparable χ 2 . After carry<strong>in</strong>g through the full RPR strategy (see Section 2.3) <strong>and</strong>mak<strong>in</strong>g use of photo- <strong>and</strong> electroproduction data <strong>in</strong> the resonance region, the number of possibleRegge models can be significantly reduced. For the K + Λ amplitude, a s<strong>in</strong>gle Regge model with tworotat<strong>in</strong>g trajectories, co<strong>in</strong>ed Regge-2, emerged. It is encourag<strong>in</strong>g that a later Bayesian analysis of theRegge model <strong>in</strong> the high-energy doma<strong>in</strong> was able to s<strong>in</strong>gle out this particular model us<strong>in</strong>g high-energydata alone [56]. The p(γ, K + )Σ 0 data was found to be compatible with a rotat<strong>in</strong>g phase for theK + (494) <strong>and</strong> a constant phase for the K ∗+ (892) trajectory. The sign of the tensor coupl<strong>in</strong>g constantrema<strong>in</strong>ed ambiguous, however. The K + Σ 0 -production models are labelled Regge-3 <strong>and</strong> Regge-4.The coupl<strong>in</strong>g constants for the Regge models that are employed <strong>in</strong> this work are summarised <strong>in</strong>Appendix I.The Regge models are compared to the available high-energy data <strong>in</strong> Figures 2.3, 2.4 <strong>and</strong> 2.5. Thedifferential cross section for both Λ <strong>and</strong> Σ 0 production are nicely reproduced. From Figure 2.3,one notices that both Regge models for the K + Σ 0 channel give comparable results at low |t|. Thephoton-beam asymmetries of Figure 2.4 have a strik<strong>in</strong>g feature which is perfectly reproduced by theRegge model. The asymmetry rises quickly to +1 as a function of −t. This behaviour is rem<strong>in</strong>iscentof the dom<strong>in</strong>ant exchange of a natural-parity state [116], which we identify as the K ∗+ (892) trajectory.For the p(γ, K + )Λ reaction, a set of recoil-polarisation asymmetries at forward kaon angles areavailable. The sign <strong>and</strong> shape of the angular dependence can be reproduced <strong>in</strong> the model. The sizeof the asymmetry, on the other h<strong>and</strong>, is considerably underestimated.2.3 Kaon production <strong>in</strong> the resonance regionThe Regge model’s amplitude can be <strong>in</strong>terpreted as the asymptotic form of the full amplitude forlarge s <strong>and</strong> small |t|. Ow<strong>in</strong>g to the t-channel dom<strong>in</strong>ance <strong>and</strong> the absence of a prevail<strong>in</strong>g resonance,the Reggeized background has been observed to account for the gross features of the kaon productiondata <strong>in</strong> the resonance region [39, 40, 67]. Near threshold, the energy dependence of the measureddifferential cross sections exhibits structures which h<strong>in</strong>t at the presence of resonances. These are<strong>in</strong>corporated by supplement<strong>in</strong>g the background with a number of resonant s-channel diagrams.This approach was co<strong>in</strong>ed Regge-plus-resonance (RPR) <strong>and</strong> has also been applied to double-pion


22 2.3. Kaon production <strong>in</strong> the resonance regionproduction [117], as well as the production of η <strong>and</strong> η ′ mesons [63, 64].We describe the resonant contributions us<strong>in</strong>g st<strong>and</strong>ard tree-level Feynman diagrams. The exact formof the transition amplitudes for sp<strong>in</strong>-1/2 <strong>and</strong> sp<strong>in</strong>-3/2 nucleon-resonance exchange can be found <strong>in</strong>Section D.3. By substitut<strong>in</strong>gs KY − m 2 R → s KY − m 2 R + im R Γ R , (2.47)<strong>in</strong> the propagator’s denom<strong>in</strong>ator, we take <strong>in</strong>to account the f<strong>in</strong>ite lifetime of resonances with massm R <strong>and</strong> width Γ R . To limit the number of fit parameters, we keep the resonances’ mass <strong>and</strong> widthfixed at the values given <strong>in</strong> the Particle Data Group’s Review of Particle <strong>Physics</strong> (RPP) [1]. Eachsp<strong>in</strong>-1/2 resonance <strong>in</strong>troduces one free parameterG N ∗ = κ N ∗ p × g K + Y N ∗ , (2.48)the product of the coupl<strong>in</strong>g constants at the electromagnetic <strong>and</strong> the strong-<strong>in</strong>teraction vertex.Sp<strong>in</strong>-3/2 resonances have an additional degree of freedom at the photon vertex <strong>and</strong> give rise to twofree parametersG (1)N ∗ = κ (1)N ∗ p × g K + Y N ∗ ,G (2)N ∗ = κ (2)N ∗ p × g K + Y N ∗ . (2.49)The most general <strong>in</strong>teraction Lagrangian for sp<strong>in</strong>-3/2 fields allows for an additional three degrees-offreedom,often called off-shell parameters, <strong>in</strong> the strong <strong>and</strong> EM vertices [118]. To ensure that theeffects of the resonant diagrams fade at higher energies, we <strong>in</strong>troduce Gaussian form factors at thestrong <strong>in</strong>teraction vertices [69](g K + Y N ∗ → g K + Y N[−∗ × exp sKY − m 2 2]R), (2.50)Λ 4 strongwith Λ strong a cutoff mass. A s<strong>in</strong>gle cutoff mass is used for all resonance-exchange diagrams <strong>and</strong> it isconsidered a free parameter <strong>in</strong> the fitt<strong>in</strong>g procedure. For both Λ <strong>and</strong> Σ 0 production, the value ofΛ strong is about 1600 MeV.The dynamics of EM kaon production can be fairly <strong>in</strong>volved, with several contribut<strong>in</strong>g nucleon<strong>and</strong> delta resonances that <strong>in</strong>terfere with an em<strong>in</strong>ent background. Disentangl<strong>in</strong>g these contributionsis challeng<strong>in</strong>g. In the RPR approach, we seek to determ<strong>in</strong>e the resonant <strong>and</strong> non-resonant termsseparately. The Regge model that was the subject of the previous section has been fitted aga<strong>in</strong>stthe available high-energy data. Its parameters are frozen <strong>and</strong> the Regge amplitude serves as aneffective parametrisation of the background. In the resonance region, a large body of data isavailable. Lists of published data sets for p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 are presented <strong>in</strong> Tables J.1<strong>and</strong> J.2. In Refs. [39, 40], the database [119–122] published at that time was used to constra<strong>in</strong>the resonance parameters of the RPR model, while keep<strong>in</strong>g the background unaltered. In theK + Λ-production channel at forward angles, a substantial discrepancy exists between results from theCLAS [119, 121, 123] <strong>and</strong> SAPHIR [124, 125] collaborations [126]. This makes it impossible to f<strong>in</strong>dan optimal model that describes both data sets simultaneously. In the optimisation procedure, onlythe CLAS data are reta<strong>in</strong>ed. S<strong>in</strong>ce the Regge model is derived <strong>in</strong> the limit of asymptotic CM energys KY <strong>and</strong> vanish<strong>in</strong>g momentum transfer t, the RPR model analysis of Refs. [39, 40] was restrictedto forward-kaon production. Only differential cross sections for cos θK ∗ ≥ 0.35 <strong>and</strong> polarisationasymmetries satisfy<strong>in</strong>g cos θK ∗ ≥ 0 were considered <strong>in</strong> the fitt<strong>in</strong>g procedure.


Chapter 2. The Regge-plus-resonance formalism 23In the K + Λ-production channel, a fair description of the considered data (χ 2 /N dof ≈ 2.4) is realisedvia the <strong>in</strong>clusion of the follow<strong>in</strong>g set of resonances: S 11 (1650), P 11 (1710), P 13 (1720), P 13 (1900) <strong>and</strong>D 13 (1900). The first three are considered well-established resonances <strong>in</strong> the RPP [1]. The evidencefor the P 11 (1710) state, however, has eroded <strong>in</strong> the past decade. Recent analyses of πN scatter<strong>in</strong>g bythe SAID group no longer consider it [127]. Also <strong>in</strong> models for strangeness production, this resonancehas been called <strong>in</strong>to question [5, 128]. The P 13 (1900) resonance has a two-star status <strong>in</strong> the RPP.It plays an important role <strong>in</strong> the miss<strong>in</strong>g-resonance puzzle, s<strong>in</strong>ce it is part of a quartet of nucleonresonances predicted by symmetric quark models but not by quark-diquark models [11]. In our RPRanalysis, the P 13 (1900) state is card<strong>in</strong>al to describe the data. Additionally, the optimal RPR model<strong>in</strong>cludes a miss<strong>in</strong>g D 13 (1900) resonance with a width of 200 MeV. Evidence for this state has alsobeen obta<strong>in</strong>ed <strong>in</strong> other analyses [45, 49, 128].In Ref. [40], we established the phases of the lead<strong>in</strong>g kaon trajectories for the p(γ, K + )Σ 0 channel.With the available data, it turned out impossible to s<strong>in</strong>gle out a unique parametrisation of the Reggemodel. The two model variants, that yield an equally good description of the high-energy data, werelabelled Regge-3 <strong>and</strong> Regge-4. Subsequently, we added resonances to the Reggeized background amplitude,identify<strong>in</strong>g the S 11 (1650), D 33 (1700), P 11 (1710), P 13 (1720), P 13 (1900), S 31 (1900), P 31 (1910)<strong>and</strong> P 33 (1920) as essential contributions. These are established resonances with a three- or a four-starstatus <strong>in</strong> the RPP [1], except for the P 13 (1900) <strong>and</strong> S 31 (1900), which are two-star resonances. Boththe RPR-3 <strong>and</strong> RPR-4 models reach a goodness-of-fit of χ 2 /N dof = 2.0. We found no direct need to<strong>in</strong>clude “miss<strong>in</strong>g” resonances <strong>in</strong> the KΣ channel.In order to assess the predictive power of the RPR model, we extended our formalism to kaonelectroproduction <strong>in</strong> Ref. [97]. The Q 2 -dependence of the EM coupl<strong>in</strong>g constants was <strong>in</strong>corporatedus<strong>in</strong>g transition form factors as computed <strong>in</strong> the Bonn CQM [129]. Without refitt<strong>in</strong>g any parameters,we found that the RPR model gives a decent account of the available kaon electroproduction data.2.4 The RPR model: the good, the bad <strong>and</strong> the uglyIn the previous sections, the RPR approach to EM strangeness production from the proton waspresented <strong>and</strong> we <strong>in</strong>troduced models for K + Λ <strong>and</strong> K + Σ 0 production that were optimised aga<strong>in</strong>st thepre-2007 world data. These models will be utilised <strong>in</strong> Chapter 6 for the calculation of kaon-productionobservables on the deuteron. S<strong>in</strong>ce their publication <strong>in</strong> Refs. [39, 40, 97], many new data sets havebeen published, encompass<strong>in</strong>g high-statistics data at previously measured k<strong>in</strong>ematics as well astotally new observables. Evidently, these experimental developments have prompted us to put theRPR model to a str<strong>in</strong>gent test. In this section, we sketch some conceptual imperfections of the RPRformalism, many of which have been amended <strong>in</strong> recent years [56, 98, 99]. In addition, a selection ofrecently published data will be confronted with the RPR model <strong>in</strong> order to confirm its reliability <strong>and</strong>robustness.New high-quality data with unprecedented statistics have been published by the CLAS collaboration.These data comprise differential cross sections <strong>and</strong> recoil-polarisation asymmetries for both thep(γ, K + )Λ [123] <strong>and</strong> p(γ, K + )Σ 0 [130] reaction channels. The extended energy range, which reacheswell beyond the resonance region, is of particular <strong>in</strong>terest to the RPR model. The new data setsallow to cross-check the high-energy data that is used to tune the background parameters of theRegge model. Dey <strong>and</strong> Mayer po<strong>in</strong>t out <strong>in</strong> Ref. [131] that considerable discrepancies exist between


24 2.4. The RPR model: the good, the bad <strong>and</strong> the ugly0.50.4E γ= 1125 MeV0.50.4E γ= 1275 MeV0.50.4E γ= 1425 MeV0.30.30.30.20.20.20.10.10.10.50.5­1.0 ­0.5 0.0 0.5 1.0E γ = 1575 MeV0.40.4E γ0.5­0.5 0.0 0.5 1.0= 1725 MeV0.4E γ­0.5 0.0 0.5 1.0= 1875 MeV0.30.20.30.20.30.2dσ/dΩ (µb/sr)0.10.10.50.5­1.0 ­0.5 0.0 0.5 1.0E γ = 2025 MeV0.40.4E γ0.10.5­0.5 0.0 0.5 1.0= 2175 MeV0.4E γ­0.5 0.0 0.5 1.0= 2325 MeV0.30.20.10.30.20.10.30.20.10.50.5­1.0 ­0.5 0.0 0.5 1.0E γ = 2475 MeV0.40.40.30.30.20.2E γ0.5­0.5 0.0 0.5 1.0= 2625 MeV0.40.30.2E γ­0.5 0.0 0.5 1.0= 2775 MeVReggeRegge + resonances0.10.10.10.00.0­1.0 ­0.5 0.0 0.5 1.0­0.5 0.0 0.50.01.0*cosθ K­0.5 0.0 0.5 1.0Figure 2.6 – Differential p(γ, K + )Λ cross sections as a function of θ ∗ K for various photon energies E γ. Thesolid <strong>and</strong> dashed curves are calculations with the RPR <strong>and</strong> Regge models respectively. The vertical b<strong>and</strong>shows the angular range used for fitt<strong>in</strong>g. Data from Refs. [119] (•), [125] (), [132] () <strong>and</strong> [123] (□).the newest CLAS results <strong>and</strong> the older data sets. This implies the Regge model can be furtherref<strong>in</strong>ed. The repercussions for the RPR model are thoroughly addressed <strong>in</strong> Ref. [98].In order to keep the model uncerta<strong>in</strong>ties to a strict m<strong>in</strong>imum <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong> a low number of fitt<strong>in</strong>gparameters, resonances of sp<strong>in</strong>-5/2 <strong>and</strong> higher are not considered <strong>in</strong> Refs. [39, 40]. The RPP lists anumber of well-established higher-sp<strong>in</strong> resonances that are <strong>in</strong>dispensable <strong>in</strong> the description of (double-)pion production amongst others. Previous strangeness-production models that have consideredsp<strong>in</strong>-5/2 resonance exchange [5, 22, 24, 29, 128], on the other h<strong>and</strong>, conclude that these states do notcontribute significantly to the reaction dynamics. Nevertheless, the forthcom<strong>in</strong>g analysis [98, 133] ofthe recent kaon-production data <strong>in</strong> the RPR approach takes sp<strong>in</strong>-5/2 resonances <strong>in</strong>to account.Implement<strong>in</strong>g resonances with sp<strong>in</strong> J ≥ 3/2 <strong>in</strong> a hadrodynamical framework is a non-trivial task.The conventional Rarita-Schw<strong>in</strong>ger description of high-sp<strong>in</strong> fermion fields [136], which is adopted <strong>in</strong>this work, <strong>in</strong>volves some unphysical degrees of freedom, associated with their lower-sp<strong>in</strong> content [137].These degrees of freedom are manifested by the off-shell parameters (X, Y, Z) that feature <strong>in</strong> the


Chapter 2. The Regge-plus-resonance formalism 250.50.4E γ= 1125 MeV0.50.4E γ= 1275 MeV0.50.4E γ= 1425 MeV0.30.30.30.20.20.20.10.10.10.50.5­1.0 ­0.5 0.0 0.5 1.0E γ = 1575 MeV0.40.4E γ0.5­0.5 0.0 0.5 1.0= 1725 MeV0.4E γ­0.5 0.0 0.5 1.0= 1875 MeV0.30.20.30.20.30.2dσ/dΩ (µb/sr)0.10.10.50.5­1.0 ­0.5 0.0 0.5 1.0E γ = 2025 MeV0.40.4E γ0.10.5­0.5 0.0 0.5 1.0= 2175 MeV0.4E γ­0.5 0.0 0.5 1.0= 2325 MeV0.30.20.10.30.20.10.30.20.10.50.5­1.0 ­0.5 0.0 0.5 1.0E γ = 2475 MeV0.40.40.30.30.20.2E γ0.5­0.5 0.0 0.5 1.0= 2625 MeV0.40.30.2E γ­0.5 0.0 0.5 1.0= 2775 MeVReggeRegge + resonances0.10.10.10.00.0­1.0 ­0.5 0.0 0.5 1.0­0.5 0.0 0.50.01.0*cosθ K­0.5 0.0 0.5 1.0Figure 2.7 – Differential p(γ, K + )Σ 0 cross sections as a function of θ ∗ K for various photon energies E γ.The solid <strong>and</strong> dashed curves are calculations with the RPR-3 <strong>and</strong> Regge-3 models respectively. The verticalb<strong>and</strong> shows the angular range used for fitt<strong>in</strong>g. Data from Refs. [121] (•), [119] (), [134] (), [135] (),[125] (◦) <strong>and</strong> [130] (□).<strong>in</strong>teraction Lagrangians (see Section D.3) <strong>and</strong> give rise to unphysical structures <strong>in</strong> the transitionamplitude [138]. Extend<strong>in</strong>g the work of Pascalutsa [139], a consistent <strong>in</strong>teraction theory for high-sp<strong>in</strong>fermions was formulated <strong>in</strong> Ref. [99]. In the forthcom<strong>in</strong>g RPR model [98, 133], these consistent<strong>in</strong>teraction Lagrangians will be adopted for sp<strong>in</strong>-3/2 <strong>and</strong> sp<strong>in</strong>-5/2 resonance exchange.As mentioned <strong>in</strong> Section 2.3, the RPR-model analysis of Refs. [39, 40] was restricted to forward kaonproductionangles. Later on <strong>in</strong> this work, the RPR elementary-production operator will constituteone of the basic <strong>in</strong>gredients of the strangeness-production calculations from the deuteron. To this end,we wish to assess the behaviour of the RPR model over the full angular range. In Figures 2.6 <strong>and</strong> 2.7,the p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 differential cross sections are shown for 1125 ≤ E γ ≤ 2775 MeV.Immediately, one notices that the Reggeized background model provides a fair description of thecross section even though it was optimised aga<strong>in</strong>st high-energy data. In the threshold region, theRegge model overpredicts the Λ-production data, whereas it accounts for about half the strengthof the K + Σ 0 channel. At higher energies, the Regge model slightly overpredicts the data <strong>in</strong> both


26 2.4. The RPR model: the good, the bad <strong>and</strong> the ugly1.0Regge1.0Regge + resonancesχ 210 20.50.510cosθ K*0.00.01­0.5­0.510 ­1­1.02000 2500­1.0(MeV)W KY2000 250010 ­2Figure 2.8 – The performance of the Regge (left panel) <strong>and</strong> RPR (right panel) model for the descriptionof the p(γ, K + )Λ data. Every data po<strong>in</strong>t represents a (W KY , θK ∗ ) vector. The colour code <strong>in</strong>dicates the χ2of the model for a particular data po<strong>in</strong>t. Data from Refs.[119–123, 125, 132, 140–142].1.0Regge1.0Regge + resonancesχ 210 20.50.510cosθ K*0.00.01­0.5­0.510 ­1­1.02000 2500­1.0(MeV)W KY2000 250010 ­2Figure 2.9 – The performance of the Regge-3 (left panel) <strong>and</strong> RPR-3 (right panel) model for the descriptionof the p(γ, K + )Σ 0 data. Every data po<strong>in</strong>t represents a (W KY , θK ∗ ) vector. The colour code <strong>in</strong>dicates theχ 2 of the model for a particular data po<strong>in</strong>t. Data from Refs.[119–122, 125, 130, 134, 135, 140].reaction channels. This is an <strong>in</strong>dication of the data <strong>in</strong>consistencies alluded to <strong>in</strong> Ref. [131].Over the full energy range the RPR model nicely reproduces the data at forward angles. We rem<strong>in</strong>dthe reader that only the cos θK ∗ ≥ 0.35 data were <strong>in</strong>cluded <strong>in</strong> the fits. In Figures 2.6 <strong>and</strong> 2.7,this region is <strong>in</strong>dicated with a vertical b<strong>and</strong>. At backward angles, on the other h<strong>and</strong>, the RPRpredictions feature bumps that are absent <strong>in</strong> the data. These structures occur near threshold forK + Σ 0 production <strong>and</strong> are prom<strong>in</strong>ent at higher energies <strong>in</strong> the p(γ, K + )Λ channel. The difficulty ofthe RPR model to account for the data <strong>in</strong> the backward hemisphere is readily visualised <strong>in</strong> Figures 2.8<strong>and</strong> 2.9. They show the χ 2 for the Regge <strong>and</strong> RPR models per data po<strong>in</strong>t, that is cross sections aswell as polarisation observables.The RPR-model analysis of Refs. [39, 40, 97] was limited to forward angles, motivated by theRegge model’s region of validity. At backward angles, one could expect that meson production canbe parametrised with Reggeized hyperon exchange <strong>in</strong> the u-channel [112]. Such an approach haspreviously been applied <strong>in</strong> pion photoproduction [38]. For kaon production, however, the cross-sectiondata shown <strong>in</strong> Figures 2.6 <strong>and</strong> 2.7 lack of any form of peak<strong>in</strong>g at backward angles. This rules outthe need for a Regge approach. We judge that the <strong>in</strong>clusion of nucleon resonances <strong>in</strong> the s-channelcan account for strangeness production over the full solid angle. Therefore, the restriction on theangular range of the data used <strong>in</strong> the fitt<strong>in</strong>g database is relieved <strong>in</strong> the forthcom<strong>in</strong>g RPR-modelanalysis [98, 133]. This allows for a successful description of kaon production at all angles.


Chapter 2. The Regge-plus-resonance formalism 27C xC z1.51.00.50.0­0.5­1.01.51.00.50.0­0.5­1.0­1.51.51.00.50.0­0.5*cosθ = ­0.75­1.0 *Kcosθ = 0.25­1.0 *Kcosθ K= 0.851800 2000 2200 24001.52600 1800 2000 2200 24001.52600 1800 2000 2200 2400 26001.01.00.50.0­0.5*cosθ = ­0.75­1.0 *Kcosθ = 0.25­1.0 *Kcosθ K= 0.851800 2000 2200­1.52400 2600 1800 2000 2200­1.52400 2600 1800 2000 2200 2400 2600(MeV)W KY1.51.00.50.0­0.50.50.0­0.5ReggeRegge + resonancesFigure 2.10 – Beam-recoil polarisation asymmetries C x (upper panels) <strong>and</strong> C z (lower panels) for thep(γ, K + )Λ reaction as function of the kaon-hyperon <strong>in</strong>variant mass W KY at three kaon scatter<strong>in</strong>g angles.The solid <strong>and</strong> dashed curves are calculations with the RPR <strong>and</strong> Regge models respectively. Data fromRef. [140].Despite its shortcom<strong>in</strong>gs, the RPR model provides an efficient description of EM kaon production.This is exemplified by the excellent predictions for the beam-recoil polarisation asymmetries (2.23).In Figure 2.10, the observables C x <strong>and</strong> C z are displayed at forward <strong>and</strong> backward angles. Theseasymmetries have the remarkable feature that at nearly all k<strong>in</strong>ematics C x rema<strong>in</strong>s close to zero <strong>and</strong>that C z is near its upper limit +1. The Regge model reproduces these gross features. The additionof s-channel resonances further improves the model’s correspondence with the data. Given that theresults of Figure 2.10 are predictions, this illustrates the predictive power of the RPR formalism.Figure 2.11 features the beam-recoil asymmetries obta<strong>in</strong>ed with l<strong>in</strong>early polarised photons. TheRPR models fails to reproduce the data near threshold, where the resonances provide marg<strong>in</strong>alcontributions. S<strong>in</strong>ce the lowest-mass resonance considered <strong>in</strong> the RPR-model analysis is the S 11 (1650),this might po<strong>in</strong>t at the need to consider sub-threshold resonances. At the higher energy b<strong>in</strong>s, thepredicted role of the resonances grows <strong>and</strong> their <strong>in</strong>clusion greatly improves the agreement with thedata.The extension of the RPR formalism to kaon electroproduction does not require any additionalparameters. The electroproduction results are thus pure predictions. Nevertheless, an adequatedescription of the data is achieved [69, 97]. Here, we simply wish to illustrate this us<strong>in</strong>g tworecently published data sets. In Ref. [143], new results for the separated longitud<strong>in</strong>al <strong>and</strong> transversep(e, e ′ K + )Λ cross sections are presented. They are compared to predictions from the Saclay-Lyonisobar model [22] <strong>and</strong> a Regge model [144] that resembles the one presented <strong>in</strong> Section 2.2. Weshow the new data <strong>in</strong> Figure 2.12. It is clear the Regge model underpredicts σ T , but exhibits theobserved flat energy dependence. The longitud<strong>in</strong>al cross section is well described at Q 2 = 1.90 GeV 2 .At the highest Q 2 b<strong>in</strong>, however, the predicted cross section lies below the data. The authors ofRef. [143] mention that the general EM kaon form factor is off shell when used <strong>in</strong> a t-channel diagram.Therefore, it becomes function of the momentum transfer t <strong>in</strong> addition to the photon’s virtuality Q 2 .In order to better describe the observed energy dependence with the Regge model, they <strong>in</strong>troduce


28 2.4. The RPR model: the good, the bad <strong>and</strong> the uglyO z’O x’1.51.00.50.00.50.0W KY1.5= 1649 MeV1.00.50.0­0.5­0.5­1.0­1.0­1.5­1.5­1.0 ­0.5 0.0 W = 1649 0.5 MeV1.01.0KY1.00.50.0­0.5­0.5Regge­1.0­1.0Regge + resonances­1.5­1.5­1.0 ­0.5 0.0 0.5 1.0W KY1.5= 1781 MeV1.00.50.0­0.5­1.0­1.5­0.5 0.0 W = 1781 0.5 MeV1.0­0.5 0.0 0.5 1.0KYW = 1906 MeV1.0KY0.50.0­0.5­1.0­0.5 0.0 0.5­1.51.0*cosθ K= 1906 MeVW KY­0.5 0.0 0.5 1.0Figure 2.11 – The angular dependence of the beam-recoil polarisation asymmetries O z ′ (upper panels)<strong>and</strong> O x ′ (lower panels) for p(γ, K + )Λ at three values of W KY . The solid <strong>and</strong> dashed curves are calculationswith the RPR <strong>and</strong> Regge models respectively. Data from Ref. [141].an off-shell extension to the traditional kaon form factor <strong>and</strong> fit the parameters correspond<strong>in</strong>g tothe degree of off-shellness to the data of Refs [143, 145]. This procedure significantly improves thedescription of the data. Our results <strong>in</strong>dicate that the <strong>in</strong>clusion of resonance-exchange diagrams <strong>in</strong>the s-channel provides an alternative explanation. The coupl<strong>in</strong>g constants of these contributions arefixed <strong>in</strong> the real-photon po<strong>in</strong>t, <strong>and</strong> their Q 2 dependence is dictated by EM form factors computed <strong>in</strong>the Bonn CQM. The RPR-model results describe the W KY dependence of the cross section <strong>in</strong> bothQ 2 b<strong>in</strong>s without hav<strong>in</strong>g to fit additional parameters to the data.F<strong>in</strong>ally, we compare RPR-model predictions to measurements of the transferred polarisation over alarge range of photon virtuality <strong>in</strong> Figure 2.13. This observable can be considered the electroproductionextension of the beam-recoil polarisation asymmetries C x <strong>and</strong> C z that have been presented<strong>in</strong> Figure 2.10. Aga<strong>in</strong>, a satisfactory correspondence is atta<strong>in</strong>ed. The Regge model is able to accountfor the data, <strong>and</strong> the addition of resonances <strong>in</strong>troduces only a slight modulation as function of Q 2 .In this chapter, EM strangeness production from the proton has been described with<strong>in</strong> the RPRframework. The RPR-2007 models published <strong>in</strong> Refs. [39, 40] have been <strong>in</strong>troduced. The values fortheir free parameters can be found <strong>in</strong> Appendix I. These parameters have been optimised to theavailable data <strong>in</strong> the p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 reaction channels, where experimental results areabundant. A successful description of strangeness production from the deuteron, however, requires areaction model which accounts for all six kaon-production f<strong>in</strong>al states, <strong>in</strong>clud<strong>in</strong>g those where data isscarce or lack<strong>in</strong>g. This issue constitutes the topic of the next chapter.


Chapter 2. The Regge-plus-resonance formalism 290.200.1522Q = 1.90 GeV0.200.1522Q = 2.35 GeV(µb/sr)0.100.10σ T0.050.05(µb/sr)σ L0.14 2 1.7 1.8 2Q = 1.90 GeV1.9 2.0 2.10.14 2.2 2 1.7 1.8 2Q = 2.35 GeV1.9 2.0 2.1 2.20.120.12 Regge0.100.100.080.08Regge + resonances0.060.060.040.040.020.020.001.7 1.8 1.9 2.00.002.1 2.2 1.7 1.8 1.9 2.0 2.1 2.2(GeV)W KYFigure 2.12 – Transverse (upper panel) <strong>and</strong> longitud<strong>in</strong>al (lower panel) differential p(e, e ′ K + )Λ cross sectionsas a function of the <strong>in</strong>variant mass W KY for forward kaon production cos θ ∗ K ≈ 1 <strong>and</strong> at Q2 = 1.90 GeV 2 (leftpanels) <strong>and</strong> Q 2 = 2.35 GeV 2 (right panels). The solid <strong>and</strong> dashed curves are calculations with the RPR<strong>and</strong> Regge models respectively. Data from Ref. [143].Transferred polarisation1.00.50.0­0.5­1.01.00.50.0Regge­0.5Regge + resonances P’ zP’ x2.0 2.5 3.0 3.5 4.0­1.04.5 5.0 2.0 2.5 3.0 3.5 4.0 4.5 5.02Q 2 (GeV )Figure 2.13 – Transferred polarisations (2.40) for the p(e, e ′ K + )Λ reaction as a function of the photonvirtuality Q 2 at cos θK ∗ = 0.43. The electron-beam energy is fixed at 5754 MeV <strong>and</strong> the kaon-hyperon<strong>in</strong>variant mass is W KY = 1990 MeV. The solid <strong>and</strong> dashed curves are calculations with the RPR <strong>and</strong> Reggemodels respectively. Data from Ref. [146].


30 2.4. The RPR model: the good, the bad <strong>and</strong> the ugly


CHAPTER 3Kaon production <strong>in</strong> data-poor reaction channelsA total of six photon-<strong>in</strong>duced reactions exist on the nucleon with a kaon-hyperon pair <strong>in</strong> the f<strong>in</strong>alstateγ + p −→ K + + Λ ,γ + p −→ K + + Σ 0 ,γ + p −→ K 0 + Σ + ,γ + n −→ K 0 + Λ ,γ + n −→ K 0 + Σ 0 ,γ + n −→ K + + Σ − .High-quality kaon-photoproduction <strong>in</strong>formation is only available for p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 . Asdiscussed <strong>in</strong> the previous chapter, this has allowed us to construct successful Regge <strong>and</strong> RPR modelsfor these reactions. Here, we address the issue whether these models can be transformed <strong>in</strong> such away that trustworthy predictions can be made for the rema<strong>in</strong><strong>in</strong>g isosp<strong>in</strong> channels.In the RPR formalism, the reaction dynamics consist of pseudoscalar- <strong>and</strong> vector-meson exchange <strong>in</strong>the t-channel as well as nucleon-resonance exchange <strong>in</strong> the s-channel. The generic structure of thetransition current operator is given byĴ K+ (494) (892)Regge+ ĴK∗+ Regge+ ĴBorn-s,elecFeynman× P K+ (494)Regge× ( t − m 2 ) ∑K + Ĵ N ∗+ Feynman + ∑ Ĵ ∆∗Feynman . (3.2)∆ ∗In order to relate different reaction channels with each other, it suffices to convert the coupl<strong>in</strong>gconstants which feature <strong>in</strong> the <strong>in</strong>teraction Lagrangians. As such, the two Λ-production channels <strong>and</strong>the four Σ-production reactions can both be described by a s<strong>in</strong>gle set of parameters.In the strong-<strong>in</strong>teraction vertex, one can fall back on SU(2) isosp<strong>in</strong> symmetry to f<strong>in</strong>d the relevantconversion factors. This concept is reviewed <strong>in</strong> Section 3.1. The transformation of the coupl<strong>in</strong>gconstants <strong>in</strong> the EM-<strong>in</strong>teraction vertex, on the other h<strong>and</strong>, cannot proceed without experimental<strong>in</strong>put. The case of kaon-production from the neutron is considered <strong>in</strong> Section 3.2. The subsequentsection deals with the production of neutral kaons.31N ∗(3.1)


32 3.1. Symmetry considerations at the strong-<strong>in</strong>teraction vertexFigure 3.1 – The three tree-level diagrams considered <strong>in</strong> the RPR framework. Special emphasis is put onthe strong-<strong>in</strong>teraction vertices.3.1 Symmetry considerations at the strong-<strong>in</strong>teraction vertexThe relations among the coupl<strong>in</strong>g constants <strong>in</strong> the strong-<strong>in</strong>teraction vertices of the various kaonproductionreactions, depicted <strong>in</strong> Figure 3.1, can be derived effortlessly. This is made possible bymeans of the isosp<strong>in</strong> symmetry of the strong force. In the strong-<strong>in</strong>teraction vertex, the hadroniccoupl<strong>in</strong>gs are proportional to the Clebsch-Gordan coefficients〈g KΛN (∗) ∼ I K = 1 2 , M K I ; I Λ = 0, MΛ I = 0∣ I N (∗) = 1 〉2 , M I , (3.3)N (∗)〈g KΛ∆ ∗ ∼ I K = 1 2 , M K I ; I Λ = 0, MΛ I = 0∣ I ∆ ∗ = 3 〉2 , M ∆ I ∗ , (3.4)<strong>and</strong>〈g KΣN (∗) ∼ I K = 1 2 , M K I ; I Σ = 1, MΣI ∣ I N (∗) = 1 〉2 , M I , (3.5)N (∗)〈g KΣ∆ ∗ ∼ I K = 1 2 , M K I ; I Σ = 1, MΣI ∣ I ∆ ∗ = 3 〉2 , M ∆ I ∗ . (3.6)We adopt the follow<strong>in</strong>g conventions for the isosp<strong>in</strong> states of the N (∗) , ∆ ∗ , K (∗) <strong>and</strong> Σ particles,p, K (∗)+ , N ∗+ → ∣ ∣I = 1 2 , M I = + 1 2〉,n, K (∗)0 , N ∗0 → ∣ ∣I = 1 2 , M I = − 1 2〉,Λ → |I = 0, M I = 0 〉 ,Σ + → −|I = 1, M I = 1〉 ,(3.7)Σ 0 → |I = 1, M I = 0〉 ,Σ − → |I = 1, M I = − 1〉 ,∆ ∗+ → ∣ ∣I = 3 2 , M I = + 1 2〉,∆ ∗0 → ∣ I =32 , M I = − 1 〉2 .The phase of the Σ − state is taken to be positive. With this choice, the Condon-Shortley phaseconvention dictates a m<strong>in</strong>us sign for the Σ + state. Us<strong>in</strong>g these isosp<strong>in</strong> states to calculate theClebsch-Gordan coefficients of Eqs. (3.3)–(3.6), we easily f<strong>in</strong>d the conversion factors of <strong>in</strong>terest.


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 33The strong coupl<strong>in</strong>g constants for the Λ-production channels are found to be isosp<strong>in</strong> <strong>in</strong>dependentg K (∗)0 Λn = g K (∗)+ Λp ,g K (∗)0 ΛN ∗0 = g K (∗)+ ΛN ∗+ .(3.8a)Only two coupl<strong>in</strong>g-constant conversion factors are given, s<strong>in</strong>ce the exchange of ∆ isobars is forbidden.The strong-<strong>in</strong>teraction vertices for p(γ, K 0 )Σ + can be related to those for p(γ, K + )Σ 0 through thefollow<strong>in</strong>g relationsg K (∗)0 Σ + p = √ 2 g K (∗)+ Σ 0 p ,g K (∗)0 Σ + N ∗+ = √ 2 g K (∗)+ Σ 0 N ∗+ ,−1g K (∗)0 Σ + ∆∗+ = √ g K 2 (∗)+ Σ 0 ∆ ∗+ ,(3.8b)<strong>and</strong> for K + Σ − production from the neutron one hasg K (∗)+ Σ − n = √ 2 g K (∗)+ Σ 0 p ,g K (∗)+ Σ − N ∗0 = √ 2 g K (∗)+ Σ 0 N ∗+ ,g K (∗)+ Σ − ∆ ∗0 = 1 √2g K (∗)+ Σ 0 ∆ ∗+ .(3.8c)F<strong>in</strong>ally, the transformation of the p(γ, K + )Σ 0 amplitude to the n(γ, K 0 )Σ 0 one, only requires somem<strong>in</strong>us signsg K (∗)0 Σ 0 n = − g K (∗)+ Σ 0 p ,g K (∗)0 Σ 0 N ∗0 = − g K (∗)+ Σ 0 N ∗+ ,(3.8d)g K (∗)0 Σ 0 ∆ ∗0 = g K (∗)+ Σ 0 ∆ ∗+ .3.2 The unbound neutron as kaon-production targetIn order to assess the predictive power of the RPR formalism, we will first focus our attention onreactions with a neutron target. Only data for the n(γ, K + )Σ − channel have been published <strong>and</strong>we will use this reaction to judge the reliability of our formalism <strong>in</strong> Paragraph 3.2.3. Besides theconversion coefficients <strong>in</strong> the strong <strong>in</strong>teraction vertex, one also needs transformation rules for theEM coupl<strong>in</strong>g constants. This is addressed <strong>in</strong> Paragraph 3.2.2. First, we touch on the subject ofgauge <strong>in</strong>variance.3.2.1 Gauge-<strong>in</strong>variance restorationA crucial constra<strong>in</strong>t for the kaon-production amplitude is gauge <strong>in</strong>variance. It is well-known that thet-channel Born diagram by itself does not conserve electric charge. In Ref. [38], an elegant recipeto correct for this was outl<strong>in</strong>ed. Add<strong>in</strong>g the electric part of a Reggeized s-channel Born diagramensures that the p(γ, K + )Y amplitude is gauge <strong>in</strong>variant.For the K 0 Λ- <strong>and</strong> K 0 Σ 0 -production reactions, this gauge-<strong>in</strong>variance-restoration procedure is irrelevant,because the kaon-exchange amplitude vanishes. The n(γ, K + )Σ − reaction is the only channel with aneutron as target <strong>and</strong> a charged kaon <strong>in</strong> the f<strong>in</strong>al state. S<strong>in</strong>ce the neutron is electrically neutral,the electric part of the s-channel Born diagram is identically zero. A gauge-<strong>in</strong>variant amplitude isobta<strong>in</strong>ed by <strong>in</strong>clud<strong>in</strong>g the electric part of a Reggeized u-channel Born diagram.


34 3.2. The unbound neutron as kaon-production target3.2.2 Helicity amplitudesIn contrast to the hadronic parameters, the relations between electromagnetic coupl<strong>in</strong>gs have tobe distilled from experimental <strong>in</strong>formation. The partial decay width for the radiative decay of aresonance of sp<strong>in</strong> S to the ground-state nucleon is given by [1]Γ(N ∗ → Nγ) = p∗2 γπ2m N(2S + 1)m N ∗(|A N 1/2 |2 + |A N 3/2 |2) , (3.9)<strong>in</strong> terms of photocoupl<strong>in</strong>g helicity amplitudes A N J. These helicity amplitudes can be directly l<strong>in</strong>kedwith current matrix elements. Us<strong>in</strong>g the conventions of Ref. [129], we have√A N 1/2 = πα〈p2m N (m 2 N− m 2 ∗ N ) N ∗, λ N ∗ = 1 2∣ j x(0) + i j y (0)∣ p N, λ N = 1 〉,2√A N 3/2 = πα〈p2m N (m 2 N− m 2 ∗ N ) N ∗, λ N ∗ = 3 2∣ j x(0) + i j y (0)∣ p N, λ N = 1 〉 (3.10).2Here, j µ (x) is the current operator. It speaks for itself that A N 3/2is zero when S = 1/2. The currentmatrix elements can be calculated with<strong>in</strong> a quark model (see Ref. [129] for example), or us<strong>in</strong>g thephenomenological <strong>in</strong>teraction Lagrangians def<strong>in</strong>ed <strong>in</strong> Section D.3.2. In this way, the N ∗ <strong>and</strong> ∆ ∗transition moments can be related to the photocoupl<strong>in</strong>g helicity amplitudes A N J. One has [147]√A N 1/2 = ∓ e m 2 N ∗ − m2 Nκ N2m N 2m ∗ N , (3.11)Nfor sp<strong>in</strong>-1/2 resonances <strong>and</strong>A N 1/2 = e4m N ∗A N 3/2 =√m 2 N ∗ − (m2 N±κ (1)3m NN ∗ N − m N ∗(m N ∗ ∓ m N)4m 2 N√e m 2 N ∗ − (m2 N±κ (1)N4m N m ∗ N ∓ m N ∗ ∓ m Nκ (2)N N 4m ∗ NN),)κ (2)N ∗ N,(3.12)for sp<strong>in</strong>-3/2 resonances. In Eqs. (3.11) <strong>and</strong> (3.12), the upper (lower) sign corresponds to positive-(negative-) parity resonances. Invert<strong>in</strong>g these relations <strong>and</strong> neglect<strong>in</strong>g the small proton-neutron massdifference, we f<strong>in</strong>dfor sp<strong>in</strong>-1/2 resonances <strong>and</strong>κ (1)N ∗ nκ (1)N ∗ pκ (2)N ∗ nκ (2)N ∗ pκ N ∗ nκ N ∗ p= An 1/2A p , (3.13)1/2√3An1/2± A n 3/2= √3Ap,1/2 ± Ap 3/2√3An1/2− mpm=N ∗ An 3/2√3Ap1/2 − .mpm N ∗ Ap 3/2(3.14)for sp<strong>in</strong>-3/2 resonances. Note that these conversion rules are only mean<strong>in</strong>gful for N ∗ ’s, s<strong>in</strong>ce the∆-nucleon magnetic transition moments κ (1,2)∆ ∗ Nare isosp<strong>in</strong> <strong>in</strong>dependent.Values for the published helicity amplitudes of the S 11 (1650), P 11 (1710), P 13 (1720), P 13 (1900) <strong>and</strong>D 13 (1900) resonance are presented <strong>in</strong> Table 3.1. The listed numbers are from the RPP [1] <strong>and</strong> two


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 35Table 3.1 – Photocoupl<strong>in</strong>g helicity amplitudes of selected nucleon resonances <strong>in</strong> units 10 −3 GeV −1/2 fromthe Bonn relativistic constituent-quark model [148], the Review of Particle <strong>Physics</strong> [1] <strong>and</strong> two SAID analyses(SM95 [149] <strong>and</strong> SP09 [127]). No experimental <strong>in</strong>formation exists for the P 13 (1900) <strong>and</strong> D 13 (1900). SP09provides photo-decay amplitudes to protons <strong>and</strong> does not f<strong>in</strong>d evidence for the P 11 (1710) resonance [150].The ratio of EM coupl<strong>in</strong>gs to proton <strong>and</strong> neutron (see Eqs. (3.13) <strong>and</strong> (3.14)) is listed as well. The SP09ratios are obta<strong>in</strong>ed with the A n J of SM95.Resonance Bonn RPP SM95 SP09S 11 (1650) A n 1/2−16.00 −15.00 ± 21.00 −15.00 ± 5.00 −A p 1/24.30 53.00 ± 16.00 69.00 ± 5.00 9.00 ± 9.10κ N ∗ nκ N ∗ p−3.72 −0.28 ± 0.41 −0.22 ± 0.07 −1.67 ± 1.77P 11 (1710) A n 1/2−26.70 −2.00 ± 14.00 −2.00 ± 15.00 −A p 1/252.80 9.00 ± 22.00 7.00 ± 15.00 −κ N ∗ nκ N ∗ p−0.51 −0.22 ± 1.65 −0.29 ± 2.23 −P 13 (1720) A n 1/2−30.20 1.00 ± 15.00 7.00 ± 15.00 −A p 1/275.90 18.00 ± 30.00 −15.00 ± 15.00 90.50 ± 3.30A n 3/211.40 −29.00 ± 61.00 −5.00 ± 25.00 −A p 3/2−25.40 −19.00 ± 20.00 7.00 ± 10.00 −36.00 ± 3.90κ (1)N ∗ nκ (1)N ∗ pκ (2)N ∗ nκ (2)N ∗ p−0.39 −2.24 ± 11.60 −0.38 ± 2.00 0.06 ± 0.30−0.40 0.42 ± 1.15 −0.50 ± 1.08 0.08 ± 0.17P 13 (1900) A n 1/22.6 − − −A p 1/25.5 − − −A n 3/216.9 − − −A p 3/22.2 − − −κ (1)N ∗ nκ (1)N ∗ pκ (2)N ∗ nκ (2)N ∗ p1.83 − − −−0.46 − − −D 13 (1900) A n 1/2−17.7 − − −A p 1/247.9 − − −A n 3/212.3 − − −A p 3/2−18.5 − − −κ (1)N ∗ nκ (1)N ∗ pκ (2)N ∗ nκ (2)N ∗ p−0.28 − − −−0.40 − − −


36 3.2. The unbound neutron as kaon-production targetdσ/dΩ (µb/sr)0.60.50.40.30.20.10.60.50.40.30.20.10.0*cosθ K= 0.651800 * 2000 2200cosθ K= 0.851800 2000 22000.60.50.40.30.20.10.60.50.40.30.20.1W KY*cosθ K= 0.751800*2000 2200cosθ K= 0.95 Regge­3Regge­40.01800 2000 2200(MeV)Figure 3.2 – Regge-model predictions for the n(γ, K + )Σ − differential cross section as a function of thekaon-hyperon <strong>in</strong>variant mass for four different values of the kaon centre-of-mass scatter<strong>in</strong>g angle. Datafrom Ref. [134]. The error bars represent the statistical uncerta<strong>in</strong>ties only. The systematic uncerta<strong>in</strong>ty is ofthe order of 20%.SAID analyses [127, 149]. It is clear that the photon coupl<strong>in</strong>gs of those resonances pert<strong>in</strong>ent to ourcalculations are poorly determ<strong>in</strong>ed. The extracted values are often <strong>in</strong>compatible, even after tak<strong>in</strong>g<strong>in</strong>to account the considerable error bars. No experimental <strong>in</strong>formation is available for the resonances ofmass 1900 MeV, i.e. P 13 (1900) <strong>and</strong> D 13 (1900). Table 3.1 also features photon coupl<strong>in</strong>gs as calculated<strong>in</strong> the Bonn CQM [148]. The theoretical predictions for the transition moments of the S 11 (1650)to neutron (proton) agree favourably with the SAID analysis SM95 [149] (SP09 [127]). Whenconfront<strong>in</strong>g the Bonn model calculations for the P 11 (1710) <strong>and</strong> P 13 (1720) resonances with the SM95SAID analysis, one notices that the transition moments to proton <strong>and</strong> neutron are overestimated,while their ratio matches with<strong>in</strong> the error. The Bonn CQM provides a fair account of all A p J fromthe SP09 analysis. This analysis, however, f<strong>in</strong>ds no evidence for the P 11 (1710) resonance [150].3.2.3 ResultsIn Chapter 2, it became clear that the kaon-production reaction mechanism is dom<strong>in</strong>ated by thebackground contributions, which we parametrise <strong>in</strong> terms of Regge-trajectory exchange. Therefore,we will first exam<strong>in</strong>e the predictive power of the Reggeized-background model us<strong>in</strong>g the limitednumber of available experimental results. At a later stage, the predictions of the full RPR modelwill be <strong>in</strong>vestigated.To our knowledge, only two data sets for the n(γ, K + )Σ − reaction channel have been published <strong>in</strong>the past. The results by the LEPS collaboration [134] comprise differential cross sections <strong>and</strong> photonbeamasymmetries at forward angles (cos θ ∗ K ≥ 0.65) <strong>in</strong> the energy range 1.5 GeV ≤ E γ ≤ 2.4 GeV.This data set has been obta<strong>in</strong>ed through quasi-free kaon photoproduction from a deuterium target.Systematic errors orig<strong>in</strong>ate from corrections for f<strong>in</strong>al-state <strong>in</strong>teractions, the pion-mediated two-stepprocess, <strong>and</strong> detector uncerta<strong>in</strong>ties. Quadratically summ<strong>in</strong>g the estimates given <strong>in</strong> Ref. [134] yieldsuncerta<strong>in</strong>ties of the order of 20 % for the differential cross section <strong>and</strong> |∆Σ| ≈ 0.2 for the photon-beam


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 37Photon­beam asymmetry Σ1.51.00.50.0­0.51.51.00.50.0­0.5­1.0cosθ K= 0.65­0.51800 2000 2200*1.51.00.50.01.51.00.50.0cosθ K= 0.751800 2000 2200Regge­3*cosθ = 0.85­0.5*KcosθRegge­4K= 0.95­1.01800 2000 2200 1800 2000 2200(MeV)W KY*Figure 3.3 – Regge-model predictions for the n(γ, K + )Σ − photon-beam asymmetry as a function of thekaon-hyperon <strong>in</strong>variant mass for four different values of the kaon centre-of-mass scatter<strong>in</strong>g angle. Datafrom Ref. [134]. The error bars represent the statistical uncerta<strong>in</strong>ties only. The systematics are estimatedto be |∆Σ| ≈ 0.2.asymmetry.Figures 3.2 <strong>and</strong> 3.3 show our Regge-model predictions for the measured observables. The differentialcross section is fairly energy <strong>in</strong>dependent <strong>and</strong> settles between 0.1 <strong>and</strong> 0.2 µb. The predictions of theRegge models provide an acceptable description of the data. Overall, the quality of agreement isbetter for the Regge-3 variant. The Regge-4 model overpredicts the cross section by a factor of two,roughly. The LEPS data shows a clear predilection for the Regge-3 model.As can be appreciated from Figure 3.3, both Regge models provide a satisfactory account of thephoton-beam asymmetry, with a vanish<strong>in</strong>g asymmetry at threshold <strong>and</strong> a steady rise as the energy<strong>in</strong>creases. Aga<strong>in</strong>, it should be stressed that these results do not <strong>in</strong>volve any free parameters <strong>and</strong>are anchored to the fitted p(γ, K + )Σ 0 amplitude through SU(2) isosp<strong>in</strong> symmetry at the strong<strong>in</strong>teraction vertex. Despite its simplicity, our approach can account quantitatively for the LEPSmeasurements.Recently, the CLAS collaboration made available a large set of n(γ, K + )Σ − differential-cross-sectionresults cover<strong>in</strong>g a broad angular range [151]. The data have been obta<strong>in</strong>ed us<strong>in</strong>g photons, <strong>in</strong> anenergy range from 0.8 GeV to 3.6 GeV, <strong>in</strong>cident on a liquid-deuterium target. The photoproducedkaon <strong>and</strong> the pion <strong>and</strong> neutron com<strong>in</strong>g from the decay<strong>in</strong>g Σ − hyperon are detected. Subsequently, thepresence of the spectator proton is <strong>in</strong>ferred by putt<strong>in</strong>g limits on the miss<strong>in</strong>g mass. In addition, a cuton the miss<strong>in</strong>g momentum |⃗p p | ≤ 250 MeV is applied. The systematic uncerta<strong>in</strong>ties are dom<strong>in</strong>atedby the background subtraction <strong>and</strong> the photon-flux calculations, <strong>and</strong> are estimated to be about4.5–13.5%. Ow<strong>in</strong>g to the large energy coverage of the CLAS data, the dynamics of the n(γ, K + )Σ −reaction can be <strong>in</strong>vestigated <strong>in</strong> the resonance region <strong>and</strong> at higher energies.In Figure 3.4, Regge-model predictions are set aga<strong>in</strong>st CLAS results at energies where the contributionof resonance exchange is judged to have died out. Clear peaks at forward scatter<strong>in</strong>g angles are visible.This <strong>in</strong>dicates the dom<strong>in</strong>ance of K (∗) exchange <strong>in</strong> the t-channel. The exponential decrease of the


38 3.2. The unbound neutron as kaon-production target1= 2382 MeVW KY1= 2460 MeVW KY1= 2535 MeVW KY10 ­1­1­1dσ/dΩ (µb/sr)10 ­2Regge­3Regge­4­1.01­0.5 0.0 0.51= 2608 MeV1.010 ­1W KY­2­1W KY­0.5 0.0 0.51= 2679 MeV1.0­2­1W KY­0.5= 2748 MeV0.0 0.5 1.010 ­2­2­2­310­1.0 ­0.5 0.0 0.5 1.0­3­0.5 0.0 0.5 1.0*cosθ K­3­0.5 0.0 0.5 1.0Figure 3.4 – Regge-model predictions for the n(γ, K + )Σ − differential cross section as a function of θ K ∗for six different values of the kaon-hyperon <strong>in</strong>variant mass. Data from Ref. [151]. The error bars representthe total (statistical plus systematic) uncerta<strong>in</strong>ty.0.50.4WKY= 1745 MeV0.5Regge­3Regge­40.4= 1849 MeVW KY0.50.4= 1948 MeVW KY0.30.30.30.20.20.2dσ/dΩ (µb/sr)0.10.10.10.50.5­1.0W =­0.52042 MeV0.0 0.5 1.0KY0.40.4W KY­0.5= 2132 MeV0.0 0.50.51.00.4W KY­0.5= 2219 MeV0.0 0.5 1.00.30.20.10.30.20.10.30.20.10.00.0­1.0 ­0.5 0.0 0.5 1.0­0.5 0.0 0.50.01.0*cosθ K­0.5 0.0 0.5 1.0Figure 3.5 – Regge-model predictions for the n(γ, K + )Σ − differential cross section as a function of θ K ∗for six different values of the <strong>in</strong>variant mass W . Data from Ref. [151]. The error bars represent the total(statistical plus systematic) uncerta<strong>in</strong>ty.


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 39differential cross section as a function of the scatter<strong>in</strong>g angle is characteristic for Regge-trajectoryexchange, <strong>and</strong> the Regge models naturally describe this trend. The magnitude at forward anglestends to be overpredicted however. In the backward hemisphere the experimental error bars aresubstantial. At these k<strong>in</strong>ematics, the Regge-4 model predicts much larger cross sections compared tothe Regge-3 model. Overall, the calculations with the Regge-3 model agree better with the data.The angular dependence of the n(γ, K + )Σ − differential cross section obta<strong>in</strong>ed by the CLAS collaboration<strong>in</strong> the resonance region is shown <strong>in</strong> Figure 3.5. The quality of agreement of the Regge modelsis analogous to the situation with the LEPS results of Figure 3.2. The shape of the cross sectionis reproduced by the Regge-3 model, yet its strength is overestimated. Aga<strong>in</strong>, the data favour theRegge-3 model.In previous work [40, 97], we had not been able to discrim<strong>in</strong>ate between the two Regge models onthe basis of the p(γ (∗) , K + )Σ 0 data. In the n(γ, K + )Σ − channel, on the other h<strong>and</strong>, the Regge-3model clearly outperforms the Regge-4 variant. Accord<strong>in</strong>gly, we will discard the latter from nowon. This implies that, for the rema<strong>in</strong>der of this dissertation, we have two unique kaon-productionmodels at our disposal. For the Λ-production channels that is the Regge-2 <strong>and</strong> RPR-2 model. TheΣ-production reactions will be described us<strong>in</strong>g the Regge-3 <strong>and</strong> RPR-3 models.Both the differential cross section <strong>and</strong> the photon-beam asymmetry <strong>in</strong> Figures 3.2, 3.3 <strong>and</strong> 3.5 exhibita rather smooth energy dependence. The Regge model predictions procure a fair description, yetdiscrepancies exist. These can possibly be attributed to nucleon <strong>and</strong> ∆ resonances. Their role <strong>in</strong> then(γ, K + )Σ − reaction can be evaluated with the RPR amplitude. As was outl<strong>in</strong>ed <strong>in</strong> Paragraph 3.2.2,the transformation of the p(γ, K + )Σ 0 amplitude requires a set of helicity amplitudes. The valuesextracted <strong>in</strong> the latest SAID analysis, SP09 [127], are ill-suited for our purposes, as this analysisdoes not provide resonance coupl<strong>in</strong>gs to neutrons. We performed calculations with the two other sets(RPP <strong>and</strong> SM95), <strong>and</strong> found them to produce qualitatively similar results. In what follows, we willdiscuss the representative results obta<strong>in</strong>ed with the helicity amplitudes extracted <strong>in</strong> the SAID SM95analysis [149]. No experimental <strong>in</strong>formation is available for the P 13 (1900) resonance. Therefore, weallow the ratios of its magnetic transition moments κ (1,2)N ∗ n /κ(1,2) N ∗ p(see Eqs. (3.13) <strong>and</strong> (3.14)) to varybetween −2 <strong>and</strong> +2. This range encompasses the Bonn model predictions. S<strong>in</strong>ce the EM transitionstrengths for delta resonances to protons <strong>and</strong> neutrons are identical, we <strong>in</strong>clude the D 33 (1700),S 31 (1900), P 31 (1910), <strong>and</strong> P 33 (1920) resonances with the EM coupl<strong>in</strong>g constants determ<strong>in</strong>ed <strong>in</strong> thep(γ, K + )Σ 0 reaction channel.The amplitudes of the RPR-3 model are the sum of the Regge-3 background <strong>and</strong> resonance contributions.In Figures 3.6 <strong>and</strong> 3.7, we confront the RPR-3 <strong>and</strong> Regge-3 predictions for n(γ, K + )Σ − withthe LEPS data. One observes a destructive <strong>in</strong>terference between the Reggeized background <strong>and</strong> theresonance diagrams. This reduces the reaction strength <strong>and</strong> marg<strong>in</strong>ally improves the agreement withthe cross section data <strong>in</strong> all angular b<strong>in</strong>s <strong>and</strong> for all energies. From Figure 3.7, it is pla<strong>in</strong> that theRegge-3 <strong>and</strong> RPR-3 models provide similar predictions for the photon-beam asymmetry Σ. Thisobservation leads us to conclude that the Σ observable is rather <strong>in</strong>sensitive to resonance-exchangecontributions.From Table 3.1, we learn that the helicity amplitudes extracted <strong>in</strong> the SM95 analysis have considerableerror bars. Their impact is assessed <strong>in</strong> Figures 3.6 <strong>and</strong> 3.7, <strong>and</strong> is quite dramatic. Us<strong>in</strong>g the error barsgiven <strong>in</strong> table 3.1, we considered 21 equidistant values for every κ N ∗ nκ<strong>and</strong> computed the n(γ, K + )Σ −N ∗ pobservables for each of these 21 6 comb<strong>in</strong>ations. The shaded area of Figures 3.6 <strong>and</strong> 3.7 <strong>in</strong>dicates the


40 3.2. The unbound neutron as kaon-production targetdσ/dΩ (µb/sr)0.60.50.40.30.2RPR­3Regge­3Kaon­MAID0.1* 0.1cosθ K= 0.650.60.61000 1500 2000 25000.50.50.40.30.20.60.50.40.30.20.40.30.20.1* 0.1cosθ K= 0.850.00.01000 1500 2000 2500(MeV)E γ*cosθ K= 0.751500 2000 2500*cosθ K= 0.951500 2000 2500Figure 3.6 – The n(γ, K + )Σ − differential cross section as a function of the <strong>in</strong>com<strong>in</strong>g photon’s LABenergy for four different values of the kaon centre-of-mass scatter<strong>in</strong>g angle. The dashed curve <strong>in</strong>dicates theRegge-3 model, whereas the full curve corresponds to the RPR-3 amplitude, i.e. Regge-3 supplemented withS 11 (1650), D 33 (1700), P 11 (1710), P 13 (1720), P 13 (1900), S 31 (1900), P 31 (1910) <strong>and</strong> P 33 (1920) resonances.The shaded area takes the uncerta<strong>in</strong>ties of the adopted helicity amplitudes <strong>in</strong>to account. These uncerta<strong>in</strong>tiesare listed <strong>in</strong> table 3.1 under SM95. The ratios of EM coupl<strong>in</strong>g constants for the P 13 (1900) resonanceare taken <strong>in</strong> the range [−2, 2] (light b<strong>and</strong>) <strong>and</strong> [−1, 1] (dark b<strong>and</strong>). The dotted curve represents theKaon-MAID [23] predictions. Data from Ref. [134].1.51.01.51.0Photon­beam asymmetry Σ0.50.0­0.5*cosθ K= 0.651.5 1000 1500 2000 1.5 25001.00.50.00.50.0­0.51.00.50.0*cosθ K= 0.75RPR­3 1500 2000 2500Regge­3Kaon­MAID­0.5­0.5**cosθ K= 0.85cosθ K= 0.95­1.0­1.01000 1500 2000 2500 1500 2000 2500(MeV)E γFigure 3.7 – The n(γ, K + )Σ − photon-beam asymmetry as a function of the <strong>in</strong>com<strong>in</strong>g photon’s LABenergy for four different values of the kaon centre-of-mass scatter<strong>in</strong>g angle. The curves are as <strong>in</strong>dicated <strong>in</strong>figure 3.6. Data from Ref. [134].


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 41range of values for dσ/dΩ <strong>and</strong> Σ obta<strong>in</strong>ed with this procedure. The experimental ambiguities of thetransformed photon coupl<strong>in</strong>gs result <strong>in</strong> deviations up to 100 % for the differential cross section. Thereduced sensitivity to resonant contributions leads to predictions for the photon-beam asymmetrythat are affected to a smaller extent. Nevertheless, the uncerta<strong>in</strong>ty can be as large as ∆Σ ≈ 0.8.One notices that the error b<strong>and</strong> <strong>in</strong> Figure 3.6 is not positioned symmetrically around the RPRprediction. The addition of resonant diagrams to the Reggeized background amplitude producesdestructive <strong>in</strong>terference. By vary<strong>in</strong>g the EM coupl<strong>in</strong>g constants of the resonances with<strong>in</strong> their allowedranges, this destructive <strong>in</strong>terference is easily destroyed. When one or more of the conversion factorsis large, particular resonances will dom<strong>in</strong>ate the reaction dynamics <strong>and</strong> the cross section will beenlarged. We illustrate this by impos<strong>in</strong>g a more restrictive range [−1, 1] for the coupl<strong>in</strong>g-constantratio of the P 13 (1900) state. The results us<strong>in</strong>g these limits are shown <strong>in</strong> Figures 3.6 <strong>and</strong> 3.7 with adarker shaded error b<strong>and</strong>. The lower edge of the dark-coloured b<strong>and</strong> co<strong>in</strong>cides almost perfectly withthat of the light-coloured one. Yet, the width of the dark-coloured area is substantially reduced. Forthe photon-beam asymmetry, the reduced error bars do not have a great effect on the size of the<strong>in</strong>duced uncerta<strong>in</strong>ties.From the previous discussion, it becomes clear that Regge models have considerable predictive power.As a consequence, one can rely solely on isosp<strong>in</strong> arguments when transform<strong>in</strong>g the K + productionamplitude from proton to neutron targets. The RPR model, on the other h<strong>and</strong>, is less resilient. It isclear that the current errors on the extracted helicity amplitudes impose severe constra<strong>in</strong>ts on thepredictive power of the RPR model. This result is not limited to the RPR model, but is <strong>in</strong>herent toany model that <strong>in</strong>cludes the exchange of nucleon resonances <strong>in</strong> the s-channel. To illustrate this, wehave <strong>in</strong>cluded model predictions for n(γ, K + )Σ − from Kaon-MAID [23, 152] <strong>in</strong> Figures 3.6 <strong>and</strong> 3.7.This isobar model treats the background <strong>in</strong> terms of s-, t- <strong>and</strong> u-channel Born diagrams as well asK ∗ (892) <strong>and</strong> K 1 (1270) exchange. In addition, Kaon-MAID considers a “m<strong>in</strong>imal” set of resonances,consist<strong>in</strong>g of S 11 (1650), P 11 (1710), P 13 (1720), S 31 (1900) <strong>and</strong> P 31 (1910). All of these resonances havea three- or four-star rat<strong>in</strong>g. In order to convert the p(γ, K + )Σ 0 to the n(γ, K + )Σ − amplitude, SM95values for the helicity amplitudes were adopted. As can be appreciated from Figure 3.6, Kaon-MAIDdescribes the measured differential cross section up to E γ ≈ 2000 MeV at forward angles. Thepredicted rise of the differential cross section with <strong>in</strong>creas<strong>in</strong>g E γ is absent <strong>in</strong> the data. Furthermore,the predicted sign of the photon-beam asymmetry is opposite to the data.The energy dependence of the n(γ, K + )Σ − differential cross section is depicted <strong>in</strong> Figure 3.8 fordifferent angular b<strong>in</strong>s <strong>in</strong> the forward <strong>and</strong> backward hemisphere. One observes that the results fromthe CLAS <strong>and</strong> LEPS collaborations agree well with each other. At forward angles, the cross sectionbecomes constant at high energies. As one moves to backward angles, a fall-off becomes evident.The Regge model reproduces this observation, but overpredicts the magnitude of the cross section <strong>in</strong>the forward hemisphere. The resonant diagrams <strong>in</strong>terfere mostly destructively with the Reggeizedbackground, thus br<strong>in</strong>g<strong>in</strong>g the model predictions closer to the data. At backward angles, however,the RPR model produces a clear resonant structure at an energy W KY ≈ 1900 MeV. This bump,which is most likely a manifestation of either the P 13 (1900) or the D 13 (1900) resonance, is alsopresent <strong>in</strong> the data for −0.55 ≤ cos θ K ∗ ≤ 0.35, but is not as outspoken.Figure 3.8 also illustrates the effect of the errors bars of the adopted helicity amplitudes. The resultsconfirm that the <strong>in</strong>duced uncerta<strong>in</strong>ties are big <strong>and</strong> the effect on the predicted cross sections can be aslarge as a factor five. Towards higher energies, the uncerta<strong>in</strong>ties dw<strong>in</strong>dle. This comes as no surprise,s<strong>in</strong>ce the highest mass of the resonances considered <strong>in</strong> the RPR model is 1900 MeV. One notices that


42 3.2. The unbound neutron as kaon-production target0.50.4*0.5cosθ K= ­0.750.4*0.5cosθ K= ­0.650.4*cosθ K= ­0.550.30.30.30.20.20.20.10.10.10.50.50.51800 2000 2200 2400 * 2600 1800 2000 2200 2400*2600 1800 2000 2200 2400*2600cosθ K= ­0.45cosθ K= ­0.35cosθ K= ­0.250.40.40.40.30.20.10.30.20.10.30.20.10.50.50.51800 2000 2200 2400 * 2600 1800 2000 2200 2400*2600 1800 2000 2200 2400*2600cosθ K= ­0.15cosθ K= ­0.05cosθ K= 0.050.40.40.40.30.20.30.20.30.2dσ/dΩ (µb/sr)0.10.10.10.50.50.51800 2000 2200 2400*2600 1800 2000 2200 2400*2600 1800 2000 2200 2400*2600cosθ K= 0.15cosθ K= 0.25cosθ K= 0.350.40.40.40.30.20.10.30.20.10.30.20.10.50.50.51800 2000 2200 2400*2600 1800 2000 2200 2400*2600 1800 2000 2200 2400*2600cosθ K= 0.45cosθ K= 0.55cosθ K= 0.650.40.40.40.30.20.10.30.20.10.30.20.10.0 0.50.5 0.00.0 0.51800 2000 2200 2400*2600 1800 2000 2200 2400*2600 1800 2000 2200 2400*2600cosθ K= 0.75cosθ K= 0.85cosθ K= 0.950.40.40.40.30.30.30.20.10.20.11800 2000 2200 2400 2600 1800 2000 2200 2400 2600 1800 2000 2200 2400 2600(MeV)W KY0.20.1RPR­3Regge­3Figure 3.8 – The n(γ, K + )Σ − differential cross section as a function of the kaon-hyperon <strong>in</strong>variant massfor 18 different values of the kaon centre-of-mass scatter<strong>in</strong>g angle. The dashed curve <strong>in</strong>dicates the Regge-3model, whereas the full curve corresponds to the RPR-3 amplitude. The shaded area takes the uncerta<strong>in</strong>tiesof the adopted helicity amplitudes <strong>in</strong>to account. Data from Refs. [151] (•) <strong>and</strong> [134] ().


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 43the RPR model that uses the central values for the coupl<strong>in</strong>g-constant ratios often corresponds to thesituation of maximised destructive <strong>in</strong>terference between the resonant <strong>and</strong> background contributions.This is especially true at backward scatter<strong>in</strong>g angles. Therefore, we can conclude that, <strong>in</strong> spite of thelarge theoretical uncerta<strong>in</strong>ties, the RPR model provides conv<strong>in</strong>c<strong>in</strong>g predictions for the n(γ, K + )Σ −reaction channel.3.3 Regge formalism for neutral-kaon photoproductionAnother set of strangeness-production reactions where only limited amounts of data are available<strong>in</strong>volves the production of neutral kaons. The K 0 Λ <strong>and</strong> K 0 Σ 0 f<strong>in</strong>al states are produced when the<strong>in</strong>com<strong>in</strong>g photon <strong>in</strong>teracts with a neutron target. Recently, polarisation asymmetries for thesechannels have been presented <strong>in</strong> the dissertation of N. Hassall [153]. These data have been obta<strong>in</strong>eddur<strong>in</strong>g the g13 experiment us<strong>in</strong>g the CLAS spectrometer, <strong>and</strong> the f<strong>in</strong>al analysis is ongo<strong>in</strong>g.For the p(γ, K 0 )Σ + reaction, several published data sets are available [154, 155], <strong>in</strong> addition toresults presented <strong>in</strong> the context of dissertations [156, 157]. Therefore, we will focus on this reactionchannel <strong>in</strong> order to evaluate our formalism for neutral-kaon production, which is the topic of thefollow<strong>in</strong>g section.3.3.1 The naive approachIn Section 2.2, the Regge model for strangeness production was <strong>in</strong>troduced. The productionamplitude is modelled by the t-channel exchange of K(494) <strong>and</strong> K ∗ (892) Regge trajectories. Inthe left panel of Figure 3.9, we show their l<strong>in</strong>ear trajectories together with their RPP masses. Toensure the gauge <strong>in</strong>variance of the reaction amplitude, a Reggeized version of the electric part ofthe s-channel Born diagram was added. Transform<strong>in</strong>g the p(γ, K + )Λ or p(γ, K + )Σ 0 amplitudes toneutral-kaon production reactions requires modifications to the coupl<strong>in</strong>g constants of the relevantFeynman diagrams. The recipe at the strong-<strong>in</strong>teraction vertex has been outl<strong>in</strong>ed <strong>in</strong> Section 3.1.The n(γ, K + )Σ − results of the previous section have demonstrated this approach is reliable. Thetransformation rules for the three K 0 -production channels are conta<strong>in</strong>ed <strong>in</strong> Eq. (3.8).The transformation of the EM vertex is more troublesome, s<strong>in</strong>ce it <strong>in</strong>evitably requires experimental<strong>in</strong>put from other reactions. When transform<strong>in</strong>g K + (494) <strong>and</strong> K ∗+ (892) exchange <strong>in</strong> the t-channel,the relevant coupl<strong>in</strong>g constants <strong>in</strong> the EM vertex are the charge of the kaon <strong>and</strong> the magnetictransition moment κ K ∗ K respectively.Neutral kaons have no charge, <strong>and</strong> therefore the contribution from the kaon-exchange diagramvanishes <strong>in</strong> the N(γ, K 0 )Y channels. For this reason, also the gauge-<strong>in</strong>variance-restor<strong>in</strong>g s-channeldiagram is no longer needed. This leaves us with the K ∗0 (892) exchange diagram. The decay widthof vector mesons to the ground-state kaon can be directly l<strong>in</strong>ked to the square of the magnetictransition moment 1 . Adopt<strong>in</strong>g the decay widths listed <strong>in</strong> the RPP [1]Γ ( K ∗0 (892) → K 0 (494)γ ) /Γ total 2.31 ± 0.20 · 10−3Γ (K ∗+ (892) → K + =(494)γ) /Γ total 9.9 ± 0.9 · 10 −4 = 2.33 ± 0.30 , (3.15)1 See the technical notes accompany<strong>in</strong>g the Ph.D. thesis of S. Janssen [158].


44 3.3. Regge formalism for neutral-kaon photoproduction4*K 4(2045)4K 4 (2500)3*K 3(1780)3K 3(2320)α(t)2*K 2(1430)K 2 (1770)2K 2 (1820)*K 2(1980)1*K (892)K 1 (1270)K 1 (1400)1 *K (1410)*K (1680)0K(494)0*K 0(1430)0 1 2 3 4 5 6 7t (GeV2)1 2 3 4 5 6 7Figure 3.9 – Chew-Frautschi plot for a comprehensive set of strange mesons as listed <strong>in</strong> the RPP [1].Unconfirmed states are marked with a hollow circle (◦). All particles are colour-coded accord<strong>in</strong>g to theirrespective trajectories.we f<strong>in</strong>d the follow<strong>in</strong>g relationκ K ∗0 (892)K 0 (494)κ K ∗+ (892)K + (494)= −1.53 ± 0.10 . (3.16)The relative sign for these coupl<strong>in</strong>g constants cannot be deduced from experiment. In Eq. (3.16),we adopt the sign predicted by the cloudy-bag quark model of S<strong>in</strong>ger <strong>and</strong> Miller [159]. This sign isconfirmed by the Bonn CQM [160].At this po<strong>in</strong>t, we are ready to make predictions for N(γ, K 0 )Y observables us<strong>in</strong>g the Regge modelwhich parametrises the background contributions. Add<strong>in</strong>g resonances to these amplitudes does not<strong>in</strong>troduce additional problems. The strong coupl<strong>in</strong>g constants can be transformed with the samerules as the t-channel coupl<strong>in</strong>g constants (see Eq. (3.8)). In case of a neutron target, we also requirehelicity amplitudes for the conversion of the EM coupl<strong>in</strong>g constants as was outl<strong>in</strong>ed <strong>in</strong> Section 3.2.From Table J.3, we learn that very little data is available to test our formalism. For the p(γ, K 0 )Σ +reaction, we have differential cross sections, total cross sections <strong>and</strong> recoil-polarisation asymmetriesat our disposal. The SAPHIR collaboration has published differential cross sections <strong>in</strong> the energyrange 1100 MeV ≤ E γ ≤ 2525 MeV with full angular coverage, as well as total cross sections <strong>in</strong> thesame energy range [154]. This data is supplemented with some low-statistics recoil-polarisation datafor two wide E γ b<strong>in</strong>s. This complicates the comparison with model predictions, s<strong>in</strong>ce the calculationsneed to be averaged. The CB/ELSA-TAPS collaboration [155] 2 has published cross-section resultscover<strong>in</strong>g angles <strong>and</strong> energies that almost co<strong>in</strong>cide with those of the SAPHIR collaboration. Therecoil-polarisation results, on the other h<strong>and</strong>, have a better energy <strong>and</strong> angular coverage. The CLAScollaboration has measured differential cross sections over a large energy range. These data have notyet been published, but are presented <strong>in</strong> the dissertation of B. Carnahan [157]. Given the scarcityof data <strong>in</strong> the p(γ, K 0 )Σ + reaction channel, we will make use of them. In what follows, fits will beperformed to p(γ, K 0 )Σ + data. All above-mentioned data sets will be part of the fitt<strong>in</strong>g database,2 The same data set has been presented <strong>in</strong> smaller energy b<strong>in</strong>s <strong>in</strong> R. Castelijn’s dissertation [156]. This is the datawe will use.


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 450.50.4Eγ= 1100 MeV0.5RPR­3Regge­30.4E γ= 1300 MeV0.50.4E γ= 1500 MeV0.30.30.30.20.20.2dσ/dΩ (µb/sr)0.10.70.70.7­1.0E = 1700 ­0.5 MeV 0.0 0.5 1.0 ­0.5 0.0 0.5 1.0γEγ= 1950 MeVE = 2350 ­0.5 MeV 0.0 0.5 1.00.60.60.6 γ0.50.40.30.20.10.10.50.40.30.20.10.00.0­1.0 ­0.5 0.0 0.5 1.00.10.50.40.30.20.1­0.5 0.0 0.50.01.0*cosθ K­0.5 0.0 0.5 1.0Figure 3.10 – The differential cross section for p(γ, K 0 )Σ + as a function of the kaon’s CM scatter<strong>in</strong>gangle. The solid <strong>and</strong> dashed curves represent the RPR-3 <strong>and</strong> Regge-3 models respectively. Data fromRefs. [154] (•) <strong>and</strong> [155] ().Recoil asymmetry P1.00.50.0­0.51050 < E γ (MeV) < 15501.00.50.0­0.5­1.0­1.0 ­0.5 0.0 0.5­1.01.0*cosθ K1550 < E γ (MeV) < 2600RPR­3Regge­3­0.5 0.0 0.5 1.0Figure 3.11 – The recoil polarisation for p(γ, K 0 )Σ + as a function of the kaon’s CM scatter<strong>in</strong>g angle.The solid <strong>and</strong> dashed curves represent the RPR-3 <strong>and</strong> Regge-3 models respectively. Data from Ref [154].except for the recoil-polarisation asymmetries of the SAPHIR collaboration, which are presented <strong>in</strong>very wide energy b<strong>in</strong>s.The predictions us<strong>in</strong>g the Regge-3 <strong>and</strong> RPR-3 models are compared to the SAPHIR data <strong>in</strong>Figures 3.10 <strong>and</strong> 3.11. It is pla<strong>in</strong> that the results are not conv<strong>in</strong>c<strong>in</strong>g. For the differential crosssections, the strength is overpredicted by roughly one order of magnitude, except for the lowestenergy b<strong>in</strong>s where the predicted angular shape does not agree with the data.As mentioned previously, the large energy b<strong>in</strong>s for the recoil polarisation make it very difficult tocompare the data to model calculations. The data do suggest that the asymmetry is positive <strong>and</strong>not small for cos θK ∗ ≠ ±1. This qualitative behaviour is reproduced by neither the Regge nor RPRmodel. The former is zero, because it has a constant phase <strong>and</strong> is therefore real. This results <strong>in</strong> avanish<strong>in</strong>g asymmetry. Once resonances are added to the Regge amplitude, a non-zero asymmetry isobta<strong>in</strong>ed. The RPR-3 predicts a negative recoil-polarisation asymmetry, however.Can we underst<strong>and</strong> why the Regge model does a poor job <strong>in</strong> the p(γ, K 0 )Σ + channel? In the left


46 3.3. Regge formalism for neutral-kaon photoproduction0.60.4= 1757 MeVW KY0.6+ 0p(γ,K )Σ0.4= 1770 MeVW KY0 +p(γ,K )Σ0.20.20.60.6­1.0 = ­0.5 2052 MeV 0.0 0.5 1.0W KYW KY= ­0.5 2064 MeV 0.0 0.5 1.0dσ/dΩ (µb/sr)0.40.20.40.20.60.6­1.0 ­0.5 0.0 0.5 1.0= 2290 MeVW KY0.40.4W KY­0.5 0.0 0.5 1.0= 2300 MeV0.20.20.0­1.0 ­0.5 0.0 0.50.01.0*cosθ K­0.5 0.0 0.5 1.0Figure 3.12 – The differential cross section for p(γ, K + )Σ 0 (left panels) <strong>and</strong> p(γ, K 0 )Σ + (right panels)as a function of the kaon’s CM scatter<strong>in</strong>g angle. The solid <strong>and</strong> dashed curves are calculations with theRegge-3 <strong>and</strong> RPR-3 models respectively. The dotted l<strong>in</strong>e shows the contribution of the K ∗ (892) trajectory.Data from Refs. [119] (•), [125] (), [134] (), [135] () <strong>and</strong> [154] (◦).panels of Figure 3.12, we compare the Regge-3 <strong>and</strong> RRP-3 models to a selection of differential-crosssectiondata <strong>in</strong> the p(γ, K + )Σ 0 channel. The Reggeized-background parameters are fixed aga<strong>in</strong>sthigh-energy data. The largest deviations between the predictions of the background model <strong>and</strong>the data are observed at forward angles <strong>and</strong> low energies. At these k<strong>in</strong>ematics, one expects sizablecontributions from nucleon-resonance exchange. The dotted curve depicts calculations where theK(494)-trajectory contribution has been left out. The latter plays an important role near threshold<strong>and</strong> at extreme forward angles, where the K ∗ (892)-exchange diagram vanishes. The full RPR modelgives a nice description of the data <strong>in</strong> the forward hemisphere, where it has been fitted, but performspoorly at backward angles. This issue was mentioned <strong>in</strong> Section 2.4 <strong>and</strong> is addressed <strong>in</strong> Refs. [98, 133].The p(γ, K 0 )Σ + differential cross section <strong>in</strong> the right panels has roughly half the strength of itsisosp<strong>in</strong> partner <strong>in</strong> the lowest energy b<strong>in</strong> shown. This effect grows as the photon energy rises. Thedifferential cross section is one order of magnitude smaller at the highest energy b<strong>in</strong> <strong>in</strong> Figure 3.12.This experimental observation is not at all confirmed by the Regge model. From Eqs. (3.8) <strong>and</strong> (3.16)we learn that the EM <strong>and</strong> strong coupl<strong>in</strong>g constants of the K ∗ (892)-exchange diagram are multipliedby √ 2 <strong>and</strong> −1.53 respectively. After squar<strong>in</strong>g the amplitude, this implies the p(γ, K 0 )Σ + differentialcross section will be roughly 4.7 times as large as the p(γ, K + )Σ 0 one. This is consistent withthe results <strong>in</strong> Figure 3.12. Clearly, our naive approach to transform the fitted K + Σ 0 -productionRegge amplitude to the K 0 Σ + -production channel fails <strong>and</strong> needs to be revised. In the forthcom<strong>in</strong>gparagraphs, possible strategies to remedy this are presented.


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 473.3.2 A third trajectoryIn Regge theory, one should, <strong>in</strong> pr<strong>in</strong>ciple, add all contributions from all possible trajectories <strong>in</strong> eitherthe s-, t-, or u-channel. Fortunately, this is not necessary <strong>in</strong> practise. Assum<strong>in</strong>g all coupl<strong>in</strong>g constantsadopt the same value, those trajectories with the lightest first materialisation will have the largestcontribution. For this reason, it suffices <strong>in</strong> the p(γ, K + )Σ 0 channel to <strong>in</strong>clude only K + (494) <strong>and</strong>K ∗+ (892) exchange. In the p(γ, K 0 )Σ + reaction, however, we are left with just one diagram. Thisraises the question whether another trajectory should be added. A number of possible trajectoriesare suggested <strong>in</strong> the right panel of Figure 3.9.The K 1 (1270) trajectory has negative signature <strong>and</strong> is considered the degenerate partner of theK(494) trajectory. This degeneracy is easily spotted <strong>in</strong> Figure 3.9. The sp<strong>in</strong>-parity J P of the firstmaterialisation is 1 + <strong>and</strong> the trajectory can be parametrised asα(t) = 1 + 0.7(t − m 2 K 1 (1270) ) . (3.17)Adopt<strong>in</strong>g EM decay widths as calculated with the Bonn CQM [160], one f<strong>in</strong>dsκ K 01 (1270)K 0 (494)κ K+1 (1270)K+ (494)= −0.97 . (3.18)Also the K 1 (1400) trajectory has negative signature. Its first materialisation has J P = 1 + . Aspossible other members we consider K 2 (1820) <strong>and</strong> K 4 (2500). Fix<strong>in</strong>g the trajectory’s slope us<strong>in</strong>g thefirst two materialisations, one obta<strong>in</strong>sα(t) = 1 + 0.75(t − m 2 K 1 (1400) ) . (3.19)Adopt<strong>in</strong>g EM decay widths as calculated with the Bonn CQM [160], the ratio of EM coupl<strong>in</strong>gconstants is given byκ K 01 (1400)K 0 (494)κ K+1 (1400)K+ (494)= 2.5277 . (3.20)Next, we consider the K ∗ (1410) trajectory. The first materialisation of this positive-signaturetrajectory has the same sp<strong>in</strong>-parity as the K ∗ (892). A possible second member for this trajectory isK2 ∗ (1980), which would result <strong>in</strong> a very small slope parameter. Rely<strong>in</strong>g on predictions for the kaonmasses from the Bonn CQM, we parametrise the trajectory as [69]The conversion factor for the EM coupl<strong>in</strong>g constantsα(t) = 1 + 0.85(t − m 2 K ∗ (1410) ) . (3.21)κ K ∗0 (1410)K 0 (494)κ K ∗+ (1410)K + (494)= −1.1592 . (3.22)is obta<strong>in</strong>ed with EM decay widths from the Bonn CQM as <strong>in</strong>put [160].The RPR strategy, outl<strong>in</strong>ed <strong>in</strong> Chapter 2, fixes the background parameters of the Regge model athigh energies. This background amplitude is subsequently extrapolated <strong>in</strong>to the resonance regionwhile keep<strong>in</strong>g all parameters fixed. This allows one to optimise the coupl<strong>in</strong>g constants of the resonantdiagrams unambiguously. Because of the absence of high-energy data <strong>in</strong> the K 0 Σ + channel, it isimpossible to determ<strong>in</strong>e the parameters of a possible additional Regge trajectory at high energies. Adifferent strategy <strong>in</strong>volves fitt<strong>in</strong>g a Regge amplitude consist<strong>in</strong>g of three trajectories to the high-energy


48 3.3. Regge formalism for neutral-kaon photoproduction0.30.2= 1757 MeVW KY0.3+ 0p(γ,K )Σ0.2= 1770 MeVW KY0 +p(γ,K )Σ0.10.10.30.3­1.0 = ­0.5 2052 MeV 0.0 0.5 1.0W KYW KY= ­0.5 2064 MeV 0.0 0.5 1.0dσ/dΩ (µb/sr)0.20.10.20.10.30.3­1.0 ­0.5 0.0 0.5 1.0= 2290 MeVW KY0.20.2W KY­0.5 0.0 0.5 1.0= 2300 MeV0.10.10.0­1.0 ­0.5 0.0 0.50.01.0*cosθ K­0.5 0.0 0.5 1.0Figure 3.13 – The differential cross section for p(γ, K + )Σ 0 (left panels) <strong>and</strong> p(γ, K 0 )Σ + (right panels) asa function of the kaon’s CM scatter<strong>in</strong>g angle. The calculations use the model labelled RPR-A <strong>in</strong> Table 3.2,i.e. the RPR-3 model supplemented with a K ∗ (1410) trajectory <strong>in</strong> the p(γ, K 0 )Σ + channel. The solidcurves are calculations with the Regge model, whereas the dashed curves represent the full model <strong>in</strong>clud<strong>in</strong>gresonances. The dotted l<strong>in</strong>e shows the contribution of the K ∗ (892) trajectory. Data from Refs. [119] (•),[125] (), [134] (), [135] () <strong>and</strong> [154] (◦).K + Σ 0 channel data. This way, two trajectories with known coupl<strong>in</strong>g constants rema<strong>in</strong> for thep(γ, K 0 )Σ + reaction. Aga<strong>in</strong>, the quality of the data is a limit<strong>in</strong>g factor. The high-energy fits withtwo trajectories <strong>in</strong> the K + Σ 0 channel atta<strong>in</strong> a χ 2 /n.d.f ≈ 1.1. Clearly, the current data set doesnot require an extra trajectory. Introduc<strong>in</strong>g one nonetheless would not enable us to fix the freeparameters of this third trajectory <strong>in</strong> a mean<strong>in</strong>gful way. A third option is to use resonance-regiondata to determ<strong>in</strong>e a Regge amplitude consist<strong>in</strong>g of three trajectories. This approach comes at acost, s<strong>in</strong>ce one of the attractive conceptual advantages of the RPR formalism is lost, namely the<strong>in</strong>dependent determ<strong>in</strong>ation of resonant <strong>and</strong> non-resonant parameters.In a first attempt, a pure Regge model consist<strong>in</strong>g of 3 trajectories is fitted to the p(γ, K + )Σ 0 <strong>and</strong>p(γ, K 0 )Σ + photoproduction data <strong>in</strong> the resonance region. We take the K(494) <strong>and</strong> K ∗ (892) ascore trajectories <strong>and</strong> add either a pseudovector K 1 (1400) or a vector K ∗ (1410) trajectory. Thecoupl<strong>in</strong>g constants, five <strong>in</strong> total, are constra<strong>in</strong>ed to ±100 <strong>and</strong> every possible comb<strong>in</strong>ation of phases isconsidered. A number of acceptable models is obta<strong>in</strong>ed with different comb<strong>in</strong>ations of phases. Theresult<strong>in</strong>g goodness-of-fit is of the order χ 2 /n.d.f. ≈ 7 − 9. None of these model variants, however,results <strong>in</strong> acceptable predictions for the K 0 Σ + channel. The use of p(γ, K + )Σ 0 <strong>and</strong> p(γ, K 0 )Σ + datasets <strong>in</strong> a common fit does not lead to acceptable results, because of the disparity <strong>in</strong> the number ofdata po<strong>in</strong>ts.


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 49Table 3.2 – Revised RPR-3 models optimised aga<strong>in</strong>st the available p(γ, K 0 )Σ + data. Except for modelRPR-A, the ratio of EM coupl<strong>in</strong>g constants for the K ∗ (892) trajectory was considered a free parameter.LabelTrajectories [Phases]κ K ∗0 (892)K 0 (494)κ K ∗+ (892)K + (494)χ 2 /n.d.f.RPR-A K(494) [rot] + K ∗ (892) [cst] + K ∗ (1410) [cst] -1.530 ± 0.100 5.23RPR-B K(494) [rot] + K ∗ (892) [cst] 0.054 ± 0.010 3.39RPR-C K(494) [rot] + K ∗ (892) [cst] + K 1 (1270) [cst] 0.098 ± 0.015 2.78RPR-D K(494) [rot] + K ∗ (892) [cst] + K 1 (1270) [rot] 0.117 ± 0.013 2.47RPR-E K(494) [rot] + K ∗ (892) [cst] + K 1 (1400) [cst] 0.100 ± 0.015 2.79RPR-F K(494) [rot] + K ∗ (892) [cst] + K 1 (1400) [rot] 0.061 ± 0.012 3.31RPR-G K(494) [rot] + K ∗ (892) [cst] + K ∗ (1410) [cst] -0.430 ± 0.052 2.67RPR-H K(494) [rot] + K ∗ (892) [cst] + K ∗ (1410) [rot] 0.070 ± 0.011 2.77Next, a third trajectory is added exclusively to the K 0 Σ + channel. We fit its coupl<strong>in</strong>g constants tothe available data discussed on page 44, while the rema<strong>in</strong><strong>in</strong>g parameters are kept fixed. Start<strong>in</strong>g fromthe RPR-3 amplitude, which has been optimised aga<strong>in</strong>st K + Σ 0 data, either a K 1 (1270), K 1 (1400) orK ∗ (1410) trajectory is added. Only the fit with an additional K ∗ (1410) <strong>and</strong> a constant phase leadsto an acceptable result (χ 2 /n.d.f. = 5.23). Why this particular trajectory leads to fair results isillustrated <strong>in</strong> Figure 3.13 where the RPR prediction is decomposed <strong>in</strong>to its various contributions. Inorder to reduce the cross section to the level of the data, the additional trajectory needs to providestrong enough destructive <strong>in</strong>terference with the problematic K ∗ (892) trajectory. This can only beachieved by a trajectory with similar quantum numbers <strong>and</strong> the same phase, hence the K ∗ (1410)trajectory.3.3.3 Adjust<strong>in</strong>g the strength of the K ∗ (892) trajectoryIn Paragraph 3.3.1, we conclude on the basis of Figure 3.12 that the RPR model overestimatesthe p(γ, K 0 )Σ + cross section, because the dom<strong>in</strong>ant trajectory, the K ∗ (892), is magnified by itsisosp<strong>in</strong> coefficient (3.8) <strong>and</strong> the ratio of EM decay widths (3.16). In the previous paragraph, wehave attempted to suppress the K ∗ (892) trajectory’s contribution by add<strong>in</strong>g an additional trajectory.Directly readjust<strong>in</strong>g the K ∗ (892)’s coupl<strong>in</strong>g constants presents an alternative to control this tax<strong>in</strong>gdiagram’s strength. The ratio of coupl<strong>in</strong>g constants <strong>in</strong> the strong <strong>in</strong>teraction vertex is given bySU(2) isosp<strong>in</strong> symmetry <strong>and</strong> is on solid ground. The ratio of EM coupl<strong>in</strong>g constants, on the otherh<strong>and</strong>, is based on the EM decay widths of the K ∗ (892) to charged <strong>and</strong> neutral K(494). Althoughthis ratio is well-known experimentally, we need to acknowledge that we are, <strong>in</strong> fact, deal<strong>in</strong>g withphenomenological parameters. The t-channel diagrams <strong>in</strong> our Regge formalism correspond to theexchange of entire trajectories <strong>in</strong>stead of merely their first materialisations. In this light, it is aviable option to consider the ratio of EM coupl<strong>in</strong>g constants as a free parameter left to be fitted.Fitt<strong>in</strong>g the EM coupl<strong>in</strong>g constant of the K ∗ (892) Regge trajectory to the available K 0 Σ + -productiondata, we f<strong>in</strong>dκ K ∗0 (892)K 0 (494)κ K ∗+ (892)K + (494)= 0.0540 ± 0.0101 . (3.23)All other parameters of the RPR-3 model have been kept fixed. Despite the fact that only one


50 3.3. Regge formalism for neutral-kaon photoproduction0.10cos0.080.060.040.02*θ K= ­0.90RPR­BRPR­ARPR­D0.10*cosθ K= ­0.700.080.060.040.020.100.101800 * 2000 2200 2400 1800 * 2000 2200 2400cosθ K= ­0.50cosθ K= ­0.300.080.080.060.040.020.060.040.02dσ/dΩ (µb/sr)0.100.101800 * 2000 2200 2400cosθ K= ­0.100.080.080.060.040.020.060.040.021800 * 2000 2200 2400cosθ K= 0.100.100.080.060.040.020.100.080.060.040.020.101800 * 2000 2200 2400cosθ K= 0.300.080.060.040.020.101800 * 2000 2200 2400cosθ K= 0.700.080.060.040.021800 * 2000 2200 2400cosθ K= 0.501800 * 2000 2200 2400cosθ K= 0.900.000.001800 2000 2200 2400 1800 2000 2200 2400(MeV)W KYFigure 3.14 – The p(γ, K 0 )Σ + differential cross section as a function of the kaon-hyperon <strong>in</strong>variant massfor various cos θ K ∗. The curves represent different models presented <strong>in</strong> Table 3.2. Data from Refs. [154] (•)<strong>and</strong> [157] ().free parameter is <strong>in</strong>troduced, we atta<strong>in</strong> χ 2 /n.d.f. = 3.39. The fitted ratio of the EM coupl<strong>in</strong>gconstants given <strong>in</strong> Eq. (3.23) is approximately a factor of thirty smaller than the value (3.16) obta<strong>in</strong>edwith decay widths from the RPP. In addition, the sign has changed. With the fitted value for theEM coupl<strong>in</strong>g constant, the contribution of the K ∗ (892) trajectory is strongly suppressed <strong>and</strong> thep(γ, K 0 )Σ + reaction dynamics will be dom<strong>in</strong>ated by nucleon-resonance-exchange diagrams.S<strong>in</strong>ce we have identified a mechanism to control the strength of the K ∗ (892) trajectory, the possibilityof a third trajectory <strong>in</strong> the K 0 Σ + channel can be reconsidered. As <strong>in</strong> Paragraph 3.3.2, we add either


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 510.100.080.06E γ= 1100 MeVRPR­BRPR­ARPR­D0.100.080.06E γ= 1200 MeV0.100.080.06E γ= 1300 MeV0.040.040.040.020.020.020.100.10­1.0E = 1400 ­0.5 MeV 0.0 0.5 1.0γ0.080.08E γ= 1500 ­0.5 MeV 0.0 0.50.101.00.08E γ= 1600 ­0.5 MeV 0.0 0.5 1.00.060.040.060.040.060.04dσ/dΩ (µb/sr)0.020.020.020.100.10­1.0E γ = 1700 ­0.5 MeV 0.0 0.5 1.00.080.08E γ= 1800 ­0.5 MeV 0.0 0.50.101.00.08E γ= 1950 ­0.5 MeV 0.0 0.5 1.00.060.040.020.060.040.020.060.040.020.100.10­1.0E γ = 2150 ­0.5 MeV 0.0 0.5 1.00.080.08E γ= 2350 ­0.5 MeV 0.0 0.50.101.00.08E γ= 2525 ­0.5 MeV 0.0 0.5 1.00.060.040.020.060.040.020.060.040.020.000.00­1.0 ­0.5 0.0 0.5 1.0­0.5 0.0 0.50.001.0*cosθ K­0.5 0.0 0.5 1.0Figure 3.15 – The p(γ, K 0 )Σ + differential cross section as a function of the kaon’s CM scatter<strong>in</strong>g angle.The curves represent different models presented <strong>in</strong> Table 3.2. Data from Refs. [154] (•) <strong>and</strong> [155] ().a K 1 (1270), K 1 (1400) or K ∗ (1410) trajectory to the RPR-3 model, while simultaneously allow<strong>in</strong>gthe ratio of EM coupl<strong>in</strong>g constants of the K ∗ (892)-exchange diagram to vary. The different modelvariants lead to acceptable χ 2 values as can be appreciated <strong>in</strong> Table 3.2. The reduction of theχ 2 <strong>in</strong> view of the two additional free parameters is small however. The optimal solution <strong>in</strong>cludesa K 1 (1270) trajectory with a constant phase. All fitted ratios of EM coupl<strong>in</strong>g constants are t<strong>in</strong>ycompared to the experimental value (3.16), with the exception of the model with an additionalK ∗ (1410) trajectory with constant phase. As discussed <strong>in</strong> the previous paragraph, this trajectorymanages strong destructive <strong>in</strong>terference with the lead<strong>in</strong>g K ∗ (892) trajectory.3.3.4 ResultsThe different model variants <strong>in</strong>troduced <strong>in</strong> the previous two paragraphs are listed <strong>in</strong> Table 3.2. InFigures 3.14 to 3.18, they are confronted with the p(γ, K 0 )Σ + data. We do not show results for allthree-trajectory models with a fitted EM coupl<strong>in</strong>g-constant ratio, <strong>and</strong> only reta<strong>in</strong> the model variant


52 3.3. Regge formalism for neutral-kaon photoproductionσ (µb)1.41.21.00.80.60.40.20.0RPR­BRPR­ARPR­D1800 2000 2200 2400(MeV)W KYFigure 3.16 – The total p(γ, K 0 )Σ + cross section as a function of the <strong>in</strong>com<strong>in</strong>g photon’s LAB energy.The curves represent different models presented <strong>in</strong> Table 3.2. Data from Refs. [154] (•) <strong>and</strong> [155] ().RPR-D with the lowest χ 2 .Figure 3.14 features the differential cross section as a function of the kaon-hyperon <strong>in</strong>variant mass.The different RPR models give a fair description of the data <strong>and</strong> have a similar qualitative behaviour.At forward angles, however, the RPR-A model exhibits a problematic trend towards higher energies.This is confirmed <strong>in</strong> Figure 3.15. All considered RPR models have a peak structure near forwardscatter<strong>in</strong>g <strong>in</strong> the highest energy b<strong>in</strong>s. This peak is most outspoken for the RPR-A model <strong>and</strong> is notobserved. The angular dependence of the cross section is well accounted for by all model variants.The RPR-D model tends to predict smaller cross sections than the RPR-B variant. At forwardangles, however, the RPR-D cross section peaks more strongly.The total cross section is given <strong>in</strong> Figure 3.16. One immediately spots the troublesome high-energybehaviour of the RPR-A model. The cross section has a broad maximum about W KY ≈ 1900 MeV.Apart from the RPR-D model, this feature is accounted for by our calculations.F<strong>in</strong>ally, we show the comparison of the RPR models with the recoil-polarisation data <strong>in</strong> Figures 3.17<strong>and</strong> 3.18. The error bars on the experimental results are considerable <strong>and</strong> it is not obvious todifferentiate between the different model variants. In general, the recoil asymmetry is positive <strong>and</strong>is matched by the models. Only the RPR-A model produces negative asymmetries towards higherenergies.The RPR-A, which consists of the RPR-3 model with an additional K ∗ (1410) trajectory, gives theleast optimal description of the available K 0 Σ + data <strong>and</strong> can be discarded. The rema<strong>in</strong><strong>in</strong>g modelvariants listed <strong>in</strong> Table 3.2 provide a comparable agreement with experiment. The RPR-B modeltakes precedence over the others, because it conta<strong>in</strong>s only a s<strong>in</strong>gle free parameter, compared withthree for models RPR-C to RPR-H. Therefore, we will adopt the fitted ratio <strong>in</strong> Eq. (3.23) withoutadd<strong>in</strong>g a third trajectory when transform<strong>in</strong>g the p(γ, K + )Σ 0 amplitude to channels with a neutralkaon <strong>in</strong> the f<strong>in</strong>al state.In the Λ-production channels, no data is accessible to exam<strong>in</strong>e the predictions of the RPR model.Hence, we will stick with the naive approach <strong>and</strong> adopt the experimental ratio (3.16) for the EMcoupl<strong>in</strong>g constants of the K ∗ (892) trajectory.


Chapter 3. Kaon production <strong>in</strong> data-poor reaction channels 53Recoil asymmetry P1.51.00.50.0­0.5­1.0E γ = 1100 MeV­1.01.5­1.0 ­0.5 0.0 0.51.51.01.01.00.50.0­0.5­1.0E γ = 1400 MeV­1.01.5­1.0 ­0.5 0.0 0.51.51.01.01.00.50.0­0.5­1.0E γ = 1700 MeV­1.01.5­1.0 ­0.5 0.0 0.51.51.01.01.00.50.0­0.51.51.00.50.0­0.50.50.0­0.50.50.0­0.50.50.0­0.5­1.0E = 2000 MeV­1.0γ­1.5­1.5­1.0 ­0.5 0.0 0.5 1.0E γE γE γE γ1.51.00.50.0­0.5= 1200 MeV­1.0­0.5 0.0 0.51.51.01.00.50.0­0.5= 1500 MeV­1.0­0.5 0.0 0.51.51.01.00.50.0­0.5= 1800 MeV­1.0­0.5 0.0 0.51.51.01.00.50.0­0.5= 2100 MeV­1.0­0.5 0.0 0.5­1.51.0*cosθ KE γE γE γE γRPR­BRPR­A= 1300 MeV RPR­D­0.5 0.0 0.5 1.0= 1600 MeV­0.5 0.0 0.5 1.0= 1900 MeV­0.5 0.0 0.5 1.0= 2200 MeV­0.5 0.0 0.5 1.0Figure 3.17 – The recoil-polarisation asymmetry for p(γ, K 0 )Σ + as a function of the kaon’s CM scatter<strong>in</strong>gangle. The curves represent different models presented <strong>in</strong> Table 3.2. Data from Ref [155].Recoil asymmetry P1.00.51050 < E γ (MeV) < 15501.00.50.00.0RPR­B­0.5 RPR­A­0.5RPR­D­1.0­1.0 ­0.5 0.0 0.5­1.01.0*cosθ K1550 < E γ (MeV) < 2600­0.5 0.0 0.5 1.0Figure 3.18 – The recoil-polarisation asymmetry for p(γ, K 0 )Σ + as a function of the kaon’s CM scatter<strong>in</strong>gangle. The curves represent different models presented <strong>in</strong> Table 3.2. The results are averaged over therange of photon energies. Data from Ref [154].


54 3.3. Regge formalism for neutral-kaon photoproduction


CHAPTER 4Radiative kaon captureAfter hav<strong>in</strong>g <strong>in</strong>troduced the RPR formalism for N(γ (∗) , K)Y <strong>in</strong> Chapters 2 <strong>and</strong> 3, we are ready tobuild a framework <strong>in</strong> order to study strangeness production from the deuteron. Before proceed<strong>in</strong>g, weillustrate the strength of the RPR approach by consider<strong>in</strong>g the radiative capture of kaons on protons.In Section 4.1, we establish the l<strong>in</strong>k between this reaction <strong>and</strong> photon-<strong>in</strong>duced kaon production.Section 4.2 provides cross-section results obta<strong>in</strong>ed with the Crystal Barrel at Brookhaven NationalLaboratory that have been published recently. An exploratory analysis of these data is presentedadopt<strong>in</strong>g the RPR formalism.The experimental study of the radiative reactions p(K − , γ)Λ <strong>and</strong> p(K − , γ)Σ 0 is of special physical<strong>in</strong>terest because it is one of few cases <strong>in</strong> which one can get access to the excitation spectrum ofhyperons. Measur<strong>in</strong>g the masses <strong>and</strong> decay widths of these resonances constitutes important <strong>in</strong>put tomodels that attempt to describe the <strong>in</strong>ternal structure of hadrons. The Particle Data Group’s RPP [1]lists a number of established Λ <strong>and</strong> Σ resonances (see Table 4.1), albeit with large uncerta<strong>in</strong>ties forthe masses, widths <strong>and</strong> branch<strong>in</strong>g ratios.An abundant amount of data <strong>and</strong> several models for the radiative capture of kaons at rest exist (seeRefs. [161, 162] <strong>and</strong> references there<strong>in</strong>). The reaction is dom<strong>in</strong>ated by the Λ(1405)S 01 resonance. Amore comprehensive study of the hyperon spectrum is possible through the study of <strong>in</strong>-flight captureof kaons on a proton, for which only a meagre set of data is available. To date, no dedicated modelcalculations for this reaction channel are available. The radiative capture process can, however, bedescribed with the help of models for kaon photoproduction, because both reactions are <strong>in</strong>timatelyrelated through cross<strong>in</strong>g symmetry.4.1 FormalismWe wish to study the reactionK − + p → γ + Y , (4.1)55


56 4.1. FormalismTable 4.1 – Selection of established Λ <strong>and</strong> Σ resonances relevant to the data presented <strong>in</strong> the present work.We list the resonances’ mass <strong>and</strong> total decay width ranges as given <strong>in</strong> the RPP [1], <strong>in</strong> addition to their starstatus. In the last two columns, we tabulate predictions by the Bonn constituent-quark model [163, 164] forthe partial electromagnetic decay widths to the ground-state Λ(1116) <strong>and</strong> Σ 0 (1193).Resonance L I·2J status Mass (MeV) Width (MeV) Γ Λγ (MeV) Γ Σ 0 γ (MeV)Λ(1405) S 01 ∗∗∗∗ 1406 ± 4 50 ± 2 0.912 0.233Λ(1520) D 03 ∗∗∗∗ 1519.5 ± 1.0 15.6 ± 1.0 0.258 0.157Λ(1600) P 01 ∗∗∗ 1560-1700 50-250 0.104 0.0679Σ(1660) P 11 ∗∗∗ 1630-1690 50-70 0.451 0.578Λ(1670) S 01 ∗∗∗∗ 1660-1680 25-50 0.159 · 10 −3 3.827Σ(1670) D 13 ∗∗∗∗ 1665-1685 40-80 1.457 0.214Λ(1690) D 03 ∗∗∗∗ 1685-1695 50-70 0.0815 1.049with Y either a Λ or Σ 0 hyperon. The four-momenta of the <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g particles aregiven by p K, p N, p γ <strong>and</strong> p Y. One can def<strong>in</strong>e three M<strong>and</strong>elstam variabless ′ γY = ( p γ + p Y) 2 ,t ′ = ( p K − p γ) 2 ,u ′ = (p K − p Y ) 2 .(4.2)We have adopted a notation with primes to avoid confusion with the M<strong>and</strong>elstam variables for kaonphotoproduction def<strong>in</strong>ed <strong>in</strong> Eq. (2.8). The differential cross section for the radiative-capture reactionis derived as <strong>in</strong> Paragraph 2.1.4. It readsd 2 σdΩ ∗ γ= 164π 2E ∗ γ|⃗p ∗ K |s′ γY<strong>and</strong> is expressed as a function of the transition amplitude.∑|TKp→γY | 2 , (4.3)In order to <strong>in</strong>vestigate the dynamics of this amplitude, one can exploit the fact that radiative kaoncapture is l<strong>in</strong>ked with photon-<strong>in</strong>duced strangeness production through cross<strong>in</strong>g symmetry [21, 22, 165–167]. This relation is illustrated <strong>in</strong> Figure 4.1. The transition amplitude for radiative kaon captureT Kp→γY is the analytic cont<strong>in</strong>uation (AC) of the kaon-production amplitude with the signs of thekaon <strong>and</strong> photon momenta reversedT Kp→γY (p K , p N ; p γ , p Y ) AC = T γp→KY (−p γ , p N ; −p K , p Y ) . (4.4)S<strong>in</strong>ce cross<strong>in</strong>g symmetry flips the signs of the kaon <strong>and</strong> photon momenta, one hass ′ γY = u ,t ′ = t ,u ′ = s KY .(4.5)Thus, the roles of the M<strong>and</strong>elstam-s <strong>and</strong> -u variables are <strong>in</strong>terchanged. The M<strong>and</strong>elstam-t variable,on the other h<strong>and</strong>, rema<strong>in</strong>s the same. As a consequence, the contributions to the amplitude thatarise from t-channel exchange do not change, but the role of s- <strong>and</strong> u-channel diagrams is turned


Chapter 4. Radiative kaon capture 57Figure 4.1 – Schematic representation of the transition amplitude for kaon photoproduction (left) <strong>and</strong>radiative kaon capture (right). The latter amplitude is the analytic cont<strong>in</strong>uation of the former with thesigns of the kaon <strong>and</strong> photon momenta reversed.around. In kaon photoproduction, the resonant contributions to the reaction amplitude are related tothe exchange of nucleon resonances <strong>in</strong> the s-channel. For radiative kaon capture, this role is reservedfor hyperon-resonance exchange. This expla<strong>in</strong>s the potential of the p(K − , γ)Y reaction to probe thehyperon spectrum.4.2 Crystal-Ball data: an exploratory analysisRecently, differential cross sections for K − radiative capture <strong>in</strong> flight on the proton, lead<strong>in</strong>g to theγΛ <strong>and</strong> γΣ 0 f<strong>in</strong>al states, have been measured for the first time [168]. The momenta of the K − mesonranged between 514 <strong>and</strong> 750 MeV/c. The data were obta<strong>in</strong>ed with the Crystal Ball multiphotonspectrometer <strong>in</strong>stalled at the separated K/π beam l<strong>in</strong>e C6 of the Alternat<strong>in</strong>g Gradient Synchrotronat Brookhaven National Laboratory. The results improve substantially the exist<strong>in</strong>g experimentaldata available for study<strong>in</strong>g radiative decays of excited hyperon states.In Figures 4.2 <strong>and</strong> 4.3, the differential cross sections for the p(K − , γ)Λ <strong>and</strong> p(K − , γ)Σ 0 reactionsare shown. S<strong>in</strong>ce the radiative-kaon-capture reaction is related to photon-<strong>in</strong>duced kaon productionthrough cross<strong>in</strong>g symmetry, the t-channel contributions to both reactions are the same. Therefore,one can apply the Regge model, developed for kaon photoproduction, to the description of radiativekaon capture, without <strong>in</strong>troduc<strong>in</strong>g or adjust<strong>in</strong>g any parameters. As can be appreciated <strong>in</strong> Figure 4.2,the Regge-model predictions for p(K − , γ)Λ are of the same order as the measured differential crosssections <strong>and</strong> are <strong>in</strong> reasonable agreement with the data except for the underpredicted strength atforward angles. The situation for the p(K − , γ)Σ 0 channel is entirely different. Figure 4.3 showsthat the Regge model underpredicts the data by almost an order of magnitude. This h<strong>in</strong>ts at animportant role for resonance exchange <strong>in</strong> p(K − , γ)Σ 0 .In order to assess the possible resonant contributions to the radiative capture reactions, the Reggemodelamplitudes can be enriched with hyperon-resonance exchange terms, along similar l<strong>in</strong>es ass-channel resonances have been added for the p(γ, K)Y processes <strong>in</strong> Section 2.3. Table 4.1 lists sixestablished hyperon resonances relevant to the energy range of the data presented here. S<strong>in</strong>ce thereis no experimental data available on the electromagnetic decay widths of these resonances, we have<strong>in</strong>cluded predictions by the Bonn CQM [163, 164]. Note the t<strong>in</strong>y EM branch<strong>in</strong>g fractions. Hyperonresonances decay almost exclusively to hadronic f<strong>in</strong>al states. Fix<strong>in</strong>g the resonances’ mass <strong>and</strong> widthat the central value given <strong>in</strong> the RPP, <strong>in</strong>clusion of a sp<strong>in</strong>-1/2 or sp<strong>in</strong>-3/2 resonance <strong>in</strong>troduces two or


58 4.2. Crystal-Ball data: an exploratory analysis2520|p | = 514 MeVK2520|p | = 560 MeVK15151010552525­1.0|p| = ­0.5 581 MeV0.0 0.5 1.0|pK2020K| = ­0.5 629 MeV0.0 0.5 1.015101510(µb/sr)dσ/dΩ γ552525­1.0|p| = ­0.5 659 MeV0.0 0.5 1.0|pK20201515K| = ­0.5 687 MeV0.0 0.5 1.01051052525­1.0|p| = ­0.5 714 MeV0.0 0.5 1.0| p | = ­0.5 750 MeV0.0 0.5 1.0KKRegge2020+ Λ(1520)D031515+ Σ(1670)D131051050­1.0 ­0.5 0.0 0.501.0*cosθ γ­0.5 0.0 0.5 1.0Figure 4.2 – Differential p(K − , γ)Λ cross section as a function of the photon CM scatter<strong>in</strong>g angle. Reggemodelpredictions are represented by the solid l<strong>in</strong>e. The dashed (dotted) curves show the RPR-modelresults <strong>in</strong>clud<strong>in</strong>g a Λ(1520)D 03 (Σ(1670)D 13 ) resonance. Data from Ref. [168].three free parameters respectively 1 . The quality <strong>and</strong> amount of the considered data are not sufficientto perform fits with multiple resonances. Therefore we carried out fits with a s<strong>in</strong>gle resonance at atime. For the p(K − , γ)Λ channel we obta<strong>in</strong> typically χ 2 ≈ 115 for 92 data po<strong>in</strong>ts. The results forthe p(K − , γ)Σ 0 reaction are less satisfactory, s<strong>in</strong>ce for all but one model χ 2 atta<strong>in</strong>ed ≈ 230 for 96data po<strong>in</strong>ts. The fit <strong>in</strong>clud<strong>in</strong>g a Λ(1670)S 01 converged at χ 2 = 355 for 96 data po<strong>in</strong>ts.In figure 4.2, we show the p(K − , γ)Λ model calculations <strong>in</strong>clud<strong>in</strong>g a Λ(1520)D 03 or a Σ(1670)D 13 ,s<strong>in</strong>ce these resonance have the largest branch<strong>in</strong>g ratio to the Λγ channel accord<strong>in</strong>g to the Bonnmodel. Both models predict a flat differential cross section with some enhancement at forward angles.The strength of the Σ(1670)D 13 resonance <strong>in</strong>creases as the energy of the <strong>in</strong>com<strong>in</strong>g kaon rises, whereasthe contribution of the Λ(1520)D 03 is more uniformly spread. Figure 4.3 features model calculationsfor the p(K − , γ)Σ 0 channel <strong>in</strong>clud<strong>in</strong>g either a Λ(1600)P 01 or a Λ(1690)D 03 resonance. Both models1 The most general Lagrangian for sp<strong>in</strong>-3/2 resonances has three additional degrees-of-freedom, i.e. the off-shellparameters. To limit the total number of fitt<strong>in</strong>g parameters we discard the latter.


Chapter 4. Radiative kaon capture 59252015|p | = 514 MeVK252015| p | = 560 MeV ReggeK+ Λ(1600)P+ Λ(1690)D01031010552525­1.0|p| = ­0.5 581 MeV0.0 0.5 1.0|pK2020K| = ­0.5 629 MeV0.0 0.5 1.015101510(µb/sr)dσ/dΩ γ552525­1.0|p| = ­0.5 659 MeV0.0 0.5 1.0|pK20201515K| = ­0.5 687 MeV0.0 0.5 1.01051052525­1.0|p| = ­0.5 714 MeV0.0 0.5 1.0|pK2020K| = ­0.5 750 MeV0.0 0.5 1.015105151050­1.0 ­0.5 0.0 0.501.0*cosθ γ­0.5 0.0 0.5 1.0Figure 4.3 – Differential p(K − , γ)Σ 0 cross section as a function of the photon CM scatter<strong>in</strong>g angle.Regge-model predictions are represented by the solid l<strong>in</strong>e. The dashed (dotted) curves show the RPR-modelresults <strong>in</strong>clud<strong>in</strong>g a Λ(1600)P 01 (Λ(1690)D 03 ) resonance. Data from Ref. [168].are <strong>in</strong> good agreement with the data <strong>and</strong> show a slight enhancement of the differential cross sectionat backward angles.The evaluation of the total cross sections for the radiative reactions p(K − , γ)Λ <strong>and</strong> p(K − , γ)Σ 0 wasbased on fits to the differential-cross-section data with Legendre polynomials that were subsequently<strong>in</strong>tegrated. The systematic uncerta<strong>in</strong>ties <strong>in</strong> the total <strong>and</strong> the differential cross sections are consideredsimilar. The results for the total cross sections of both the radiative reactions are shown <strong>in</strong> Figure 4.4<strong>and</strong> 4.5, <strong>in</strong> conjunction with the RPR model calculations. For the p(K − , γ)Σ 0 reaction, an analysisby the Valparaiso-Argonne group (V-A) [169] of the same data set is given as well.For the p(K − , γ)Λ reaction, the total cross section falls off as the <strong>in</strong>variant energy W γY rises. Thistrend is predicted by the Regge model, which accounts for roughly half of the strength. The additionof a Λ(1520)D 03 resonance allows to largely make up for the miss<strong>in</strong>g strength. The Bonn CQMpredicts a large electromagnetic decay width for the Σ(1670)D 13 → Λ(1116)γ transition. The RPRfit <strong>in</strong>clud<strong>in</strong>g this resonance improves the description of the total cross section at the highest energy


60 4.2. Crystal-Ball data: an exploratory analysisσ (µb)200 Regge+ Λ(1520)D150+ Σ(1670)D10050031301500 1600 1700 1800(MeV)W γYFigure 4.4 – Total p(K − , γ)Λ cross section. Regge-model predictions are represented by the solid l<strong>in</strong>e.The dashed (dotted) curves show the RPR-model results <strong>in</strong>clud<strong>in</strong>g a Λ(1520)D 03 (Σ(1670)D 13 ) resonance.Data from Ref. [168].σ (µb)200 Regge+ Λ(1600)P150 + Λ(1690)D10050010301500 1600 1700 1800(MeV)W γYFigure 4.5 – Total p(K − , γ)Σ 0 cross section. Regge-model predictions are represented by the solid l<strong>in</strong>e.The dashed (dotted) curves show the RPR-model results <strong>in</strong>clud<strong>in</strong>g a Λ(1600)P 01 (Λ(1690)D 03 ) resonance.Data from Refs. [168] (•) <strong>and</strong> [169] (◦).b<strong>in</strong>s, but fails to account for the rise at lower energies.The p(K − , γ)Σ 0 total cross section is shown <strong>in</strong> Figure 4.5. The two available experimental results are<strong>in</strong>compatible, even though the same data set was analysed. The energy dependence of cross sectionis similar, but the V-A result is systematically smaller than the data from Ref. [168]. The authors ofRef. [168] attribute this disparity to an substantial oversubtraction of the background contributions<strong>in</strong> the V-A analysis. S<strong>in</strong>ce we have fitted our RPR-model amplitudes to the differential cross sectionsof Ref. [168], we will discard the V-A data po<strong>in</strong>ts from now on. The energy dependence of the totalcross section differs notably from the γΛ f<strong>in</strong>al state, peak<strong>in</strong>g <strong>in</strong> the highest measured energy b<strong>in</strong>.This behaviour is opposite to the Regge-model result, which underestimates the total cross sectionby a factor of four <strong>and</strong> predicts a fall off as energy <strong>in</strong>creases. A nice correspondence with the data atlower energies is realised through the <strong>in</strong>clusion of a Λ(1600)P 01 resonance, which has a particularlylarge value for the total decay width <strong>in</strong> the RPP. The Regge-model calculations supplemented witha Λ(1670)S 01 resonance, hav<strong>in</strong>g a large value for Γ γΣ 0 <strong>in</strong> the Bonn model, allow to reproduce theapparent peak <strong>in</strong> the total-cross-section data, but fails at lower energies.For both reaction channels presented <strong>in</strong> this work, the data cannot be understood <strong>in</strong> terms of areaction amplitude consist<strong>in</strong>g of non-resonant terms <strong>in</strong> conjunction with a s<strong>in</strong>gle resonance. Theenergy dependence of the total cross sections, however, clearly suggest a prom<strong>in</strong>ent contribution fora resonance <strong>in</strong> the ∼ 1550 MeV (∼ 1700 MeV) range for the γΛ (γΣ 0 ) f<strong>in</strong>al state.


CHAPTER 5Formalism for electromagnetic kaon production from the deuteronUp until now, we have focused on production reactions from unbound nucleons. It pays to considerthe same reaction on more complex targets, such as the deuteron. We see three major reasons toextend the Regge-plus-resonance formalism to quasi-free production on the deuteron. First, ow<strong>in</strong>gto the deuteron’s weak b<strong>in</strong>d<strong>in</strong>g, it is ideally suited as an effective neutron target. Therefore, kaonproduction on the deuteron gives access to the elementary n(γ, K)Y reaction process. Second, bycompar<strong>in</strong>g reactions off free <strong>and</strong> bound protons, our underst<strong>and</strong><strong>in</strong>g of nuclear-medium effects is putto the test. An important source of medium effects are the rescatter<strong>in</strong>gs between the f<strong>in</strong>al-state


62 5.1. K<strong>in</strong>ematicsFigure 5.1 – Schematic representation of an electron scatter<strong>in</strong>g from a deuteron at rest, produc<strong>in</strong>g a kaon,hyperon <strong>and</strong> nucleon <strong>in</strong> the f<strong>in</strong>al state.describ<strong>in</strong>g both the photoproduction <strong>and</strong> electroproduction of kaons from the deuteron. We startour discussions by present<strong>in</strong>g the k<strong>in</strong>ematics of the reaction process. Next, we <strong>in</strong>troduce the differentphotoproduction <strong>and</strong> electroproduction observables <strong>in</strong> Sections 5.3 <strong>and</strong> 5.4 respectively. One ofthe ma<strong>in</strong> <strong>in</strong>gredients to the nuclear transition amplitude is obviously the nuclear wave function.Consequently Section 5.5 elaborates on a covariant description of the deuteron-neutron-proton vertex<strong>and</strong> presents a comprehensive set of relativistic <strong>and</strong> non-relativistic deuteron wave functions. In thef<strong>in</strong>al section, we <strong>in</strong>troduce the transition amplitude <strong>in</strong> the relativistic impulse approximation.5.1 K<strong>in</strong>ematics5.1.1 Reference framesProduc<strong>in</strong>g a kaon on a deuterium target results <strong>in</strong> a three-body f<strong>in</strong>al state. This makes for a slightlymore complicated situation than the N(γ ∗ , K)Y k<strong>in</strong>ematics we have described earlier <strong>in</strong> Section 2.1.In Figure 5.1 we show a schematic of the 2 H(e, e ′ KY )N reaction <strong>in</strong> the LAB frame, where the struckdeuterium target is at rest. We have assumed the OPE approximation. The four-vectors of the<strong>in</strong>com<strong>in</strong>g <strong>and</strong> scattered electron, k(E e , ⃗ k) <strong>and</strong> k ′ (E ′ e, ⃗ k ′ ), def<strong>in</strong>e the lepton plane. The electron emitsa space-like photon with four-vector p γ = k − k ′ <strong>and</strong> virtuality Q 2 = −p γ · p γ = |⃗p γ | 2 − E 2 γ, with |⃗p γ |<strong>and</strong> E γ the virtual photons momentum <strong>and</strong> energy <strong>in</strong> the LAB frame. In what follows, all variableswill be expressed <strong>in</strong> the LAB frame unless explicitly stated differently.The four-vectors of the kaon, hyperon <strong>and</strong> nucleon <strong>in</strong> the f<strong>in</strong>al state are labelled p K, p Y<strong>and</strong> p Nrespectively. The photon <strong>and</strong> nucleon momenta span the nucleon plane, whereas the kaon <strong>and</strong>hyperon momenta lie <strong>in</strong> the strangeness plane. For kaon photoproduction, the picture simplifies asthere is no electron plane <strong>and</strong> the virtuality Q 2 of the photon vanishes.Because of the three-body f<strong>in</strong>al state, one can def<strong>in</strong>e a large number of coord<strong>in</strong>ate systems. To keepour notation as general as possible, we will label the f<strong>in</strong>al state as 1 + (23), where the outgo<strong>in</strong>g kaon,hyperon <strong>and</strong> nucleon are tagged 1, 2 <strong>and</strong> 3 at will. The coord<strong>in</strong>ate system (x, y, z), <strong>in</strong> which we willdescribe the reaction, has its z axis along the photon momentum. The y axis is chosen perpendicular


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 63to the plane spanned by the photon <strong>and</strong> particle 1. We def<strong>in</strong>e a second reference frame (x ′ , y ′ , z ′ ),whose z ′ axis is oriented along ⃗p 2 + ⃗p 3 . The y ′ axis is taken parallel to the y axis. This referenceframe will be used to describe k<strong>in</strong>ematics <strong>in</strong> the centre-of-mass (CM) frame of particles 2 <strong>and</strong> 3,for which we use the notation (23)-CM. F<strong>in</strong>ally, we <strong>in</strong>troduce a third reference frame (x ′′ , y ′′ , z ′′ ) <strong>in</strong>which we will def<strong>in</strong>e the photon’s polarisation vector. The z ′′ axis will be taken along the photonmomentum <strong>and</strong> the y ′′ axis normal to the lepton plane. We def<strong>in</strong>e φ as the angle between the electronplane <strong>and</strong> the plane spanned by the photon <strong>and</strong> particle 1. Obviously this angle becomes arbitrary<strong>in</strong> case of photoproduction. Explicitly we have,⃗z = ⃗p γ|⃗p γ | , ⃗y = ⃗z × ⃗p 1, ⃗x = ⃗y × ⃗z , (5.2)|⃗p 1 |⃗z ′ = ⃗p 2 + ⃗p 3|⃗p 2 + ⃗p 3 | , ⃗y ′ = ⃗y , ⃗x ′ = ⃗y ′ × ⃗z ′ , (5.3)⃗z ′′ = ⃗p γ|⃗p γ | ,⃗y ′′ = ⃗ k| ⃗ k| × ⃗ k ′| ⃗ k ′ | , ⃗x ′′ = ⃗y ′′ × ⃗z ′′ . (5.4)To illustrate the different coord<strong>in</strong>ate systems, all three of them are shown <strong>in</strong> Figure 5.1 for theparticular situation the outgo<strong>in</strong>g nucleon is tagged as particle 1.In the unprimed reference frame, every four-vector can be decomposed as followsp i = (E i , ⃗p i )= (E i , |⃗p i | cos φ i s<strong>in</strong> θ i , |⃗p i | s<strong>in</strong> φ i s<strong>in</strong> θ i , |⃗p i | cos θ i ) , i = γ, D, K, Y, N ,where all variables are evaluated <strong>in</strong> the LAB frame. Alternatively, the four-vectors can be expressed<strong>in</strong> the (23)-CM frame us<strong>in</strong>g the primed reference frame,p ∗ i = (E ∗ i , ⃗p ∗ i )= (E ∗ i , |⃗p ∗ i | cos φ ∗ i s<strong>in</strong> θ ∗ i , |⃗p ∗ i | s<strong>in</strong> φ ∗ i s<strong>in</strong> θ ∗ i , |⃗p ∗ i | cos θ ∗ i ) , i = γ, D, K, Y, N .The representations <strong>in</strong> equations (5.5) <strong>and</strong> (5.6) are related to each other through a rotation aboutthe y axis followed by a boost <strong>in</strong>to the centre-of-mass of particles 2 <strong>and</strong> 3, i.e.(5.5)(5.6)p ∗ i = lp i , (5.7)with⎛Λ(l) = ⎜⎝E 23W 230 0 − |⃗p 23|W 230 1 0 00 0 1 0− |⃗p 23|W 230 0Here, we have def<strong>in</strong>ed the four-vectorE 23W 23⎞ ⎛⎟ ⎜⎠ ⎝⎞1 0 0 00 cos θ 23 0 √ 1 − cos 2 θ 23⎟0 0 1 00 − √ 1 − cos 2 θ 23 0 cos θ 23⎠ . (5.8)withp 23 = p 2 + p 3 = p γ + p D − p 1= (E 23 , −|⃗p 23 | √ 1 − cos 2 θ 23 , 0, |⃗p 23 | cos θ 23 ) ,E 23 = E γ + m D − E 1 ,|⃗p 23 | = |⃗p γ − ⃗p 1 | ,s 23 = E 2 23 − |⃗p 23 | 2 ,cos θ 23 =|⃗p γ | − |⃗p 1 | cos θ 1√(Eγ − E 1 + m D ) 2 − s 23.(5.9)(5.10)


64 5.1. K<strong>in</strong>ematicsFigure 5.2 – Schematic representation of the reaction 1 + 2 → 3 + 4 + 5. Every particle has mass m i <strong>and</strong>the Lorentz <strong>in</strong>variants are def<strong>in</strong>ed by s ij = (p i + p j ) 2 <strong>and</strong> t ij = (p i − p j ) 2 .Us<strong>in</strong>g the four-vectors of the particles participat<strong>in</strong>g <strong>in</strong> the 2 H(γ (∗) , KY )N reaction, one can def<strong>in</strong>eten Lorentz-<strong>in</strong>variant M<strong>and</strong>elstam variabless tot = (p γ + p D ) 2 , (5.11a)s KY = (p K + p Y ) 2 , (5.11b)s KN = (p K + p N ) 2 , (5.11c)s Y N = (p Y + p N ) 2 , (5.11d)t γi = (p γ − p i ) 2 , i = K, Y, N , (5.11e)t Di = (p D − p i ) 2 , i = K, Y, N . (5.11f)Several relations exist among these variables. They are straightforward to derive start<strong>in</strong>g from therelation between the M<strong>and</strong>elstam variables for 2 → 2 scatter<strong>in</strong>g, given by Eq. (2.9), <strong>and</strong> us<strong>in</strong>g theschematic representation of 2 → 3 scatter<strong>in</strong>g <strong>in</strong> Figure 5.2. Labell<strong>in</strong>g the <strong>in</strong>itial-state particles as 1<strong>and</strong> 2, while denot<strong>in</strong>g the outgo<strong>in</strong>g particles as 3, 4 <strong>and</strong> 5, one hast 24 + t 25 + s 45 = t 13 + m 2 2 + m 2 4 + m 2 5 . (5.12)Electromagnetic production of kaons from the deuteron can proceed when W tot ≡ √ s tot ≥ (m K +m Y + m N ). This implies that E γ obeys the <strong>in</strong>equalityE γ ≥ (m K + m Y + m N ) 2 − m 2 D + Q22m D. (5.13)The thresholds for the different kaon-production channels are listed <strong>in</strong> Table 5.1.5.1.2 Independent variablesScatter<strong>in</strong>g reactions <strong>in</strong>volv<strong>in</strong>g n particles are function of (3n − 10) <strong>in</strong>ternal <strong>in</strong>dependent variables.This implies five variables for the 2 H(γ (∗) , KY )N reaction, exclud<strong>in</strong>g the virtuality Q 2 of the photon.The general problem of express<strong>in</strong>g the physical region of reactions <strong>in</strong>volv<strong>in</strong>g n particles <strong>in</strong> termsof (3n − 10) Lorentz <strong>in</strong>variants has been addressed <strong>in</strong> Ref. [170]. The relevant formulae for thecase n = 5 are concisely outl<strong>in</strong>ed <strong>in</strong> appendix E, where we derive expressions for Lorentz-<strong>in</strong>variantdifferential cross sections.Alternatively, the k<strong>in</strong>ematics are entirely determ<strong>in</strong>ed when we specify


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 65Table 5.1 – Threshold values of the <strong>in</strong>variant masses of the total system W tot , the kaon-hyperon pair W KY<strong>and</strong> the hyperon-nucleon pair W Y N , as well as the photon energy E γ for the different photon-<strong>in</strong>duced kaonproduction f<strong>in</strong>al states. All quantities are <strong>in</strong> MeV.E γ W tot W KY W Y N2 H(γ,K + Λ )n 792.12 2548.9 1609.36 2055.252 H(γ,K + Σ 0 )n 898.20 2625.9 1686.32 2132.212 H(γ,K 0 Σ + )n 899.22 2626.6 1687.04 2128.932 H(γ,K 0 Λ )p 795.79 2551.6 1613.36 2053.952 H(γ,K 0 Σ 0 )p 901.99 2628.6 1690.31 2130.912 H(γ,K + Σ − )p 903.12 2629.4 1691.13 2135.72ˆ the photon’s virtuality Q 2 ,ˆ the <strong>in</strong>variant mass W 23 or the photon’s LAB energy E γ ,ˆ the LAB energy E 1 of particle 1,ˆ particle 1’s LAB scatter<strong>in</strong>g angle θ 1 ,ˆ the solid angle Ω ∗ 2of particle 2 <strong>in</strong> the (23)-CM frame.Apply<strong>in</strong>g the def<strong>in</strong>ition of the <strong>in</strong>variant mass <strong>in</strong> conjunction with conservation of four-momentum,one f<strong>in</strong>dsW 2 23 = ( p γ + p D − p 1) 2 = Q 2 + m 2 D + m 2 1 + 2E γ (m D − E 1 ) + 2|⃗p γ ||⃗p 1 | cos θ 1 , (5.14)which gives W 23 <strong>in</strong> terms of the photon’s energy or vice-versa. The momentum |⃗p 2 ∗ | of particle 2 <strong>in</strong>the (23)-CM frame can be obta<strong>in</strong>ed by solv<strong>in</strong>g the energy-conservation relationW 23 =√m 2 2 + |⃗p 2 ∗|2 +√m 2 3 + |⃗p 2 ∗|2 . (5.15)Comb<strong>in</strong><strong>in</strong>g the solid angle Ω ∗ 2 with |⃗p 2 ∗ | yields the four-vectors of particles 2 <strong>and</strong> 3 <strong>in</strong> their centre-ofmass.The latter can be boosted back <strong>in</strong>to the LAB frame with Eq. (5.8), thus completely solv<strong>in</strong>gthe k<strong>in</strong>ematics.At times, it is beneficial to express the k<strong>in</strong>ematics solely <strong>in</strong> terms of LAB variables. With regard tothe above-mentioned list, this implies replac<strong>in</strong>g Ω ∗ 2 by Ω 2. From Eq. (5.8), we deduceE ∗ 2 = E 23W 23E 2 − |⃗p 23 |W 23|⃗p 2 | (cos θ 23 cos θ 2 − s<strong>in</strong> θ 23 s<strong>in</strong> θ 2 cos φ 2 ) . (5.16)Rearrang<strong>in</strong>g <strong>and</strong> squar<strong>in</strong>g yields the follow<strong>in</strong>g quadratic equation0 = |⃗p 2 | 2 [ −E 2 23 + |⃗p 23 | 2 (s<strong>in</strong> θ 23 s<strong>in</strong> θ 2 cos φ 2 − cos θ 23 cos θ 2 ) 2]− 2|⃗p 2 ||⃗p 23 |E ∗ 2W 23 (s<strong>in</strong> θ 23 s<strong>in</strong> θ 2 cos φ 2 − cos θ 23 cos θ 2 ) + E ∗22 W 2 23 − E 2 23m 2 2 . (5.17)Solv<strong>in</strong>g for |⃗p 2 | fixes the k<strong>in</strong>ematics, albeit not <strong>in</strong> a unique way. Two physical solutions can correspondto the same set {Q 2 , E γ , E 1 , θ 1 , Ω 2 }, mak<strong>in</strong>g this group of <strong>in</strong>dependent variables less suited when(semi-)<strong>in</strong>clusive observables are considered (see page 69).


66 5.2. Transition amplitude5.2 Transition amplitudeThe dynamics of EM kaon production are conta<strong>in</strong>ed <strong>in</strong> the nuclear transition amplitude for which we<strong>in</strong>troduce the follow<strong>in</strong>g notationT λγλ D λ Y λ N(p 1 , θ ∗ 2, φ ∗ 2) , (5.18)where λ γ , λ D , λ Y <strong>and</strong> λ N <strong>in</strong>dicate the helicities of the <strong>in</strong>com<strong>in</strong>g photon <strong>and</strong> deuteron <strong>and</strong> outgo<strong>in</strong>ghyperon <strong>and</strong> nucleon respectively. Our notation explicitly shows that we take the three-momentum ofthe outgo<strong>in</strong>g particle 1 <strong>in</strong> the LAB <strong>and</strong> the spherical angles of outgo<strong>in</strong>g particle 2 <strong>in</strong> the (23)-CM as<strong>in</strong>dependent variables. The transition amplitude is obta<strong>in</strong>ed by evaluat<strong>in</strong>g the EM current operatorJ µ between the <strong>in</strong>itial deuteron <strong>and</strong> f<strong>in</strong>al kaon-hyperon-nucleon states.In Section 5.6, the explicit form of the transition current <strong>in</strong> the RIA is covered <strong>in</strong> detail. Here, weelaborate on some universal properties of the transition amplitude, which are valid irrespective ofthe concrete form of the transition current. First, we express the transition amplitude for kaonelectroproduction <strong>in</strong> terms of the N(γ (∗) , K)Y amplitude. In the subsequent paragraphs, we touchon the transformation of amplitudes from one frame to the other <strong>and</strong> parity conservation.5.2.1 ElectroproductionIn the OPE approximation, the transition matrix element for kaon electroproduction on deuteriumis given by⎛M eD→e ′ KY N = 〈 k ′∣ ∣ ⎜− ieγ µ |k〉 ⎝−g µν + pµ γ p ν γp 2 γp 2 γ⎞⎟⎠ 〈p K ; p Y ; p N | ˆ J ν |p D 〉 , (5.19)where we have omitted the sp<strong>in</strong> quantum numbers for the time be<strong>in</strong>g. The nuclear current operatorˆ J ν acts on the states of the on-mass-shell <strong>in</strong>itial- <strong>and</strong> f<strong>in</strong>al-state particles for whom we will assume acovariant normalisationThe photon propagator can be decomposed as [171]1p 2 γ〈pα|p ′ α ′ 〉 = 2p 0 (2π) 3 δ (3) (⃗p − ⃗p ′ )δ αα ′ . (5.20)(g µν − pµ γp ν )γp 2 = 1 ∑γ Q 2 (−1) λγ (ɛ µ λ γ) ∗ ɛ ν λ γ, (5.21)λ γ=0,±1where λ γ is the photon helicity. After <strong>in</strong>troduc<strong>in</strong>g two covariant currentsj ss′λ γ= 〈 k ′ , s ′∣ ∣ γ µ∣ ∣ k , s 〉 (ɛ µ λ γ) ∗ (5.22a)M λ Dλ Y λ Nλ γ= 〈p K ; p Y , λ Y ; p N , λ N | ˆ J µ |p D , λ D 〉 ɛ µ λ γ,we eventually rewrite the transition amplitude (5.19) asM eD→e ′ KY N = ieQ 2 ∑(5.22b)λ γ(−1) λγ j λγ M λγ . (5.23)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 67In the (x ′′ , y ′′ , z ′′ ) frame, the photon polarisation vectors are given by(ɛ ′′µ |⃗pγ |0 =Q , 0, 0, E )γ,Qɛ ′′µ±1 = ∓ √ 1 (0, 1, ±i, 0) .2(5.24)It is however more natural to evaluate the contraction <strong>in</strong> (5.22b) <strong>in</strong> the unprimed frame. To thisend, the polarisation vectors of the photon need to be expressed <strong>in</strong> this frame. Both reference framesare related to each other by a rotation through the angle φ about the z axis,Accord<strong>in</strong>gly, we getɛ 0 = ɛ ′′0 <strong>and</strong> ɛ ± = e ±iφ ɛ ′′ ± . (5.25)M λ Dλ Y λ N0 = Q|⃗p γ | T 0λ D λ Y λ N,M λ Dλ Y λ N± = e ±iφ T ±λ D λ Y λ N,(5.26)<strong>in</strong> terms of the hadronic transition matrix elementsT 0λ D λ Y λ N= 〈p K ; p Y , λ Y ; p N , λ N | ˆ J 0 |p D , λ D 〉T ±λ D λ Y λ N= ± 1 √2〈p K ; p Y , λ Y ; p N , λ N |(ˆ J x ± i ˆ J y) |p D , λ D 〉 ,(5.27)where we have used current conservation0 = p µ γ 〈p K ; p Y , λ Y ; p N , λ N | ˆ J µ |p D , λ D 〉 , (5.28)to express the longitud<strong>in</strong>al hadronic matrix element <strong>in</strong> terms of the time-component T 0λ D λ Y λ N.5.2.2 Lorentz transformationsFor EM kaon production from the deuteron, a total of twenty-four transition matrix elements exist.Each one corresponds to a set of helicities for the <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g particles. In this work, wewill always def<strong>in</strong>e these helicities <strong>in</strong> the LAB frame us<strong>in</strong>g the unprimed reference frame (5.2). As wewill see <strong>in</strong> Section 5.6, it is beneficial to calculate particular contributions to the current operator <strong>in</strong>the (23)-CM frame. Therefore a relation is needed to transform the transition matrix elements fromone frame to the other.Let µ i denote helicities <strong>in</strong> the (23)-CM frame. Us<strong>in</strong>g the transformation properties for helicity statesstated <strong>in</strong> Section C.2, we haveT λγλ D λ Y λ N= ∑ []D 1/2∗ []µ Y ,λ Y(r(l, p Y )) D 1/2∗λµ N ,λ N(r(l, p N )) Tγλ D µ Y µ N, (5.29)µ Y µ Nwhere the transformation l relates the LAB to the (23)-CM frame <strong>and</strong> has been def<strong>in</strong>ed <strong>in</strong> Eq. (5.8).


68 5.3. Photoproduction observables5.2.3 ParityIn Ref. [172], Arenhövel <strong>and</strong> Fix show how the general form of the transition amplitude for EM pionproduction from the deuteron can be rewritten us<strong>in</strong>g a partial-wave decomposition for the f<strong>in</strong>al state<strong>and</strong> an expansion of the transition current <strong>in</strong> electric <strong>and</strong> magnetic multipoles. From their expression<strong>and</strong> apply<strong>in</strong>g parity selection rules for the multipole transitions to the f<strong>in</strong>al-state partial waves, anexpression for the <strong>in</strong>variance under parity transformations is derived. Their f<strong>in</strong>al result readsT -λγ-λ D ,-λ Y ,-λ N(p 1 , θ ∗ 2, φ ∗ 2) = (−1) 1+λγ+λ D+λ Y +λ NT λγλ D λ Y λ N(p 1 , θ ∗ 2, −φ ∗ 2) , (5.30)<strong>and</strong> is equally valid for EM kaon production from the deuteron.The symmetry property is particularly useful when the dependence on the azimuthal angle is<strong>in</strong>tegrated out. The follow<strong>in</strong>g equality illustrates this pr<strong>in</strong>ciple∫ 2πdφ ∗ 20∑|T λγ=+1λ D ,λ Y ,λ N(p 1 , θ2, ∗ φ ∗ 2)| 2 =λ D λ Y λ N=∫ 2πdφ ∗ 20∫ 2πdφ ∗ 20∑|T λγ=+1λ D ,λ Y ,λ N(p 1 , θ2, ∗ −φ ∗ 2)| 2 ,λ D λ Y λ N∑λ D λ Y λ N|T λγ=−1λ D ,λ Y ,λ N(p 1 , θ ∗ 2, φ ∗ 2)| 2 .(5.31)5.3 Photoproduction observablesThe differential cross section for the most general scatter<strong>in</strong>g reaction is given <strong>in</strong> Eq. (D.1). Apply<strong>in</strong>gthis to the kaon photoproduction reaction, one f<strong>in</strong>dsdσ =1 ∑√|T |22 λ(s, 0, m 2 D )d 3 ⃗p K2E K (2π) 3d 3 ⃗p Y2E Y (2π) 3d 3 ⃗p N2E N (2π) 3 (2π)4 δ (4) (p γ + p D − p K − p Y − p N ) .(5.32)dThe flux-factor λ, the transition matrix element T , the phase space factors3 ⃗p i2E iof the outgo<strong>in</strong>g(2π) 3particles i (= K, Y, N) <strong>and</strong> the Dirac delta function, which expresses conservation of momentum <strong>and</strong>energy, are all Lorentz-<strong>in</strong>variant quantities. This enables one to evaluate the cross section <strong>in</strong> differentreference frames. The symbol ∑ denotes summ<strong>in</strong>g over the f<strong>in</strong>al-state <strong>and</strong> averag<strong>in</strong>g over <strong>in</strong>itial-stateparticle’s polarisations. In Section 5.3.2, we will focus on scenarios where the <strong>in</strong>com<strong>in</strong>g <strong>and</strong>/oroutgo<strong>in</strong>g particles have a def<strong>in</strong>ite polarisation. Beforeh<strong>and</strong>, we will <strong>in</strong>troduce several expressions forthe differential cross section.5.3.1 Differential cross sectionIn analogy to Section 5.1, we will keep our results as general as possible by labell<strong>in</strong>g the three-particlef<strong>in</strong>al state as 1 + (23). After <strong>in</strong>tegrat<strong>in</strong>g out the delta function <strong>in</strong> Eq. (5.32), the photoproductionreaction 2 H(γ, KY )N is characterised by a five-fold differential cross section. In the LAB frame, itreadsd 5 σ 1=d|⃗p 1 |dΩ 1 dΩ 2 32(2π) 5 f rec−1 |⃗p 1 | 2 |⃗p 2 | ∑|T | 2 , (5.33)m D E γ E 1with the recoil factorf rec =∣ E 2 + E 3 − E ∣2∣∣∣|⃗p 2 | 2 (⃗p γ − ⃗p 1 ) · ⃗p 2 . (5.34)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 69Measur<strong>in</strong>g exclusive cross sections with three particles <strong>in</strong> the f<strong>in</strong>al state is very challeng<strong>in</strong>g. Inorder to improve on the statistics, it is often more convenient to express the experimental results assemi-<strong>in</strong>clusive observables. Thereby, one <strong>in</strong>tegrates over the phase space of one or two undetectedparticles <strong>in</strong> the f<strong>in</strong>al state. As stressed on page 65, the kaon-production k<strong>in</strong>ematics is not uniquelyfixed when only LAB variables are given. Therefore, the exclusive cross section given <strong>in</strong> Eq. (5.33)cannot be readily <strong>in</strong>tegrated over the solid angle of particle 2. Partially express<strong>in</strong>g the cross section<strong>in</strong> the (23)-CM frame, solves this problem. We f<strong>in</strong>dd 3 σd|⃗p 1 |dΩ 1=1 |⃗p 1 | 2 |⃗p 2 ∗|∫32(2π) 5 m D E γ E 1 W 23dΩ ∗ 2∑|T | 2 . (5.35)Integrat<strong>in</strong>g the semi-<strong>in</strong>clusive differential cross section over the momentum <strong>and</strong> solid angle of particle1 f<strong>in</strong>ally yields the total cross sectionσ = 2π∫ 1−11 |d cos θ 1∫ |⃗p max|⃗p m<strong>in</strong>1 |d 3 σd|⃗p 1 | . (5.36)d|⃗p 1 |dΩ 1The <strong>in</strong>tegration limits for the three-momentum of particle 1 follow from the threshold conditionW 23 ≥ (m 2 + m 3 ) 2 . (5.37)Exp<strong>and</strong><strong>in</strong>g this condition <strong>in</strong> the LAB, we f<strong>in</strong>d a quadratic equation <strong>in</strong> particle 1’s momentum thatyields as <strong>in</strong>tegration limits( √|⃗p|⃗p 1 max γ | cos θ 1 s + m21 − m 2 23)+ (Eγ + m D ) λ(s, m 2 1 , m2 23 ) − 4m2 1 |⃗p γ| 2 s<strong>in</strong> 2 θ 1| =s tot + |⃗p γ | 2 s<strong>in</strong> 2 , (5.38)θ 1<strong>and</strong>|⃗p 1 m<strong>in</strong> |⎧(⎨ |⃗p= max⎩ 0, γ | cos θ 1 s + m21 − m 2 ) ⎫23 − (Eγ + m D )√λ(s, m 2 1 , m2 23 ) − 4m2 1 |⃗p γ| 2 s<strong>in</strong> 2 θ 1 ⎬s tot + |⃗p γ | 2 s<strong>in</strong> 2 θ 1 ⎭ . (5.39)In the previous expressions, we made use of the compact notation m 23 ≡ m 2 + m 3 .F<strong>in</strong>ally, we wish to <strong>in</strong>troduce yet another representation of the 2 H(γ, KY )N cross section. Uponexpress<strong>in</strong>g the differential cross section <strong>in</strong> terms of M<strong>and</strong>elstam variables, the Lorentz <strong>in</strong>varianceof the <strong>in</strong>itial Eq. (5.32) can be preserved. The details of the derivation of Lorentz-<strong>in</strong>variant crosssections are diverted to Appendix E. Here, we merely report two useful distributions, i.e. the Dalitzcross section (E.17)dσdW KY dW Y N=<strong>and</strong> the Chew-Low cross section (E.18)dσdW Y N dt γK=4W ∫KY W t maxY NγK(4π) 4 λ(s, 0, m 2 D )t m<strong>in</strong>γK∫2W s maxY NKY(4π) 4 λ(s, 0, m 2 D )s m<strong>in</strong>KYdt γK∫ t maxDNt m<strong>in</strong>DNds KY∫ t maxDNt m<strong>in</strong>DNdt DN1√ −∆4∑|T | 2 , (5.40)dt DN1√ −∆4∑|T | 2 . (5.41)The limits of <strong>in</strong>tegration as well as a def<strong>in</strong>ition of the Gram determ<strong>in</strong>ant ∆ 4 can be found <strong>in</strong>Appendix E.


70 5.3. Photoproduction observables5.3.2 Polarisation observablesFrom our experience <strong>in</strong> meson production off free nucleons we know that polarisation observables areof great <strong>in</strong>terest. Often they depend on <strong>in</strong>terferences between different (non-) resonant contributionsto the reaction amplitude. As such, they provide a h<strong>and</strong>le on subtle contributions which cannotbe discerned <strong>in</strong> the differential cross section. With this <strong>in</strong> m<strong>in</strong>d, we present <strong>in</strong> this section a briefdiscussion on polarisation observables. To our knowledge, none of these observables will be measured<strong>in</strong> the near future, although experimental techniques are sufficient to carry out such a program.In the expression (5.32) for the differential cross section, the polarisations of the particles <strong>in</strong>volved<strong>in</strong> the reaction are omitted. Sp<strong>in</strong> observables can be elegantly def<strong>in</strong>ed us<strong>in</strong>g the density-matrixformalism. The most general expression for the differential cross section is proportional todσ ∼ ∑ ]|T | 2 = Tr[T † ρ f<strong>in</strong>al T ρ <strong>in</strong>itial . (5.42)The transition matrix elements (5.18) are evaluated <strong>in</strong> the helicity basis <strong>and</strong> the trace runs over thehelicities of all <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g particles. The density matrices of the <strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al systemsare given byρ <strong>in</strong>itial = ρ (γ) ⊗ ρ (D) ,ρ f<strong>in</strong>al = ρ (Y ) ⊗ ρ (N) .(5.43)In Appendix F, the most general decomposition of the density matrices of sp<strong>in</strong>-1/2 particles, sp<strong>in</strong>-1systems <strong>and</strong> photons is discussed.The unpolarised cross section is obta<strong>in</strong>ed by squar<strong>in</strong>g the transition amplitude, averag<strong>in</strong>g over <strong>in</strong>itialsp<strong>in</strong> states <strong>and</strong> summ<strong>in</strong>g over the f<strong>in</strong>al oneswithd 5 σ unpold|⃗p 1 |dΩ 1 dΩ ∗ 2= Φ(E γ , ⃗p 1 ) 1 6Φ(E γ , ⃗p 1 ) =∑λ γλ D λ Y λ N|T λγλ D λ Y λ N(p 1 , θ ∗ 2, φ ∗ 2)| 2 , (5.44)1 |⃗p 1 | 2 |⃗p 2 ∗|32(2π) 5 , (5.45)m D E γ E 1 W 23the phase-space factor. Ow<strong>in</strong>g to the symmetry property of Eq. (5.31), the number of matrix elementsthat need to be evaluated can be halved for the semi-<strong>in</strong>clusive differential cross sectiond 3 ∫σ unpol= Φ(E γ , ⃗pd|⃗p 1 |dΩ 1 ) dΩ ∗ 1 ∑2 |T λγ=+11 3λ D λ Y λ N(p 1 , θ2, ∗ φ ∗ 2)| 2 . (5.46)λ D λ Y λ NFor kaon production with a polarised photon beam, we use the density-matrix composition given <strong>in</strong>Eq. (F.30)ρ (γ) = 1 ()1 2 + P (γ)2lσ x + P (γ)t σ y + P c (γ) σ z . (5.47)It is parametrised us<strong>in</strong>g three polarisation coefficients. The helicity states of the <strong>in</strong>com<strong>in</strong>g photon areconventionally def<strong>in</strong>ed <strong>in</strong> a reference frame that is tilted over an angle φ with respect to the scatter<strong>in</strong>gplane. The x axis of this frame can be taken <strong>in</strong> the direction of maximum l<strong>in</strong>ear polarisation, suchthat P (γ)t = 0. Insert<strong>in</strong>g the density matrix <strong>in</strong>to the expression for the differential cross section, onef<strong>in</strong>ds the follow<strong>in</strong>g decompositiond 5 σd|⃗p 1 |dΩ 1 dΩ ∗ = d5 σ()unpol2 d|⃗p 1 |dΩ 1 dΩ ∗ 1 + P (γ)lΣ l cos 2φ + P c (γ) Σ c , (5.48)2


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 71withΣ lΣ cd 5 σ unpold|⃗p 1 |dΩ 1 dΩ ∗ 2d 5 σ unpold|⃗p 1 |dΩ 1 dΩ ∗ 2= Φ(E γ , ⃗p 1 ) 1 3∑λ D λ Y λ NR[( )T λγ=+1 ∗ ]λλ D λ Y λ NTγ=−1λ D λ Y λ N,= Φ(E γ , ⃗p 1 ) 1 ∑ (|T λγ=y6λ D λ Y λ N| 2 − |T λγ=xλ D λ Y λ N| 2) ,λ D λ Y λ N= Φ(E γ , ⃗p 1 ) 1 ∑ (|T λγ=+16λ D λ Y λ N| 2 − |T λγ=−1λ D λ Y λ N| 2) ,λ D λ Y λ N(5.49)the beam asymmetries for l<strong>in</strong>early <strong>and</strong> circularly polarised photons respectively. Us<strong>in</strong>g Eq. (5.31),one notices that Σ c vanishes when only one particle is detected <strong>in</strong> the f<strong>in</strong>al state. In case particle 1 isemitted along the direction of the beam, the azimuthal angle φ becomes arbitrary <strong>and</strong> the (xy)-planeis no longer def<strong>in</strong>ed. Therefore, Σ l vanishes when θ 1 = 0.In case the deuteron target is polarised along a quantisation axis ⃗ d(θ d , φ d ), the density matrix canbe decomposed as (F.29)ρ (1)mm ′ (⃗z) = (−1)1−m √3(∑ √2I + 1IM1 1 Im ′ −m M)e −iMφ dd I M0(θ d )P I , (5.50)with P 1 <strong>and</strong> P 2 the degree of vector <strong>and</strong> tensor polarisation def<strong>in</strong>ed <strong>in</strong> Eq. (F.28). For a tensorpolarisedtarget, i.e. P 1 = 0, the differential cross section assumes the follow<strong>in</strong>g formd 5 σd|⃗p 1 |dΩ 1 dΩ ∗ 2= d5 σ unpold|⃗p 1 |dΩ 1 dΩ ∗ 2()2∑1 + P 2 T 2M cos(Mφ d )d 2 M0(θ d ) , (5.51)M=0where we have <strong>in</strong>troduced the tensor-polarisation asymmetriesT 2Md 5 √σ unpol15d|⃗p 1 |dΩ 1 dΩ ∗ = (2 − δ M0 )26 Φ(E γ, ⃗p 1 )× ∑ ((−1) 1−λ 1 1 2Dλ ′ D −λ D Mλ D λ ′ D) ∑λ γλ Y λ NR[(T λγλ D λ Y λ N) ∗Tλ γλ ′ D λ Y λ N], (5.52)for M = 0, 1, 2.The general case of simultaneous beam <strong>and</strong> target polarisation is treated thoroughly <strong>in</strong> Ref. [172].Formulae are presented for exclusive as well as semi-<strong>in</strong>clusive differential cross sections.F<strong>in</strong>ally, we consider the situation where the polarisation of the recoil<strong>in</strong>g hyperon is detected <strong>in</strong> thef<strong>in</strong>al state. Us<strong>in</strong>g the density-matrix decomposition (F.7) for sp<strong>in</strong>-1/2 particles,ρ (Y ) = 1 2the five-fold cross section can be written as a function of four termsd 5 σd|⃗p 1 |dΩ 1 dΩ ∗ 2(1 2 + P ⃗ )Y · ⃗σ , (5.53)= d5 σ(unpold|⃗p 1 |dΩ 1 dΩ ∗ 1 + P ⃗ Y · ⃗Π), (5.54)2


72 5.4. Electroproduction observableswithΠ xΠ yd 5 σ unpold|⃗p 1 |dΩ 1 dΩ ∗ 2d 5 σ unpold|⃗p 1 |dΩ 1 dΩ ∗ 2d 5 σ unpolΠ z sd|⃗p 1 |dΩ 1 dΩ ∗ 2= Φ(E γ , ⃗p 1 ) 1 3= Φ(E γ , ⃗p 1 ) 1 3= Φ(E γ , ⃗p 1 ) 1 6∑λ γλ D λ NR∑λ γλ D λ NI[() ∗ ]T λγT λγ,λ D ,λ Y =+ 1 2 ,λ N λ D ,λ Y =− 1 2 ,λ N[() ∗ ]T λγT λγ,λ D ,λ Y =+ 1 2 ,λ N λ D ,λ Y =− 1 2 ,λ N∑()|T λγ| 2 − |T λγ| 2 ,λ D ,λ Y =+ 1 2 ,λ N λ D ,λ Y =− 1 2 ,λ Nλ γλ D λ N(5.55)When only the outgo<strong>in</strong>g hyperon is detected, one needs to <strong>in</strong>tegrate over the solid angle of particle 2.Ow<strong>in</strong>g to parity <strong>in</strong>variance (5.30), the follow<strong>in</strong>g identities hold0 =0 =∫ 2π ∑dφ ∗ 2 R0λ γλ D λ N∫ 2π ∑[dφ ∗ 2 |T λγλ0D ,λ Y =+ 1 2 ,λ Nλ γλ D λ N[() ∗ ]T λγT λγ,λ D ,λ Y =+ 1 2 ,λ N λ D ,λ Y =− 1 2 ,λ N]| 2 − |T λγ| 2 .λ D ,λ Y =− 1 2 ,λ N(5.56)Consequently, only one recoil-polarisation asymmetry rema<strong>in</strong>s. It readsd 3 σ unpolΠ y = Φ(E γ , ⃗pd|⃗p Y|dΩ Y ) 1 ∫ 2πY 3 0∑dφ ∗ 2 Iλ γλ D λ N[() ∗ ]T λγT λγ. (5.57)λ D ,λ Y =+ 1 2 ,λ N λ D ,λ Y =− 1 2 ,λ N5.4 Electroproduction observablesIn our formalism we will evaluate the electroproduction cross section <strong>in</strong> the LAB frame. Afterneglect<strong>in</strong>g the electron’s mass <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>g over ⃗p 3 <strong>and</strong> |⃗p 2 |, one f<strong>in</strong>dsd 8 σdE ′ edΩ ′ ed⃗p 1 dΩ 2=164(2π) 8 f rec−1 E e|⃗p ′ 2 | ∑|MeD→eE e m D E ′ KY N| 2 , (5.58)1where the recoil factor f rec was def<strong>in</strong>ed <strong>in</strong> Eq. (5.34). Insert<strong>in</strong>g (5.23) <strong>in</strong>to this expression, we f<strong>in</strong>dd 8 σdE ′ edΩ ′ ed⃗p 1 dΩ 2=⎛164(2π) 8 f rec−1 |⃗p 2 | ⎜⎝m D E 1√4πα cosθ e22E e s<strong>in</strong> 2 θ e2⎞⎟⎠2∑λ γλ ′ γ(−1) λγ+λ′ γL λγλ ′ γ Hfi λ γλ ′ γ , (5.59)where we have <strong>in</strong>troduced a leptonic <strong>and</strong> a hadronic tensor. The later is def<strong>in</strong>ed asH fiλλ ′ =∑M λ Dλ Y λ Nλλ D λ Y λ N(M λ Dλ Y λ Nλ ′ ) †. (5.60)The simple structure of the leptonic vertex allows one to compute the leptonic tensor analytically.


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 73For an <strong>in</strong>com<strong>in</strong>g electron with helicity h/2, one f<strong>in</strong>ds after summ<strong>in</strong>g over the f<strong>in</strong>al electron’s sp<strong>in</strong>,sL λλ ′ ==(4E e E e ′ cos 2 θ e2(4E e E e ′ cos 2 θ e) −1 ∑s ′ j λ j † λ ′) −112 Tr [/ɛ ∗ λ (1 + hγ 5/s)(/k + m e )/ɛ λ ′(/k ′ + m e )2(= 4E e E e ′ cos 2 θ ) −1e2[(k · ɛ λ ′)(k ′ · ɛ ∗ λ2) + (k · ɛ∗ λ )(k′ · ɛ λ ′) − (k · k ′ )(ɛ ∗ λ · ɛ λ ′)(5.61)+ ihɛ µναβ ɛ µ∗λ ɛnu λ ′ kα k ′β]= L 0 λλ ′ + hLh λλ ′ .In the f<strong>in</strong>al step, we have decomposed the tensor <strong>in</strong>to a symmetric, helicity-<strong>in</strong>dependent <strong>and</strong> aasymmetric, helicity-dependent contribution. Those obey the follow<strong>in</strong>g relations [173]L 0 −λ−λ ′ = ( ) (−1)λ−λ′ L0 ∗λλ ′L h −λ−λ ′ = (−1)1+λ−λ′ ( L h λλ ′ ) ∗,(5.62)reduc<strong>in</strong>g the number of <strong>in</strong>dependent tensor elements to six. Evaluat<strong>in</strong>g them <strong>in</strong> the LAB frame, wef<strong>in</strong>d]L 0 00 = Q2|⃗p γ | 2 ,(5.63a)L 0 11 = L 0 −1−1Q 2=2|⃗p γ | 2 + θ tan2 e2 , (5.63b)L 0 01 = L 0 10 = −L 0 0−1 = −L 0 −10√= √ 1 Q Q 22 |⃗p γ | |⃗p γ | 2 + θ tan2 e2 , (5.63c)L 0 1−1 = L 0 −11= − Q22|⃗p γ | 2 ,(5.63d)L h 00 = L h 1−1 = L h −11 = 0 , (5.63e)L h 01 = L h 10 = L h 0−1 = L h −10= 1 √2Q|⃗p γ | tan θ e2 , (5.63f)L h 11 = −L h −1−1√= tan θ e2Q 2|⃗p γ | 2 + tan2 θ e2 . (5.63g)The hadronic tensor, which we def<strong>in</strong>ed <strong>in</strong> Eq. (5.60), is a Lorentz-covariant quantity <strong>and</strong> is hermitian,i.e.( ∗H fiλλ= H fi′ λ λ). (5.64)′


74 5.4. Electroproduction observablesWe use this property <strong>in</strong> conjunction with the expressions (5.26) for the transition matrix elements toexp<strong>and</strong> the contraction of the leptonic <strong>and</strong> hadronic tensor∑()(−1) λγ+λ′ γL λγλ ′ γ Hfi λ = γλ ′ L0 γ 00H fi00 + L0 11 H fi11 + Hfi −1−1 + 2L 0 1−1R(H fi1−1 )λ γλ ′ γ() ()+ 2L 0 01 R(H fi01 ) − R(Hfi 0−1 ) + hL h 11 H fi11 − Hfi −1−1()+ 2hL h 01 R(H fi01 ) + R(Hfi 0−1 ) ,( ) Q 2 ∑|T= L 0 000 | 2 + L 0|⃗p γ |11∑(|T + | 2 + |T − | 2)∑()+ 2L 0 1−1 cos 2φR(T + T −† ) − s<strong>in</strong> 2φI(T + T −† )( ) Q ∑ (+ 2L 0 01cos φR(T 0 T +† ) + s<strong>in</strong> φI(T 0 T +† )|⃗p γ |)− cos φR(T 0 T −† ) + s<strong>in</strong> φI(T 0 T −† )+ hL h 11+ 2hL h 01∑(|T + | 2 − |T − | 2)( ) Q ∑ (cos φR(T 0 T +† ) + s<strong>in</strong> φI(T 0 T +† )|⃗p γ |)+ cos φR(T 0 T −† ) − s<strong>in</strong> φI(T 0 T −† ) . (5.65)For the simplicity of the notations, we have omitted the polarisations of the deuteron, hyperon <strong>and</strong>nucleon.With Eq. (5.65), the electroproduction cross section of Eq. (5.59) can be rewritten as a sum oflongitud<strong>in</strong>al, transverse <strong>and</strong> <strong>in</strong>terference contributions. This decomposition, however, is not unique.For the sake of completeness we will present the two most popular forms here. In nuclear physics, itis customary to express the cross section as [173]( )d 8 σdE edΩ ′ ′ =α cosθ 2 e2ed⃗p 1 dΩ 2 2π 2 K H2E e s<strong>in</strong> 2 ×θe2[( )v L R L + v T R T + v c T T R T T cos 2φ + s R T T s<strong>in</strong> 2φ( )+ v c LT R LT cos φ + s R LT s<strong>in</strong> φ + hv T ′R T ′(5.66)+ hv LT ′(cR LT ′ cos φ + s R LT ′ s<strong>in</strong> φ) ] ,withK H = W tot 2 − m 2 D, (5.67)2m Dthe equivalent-real-photon laboratory energy. The expressions for the response functions <strong>and</strong> theircorrespond<strong>in</strong>g prefactors can be found <strong>in</strong> table 5.2. Alternatively, <strong>in</strong>troduc<strong>in</strong>g the transverse l<strong>in</strong>earpolarisation of the virtual photonɛ =(1 + 2|⃗p γ| 2Q 2 tan 2 θ ) −1e, (5.68)2


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 75Table 5.2 – Expressions for the response functions <strong>and</strong> k<strong>in</strong>ematical factors used <strong>in</strong> Eqs. (5.66) <strong>and</strong> (5.71). The hadronic matrix elements, def<strong>in</strong>ed <strong>in</strong> Eq. (5.27),should be evaluated <strong>in</strong> the LAB frame. ∑ implies appropriate summ<strong>in</strong>g <strong>and</strong> averag<strong>in</strong>g over hadronic sp<strong>in</strong> quantum numbers, which have been omitted as tonot clog the notation. Furthermore, we have def<strong>in</strong>ed χ =1 f rec−12(4π) 5 KH|⃗p2|mDE1.vi Ri RiT vT = Q22|⃗pγ| 2 + tan2 θe 2RT = χ ∑( |T + | 2 + |T − | 2 )RT = RTL vL = Q4T T vT T = − Q2√LT vLT = − √ Q22|⃗p γ| 2T ′ vT ′ = tan θe 2|⃗pγ| 4 RL = χ ∑ |T 0 | 2 RL = 2 Q22|⃗pγ| 2 c R T T = 2χ ∑ R√LT ′ vLT ′ = − √ Q22|⃗p γ| tan θe 2 2Q 2|⃗pγ| 2 + tan2 θe 2s R T T = −2χ ∑ Ic R LT = +2χ ∑ Rs R LT = +2χ ∑ I(T + T −† )(T + T −† )Q 2)|⃗pγ| 2 + tan2 θe 2RT ′ = χ∑( |T + | 2 − |T − | 2c R LT ′ = +2χ∑ Rs R LT ′ = +2χ∑ I((((|⃗pγ| 2 R Lc R T T = − c RT Ts R T T = − s RT TT 0 (T + − T − ) †) c R LT = − Q|⃗pγ|T 0 (T + + T − ) †) s R LT = − QRT ′ = R T ′|⃗pγ|T 0 (T + + T − ) †) c R LT ′ = − Q|⃗pγ|LT ′ = − QT 0 (T + − T − ) †) s R |⃗pγ|c R LTs R LTc R LT ′s R LT ′


76 5.5. Deuteron wave functionthe cross section is given bywithd 8 σdE edΩ ′ ′ = Γdσ∗ , (5.69)ed⃗p 1 dΩ 2 d⃗p 1 dΩ 2Γ =α2π 2 E ′ eE eK HQ 2 11 − ɛ , (5.70)the virtual photon flux factor. The virtual photon cross section can be cast <strong>in</strong> the follow<strong>in</strong>g form [174],dσ ∗(= R T + ɛR L + ɛ cR T T cos 2φ + s R T T s<strong>in</strong> 2φ)d⃗p 1 dΩ 2+ √ )ɛ(1 + ɛ)(cR LT cos φ + s R LT s<strong>in</strong> φ(5.71)+ h √ 1 − ɛ 2 R T ′ + h √ )ɛ(1 − ɛ)(cR LT ′ cos φ + s R LT ′ s<strong>in</strong> φ .In table 5.2 we list the different response function def<strong>in</strong>itions.5.5 Deuteron wave functionOw<strong>in</strong>g to the deuteron’s weak b<strong>in</strong>d<strong>in</strong>g energy, it is the ideal laboratory for <strong>in</strong>vestigat<strong>in</strong>g kaonproduction off neutrons. Thereby, the deuteron’s structure constitutes a crucial <strong>in</strong>gredient of thereaction dynamics. The deuteron is the sole observed two-nucleon bound state. The nucleon-nucleon<strong>in</strong>teraction, which b<strong>in</strong>ds the deuteron, is composed of scalar, sp<strong>in</strong>-sp<strong>in</strong>, tensor <strong>and</strong> sp<strong>in</strong>-orbit forces(see Ref. [175] for a review). It is primarily the tensor force that procures the necessary attraction toproduce the stable isosp<strong>in</strong>-s<strong>in</strong>glet bound deuteron state. High precision experiments have determ<strong>in</strong>edthe deuteron’s mass [176]m D = 1.87614(19) GeV , (5.72)<strong>and</strong>its b<strong>in</strong>d<strong>in</strong>g energy to high accuracy.ɛ D ≡ m p + m n − m D = 2.22463(4) MeV , (5.73)Experimentally, sp<strong>in</strong> <strong>and</strong> parity of the deuteron are found to be J P = 1 + . The total sp<strong>in</strong> of thedeuteron is the vector sum of the sp<strong>in</strong>s of the two nucleons <strong>and</strong> of their relative orbital angularmomentum⃗J = ⃗ S N1 + ⃗ S N2 + ⃗ L . (5.74)The sp<strong>in</strong> part of the deuteron’s state with total sp<strong>in</strong> projection λ D can be decomposed <strong>in</strong> the basisof relative orbital momentum <strong>and</strong> total nuclear sp<strong>in</strong> ⃗ S = ⃗ S N1 + ⃗ S N2 ,|J = 1, J z = λ D 〉 = ∑ S,m S∑L,m L〈L, m L ; S, m S | 1, λ D 〉 χ SmS |Lm L 〉 (5.75)= χ 1λD |00〉 + ∑ m S〈2, λ D -m S ; 1, m S | 1, λ D 〉 χ 1mS |2, λ D -m S 〉+ χ 00 |1λ D 〉 + ∑ m S〈1, λ D -m S ; 1, m S | 1, λ D 〉 χ 1mS |1, λ D -m S 〉 , (5.76)whereχ 00 = 1 √2(|+〉 1|−〉 2− |−〉 1|+〉 2), (5.77a)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 77Figure 5.3 – The different contributions to the deuteron’s wave function. Time flows from bottom to top.L<strong>in</strong>es mov<strong>in</strong>g backward <strong>in</strong> time are anti-particles.<strong>and</strong>χ 1+1 = |+〉 1|+〉 2,(5.77b)χ 10 = √ 1 ()|+〉 1|−〉 2+ |−〉 1|+〉 2, (5.77c)2χ 1−1 = |−〉 1|−〉 2,(5.77d)are the sp<strong>in</strong>-s<strong>in</strong>glet <strong>and</strong> sp<strong>in</strong>-triplet wave functions respectively. S<strong>in</strong>ce each term <strong>in</strong> (5.75) can belabelled accord<strong>in</strong>g to its J, L <strong>and</strong> S quantum number, we <strong>in</strong>troduce the follow<strong>in</strong>g spectroscopicnotation: 2S+1 L J .Before we proceed with our discussion of the deuteron’s wave function, let us <strong>in</strong>troduce some usefulfour-vectors. The nucleon’s four-vectors <strong>in</strong> configuration <strong>and</strong> momentum space are r 1,2 <strong>and</strong> p 1,2respectively. Furthermore, we def<strong>in</strong>er = r 1 − r 2 , R = 1 2 (r 1 + r 2 ) , r 1 = R + 1 2 r , r 2 = R − 1 2 r ,p = 1 2 (p 1 − p 2 ) , p D = p 1 + p 2 , p 1 = 1 2 p D + p , p 2 = 1 2 p D − p ,(5.78)as the relative four-vectors.The polarisation vectors of a deuteron quantised along the z axis <strong>in</strong> its rest frame are given byξ 0 (⃗z) = (0, 0, 0, 1) ,ξ ±1 (⃗z) = ∓ 1 √2(0, 1, ±i, 0) .(5.79)For different orientations of the sp<strong>in</strong> quantisation axis, the polarisation four-vectors can be rotatedwith the help of Wigner rotation matrices (see Section A.2). For a deuteron polarised along an axis⃗n(θ, φ), one hasξ 0 (⃗n) = (0, − s<strong>in</strong> θ, 0, cos θ) ,ξ ±1 (⃗n) = ∓ e∓iφ√2(0, cos θ, ±i, s<strong>in</strong> θ) .(5.80)5.5.1 Covariant Dnp-vertexThe wave function of the deuteron describes its break-up <strong>in</strong> a proton <strong>and</strong> a neutron. Ow<strong>in</strong>g tothe b<strong>in</strong>d<strong>in</strong>g energy, both constituents are, <strong>in</strong> general, off their mass-shell, i.e. p 2 1 ≠ p2 2 ≠ m2 N . This


78 5.5. Deuteron wave functionimplies that one can break down the wave function <strong>in</strong> four different contributions as <strong>in</strong> figure 5.3,where each nucleon is either a particle mov<strong>in</strong>g forward <strong>in</strong> time or an anti-particle mov<strong>in</strong>g backward.For our purposes, it suffices to consider the Dnp-vertex with one particle put on the mass shell. Thecovariant vertex function for a deuteron with momentum p D <strong>and</strong> polarisation λ D go<strong>in</strong>g to a statewith nucleon 2 on mass shell (p 2 2 = m2 N) <strong>and</strong> nucleon 1 propagat<strong>in</strong>g off mass shell is given bywhere〈p 2 λ 2 | Ψ(0) |p D λ D 〉 = m N + /p 1m 2 N − Γ µ Dnp(p 2 , p D )ξ λ D µ Cu T (⃗p 2 ; λ 2 ) , (5.81)p2 1Γ µ Dnp(p 2 , p D ) = F (|⃗p|)γ µ − G(|⃗p|) p µ − m (N − (/p D− /p 2)H(|⃗p|)γ µ − I(|⃗p|) )p µ , (5.82)m N m N m Nwith p = 1 2 p D − p 2 . This 4x4-matrix <strong>in</strong> Dirac space was <strong>in</strong>troduced by Blankenbecler <strong>and</strong> Cook [177]<strong>and</strong> features four scalar form factors F , G, H <strong>and</strong> I that depend only on the relative three-momentum.We will come back to these form factors <strong>and</strong> how they can be l<strong>in</strong>ked with (non-)relativistic wavefunctions <strong>in</strong> appendix H.The decomposition of the s<strong>in</strong>gle-nucleon propagator (A.45)with E p =m N + /p 1= 12E p( ∑λu(⃗p 1 ; λ)u(⃗p 1 ; λ)E p − p 0 1)v(−⃗p 1 ; −λ)v(−⃗p 1 ; −λ)E p + p 0 , (5.83)1m 2 N − − ∑p2 1λ√|⃗p 1 | 2 + m 2 N, can be <strong>in</strong>serted <strong>in</strong>to the expression for the Dnp-vertex. In the LAB frame,where p D = (m D ,⃗0), p 2 = (E p , −⃗p) <strong>and</strong> p 1 = (m D − E p , ⃗p), one gets⎛⎞〈p 2 λ 2 | Ψ(0) |p D λ D 〉 LAB= √ (2π) 3 2m D⎝ ∑ u(⃗p; λ 1 )Ψ ++λ 1 λ 2(⃗p; λ D ) + ∑ v(−⃗p; −λ 1 )Ψ −+λ 1 λ 2(⃗p; λ D ) ⎠ .λ 1 λ 1In the previous expression, we have <strong>in</strong>troducedΨ ++λ 1 λ 2(⃗p; λ D ) =Ψ −+λ 1 λ 2(⃗p; λ D ) =1 u(⃗p; λ 1 )Γ µ ξ λ D µ Cu T (−⃗p; λ 2 )√ ,(2π) 3 2m D2E p (2E p − m D )−1 v(−⃗p; −λ 1 )Γ µ ξ λ D µ Cu T (−⃗p; λ 2 )√ .(2π) 3 2m D2E p m D(5.84)(5.85)This result br<strong>in</strong>gs us back to the components of the deuteron’s wave function depicted <strong>in</strong> Figure 5.3.S<strong>in</strong>ce we put particle 2 on mass shell, the diagrams with particle 2 mov<strong>in</strong>g backward <strong>in</strong> time do notarise. The wave function Ψ ++ is identified with the diagram of the deuteron go<strong>in</strong>g to two nucleons,whereas Ψ −+ can be <strong>in</strong>terpreted as the wave function of an anti-nucleon <strong>and</strong> deuteron bound <strong>in</strong>to anucleon.We would like to po<strong>in</strong>t out that a one-to-one correspondence can be made between the decomposition<strong>in</strong> 2S+1 L J -states <strong>in</strong> Eq. (5.75) <strong>and</strong> the wave functions Ψ ++ <strong>and</strong> Ψ −+ we have come to def<strong>in</strong>e. Theparity of the deuteron is given byη D = η p η n (−1) L , (5.86)<strong>and</strong> is experimentally found to be +1. S<strong>in</strong>ce we have η p = η n = +1, the Ψ ++ wave function mustbe an an admixture of 3 S 1 - <strong>and</strong> 3 D 1 -components. The L = 1 states <strong>in</strong> Eq. (5.75), on the other


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 79Table 5.3 – The contribution of the 3 D 1 -, 3 P 1 - <strong>and</strong> 1 P 1 -waves to the deuteron’s wave function for acollection of (non-)relativistic potential models. The D-state admixture is def<strong>in</strong>ed <strong>in</strong> Eq. (5.91). Thedef<strong>in</strong>ition for the probability of the s<strong>in</strong>glet <strong>and</strong> triplet P-waves is analogous. All values are expressed aspercentages (%).Paris [178] CD-Bonn [179] Nijm93 [180] Gross-IIb [181] WJC-1 a [182]3 D 1 5.77 4.85 5.754 4.538 7.34323 P 1 – – – 0.137 0.11191 P 1 – – – 0.006 0.2118a As is expla<strong>in</strong>ed <strong>in</strong> Section G.3, Ref. [182] presents two versions for the WJC-1 wave function. In this work, wealways make use of the scaled wave function.h<strong>and</strong>, contribute to Ψ −+ , because the <strong>in</strong>tr<strong>in</strong>sic parity of an anti-particle is opposite that of thecorrespond<strong>in</strong>g particle. A more detailed account on the connection between states of def<strong>in</strong>ite J, L<strong>and</strong> S <strong>and</strong> the wave-function decomposition <strong>in</strong>troduced <strong>in</strong> (5.85) can be found <strong>in</strong> appendix H.F<strong>in</strong>ally, we wish to po<strong>in</strong>t out the wave functions <strong>in</strong> (5.85) can straightforwardly be expressed <strong>in</strong>configuration space through the Fourier transform:∫Ψ ±+ 1(⃗r; λ D ) = √ d 3 ⃗p e −i⃗p·⃗r Ψ ±+ (⃗p; λ D ) . (5.87)(2π) 35.5.2 Non-relativistic wave functionsFor numerous reactions <strong>in</strong>volv<strong>in</strong>g the deuteron, it is not necessary to make use of the covariantDnp-vertex <strong>in</strong>troduced previously. Often, it suffices to apply a non-relativistic reduction. Obviously,the wave function Ψ −+ has no mean<strong>in</strong>g <strong>in</strong> a non-relativistic context <strong>and</strong> can be set equal to zero.The non-relativistic deuteron wave function is usually def<strong>in</strong>ed <strong>in</strong> terms of the well-known 3 S 1 - <strong>and</strong>3 D 1 -wave components. In configuration space, it readsΨ ++ (⃗r; λ D ) = u(|⃗r|) χ 1λD Y 00 (θ, φ) + w(|⃗r|) ∑〈2, λ D -m S ; 1, m S | 1, λ D 〉 χ 1mS Y 2,λD -m|⃗r||⃗r|S(θ, φ) , (5.88)m Swith u(|⃗r|), w(|⃗r|) the radial 3 S 1 - <strong>and</strong> 3 D 1 -wave functions <strong>and</strong> Y LmL (θ, φ) the spherical harmonics.The normalisation condition∫d 3 ⃗r [ Ψ ++ (⃗r; λ) ] † Ψ ++ (⃗r; λ ′ ) = δ λλ ′ , (5.89)implies∫ ∞0d|⃗r| ( u 2 (|⃗r|) + w 2 (|⃗r|) ) = 1 . (5.90)Modern non-relativistic wave functions are calculated by solv<strong>in</strong>g the Schröd<strong>in</strong>ger equation withrealistic NN potentials. These phenomenological NN potentials are fitted to the world’s NNscatter<strong>in</strong>g data <strong>and</strong> atta<strong>in</strong> a typical χ 2 /d.o.f. of ≈ 1. In figure 5.4, we depict the radial wave functionsas calculated with three popular realistic potentials: the Paris potential [178], the charge-dependentBonn potential [179] <strong>and</strong> the Nijmegen potential [180]. The figure also features two relativistic wave


80 5.5. Deuteron wave function)­1/2u(r) (fm)­1/2w(r) (fm0.50.40.30.20.10.00.20 1 2 3 4 5 6ParisCD­BonnNijmegen IIIGross­IIB0.1WJC­10.00 1 2 3 4 5 6r (fm))­3/2u(|p|) (GeV)­3/2w(|p|) (GeV1401201008060402030 200 400 600 800 100021ParisCD­BonnNijmegen IIIGross­IIBWJC­100 200 400 600 800 1000|p| (MeV)Figure 5.4 – 3 S 1 - <strong>and</strong> 3 D 1 -state radial wave functions <strong>in</strong> configuration (left panels) <strong>and</strong> momentum (rightpanels) space as calculated by various models: Paris [178], CD-Bonn [179], Nijmegen-III [180], Gross-IIB [181] <strong>and</strong> WJC-1 [183].functions, which will be discussed <strong>in</strong> the forthcom<strong>in</strong>g paragraph. For large spatial separations, orequivalently small relative momenta, the wave functions more or less co<strong>in</strong>cide. For smaller values ofr, a slight model dependence becomes apparent. We clearly see that the L = 0 wave dom<strong>in</strong>ates. Thetotal probability of the L = 2 state is def<strong>in</strong>ed asP D =∫ ∞0d|⃗r|w 2 (|⃗r|) . (5.91)All models predict a D-state admixture of approximately 5% (see Table 5.3).5.5.3 Relativistic wave functionsIn a relativistic framework, the concept of a wave function is ill-def<strong>in</strong>ed <strong>and</strong> it is more natural to speak<strong>in</strong> terms of amplitudes <strong>and</strong> vertex functions. In order to make a direct l<strong>in</strong>k with the non-relativisticdescription, however, it can be <strong>in</strong>structive to def<strong>in</strong>e a relativistic wave function, even though thenumber of wave-function components is model dependent. With<strong>in</strong> the covariant Bethe-Salpeterapproach a total of eight components are def<strong>in</strong>ed [184]. Covariant light-front dynamics considerssix contributions [185], whereas <strong>in</strong> the covariant spectator theory (CST) or Gross formalism thisnumber is reduced to four [173, 186]. In our formulation of the 2 H(γ, KY )N transition amplitude,which is the subject of Section 5.6, the considered Feynman diagrams are always reduced to adeuteron-neutron-proton vertex with one nucleon on-mass-shell. For this reason, we will employ theCST approach <strong>and</strong> formulate two additional wave-function components of relativistic orig<strong>in</strong> thatsupplement the 3 S 1 - <strong>and</strong> 3 D 1 -waves <strong>in</strong>troduced <strong>in</strong> Paragraph 5.5.2.We def<strong>in</strong>eΨ −+ (⃗r; λ D ) = −i v t(|⃗r|)|⃗r|∑〈1, λ D -m S ; 1, m S | 1, λ D 〉 χ 1mS Y 1,λD -m S(ˆ⃗r) − i v s(|⃗r|)|⃗r|m Sχ 00 Y 1λD (ˆ⃗r) . (5.92)The two new P -state wave functions v s (|⃗r|) <strong>and</strong> v t (|⃗r|) couple to the s<strong>in</strong>glet <strong>and</strong> triplet sp<strong>in</strong>-wavefunction respectively. With<strong>in</strong> our relativistic framework, u <strong>and</strong> w can be thought of as the upper


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 81)­1/2fm­3v s (p) (10)­1/2fm­3v t(p) (10100­10­20­30­40­50400301 2 3 4 5 620100­10­20Gross­IIB­30WJC­1­400 1 2 3r (fm)4 5 6)­3/2GeV­3v s (|p|) (10)­3/2GeV­3v t(|p|) (100­20­40­60­80­100­120500 200 400 600 800 10000­50­100Gross­IIBWJC­1­1500 200 400 600 800 1000|p| (MeV)Figure 5.5 – 3 P 1 - <strong>and</strong> 1 P 1 -state radial wave functions <strong>in</strong> configuration (left panels) <strong>and</strong> momentum (rightpanels) space as calculated by the Gross-IIB model [181] <strong>and</strong> WJC-1 [183] models.)­3/2wave function (GeV0.80.60.40.20.0­0.233S D 1311P 11400 500 600 700 800 900 1000|p| (MeV)Figure 5.6 – Momentum-space wave functions calculated with<strong>in</strong> the WJC-1 model [182] at high relativemomenta.components of the Dirac wave functions. The P -states act as the lower components <strong>and</strong> arecomparatively much smaller, especially at small relative momenta. This <strong>in</strong>tuitive picture is confirmed<strong>in</strong> figures 5.4 <strong>and</strong> 5.5. The 3 S 1 - <strong>and</strong> 3 D 1 -waves resemble their non-relativistic counterparts <strong>in</strong> size<strong>and</strong> shape.As can be learned from table 5.3, the P -waves are m<strong>in</strong>ute. Nevertheless, by means of <strong>in</strong>terferencewith the larger components of the wave function, they can produce significant contributions to actualobservables. This is exemplified <strong>in</strong> the calculation of the deuteron form factors <strong>in</strong> the framework ofCST [187].In Figure 5.6, all four contributions to the deuteron wave function calculated with<strong>in</strong> the WJC-1 modelare drawn for high relative momenta (|⃗p| > 400 MeV). The S-wave has a node <strong>and</strong> all componentsare of comparable sizes. This implies that at high relative momenta all wave-function componentscontribute to the transition matrix elements.


82 5.6. Relativistic impulse approximation5.6 Relativistic impulse approximationIn Sections 5.3 <strong>and</strong> 5.4, we have given a comprehensive overview of observables for the EM productionof kaons from deuterium targets. The essential <strong>in</strong>gredient for these observables is the nuclear transitionamplitude T λγλ D λ Y λ N, which conta<strong>in</strong>s all the physics of both the production process <strong>and</strong> the nuclearmedium. In Eq. (5.27), it was def<strong>in</strong>ed <strong>in</strong> terms of the nuclear transition current operator J ˆµnucl . Forthe reaction under study, we have a photon <strong>in</strong>cident on a bound state of two nucleons produc<strong>in</strong>ga three-body f<strong>in</strong>al state, <strong>and</strong> <strong>in</strong> general J ˆµnuclrepresents an <strong>in</strong>tricate many-body operator. In thiswork, we stay clear of the complexity of many-body currents <strong>and</strong> <strong>in</strong>voke the impulse approximation,which states the full nuclear many-body current operator can be approximated by a sum of one-bodycurrent operators J ˆ x µ . We haveJ ˆ µ IAnucl→ ∑ ∑J ˆx µ (i) . (5.93)i=1,2 xThe sum over x represents the different contributions to the relativistic impulse approximation (RIA)that will be enumerated <strong>in</strong> Paragraph 5.6.1. Each operator acts on both particles 1 <strong>and</strong> 2 <strong>in</strong>side thedeuteron. This is <strong>in</strong>dicated by the sum over i. It is important to note that each contribution J ˆ xµ tothe current operator conta<strong>in</strong>s an isosp<strong>in</strong> filter <strong>and</strong> consequently acts either on a proton or a neutron.To <strong>in</strong>vestigate the implications of the RIA, we adopt the occupation-number representation. Thedeuteron state is represented by|p D , λ D 〉 ≡ ∑ p 1 ,p 2∑λ 1 ,λ 2∑t 1 ,t 2Ψ ++λ 1 λ 2( p 1 − p 2; p2 D , λ D )〈 1 2 , t 1; 1 2 , t 2|0, 0〉 a † p 1 ,λ 1 ,t 1a † p 2 ,λ 2 ,t 2|0〉 , (5.94)where we have restricted ourselves to the positive-energy states. When the negative-energy componentsof the wave function are taken <strong>in</strong>to account, the discussion presented <strong>in</strong> this paragraphproceeds along the same l<strong>in</strong>es. The nucleon creation <strong>and</strong> annihilation operators, that feature <strong>in</strong>Eq. (5.94), obey the usual anticommutation relations [188]{a α , a † β } = δ α,β ,{a α , a β } = {a † α, a † β } = 0 , (5.95)<strong>and</strong> are labelled by the nucleon’s four-momentum p i , polarisation λ i <strong>and</strong> isosp<strong>in</strong> component t i ,with α, β ≡ {p i , λ i , t i }. In second quantisation, each one-body current-operator contribution J ˆ xµ forkaon-production from the deuteron can be written as∑pλ, p ′ λ ′ 〈p K ; p Y , λ Y ; p N , λ N | J ˆλγx;p,λ,t;p ′ ,λ ′ ,−t |p D, λ D 〉 a † KY N a p ′ ,λ ′ ,−t a p,λ,t . (5.96)In this notation, we explicitly <strong>in</strong>dicate that the photon <strong>in</strong>teracts with a nucleon with quantumnumbers {p, λ, t}. Like we have mentioned earlier, this nucleon is either a proton (t = 1 2) or a neutron(t = − 1 2). The primed quantum numbers reflect the state of the so-called spectator nucleon <strong>and</strong> theoperator a † KY Nis shorth<strong>and</strong> notation for the creation of the kaon-hyperon-nucleon f<strong>in</strong>al state.Now, we wish to exam<strong>in</strong>e the result of J ˆµ x act<strong>in</strong>g on the deuteron state (5.94). Repeated applicationof the anticommutation relations (5.95), leads to the follow<strong>in</strong>g identitya p,λ,t a † p 1 ,λ 1 ,t 1a † p 2 ,λ 2 ,t 2|0〉 =(δ p,p1 δ λ,λ1 δ t,t1 a † p 2 ,λ 2 ,t 2− δ p,p2 δ λ,λ2 δ t,t2 a † p 1 ,λ 1 ,t 1)|0〉 . (5.97)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 83Tak<strong>in</strong>g <strong>in</strong>to account the deuteron wave function Ψ ++ is symmetric under the exchange of particle 1with 2 <strong>and</strong> the antisymmetric property〈 1 2 , t; 1 2 , t′ |0, 0〉 = −〈 1 2 , t′ ; 1 , t|0, 0〉 , (5.98)2we f<strong>in</strong>d that the action of the production operator (5.96) on the deuteron state (5.94) gives(−1) 1 −t√ 2 2∑〈p K ; p Y , λ Y ; p N , λ N | J ˆλγx;p,λ,t;p ′ ,λ ′ ,−t |p D, λ D 〉pλ,p ′ λ ′This implies the nuclear transition amplitude <strong>in</strong> the RIA can be written as× Ψ ++λ 1 λ 2( p − p ′; p2 D , λ D )a † KY N|0〉 . (5.99)〈p K ; p Y , λ Y ; p N , λ N | J ˆλγnucl |p D, λ D 〉 → IA ∑ x± √ 2 〈p K ; p Y , λ Y ; p N , λ N | J ˆ x λγ(1) |p D , λ D 〉 . (5.100)Thus, the RIA entails that the full nuclear transition amplitude is approximated by a coherent sumof current matrix elements, where each current operator acts on particle 1. Every contribution comeswith a plus- (m<strong>in</strong>us-)sign that depends on whether the <strong>in</strong>com<strong>in</strong>g photon <strong>in</strong>teracts with the proton orneutron <strong>in</strong>side the deuteron.In the rema<strong>in</strong>der of this chapter, the different contributions to the RIA transition amplitude areconsidered. In order not to overload the notation, we no longer <strong>in</strong>dicate that the one-body currentoperator acts on particle 1 <strong>in</strong>side the deuteron. In paragraphs 5.6.2 <strong>and</strong> 5.6.3, expressions for thedifferent matrix elements〈p K ; p Y , λ Y ; p N , λ N | J ˆ x λγ|p D , λ D 〉 , x = RPWIA, NRPWIA, YN-FSI, etc. , (5.101)are presented. When observables are calculated <strong>in</strong> Chapter 6, we sum the relevant contributionsmultiplied with the correct RIA-factor ± √ 2 to form the nuclear transition amplitude.5.6.1 Different contributions to the relativistic impulse approximationA multitude of reaction mechanisms can contribute to the nuclear transition amplitude. Thecontributions which we identified as dom<strong>in</strong>ant for the 2 H(γ, KY )N reaction are illustrated <strong>in</strong>Figure 5.7.In the lowest-order diagram, the kaon <strong>and</strong> hyperon are produced on a s<strong>in</strong>gle nucleon <strong>and</strong> all threef<strong>in</strong>al-state particles subsequently leave the reaction unperturbed as plane waves. This reaction pictureis known as the relativistic plane-wave impulse approximation (RPWIA) <strong>and</strong> constitutes the subjectof Paragraph 5.6.2.A higher-order diagram, a so-called two-step process, is depicted <strong>in</strong> figure 5.7(b). Here the <strong>in</strong>cidentphoton creates a pion-nucleon pair. The former consequently rescatters <strong>in</strong>elastically off the spectatornucleon produc<strong>in</strong>g the f<strong>in</strong>al kaon <strong>and</strong> hyperon.After the <strong>in</strong>itial photon-<strong>in</strong>duced production of strangeness, either directly or via an <strong>in</strong>termediarypion, the outgo<strong>in</strong>g particles <strong>in</strong> the three-body f<strong>in</strong>al state can <strong>in</strong>teract. These f<strong>in</strong>al-state <strong>in</strong>teractions(FSIs) <strong>in</strong>volve, <strong>in</strong> pr<strong>in</strong>ciple, a three-body operator, but are typically approximated by a sum oftwo-body <strong>in</strong>teractions. S<strong>in</strong>ce the elementary strangeness-production vertex is adjusted to data, one


84 5.6. Relativistic impulse approximationFigure 5.7 – The relevant contributions to the 2 H(γ (∗) , KY )N reaction <strong>in</strong> the RIA: (a) plane-wave impulseapproximation, (b) two-step process with <strong>in</strong>itial photoproduction of a pion π <strong>and</strong> (c,d) s<strong>in</strong>gle rescatter<strong>in</strong>g<strong>in</strong> the f<strong>in</strong>al state. The target nucleon <strong>in</strong>side the deuteron D is labelled T .assumes it effectively <strong>in</strong>corporates the kaon-hyperon FSI. The rema<strong>in</strong><strong>in</strong>g FSI diagrams are shown <strong>in</strong>figures 5.7(c) <strong>and</strong> 5.7(d). Their contribution can naively be expected to be most significant at thethresholds of the different reaction channels. As the kaon’s scatter<strong>in</strong>g length is considerably smallerthan <strong>in</strong> the case of hyperon-nucleon scatter<strong>in</strong>g, we will limit our formalism to the hyperon-nucleonf<strong>in</strong>al-state <strong>in</strong>teraction (YN-FSI). It will be discussed <strong>in</strong> Paragraph 5.6.3.5.6.2 Relativistic plane-wave impulse approximationWe will start our discussion of the RIA by writ<strong>in</strong>g down the transition matrix element <strong>in</strong> therelativistic plane-wave impulse approximation (RPWIA). The correspond<strong>in</strong>g Feynman diagram isgiven <strong>in</strong> figure 5.7(a). Apply<strong>in</strong>g the Feynman rules summarised <strong>in</strong> Appendix D, one has〈p K ; p Y , λ Y ; p N , λ N | J ˆλγRPWIA |p D, λ D 〉 =− u(⃗p Y , λ Y )ɛ λγν Ĵ ν (W KY , θK)∗ m T + /p D− /p Nm 2 T − ( ) 2ξ λ D µ Γ µ Dnp(p N , p D )Cu T (⃗p N , λ N ) , (5.102)p D− p Nwith Ĵ ν the elementary kaon-production operator which we have covered thoroughly <strong>in</strong> Chapter 2.For clarity, we have explicitly <strong>in</strong>dicated this operator is to be evaluated at the <strong>in</strong>variant massWKY 2 = (p K + p Y )2 <strong>and</strong> for the scatter<strong>in</strong>g angle θK ∗ , i.e. the angle ̂⃗p γ ∗ ⃗pK ∗ <strong>in</strong> the KY-CM frame.In order to make the connection with the NRPWIA, we consider the decomposition of the deuteronneutron-protonvertex of Eq. (5.84), reta<strong>in</strong><strong>in</strong>g only the positive-energy contribution. This yields anexpression for the transition amplitude that is no longer covariant <strong>and</strong> should be evaluated <strong>in</strong> therest frame of the deuteron〈p K ; p Y , λ Y ; p N , λ N | J ˆλγNRPWIA |p D, λ D 〉 LAB=− √ ∑(2π) 3 2m Dλ T〈p K ; p Y , λ Y | Ĵ λγ |p T λ T 〉 Ψ ++λ T λ N(−⃗p N , λ D ) . (5.103)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 85The target nucleon absorbs the <strong>in</strong>com<strong>in</strong>g photon <strong>and</strong> has four-momentum p T= p D− p N. It isobviously off its mass shell <strong>and</strong> has a non-vanish<strong>in</strong>g virtualitym 2 T − p 2 T > 0 . (5.104)Accord<strong>in</strong>gly, the elementary-production vertex <strong>in</strong> both the RPWIA <strong>and</strong> NRPWIA are evaluatedwith one off-mass-shell leg. Ow<strong>in</strong>g to the t<strong>in</strong>y b<strong>in</strong>d<strong>in</strong>g energy of the deuteron, the virtuality is m<strong>in</strong>oras long as the momentum of the spectator nucleon is small. As |⃗p N| rises, the effective mass of thetarget nucleon tends to zero. The physics of tachyons falls beyond the scope of this dissertation. Forthis reason we impose an upper limit on the LAB energy of the spectator,E N ≤ m2 D + m2 N2m D, (5.105)which ensures that p 2 T≥ 0. This hard cutoff does not pose a serious problem, s<strong>in</strong>ce we expect an<strong>in</strong>tr<strong>in</strong>sic falloff for the elementary kaon-production reaction as the target nucleon’s virtuality mounts.Moreover, exam<strong>in</strong><strong>in</strong>g figures 5.4 <strong>and</strong> 5.5, we notice the deuteron’s wave function drops dramaticallyat large relative momenta, <strong>and</strong> hence the transition amplitude will be <strong>in</strong>credibly small when thespectator reaches its imposed upper bound.Nevertheless, we wish to assess the level of uncerta<strong>in</strong>ty related to the off-shell extrapolation of theelementary-production operator. To this end, we <strong>in</strong>troduce the on-shell four-vector of the targetnucleon <strong>in</strong> the LAB frame as˜p TLAB≡(√)|⃗p N| 2 + m 2 T , −⃗p N . (5.106)Accord<strong>in</strong>gly, the propagator of the target nucleon can be divided <strong>in</strong>to an on-shell <strong>and</strong> off-shell part,/p T+ m N = ˜/p T+ m N − γ 0 ( E T − ˜p 0 T). (5.107)For the rema<strong>in</strong>der of this section, we will neglect the proton-neutron mass difference. This implies˜p 0 T= E N. After we <strong>in</strong>sert the propagator’s decomposition <strong>in</strong> the expression for the transitionamplitude <strong>in</strong> the RPWIA, the current operator falls apart <strong>in</strong> two contributionsWe def<strong>in</strong>e an on-shell piece〈p K ; p Y , λ Y ; p N , λ N | J ˆλγRPWIA,onshell |p D, λ D 〉 LAB=<strong>and</strong> an off-shell component〈p K ; p Y , λ Y ; p N , λ N | J ˆλγRPWIA,offshell |p D, λ D 〉 LAB=ˆ J RPWIALAB= ˆ J RPWIA,onshell + ˆ J RPWIA,offshell . (5.108)− u(⃗p Y , λ Y )ɛ λγν Ĵ ν m N + ˜/p Tm 2 N − ξ λ D µ Γ µ Dnp(p N , p D )Cu T (⃗p N , λ N ) , (5.109)p2 TE N − E Tm 2 N − p2 Tu(⃗p Y , λ Y )ɛ λγν Ĵ ν γ 0 ξ λ D µ Γ µ Dnp(p N , p D )Cu T (⃗p N , λ N ) . (5.110)In the LAB frame, the denom<strong>in</strong>ator of the target-nucleon’s propagator can be rewritten asm 2 N − p 2 T = m D (2E N − m D ) . (5.111)


86 5.6. Relativistic impulse approximationApply<strong>in</strong>g this <strong>in</strong> the expression for the on-shell part of the RPWIA transition amplitude (5.109),<strong>and</strong> us<strong>in</strong>g Eq. (A.42), we obta<strong>in</strong>〈p K ; p Y , λ Y ; p N , λ N | J ˆλγRPWIA,onshell |p D, λ D 〉 LAB=− √ (2π) 3 2E N∑2m D 〈pm K ; p Y , λ Y | Ĵ λγ |˜p T, λ T 〉 Ψ ++λ T λ N(−⃗p N , λ D ) , (5.112)Dλ Twhere we have used the def<strong>in</strong>ition of the positive-energy deuteron wave function Ψ ++ <strong>in</strong> termsof the covariant Dnp-vertex (5.85). We remark that the on-shell contribution to the RPWIAamplitude is equal to the NRPWIA form, except for a k<strong>in</strong>ematical factor that is close to one formoderate spectator-nucleon momenta. In addition, the transition amplitude on the right-h<strong>and</strong> sideof Eq. (5.112) is evaluated with all <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g particles on their respective mass shells.Before we conclude our discussion of the RPWIA, we try to estimate the contribution of the off-shellcorrection to the transition amplitude <strong>in</strong> the RPWIA. Start<strong>in</strong>g from Eq. (A.41), we can <strong>in</strong>troducethe follow<strong>in</strong>g, alternative completeness relation for sp<strong>in</strong>ors,2E N γ 0 = Λ + (⃗p T ) − Λ − (−⃗p T ) , (5.113)<strong>in</strong> Eq. (5.110) <strong>and</strong> apply<strong>in</strong>g the def<strong>in</strong>ition of the positive- <strong>and</strong> negative-energy deuteron wavefunctions (5.85), we f<strong>in</strong>d〈p K ; p Y , λ Y ; p N , λ N | J ˆλγRPWIA,offshell |p D, λ D 〉 LAB=√(2π) 3 2m DE N − E Tm D+⎡⎣ ∑ λ Tm D∑2E N − m Dλ Tu(⃗p Y , λ Y )ɛ λγν Ĵ ν u(−⃗p N , λ T )Ψ ++λ T λ N(−⃗p N , λ D )u(⃗p Y , λ Y )ɛ λγν Ĵ ν v(⃗p N , −λ T )Ψ −+The k<strong>in</strong>ematic factor <strong>in</strong> front of the off-shell contribution can be approximated by⎤λ T λ N(−⃗p N , λ D ) ⎦ . (5.114)E N − E Tm D≈ ɛ Dm D+ |⃗p N |2m N m D, (5.115)at lowest-order of the spectator-nucleon’s momentum, with ɛ D the deuteron’s b<strong>in</strong>d<strong>in</strong>g energy (5.73).Obviously, the off-shell part of the RPWIA transition matrix element is modest as long as thethree-momentum of the outgo<strong>in</strong>g nucleon is small compared to its mass. It generates a 5 % correctionat |⃗p N| ≈ 300 MeV.5.6.3 Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractionWe wish to evaluate the Feynman diagram for the YN-FSI process that is depicted <strong>in</strong> Figure 5.7(c). It <strong>in</strong>volves a loop where we choose to <strong>in</strong>tegrate over the four-momentum p N ′ of the spectatornucleon. The four-vectors of the rema<strong>in</strong><strong>in</strong>g particles <strong>in</strong> the loop, i.e. the target nucleon T <strong>and</strong> therescatter<strong>in</strong>g hyperon Y ′ , are fixed by energy-momentum conservation. We havep T = p D − p N ′ ,p Y ′ = p Y + p N − p N ′ .(5.116)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 87Based on the Feynman rules given <strong>in</strong> Section D.2, the YN-FSI contribution to the transition amplitudereads〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI |p D, λ D 〉 =∫ d 4 pi N ′(2π) 4 u b(⃗p N , λ N )u a (⃗p Y , λ Y )Γ YNab;cd G 1 2 ,df (p N ′, m N ′)G 1 ,ce(p Y ′, m Y ′)2[]× ɛ λγν Ĵ ν G 1 (p2 T , m N )ξ λ D µ Γ µ Dnp(p N , p D )C , ef (5.117)where we have written the Dirac <strong>in</strong>dices explicitly for clarity. The vertex operator Γ YN representsthe (<strong>in</strong>)elastic hyperon-nucleon rescatter<strong>in</strong>g process <strong>and</strong> is covered <strong>in</strong> appendix K.The transition amplitude features three fermion propagators G 1 . All three exhibit s<strong>in</strong>gularities as2they move on mass shell. Clearly, the largest contributions to the amplitude are realised when atleast one pole is reached. Work<strong>in</strong>g with<strong>in</strong> the constra<strong>in</strong>ts of CST [186, 189], we choose to restrictone particle on its mass-shell. One can prove that this approach can be used without loos<strong>in</strong>g themanifest covariance of the transition amplitude. Mak<strong>in</strong>g use of the residue theorem, forc<strong>in</strong>g thespectator nucleon on mass shell is equivalent to the follow<strong>in</strong>g substitution∫ d 4 pi N ′ /p N ′ + m N ′(2π) 4 p 2 N− m 2 ′ N+ iɛ → − ∑ ∫d 3 ⃗p N ′(2π) 3 u(⃗p2E N ′, λ N ′)u(⃗p N ′, λ N ′) . (5.118)′ N ′λ N ′Consequently, the YN-FSI contribution to the transition-current matrix element becomes〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI |p D, λ D 〉 =− ∑ ∫d 3 ⃗p N ′(2π) 3 2E N ′λ N ′[× ɛ λγu b (⃗p N , λ N )u a (⃗p Y , λ Y )Γ YNab;cd u d(⃗p N ′, λ N ′)G 12 ,ce(p Y ′, m Y ′)ν Ĵ ν G 12](p T , m N )ξ λ D µ Γ µ Dnp(p N , p D )C u f (⃗p N ′, λ N ′) . (5.119)efWith the spectator nucleon on mass shell, the target nucleon absorbs all the b<strong>in</strong>d<strong>in</strong>g energy <strong>and</strong>therefore never fulfils E<strong>in</strong>ste<strong>in</strong>’s relation. The propagator of the rescatter<strong>in</strong>g hyperon, on the otherh<strong>and</strong>, passes through its s<strong>in</strong>gularity. It can be decomposed as (A.45)()G 1 (p2 Y ′, m Y ′) = 1 Λ + (⃗p Y ′)2ẼY ′ p 0 Y− ′ ẼY ′ + iɛ − Λ −(−⃗p Y ′)p 0 Y+ ′ ẼY ′ − iɛ , (5.120)where we have def<strong>in</strong>ed an on-shell four-vector for the rescatter<strong>in</strong>g hyperon√˜p Y ′ ≡ (ẼY ′, ⃗p Y ′) , with Ẽ Y ′ = |⃗p Y ′| 2 + m Y ′ . (5.121)The denom<strong>in</strong>ator of the second term will be large compared to the one of the positive-energy part.Its contribution will be neglected <strong>in</strong> our calculations. Thereby, the covariance of our formalism islost. Our approximate expression for the YN-FSI contribution to the transition amplitude then reads〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI |p D, λ D 〉 ≈− ∑ ∫λ N ′[× ɛ λγd 3 ⃗p N ′(2π) 3 2E N ′2ẼY ′ u b (⃗p N , λ N )u a (⃗p Y , λ Y )Γ YNν Ĵ ν G 12[Λ+ab;cd u (⃗pd(⃗p N ′, λ N ′) Y ′) ] cep 0 Y− ′ ẼY ′ + iɛ](p T , m N )ξ λ D µ Γ µ Dnp(p N , p D )Cef u f (⃗p N ′, λ N ′) . (5.122)


88 5.6. Relativistic impulse approximationThis amplitude will have its largest contribution when the s<strong>in</strong>gularity correspond<strong>in</strong>g to an on-massshellrescatter<strong>in</strong>g hyperon is reached. With the use of the general relation[ ]1p 0 Y− ′ ẼY ′ + iɛ = P 1− iπδ(p 0p 0 Y− ′ ẼYY ′ − ẼY ′) , (5.123)′where P[. . .] st<strong>and</strong>s for a Cauchy pr<strong>in</strong>cipal-value <strong>in</strong>tegration, the current operator breaks up <strong>in</strong>to anon-shell <strong>and</strong> an off-shell part, i.e.JˆYN-FSI = J ˆ YN-FSI,onshell + J ˆ YN-FSI,offshell . (5.124)The on-shell contribution is def<strong>in</strong>ed as〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI,onshell |p D, λ D 〉 =− iπ∑ ∫d 3 ⃗p N ′δ(p 0(2π) 3 Y2E ′ − ẼY ′) 〈p Y , λ Y ; p N , λ N | ĴYN |˜p Y ′, λ Y ′; p N ′, λ N ′〉N ′2ẼY ′λ N ′λ Y ′× 〈p K ; ˜p Y ′, λ Y ′; p N ′, λ N ′| J ˆλγRPWIA |p D, λ D 〉 . (5.125)We can dispose of the delta function by <strong>in</strong>tegrat<strong>in</strong>g over the three-momentum of the spectator nucleon<strong>in</strong> the YN-CM frame. The spectator-nucleon three-momentum |ˇ⃗pN ∗ |, for which the rescatter<strong>in</strong>g′hyperon is put on mass shell, fulfils the follow<strong>in</strong>g constra<strong>in</strong>tW Y N =After solv<strong>in</strong>g this equation, we obta<strong>in</strong>√|ˇ⃗p ∗ N ′ | 2 + m 2 Y ′ +√|ˇ⃗p ∗ N ′ | 2 + m 2 N ′ . (5.126)Ě ∗ N ′ = √|ˇ⃗p ∗ N ′ | 2 + m 2 N ′ = W 2 Y N + m2 N ′ − m 2 Y ′2W Y N. (5.127)Carry<strong>in</strong>g out the <strong>in</strong>tegration over |⃗p N ′| <strong>in</strong> Eq. (5.125) yields〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI,onshell |p D, λ D 〉 YN-CM=−i |ˇ⃗pN ∗ | ′32π 2 W Y N∑λ N ′λ Y ′∫d 2 Ω ∗ N ′ 〈p Y , λ Y ; p N , λ N | ĴYN |˜p Y ′, λ Y ′; ˇp N ′, λ N ′〉× 〈p K ; ˜p Y ′, λ Y ′; ˇp N ′, λ N ′| J ˆλγRPWIA |p D, λ D 〉 . (5.128)This amplitude features the transition matrix element for the hyperon-nucleon <strong>in</strong>teraction with all<strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g particles on mass-shell. In Appendix K, we elaborate on the properties of thehyperon-nucleon <strong>in</strong>teraction ĴYN.In the second contribution to the YN-FSI diagram the hyperon-nucleon <strong>in</strong>teraction vertex has oneoff-mass-shell leg. It reads〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI,offshell |p D, λ D 〉 =∑∫ d 2 ∫Ω N ′4(2π) 3 P |⃗pd|⃗p N ′| N ′| 2 1〈pE N ′Ẽ Y ′ p 0 Y , λ Y ; p N , λ N |Y− ĴYN |p Y ′, λ Y ′; p N ′, λ N ′〉′ ẼY ′λ N ′λ Y ′× 〈p K ; p Y ′, λ Y ′; p N ′, λ N ′| ˆ J λγRPWIA |p D, λ D 〉 . (5.129)


Chapter 5. Formalism for electromagnetic kaon production from the deuteron 89As is po<strong>in</strong>ted out <strong>in</strong> Appendix K, the non-vanish<strong>in</strong>g virtuality of the rescattered hyperon allows therescatter<strong>in</strong>g process to occur below threshold. Similar to the evaluation of the delta function <strong>in</strong> theon-shell contribution to the YN-FSI amplitude, we will ab<strong>and</strong>on our covariant notation to furthersimplify the pr<strong>in</strong>cipal-value <strong>in</strong>tegral <strong>in</strong> Eq. (5.129). With the help of the follow<strong>in</strong>g identity(p∗0Y ′ ) 2−(Ẽ∗ Y ′) 2= −2WY N(E∗N ′ − Ě∗ N ′ ), (5.130)we are able to rewrite the off-shell contribution to the YN-FSI diagram <strong>in</strong> a form suitable fornumerical <strong>in</strong>tegration, i.e.〈p K ; p Y , λ Y ; p N , λ N | J ˆλγYN-FSI,offshell |p D, λ D 〉 YN-CM=−∑ ∫ d 2 Ω ∗ ∫ E∗,maxN ′64π 3 P N ′dEN ∗ |⃗pN ∗ | W ′ Y N − EN ∗ + ′ Ẽ∗ Y ′′W Y N ẼY ∗ E ∗ ′ N− ′ Ě∗ N ′λ N ′λ Y ′m N ′× 〈p Y , λ Y ; p N , λ N | ĴYN |p Y ′, λ Y ′; p N ′, λ N ′〉 〈p K ; p Y ′, λ Y ′; p N ′, λ N ′| J ˆλγRPWIA |p D, λ D 〉 . (5.131)The <strong>in</strong>tegration over the solid angle Ω ∗ N ′ <strong>and</strong> CM energy E ∗ N ′ are performed with the aid of thequadrature rout<strong>in</strong>es from GSL [190]. At threshold, where the s<strong>in</strong>gularity is located at the <strong>in</strong>tegral’slower bound, we adopt the QAWS rout<strong>in</strong>e. For all other energies, the QAWC rout<strong>in</strong>e is employed.F<strong>in</strong>ally, we need to specify the upper bound E ∗,maxN. In pr<strong>in</strong>ciple, the <strong>in</strong>tegral is unbounded. In′practise, however, the effective masses of the target nucleon <strong>and</strong> the rescatter<strong>in</strong>g hyperon dependon the three-momentum of the spectator nucleon. As was po<strong>in</strong>ted out <strong>in</strong> Paragraph 5.6.2 <strong>in</strong> thecontext of the RPWIA contribution to the transition amplitude, an effective upper bound for |⃗pN ∗ | is ′needed to prevent the target nucleon’s effective mass from becom<strong>in</strong>g negative. A similar constra<strong>in</strong>tis imposed for the effective mass of the rescatter<strong>in</strong>g hyperon. It yieldsE ∗ N ′ ≤ W 2 Y N + m2 N ′2W Y N. (5.132)Because of the specific structure of the elementary kaon-production operator <strong>in</strong> the RPR model athird restriction is needed. In case the kaon-production vertex has both an <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>gparticle off mass-shell, the elementary operator can be evaluated below the physical productionthreshold. Besides the uncerta<strong>in</strong>ties related to this off-shell extrapolation, an artificial s<strong>in</strong>gularity canarise once the <strong>in</strong>variant mass <strong>in</strong> the vertex reaches down to the physical nucleon mass. This s<strong>in</strong>gularityis caused by the presence of the s-channel Born diagram needed to guarantee gauge-<strong>in</strong>variance <strong>in</strong> thecontext of the Regge model. When(p K + p Y ′) 2 = m 2 T , (5.133)the pole of this diagram is reached. We stay clear of this s<strong>in</strong>gularity by solv<strong>in</strong>g Eq. (5.133) for E ∗ N ′<strong>and</strong> impos<strong>in</strong>g it as an upper bound.


90 5.6. Relativistic impulse approximation


CHAPTER 6Results for kaon production from the deuteronIn Chapter 2, we <strong>in</strong>troduced the RPR formalism as a trustworthy <strong>and</strong> economical description of EMkaon production from the unbound proton. Chapter 3 dealt with extensions to the RPR model whichaimed at describ<strong>in</strong>g reaction channels for which only limited data sets are available. A relativisticformalism for the EM production of kaons off deuterium targets was the subject of the previouschapter. We presented the RPWIA <strong>and</strong> discussed the different contributions to the hyperon-nucleonFSI. In this chapter, we collect all these different <strong>in</strong>gredients <strong>and</strong> present calculations for strangenessproduction from the deuteron.The results are obta<strong>in</strong>ed utilis<strong>in</strong>g the RPR-2007 elementary-production operator presented <strong>in</strong> Chapter2 <strong>and</strong> Refs. [39, 40, 69]. For the sake of clarity, the coupl<strong>in</strong>g constants of the adopted models arelisted <strong>in</strong> Appendix I. Although a variety of deuteron wave functions have been presented <strong>in</strong> Section 5.5,all calculations employ the relativistic wave function obta<strong>in</strong>ed with the WJC-1 nucleon-nucleonpotential of Gross <strong>and</strong> Stadler [183], unless mentioned otherwise. For the <strong>in</strong>vestigation of the YN-FSI,we use helicity amplitudes calculated with the Jülich hyperon-nucleon potential as <strong>in</strong>put. The Jülichmodel is briefly reviewed <strong>in</strong> Section K.4.We start this chapter with an <strong>in</strong>-depth discussion of the 2 H(γ, KY )N cross sections obta<strong>in</strong>ed <strong>in</strong> theRPWIA. We <strong>in</strong>vestigate which k<strong>in</strong>ematic regions dom<strong>in</strong>ate the reaction <strong>and</strong> explore the sensitivityof the formalism to its different <strong>in</strong>gredients. Section 6.2 is devoted to the YN-FSI contribution.We conclude this chapter by confront<strong>in</strong>g our model calculations with the available photo- <strong>and</strong>electroproduction data <strong>in</strong> Sections 6.3 <strong>and</strong> 6.4 respectively.91


92 6.1. Relativistic plane-wave impulse approximation)-3ρ D(GeV10 410310 210110 -10 100 200 300 400 500 600 700 800|p| (MeV)Figure 6.1 – Deuteron density (6.2) calculated with<strong>in</strong> the WJC-1 model [183] as function of the relativeproton-neutron three-momentum |⃗p|.6.1 Relativistic plane-wave impulse approximation6.1.1 Non-relativistic spectator-nucleon approximationStart<strong>in</strong>g from the on-shell contribution to the RPWIA transition amplitude (5.112), one can showthat∑| 〈pK ; p Y , λ Y ; p N , λ N | J ˆλγRPWIA,onshell |p D, λ D 〉 | 2 ∼ ρ D (|⃗p N |) ∑ | 〈p K ; p Y , λ Y | Ĵ λγ |˜p Tλ T 〉 | 2 ,(6.1)where we have def<strong>in</strong>ed the deuteron density asρ D (p) = u 2 (p) + w 2 (p) + v 2 t (p) + v 2 s(p) . (6.2)Insert<strong>in</strong>g this relation <strong>in</strong> the expression for the exclusive differential cross section (5.35), we f<strong>in</strong>d forsmall values of the spectator momentum |⃗p N|d 5 σd⃗p NdΩ ∗ K≈ 1 (1 + |⃗p N | )cos θ N ρ D (|⃗p2π E N |) d2 σ KYN dΩ ∗ K. (6.3)This relation is known as the non-relativistic spectator-nucleon approximation to the cross section<strong>and</strong> is valid as long as |⃗p N| ≪ m N . Assum<strong>in</strong>g that FSI effects are negligible, Eq. (6.3) providesa straightforward recipe to extract <strong>in</strong>formation on the elementary kaon-production reaction fromexclusive cross section measurements at small |⃗p N|s.Because of the non-trivial phase space of a three-particle f<strong>in</strong>al state, the 2 H(γ, KY )N results can bepresented <strong>in</strong> terms of a plethora of comb<strong>in</strong>ations of the k<strong>in</strong>ematic variables. Ow<strong>in</strong>g to the convenientfactorised form (6.3) of the cross section, we can easily assess which regions <strong>in</strong> phase space areto contribute most to the reaction’s strength. The transition amplitude of the elementary kaonproductionprocess is obviously an essential component, but exhibits only mild variations with energy.The deuteron density ρ D (|⃗p N|), by contrast, falls off exponentially as the relative three-momentumof the proton <strong>and</strong> neutron <strong>in</strong>side the deuteron <strong>in</strong>creases. This is illustrated <strong>in</strong> Figure 6.1 with theWJC-1 deuteron wave function [183]. Assum<strong>in</strong>g that the reaction is dom<strong>in</strong>ated by the RPWIAcontribution to the transition amplitude, the cross section will thus exhibit most strength for lowmomenta of the outgo<strong>in</strong>g nucleon. Our <strong>in</strong>tuition is confirmed <strong>in</strong> Figure 6.2, where the semi-<strong>in</strong>clusivedifferential cross section for charged-kaon production is shown as function of |⃗p N| <strong>and</strong> cos θ N forthree representative values of the kaon-hyperon <strong>in</strong>variant mass. We notice an exponential falloff


Chapter 6. Results for kaon production from the deuteron 93cos θN1.00.80.60.40.20.0W KY = 1700 MeV50 100 150 200 250 300W KY = 1900 MeV50 100 150 200 250 300| −→ p N | (MeV)W KY = 2100 MeV50 100 150 200 250 30010 210 110 010 −110 −2d 3 σ/d| −→ p N |dΩN (nb/MeV/sr)Figure 6.2 – The semi-<strong>in</strong>clusive 2 H(γ, K + )Y N differential cross section us<strong>in</strong>g the full RPR operator <strong>in</strong>the RPWIA as a function of the nucleon momentum |⃗p N | <strong>and</strong> scatter<strong>in</strong>g angle cos θ N <strong>in</strong> the LAB frame atthree different values of the <strong>in</strong>variant mass of the kaon-hyperon system (from left to right: W KY = 1700,1900 <strong>and</strong> 2100 MeV).as |⃗p N| <strong>in</strong>creases, rem<strong>in</strong>iscent of the deuteron density ρ D . The differential cross section is nearlyisotropic, yet the coloured b<strong>and</strong>s <strong>in</strong> Figure 6.2 are slightly tilted <strong>in</strong> the clockwise direction. This<strong>in</strong>dicates a mild dependence on cos θ N that becomes stronger as the spectator momentum rises.In case the 2 H(γ, K)Y N observables are presented as a function of the momentum <strong>and</strong> scatter<strong>in</strong>gangle of the outgo<strong>in</strong>g kaon, e.g.d 3 ∫σ=d|⃗p K|dΩ KdΩ ∗ Yd 5 σd|⃗p K|dΩ K dΩ ∗ Y, (6.4)the spectator-nucleon momentum <strong>and</strong> hence the deuteron density are function of |⃗p K|, θ K , the photonenergy E γ <strong>and</strong> the hyperon’s scatter<strong>in</strong>g angle θY ∗ <strong>in</strong> the YN-CM frame. We exemplify this dependence<strong>in</strong> Figure 6.3 for three photon energies <strong>and</strong> at forward scatter<strong>in</strong>g angles <strong>in</strong> the YN-CM frame. Itst<strong>and</strong>s out that the deuteron density is strongly peaked at small values of θY ∗ . At E γ = 1000 MeV,that is close to threshold, ρ D is concentrated at forward scatter<strong>in</strong>g angles for the photoproducedkaon. As energy rises, this distribution spreads over a larger region of kaon momenta <strong>and</strong> shiftstowards more backward angles.Figure 6.4 shows RPWIA results for semi-<strong>in</strong>clusive charged-kaon photoproduction. This reactionreceives contributions from elementary K + Λ <strong>and</strong> K + Σ 0 production from the proton, <strong>in</strong> addition toK + Σ − production off the neutron. The threefold differential cross section is given as a function ofthe kaon’s momentum <strong>and</strong> scatter<strong>in</strong>g angle <strong>in</strong> the LAB frame. These results are obta<strong>in</strong>ed with thefull RPR current operator. A comparison with Figure 6.3 reveals that the shape of the semi-<strong>in</strong>clusivecross section is ma<strong>in</strong>ly determ<strong>in</strong>ed by the deuteron density distribution. Whereas the availablephase-space volume makes sure the cross section vanishes as the kaon’s momentum approaches zero.The cross section is largest for kaons created along or near the direction of the <strong>in</strong>com<strong>in</strong>g photon.At all but the lowest photon energy, the cross section consists of two modi. The one at the highestkaon momenta corresponds to quasi-free Λ production, the second to the production of a Σ 0 <strong>and</strong> Σ −hyperon. As the photon energy <strong>in</strong>creases, the gap between both ridges becomes smaller.


94 6.1. Relativistic plane-wave impulse approximation1.010 50.50.010 4−0.51.0E γ = 1000 MeVcos θY ∗ = 1.0E γ = 1200 MeVcos θY ∗ = 1.0E γ = 1400 MeVcos θY ∗ = 1.010 3cos θK0.50.0−0.51.0E γ = 1000 MeVcos θY ∗ = 0.9E γ = 1200 MeVcos θY ∗ = 0.9E γ = 1400 MeVcos θY ∗ = 0.910 210 1ρD(GeV −3 )0.50.010 0−0.5E γ = 1000 MeVE γ = 1200 MeVE γ = 1400 MeVcos θY ∗ = 0.8 cos θY ∗ = 0.8 cos θY ∗ = 0.80 200 400 600 200 400 600 800 200 400 600 800 1000| −→ p K | (MeV)10 −1Figure 6.3 – Deuteron density (6.2) as calculated with<strong>in</strong> the WJC-1 model [183] as a function of cos θ K<strong>and</strong> |⃗p K | at various values of E γ <strong>and</strong> cos θ ∗ Y . Each po<strong>in</strong>t <strong>in</strong> the phase space of the 2 H(γ, K + Λ)n reactiondeterm<strong>in</strong>es a s<strong>in</strong>gle value for |⃗p N | assum<strong>in</strong>g the RPWIA <strong>and</strong> the correspond<strong>in</strong>g deuteron density is plotted.cos θK1.00.90.80.70.60.5E γ = 1000 MeV100 200 300 400 500 600E γ = 1200 MeV200 400 600 800| −→ p K | (MeV)E γ = 1400 MeV200 400 600 800 100010 310 110 −110 −310 −5d 3 σ/d| −→ p K |dΩK (nb/MeV/sr)Figure 6.4 – The semi-<strong>in</strong>clusive 2 H(γ, K + )Y N differential cross section us<strong>in</strong>g the full RPR operator <strong>in</strong>the RPWIA as a function of the kaon momentum |⃗p K | <strong>and</strong> scatter<strong>in</strong>g angle cos θ K <strong>in</strong> the LAB frame atthree different photon energies (from left to right E γ = 1000, 1200 <strong>and</strong> 1400 MeV).


Chapter 6. Results for kaon production from the deuteron 95(MeV)m T,eff.80060040020000 100 200 300 400 500 600 700 800|p| (MeV)Figure 6.5 – Effective mass (6.5) of the target nucleon that absorbs the <strong>in</strong>com<strong>in</strong>g photon as a function ofthe relative proton-neutron three-momentum |⃗p|.6.1.2 Off-shell extrapolationAs mentioned <strong>in</strong> Section 5.6, <strong>in</strong> our implementation of the RIA we put the spectator nucleon <strong>in</strong> theDnp-vertex on its mass shell. As a consequence, the nucleon that absorbs the photon carries thecomplete b<strong>in</strong>d<strong>in</strong>g energy of the deuteron. As such, the elementary-production operator needs to beevaluated with an effective massm T,eff. =√(p D− p N) 2 =√m 2 D + m2 N − 2m D√|⃗p N| 2 + m 2 N , (6.5)for the target nucleon S<strong>in</strong>ce the RPR operator is not constra<strong>in</strong>ed by data for m T,eff. ≠ m N , this<strong>in</strong>volves an off-shell extrapolation. In Figure 6.5, the effective mass of the target nucleon is shown asa function of the relative proton-neutron three-momentum |⃗p|. At low values of |⃗p|, m T,eff. rema<strong>in</strong>sclose to the physical nucleon mass. As the relative momentum approaches 700 MeV, it becomes zero.For higher values of |⃗p|, the effective mass is imag<strong>in</strong>ary.We illustrate the off-shell extrapolation of the elementary production operator <strong>in</strong> Figure 6.6. Thesquared transition amplitude for the p(γ, K + )Λ reaction as calculated with<strong>in</strong> the RPR formalism isgiven as function of the kaon’s CM scatter<strong>in</strong>g angle at three representative values of the <strong>in</strong>variantmass of the kaon-hyperon system. We rem<strong>in</strong>d the reader that with our choice of normalisations thisquantity is dimensionless. For m T,eff. ≈ m N , i.e. at the top of the panels, the transition amplitudeis computed with the physical nucleon mass. The matrix element is evaluated at smaller massesas we go down the ord<strong>in</strong>ate axis. It is clear the elementary-production operator exhibits off-shellstructures <strong>and</strong> does not disappear as the target-nucleon mass approaches zero. We have carefullyscanned the phase space of the different elementary reaction channels <strong>and</strong> conclude the transitionamplitude is free of s<strong>in</strong>gularities. The off-shell structure of the elementary reaction is likely to play arole <strong>in</strong> observables, but we do not expect any dramatic effects.The effect of the off-shell extrapolation is most readily <strong>in</strong>vestigated by compar<strong>in</strong>g the RPWIAcontribution (5.102) to the transition amplitude with its on-shell reduction given <strong>in</strong> Eq. (5.112). InFigure 6.7, we compare the one-fold differential 2 H(γ, K + Λ)n cross section as calculated with bothforms of the transition amplitude. Clearly, the RPWIA result <strong>and</strong> the on-shell approximation co<strong>in</strong>cidefor small values of the spectator-nucleon momentum. At the lowest energy, the agreement holds upto |⃗p N| 200 MeVs, <strong>and</strong> the region of similarity becomes larger for higher values of W KY . At largemiss<strong>in</strong>g momenta, the results bifurcate, with the on-shell form of the transition amplitude giv<strong>in</strong>gsignificantly larger cross-section predictions compared to the RPWIA result. This discrepancy is not


96 6.1. Relativistic plane-wave impulse approximationmT (MeV)W KY = 1700 MeV800600400200−1.0 −0.5 0.0 0.5 1.0W KY = 1900 MeV−0.5 0.0 0.5 1.0cos θK∗W KY = 2100 MeV−0.5 0.0 0.5 1.017141185∑ |T KY | 2Figure 6.6 – Squared p(γ, K + )Λ transition amplitude at three values of W KY as a function of cos θK ∗ <strong>and</strong>m T,eff. . The result <strong>in</strong>volves a sum over the polarisations of the <strong>in</strong>itial photon <strong>and</strong> proton <strong>and</strong> outgo<strong>in</strong>ghyperon.10 -1-1-1| (µb/MeV)Ndσ/d|p10 -2-31010 -4-510W KY= 1700 MeV-2RPWIA-6 On-shell RPWIA-6100 100 200 300 400 500 600 700-3-4-5W KY= 1900 MeV-2100 200 300 400 500 600 700|p | (MeV)N-3-4-5-6= 2100 MeVW KY100 200 300 400 500 600 700Figure 6.7 – The 2 H(γ, K + Λ)n differential cross section as a function of the nucleon momentum |⃗p N | atthree different values of W KY . The solid curve is the RPWIA result (5.102). The dashed l<strong>in</strong>e is obta<strong>in</strong>edwith the on-shell reduction of Eq. (5.112).only due to the off-shell extrapolation of the elementary-production operator, but stems <strong>in</strong> part fromthe additional contribution (5.110) to the RPWIA amplitude that is omitted. In Paragraph 5.6.2,we argued that this contribution is k<strong>in</strong>ematically suppressed for small miss<strong>in</strong>g momenta. At highervalues of |⃗p N|, however, it can no longer be neglected.6.1.3 Wave-function sensitivityThe deuteron wave function is an essential <strong>in</strong>gredient <strong>in</strong> the description of EM kaon productionfrom the deuteron. This can be most clearly illustrated with<strong>in</strong> the non-relativistic spectator-nucleonapproximation which gives rise to the expression (6.3) for the cross section. Figure 6.8 shows themiss<strong>in</strong>g-momentum dependence of the 2 H(γ, K + Λ)n cross section for various choices of the deuteronwave functions 1 . For miss<strong>in</strong>g momenta up to approximately 250 MeV, the different wave functionsgive nearly <strong>in</strong>dist<strong>in</strong>guishable results. This comes as no surprise, because all NN potentials producecomparable 3 S 1 waves which dom<strong>in</strong>ate <strong>in</strong> this k<strong>in</strong>ematic region. As the spectator nucleon’s momentumrises, the cross-section predictions start to diverge. It is worth not<strong>in</strong>g that the non-relativistic wavefunctions of the Paris <strong>and</strong> Nijmegen potentials <strong>and</strong> the relativistic Gross-IIB wave function generate1 See Sections 5.5.2 <strong>and</strong> 5.5.3


Chapter 6. Results for kaon production from the deuteron 9710 -1-1-1| (µb/MeV)Ndσ/d|p10 -2-31010 -4W KY= 1700 MeV-2ParisCD-Bonn-5-510 Nijmegen IIIGross-IIB-610WJC-1-60 100 200 300 400 500 600 700-3-4W KY= 1900 MeV-2100 200 300 400 500 600 700|p | (MeV)N-3-4-5-6= 2100 MeVW KY100 200 300 400 500 600 700Figure 6.8 – The 2 H(γ, K + Λ)n differential cross section as a function of the nucleon momentum |⃗p N |at three different values of the <strong>in</strong>variant mass of the kaon-hyperon system . The results are obta<strong>in</strong>edwith<strong>in</strong> the RPWIA adopt<strong>in</strong>g different versions of the deuteron wave function: Paris [178], CD-Bonn [179],Nijmegen-III [180], Gross-IIB [181] <strong>and</strong> WJC-1 [183].very similar predictions. The cross sections based on the CD-Bonn <strong>and</strong> WJC-1 potentials, on theother h<strong>and</strong>, differ up to an order of magnitude for high miss<strong>in</strong>g momenta.6.1.4 Helicity-amplitude dependenceEvidently, the elementary kaon-production vertex is a crucial <strong>in</strong>gredient of strangeness productionfrom the deuteron. The RPR model, that was <strong>in</strong>troduced <strong>in</strong> Chapter 2, is optimised aga<strong>in</strong>st data <strong>in</strong>the p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 channels. In the description of the N(γ (∗) , K)Y process, the fourrema<strong>in</strong><strong>in</strong>g f<strong>in</strong>al states, where little or no data is available, cannot be ignored. In Section 3.2, wedemonstrated that the major source of uncerta<strong>in</strong>ties for modell<strong>in</strong>g the n(γ, K)Y reaction channelsstems from the helicity amplitudes of the considered nucleon resonances. Here, we wish to assess towhat extend these uncerta<strong>in</strong>ties propagate <strong>in</strong> (semi-)<strong>in</strong>clusive reactions on the deuteron.The semi-<strong>in</strong>clusive charged-kaon-production cross section is depicted as function of the outgo<strong>in</strong>gkaon’s LAB momentum <strong>in</strong> Figure 6.9. The cross section clearly exhibits two maxima where thequasi-free condition for Λ <strong>and</strong> Σ production are realised. Below the Σ-production threshold, i.e.|⃗p K| 619 MeV, only the K + Λ channel contributes to the reaction. At lower kaon momenta, boththe p(γ, K + )Σ 0 <strong>and</strong> n(γ, K + )Σ − reactions play a role. The later takes place on the neutron <strong>and</strong>,consequently, is prone to the uncerta<strong>in</strong>ties related to the unconstra<strong>in</strong>ed helicity amplitudes. Theeffect is sizable as can be deduced from the magnitude of the shaded area. In the quasi-elasticpeak, variations of the order of two are possible. From the above discussions, we conclude that theresonance contributions to the elementary-production operator are the major source of uncerta<strong>in</strong>tiesfor the 2 H(γ, KY )N predictions. Those stemm<strong>in</strong>g from the off-shell extrapolation (Paragraph 6.1.2)or the deuteron wave function (Paragraph 6.1.3) are substantially smaller.6.2 Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractionsIn the previous section, we explored kaon photoproduction from the deuteron <strong>in</strong> the RPWIAformalism. The momentum distribution of the spectator nucleon emerged as dom<strong>in</strong>ant <strong>in</strong> shap<strong>in</strong>gthe differential cross sections. Besides the RPWIA contribution, Paragraph 5.6.1 <strong>in</strong>troduced a set of<strong>in</strong>terest<strong>in</strong>g higher-order diagrams. Our motivation to study these additional contributions is two-fold.


98 6.2. Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractions(nb/MeV/sr)dσ/d|p K|dΩ K706050403020ReggeRegge + resonances1000 100 200 300 400 500 600 700|p | (MeV)KFigure 6.9 – The three-fold differential 2 H(γ, K + )Y N cross section <strong>in</strong> the RPWIA as a function of thekaon LAB three-momentum |⃗p K | at θ K = 0 ◦ <strong>and</strong> E γ = 1100 MeV. The dashed curve shows the contributionof the Reggeized background, whereas the solid curve also <strong>in</strong>cludes the s-channel resonant contributions ofthe full RPR amplitude. The shaded area <strong>in</strong>dicates the effect of the uncerta<strong>in</strong>ties <strong>in</strong> the adopted helicityamplitudes.Figure 6.10 – Meson-exchange diagrams considered <strong>in</strong> the context of non-relativistic potential models forelastic ΛN <strong>and</strong> ΣN as well as <strong>in</strong>elastic ΛN – ΣN scatter<strong>in</strong>g. The <strong>in</strong>terpretation <strong>and</strong> dynamical orig<strong>in</strong> ofthe exchange diagrams <strong>in</strong>volv<strong>in</strong>g scalar mesons (σ, ρ, a 0 , κ, ω ′ ) differs greatly among different models [191].In case the deuteron is exploited as a neutron target, one wishes to identify regions <strong>in</strong> phase spacewhere higher-order effects are m<strong>in</strong>imal. K<strong>in</strong>ematical conditions with significant roles for kaon-nucleonor hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractions, on the other h<strong>and</strong>, provide access to the elusive KN <strong>and</strong>Y N <strong>in</strong>teractions.In this work, we concentrate on the <strong>in</strong>fluence of the hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teraction. Theexpressions for this contribution to the transition amplitude are discussed <strong>in</strong> Paragraph 5.6.3. Whenboth the photoproduced hyperon as well as the spectator nucleon are on mass shell, the amplitude isgiven by Eq. (5.128). In case the rescatter<strong>in</strong>g hyperon is off mass shell, the off-shell dynamics ofthe hyperon-nucleon <strong>in</strong>teraction vertex play a role <strong>and</strong> sub-threshold production is possible. Detailson the off-shell extrapolation of the hyperon-nucleon <strong>in</strong>teraction are diverted to Section K.3. Theoff-shell YN-FSI diagram (5.131) <strong>in</strong>volves a pr<strong>in</strong>cipal-value <strong>in</strong>tegral. Integrat<strong>in</strong>g over the spectatormomentum comes at a significant computational cost. For this reason, we restrict calculations withthe RPWIA plus full YN-FSI amplitude to exclusive conditions. For semi-<strong>in</strong>clusive results, we adopta truncation scheme <strong>and</strong> reta<strong>in</strong> the on-shell part of the YN-FSI diagram.Evidently, a trustworthy description of the hyperon-nucleon <strong>in</strong>teraction is an essential component <strong>in</strong>order to assess the role of rescatter<strong>in</strong>g to kaon production <strong>in</strong> the nuclear medium. In the low- <strong>and</strong>medium-energy doma<strong>in</strong>, hadron-hadron <strong>in</strong>teractions can be adequately described <strong>in</strong> the context ofa meson-exchange picture. A hallmark result is the success of realistic nucleon-nucleon potentialmodels that fit the available data with an astonish<strong>in</strong>g χ 2 /N data ≈ 1. The results from NN phase-shiftanalyses are considered equivalent representations of the data. For hadronic <strong>in</strong>teractions <strong>in</strong>volv<strong>in</strong>gstrangeness, similar descriptions can be adopted. Model builders are h<strong>in</strong>dered, however, by the small


Chapter 6. Results for kaon production from the deuteron 99amount of experimental data with mediocre statistics over a limited k<strong>in</strong>ematical range, as well asthe lack of <strong>in</strong>formation on polarisation observables.For the purpose of describ<strong>in</strong>g the hyperon-nucleon <strong>in</strong>teraction, an effective potential can be constructedby consider<strong>in</strong>g a set of scalar, pseudo-scalar, vector <strong>and</strong> axial-vector meson-exchange diagrams [192,193]. Figure 6.10 provides a graphical representation of these contributions. Rely<strong>in</strong>g on SU(3)flavor symmetry or the SU(6) symmetry of the quark model, most coupl<strong>in</strong>g constants at thestrange vertices can be related to nucleon-nucleon-meson coupl<strong>in</strong>g constants which are constra<strong>in</strong>edby nucleon-nucleon scatter<strong>in</strong>g data. The rema<strong>in</strong><strong>in</strong>g free parameters are optimised aga<strong>in</strong>st theavailable hyperon-nucleon total cross section data [194–198]. All modern hyperon-nucleon potentialmodels [199–201] successfully reproduce these data, notwithst<strong>and</strong><strong>in</strong>g the substantial differences <strong>in</strong>implementation between the different models. Especially the treatment of the (iso)scalar-meson sector,which effectively <strong>in</strong>corporates two-meson-exchange diagrams <strong>and</strong> accounts for the <strong>in</strong>termediate rangeof the <strong>in</strong>teraction, is vastly different. In recent years, an alternative formalism for the descriptionof the hyperon-nucleon <strong>in</strong>teraction has come forth. Effective-field theory (EFT) is based on chiralperturbationtheory <strong>and</strong> provides a powerful diagrammatic expansion. The accuracy of calculationscan be systematically improved by go<strong>in</strong>g to higher orders <strong>and</strong> the theoretical uncerta<strong>in</strong>ties can beevaluated. An EFT model for the hyperon-nucleon potential is available at lead<strong>in</strong>g order [202] <strong>and</strong> iscurrently be<strong>in</strong>g extended to next-to-lead<strong>in</strong>g order [203].In Figure 6.11, total-cross-section data for elastic <strong>and</strong> <strong>in</strong>elastic hyperon-nucleon scatter<strong>in</strong>g arepresented. They are compared to two conventional meson-exchange potentials, the Nijmegen97fpotential [205] <strong>and</strong> the Jülich ’04 model [199], <strong>in</strong> addition to the lead<strong>in</strong>g-order chiral EFT model ofthe Jülich group [202]. All models provide a good description of the data, even though the EFT modelshows some m<strong>in</strong>or discrepancies. Our YN-FSI calculations are performed with scatter<strong>in</strong>g amplitudesobta<strong>in</strong>ed with the Jülich ’04 model [199]. More details on these amplitudes can be found <strong>in</strong> Section K.4.The cross-section data <strong>in</strong> Figure 6.11 show that the hyperon-nucleon <strong>in</strong>teraction is strongest close tothreshold. Therefore, phase-space regions where W Y N is small are expected to exhibit the largestsensitivity to YN-FSI effects. In addition, one notes that the YN-FSI contributions (5.128) <strong>and</strong> (5.131)to the transition amplitude are proportional to the RPWIA amplitude. This implies that rescatter<strong>in</strong>gwill be important <strong>in</strong> phase-space regions close to hyperon-nucleon thresholds where the spectatormomentum is small.Figure 6.2 demonstrated that the miss<strong>in</strong>g-momentum distribution for kaon photoproduction <strong>in</strong> theRPWIA has two prom<strong>in</strong>ent features: near isotropy <strong>and</strong> an exponential fall off as the spectatornucleon’s momentum rises. There is no published data available to verify these characteristics, butprelim<strong>in</strong>ary momentum distributions have been obta<strong>in</strong>ed with the CLAS spectrometer <strong>in</strong> JeffersonLab’s Hall-B <strong>and</strong> are shown <strong>in</strong> Figure 6.12. This data exhibits the predicted qualitative behaviour forlow miss<strong>in</strong>g momenta. The data reveal a peak near |⃗p N| ≈ 50 MeV <strong>and</strong> barely any cos θ N dependence<strong>in</strong> accordance with RPWIA calculations. At high miss<strong>in</strong>g momenta <strong>and</strong> forward angles, an excess ofevents is observed.Figure 6.13 presents exclusive cross section results for 2 H(γ, K + Λ)n production at three representativevalues for W KY . The k<strong>in</strong>ematics are coplanar <strong>and</strong> the photoproduced kaon moves forward <strong>in</strong> theKY-CM to maximise the cross section. The top panels are calculated at the quasi-elastic peak.At these k<strong>in</strong>ematics, the YN-FSI have a small impact <strong>and</strong> do not alter the isotropic aspect of thecross section. The results <strong>in</strong> the lower panels, by contrast, are obta<strong>in</strong>ed at a moderate value forthe miss<strong>in</strong>g momentum <strong>and</strong> are clearly forward peaked as a result of the YN-FSI. This behaviour


100 6.2. Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractionsFigure 6.11 – Total cross section σ =2cos θ max−cos θ m<strong>in</strong>∫ cos θmaxcos θ m<strong>in</strong>dσ(θ)d cos θ d cos θ as a function of p lab. The<strong>in</strong>tegration limits are ±1 except for the Σ + p → Σ + p <strong>and</strong> Σ − p → Σ − p cross sections where cos θ max,m<strong>in</strong> =±0.5 was taken. The experimental cross sections <strong>in</strong> (a) are taken from Refs. [194] (□) <strong>and</strong> [195] (•), <strong>in</strong> (b)from Refs. [196] (•) <strong>and</strong> [204] (□), <strong>in</strong> (c),(d) from [197] <strong>and</strong> <strong>in</strong> (e),(f) from [198]. The shaded b<strong>and</strong> is theJülich chiral EFT result [202], the solid curve is the Jülich ’04 model [199], <strong>and</strong> the dashed curve is theNijmegen NSC97f potential [205]. The figure was taken from Ref. [191].is characteristic for the high-momentum tails of the cross section <strong>and</strong> provides an opportunity toextract <strong>in</strong>formation on the hyperon-nucleon potential. In an experimental analysis that focuses onphase-space regions with high miss<strong>in</strong>g-momenta, any strong anisotropy will reveal the presence ofhyperon-nucleon rescatter<strong>in</strong>g. Note that at these k<strong>in</strong>ematic conditions the cross sections are small<strong>and</strong> count rates will be reduced.The exclusive 2 H(γ, K + Λ)n cross section is shown <strong>in</strong> Figure 6.14 as function of the LAB scatter<strong>in</strong>gangle of the outgo<strong>in</strong>g hyperon for kaons produced along the photon momentum. The calculations areperformed at energies (E γ = 1100 <strong>and</strong> 1300 MeV) relevant for contemporary experimental facilities.The tendency of the hyperon to be produced co-l<strong>in</strong>ear with the photon is evident at all values for thekaon momentum. The panels on the left correspond to kaon momenta slightly above the reaction’sthreshold. Here, the hyperons are restricted to a small solid angle <strong>in</strong> the forward hemisphere <strong>and</strong>both the on-shell <strong>and</strong> off-shell parts of the YN-FSI diagram contribute constructively to the reaction’sstrength. In the vic<strong>in</strong>ity of the quasi-free Λ-production peak, correspond<strong>in</strong>g to the |⃗p K| values of themiddle panels, YN-FSI effects are absent <strong>in</strong> the forward direction, but play an <strong>in</strong>creas<strong>in</strong>gly important


Chapter 6. Results for kaon production from the deuteron 101Figure 6.12 – Exclusive 2 H(γ, K 0 s Λ)p events from JLab run g10 obta<strong>in</strong>ed with the CLAS spectrometer.The data are shown as function of the LAB momentum (<strong>in</strong> GeV) <strong>and</strong> scatter<strong>in</strong>g angle of the outgo<strong>in</strong>gproton. The figure was taken from Ref. [206].1.0W KY= 1700 MeV1.0W KY= 1900 MeV1.0W KY= 2100 MeV0.80.80.8)2(nb/MeV/srdσ/d|p N|dΩ N dΩ * K0.60.40.60.40.20.20.2|p | = 50 MeVN0.200.200.20­1.0 ­0.5 0.0 0.5 1.0­1.0 ­0.5 0.0 0.5 1.0­1.0 |p | = 200 MeVN0.15 RPWIA0.150.15­0.5 0.0 0.5 1.0+ on­shell FSI0.10 + off­shell FSI0.100.100.60.40.050.050.050.00­1.0 ­0.5 0.0 0.50.001.0­1.0 ­0.5 0.0 0.50.001.0­1.0 ­0.5 0.0 0.5 1.0cosθ NFigure 6.13 – The exclusive 2 H(γ, K + Λ)n differential cross section at three values of W KY as a functionof θ N for forward, <strong>in</strong> plane, kaon scatter<strong>in</strong>g, i.e. θK ∗ = φ∗ K = 0◦ . The upper (lower) panels are obta<strong>in</strong>edfor a miss<strong>in</strong>g momentum |⃗p N | = 50 (200) MeV. The solid curve corresponds to RPWIA calculations. Thedashed <strong>and</strong> dotted results <strong>in</strong>clude the on-shell <strong>and</strong> off-shell YN-FSI contribution.


102 6.2. Hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teractions110 ­1E γ1= 1100 MeV |p | = 730 MeVK­1E γ1= 1100 MeV | p | = 697 MeVK­1E γ = 1100 MeV | p | = 618 MeVK)2(µb/MeV/srdσ/d|p K|dΩ KdΩ Y10 ­2­31010 ­40.9010.92 0.94 0.96 0.98 1.001= 1300 MeV |p | = 975 MeV10 ­110 ­2­3E γ10RPWIA10 ­4 + on­shell FSI­4+ off­shell FSI0.90 0.92 0.94 0.96 0.98 1.00K­2­3­4­1­2­3E γ0.6 0.7 0.8 0.9 1.01= 1300 MeV |p | = 944 MeVK0.6 0.7 0.8 0.9 1.0cosθ Y­2­3­4­1­2­3­4E γ0.2 0.4 0.6 0.8 1.0= 1300 MeV |p | = 870 MeVK0.2 0.4 0.6 0.8 1.0Figure 6.14 – The exclusive 2 H(γ, K + Λ)n differential cross section as a function of θ Y for coplanark<strong>in</strong>ematics (φ Y =0) at θ K = 0 ◦ . The top (bottom) row corresponds to a photon energy E γ = 1100 (1300)MeV. The left panels are close to threshold, the middle panels correspond to quasi-free Λ production <strong>and</strong>the right panels are near the Σ-production threshold. The solid curve corresponds to RPWIA calculations.The dashed <strong>and</strong> dotted results <strong>in</strong>clude the on-shell <strong>and</strong> off-shell YN-FSI contribution.role as the hyperon moves away from the z axis. Remarkably, the off-shell contribution to the YN-FSIamplitude is negligible. F<strong>in</strong>ally, the panels on the right h<strong>and</strong> side present calculations a little beyondthe Σ-production threshold. Both components of the YN-FSI amplitude contribute equally to thereaction strength. At extreme forward angles, however, the effects of YN-FSI are negligible.The role of the YN-FSI contribution appears largest close to the threshold of a reaction channel. Thisobservation is illustrated <strong>in</strong> Figure 6.15. It features the exclusive differential cross section at fixedvalues of W Y N . The cross section is given as a function of the kaon’s LAB momentum. As |⃗p K| rises,the energy of the <strong>in</strong>com<strong>in</strong>g photon grows <strong>and</strong> the maximum momentum <strong>in</strong> the figure is equivalentwith a photon energy E γ ≈ 1500 MeV. The thresholds for the different kaon production channels arelisted <strong>in</strong> Table 5.1. The results <strong>in</strong> the panel at the top are obta<strong>in</strong>ed at the 2 H(γ, K + Λ)n threshold.This leads to very small cross sections. The effect of the YN-FSI diagram is considerable <strong>and</strong> stemspredom<strong>in</strong>antly from the off-shell contribution. The calculations <strong>in</strong> the middle panel are a mere 5 MeVabove threshold, yet the <strong>in</strong>fluence of YN-FSI has dw<strong>in</strong>dled. The on-shell rescatter<strong>in</strong>g contributionoverpowers the off-shell part. Away from threshold, the reaction’s strength can be entirely attributedto the RPWIA diagram <strong>and</strong> the role of the hyperon-nucleon <strong>in</strong>teraction is negligible.From an experimental po<strong>in</strong>t of view, EM kaon production from the deuteron sets a challenge due toits small cross sections. Exclusive measurements are m<strong>and</strong>atory <strong>in</strong> order to extract <strong>in</strong>formation onthe elementary kaon-production amplitude. Through (semi-)<strong>in</strong>clusive measurements, the statisticsof an experiment can be significantly improved. This comes at the cost of los<strong>in</strong>g sensitivity tohigher-order effects, such as the hyperon-nucleon rescatter<strong>in</strong>g contribution. Note that our results<strong>in</strong>clud<strong>in</strong>g hyperon-nucleon rescatter<strong>in</strong>g have made it clear that the regions with the largest sensitivityto YN-FSI are marked by small cross sections. Therefore, the effects of the rescatter<strong>in</strong>g diagramsrisk to be washed out when (partially) <strong>in</strong>tegrated observables are considered.


Chapter 6. Results for kaon production from the deuteron 103)2(nb/MeV/sr*dσ/d|p K|dΩ K dΩ Y0.05 = 2056 MeVW YN0.040.030.020.010.400 W 100 200 3000.35 YN= 2060 MeV 400 5000.300.250.200.150.100.051200 W 100 200 300 YN= 2100 MeV100400 50080604020RPWIA+ on­shell FSI+ off­shell FSI00 100 200 300 400 500|p | (MeV)KFigure 6.15 – The exclusive 2 H(γ, K + Λ)n differential cross section at θ K = 0 ◦ <strong>and</strong> θ ∗ Y = φ∗ Y = 0◦ as afunction of |⃗p K | at three different values of W Y N . The solid curve corresponds to RPWIA calculations.The dashed <strong>and</strong> dotted results <strong>in</strong>clude the on-shell <strong>and</strong> off-shell YN-FSI contribution.One expects important contributions from YN-FSI when W Y N is close to the reaction threshold. For2 H(γ, K)Y N) observables, the <strong>in</strong>variant mass is given byW 2 Y N = ( p γ + p D − p K) 2 = stot + m 2 K + 2m D E K + 2E γ (E K − |⃗p K | cos θ K ) , (6.6)which implies W Y N reaches a m<strong>in</strong>imum when θ K ≈ 0 ◦ . Therefore, one anticipates the <strong>in</strong>fluenceof YN-FSI to be largest when the kaon is produced along the beam direction. This is exemplified<strong>in</strong> Figure 6.16 where charged- <strong>and</strong> neutral-kaon production are shown at three representative photonbeamenergies. The forward-peaked aspect of the cross section is prom<strong>in</strong>ent <strong>and</strong> for cos θ K ≈ 1,hyperon-nucleon rescatter<strong>in</strong>g leads to an enhancement. This effect is more pronounced at somewhathigher photon energies. For neutral-kaon production the heighten<strong>in</strong>g due to the YN-FSI diagram isless dramatic, because the cross section peaks near cos θ K ≈ 0.9.In Figure 6.17, we zoom <strong>in</strong> on the charged-kaon production reaction. Kaon-momentum distributionsare given at the same photon energies as <strong>in</strong> Figure 6.16 for cos θ K = 0.9, 0.95 <strong>and</strong> 1. As discussed<strong>in</strong> Section 6.1, the shape of the differential cross section is ma<strong>in</strong>ly determ<strong>in</strong>ed by the momentumdistribution of the spectator nucleon <strong>in</strong> the RPWIA. At the lowest photon energy, one is closeto the Σ-production threshold <strong>and</strong> the cross section only peaks when the condition for quasi-freeΛ-production is fulfilled. At both other photon energies, the distribution is bimodal. The height ofeach quasi-elastic peak is determ<strong>in</strong>ed by the strength of the underly<strong>in</strong>g elementary kaon-productionreaction <strong>and</strong> varies markedly as function of the photon energy <strong>and</strong> kaon scatter<strong>in</strong>g angle. Deviationsfrom the RPWIA result are only noticeable when the kaon is produced along the photon three-


104 6.3. Photoproduction data2+8 H(γ,K )YN64RPWIARPWIA + YN­FSI(µb/sr)dσ/dΩ K22.00.5 2 0.6 0 0.7 0.8 0.9 1.0H(γ,K )YN1.51.00.51300 MeV1100 MeV900 MeV0.00.5 0.6 0.7 0.8 0.9 1.0cosθ KFigure 6.16 – The semi-<strong>in</strong>clusive differential cross section for charged-kaon (upper panel) <strong>and</strong> neutral-kaon(lower panel) photoproduction from the deuteron as a function of θ K at three different photon energies. Thedashed l<strong>in</strong>es represent the RPWIA result. The solid l<strong>in</strong>es also <strong>in</strong>clude the on-shell YN-FSI contribution.momentum. The YN-FSI strengthen the cross section especially for higher photon-beam energies.The effect leads to enhancements up to 10 % <strong>in</strong> the quasi-elastic peaks. The global appearance of thecross section rema<strong>in</strong>s unaffected however.6.3 Photoproduction dataTo date, a limited amount of fully analysed experimental results are available to confront modelcalculations with. At Jefferson Lab, the CLAS collaboration has collected data dur<strong>in</strong>g three runperiods with a photon beam <strong>in</strong>cident on a deuterium target. No data from the g2 experiment [207]have been made public so far. The g10 run period [206, 208] provided data for the elementaryn(γ, K + )Σ − reaction [151]. The RPR-model calculations are compared to these data <strong>in</strong> Figure 3.8.The g13 experiment [209] ran <strong>in</strong> 2006 – 2007. Prelim<strong>in</strong>ary results for the photon-beam asymmetryoff bound protons [210] <strong>and</strong> polarisation observables <strong>in</strong> K 0 Λ <strong>and</strong> K 0 Σ 0 production [153] have beenpresented. These analyses, however, are ongo<strong>in</strong>g <strong>and</strong> have not been published yet.To our knowledge, the only published 2 H(γ, K)Y N data set has been obta<strong>in</strong>ed at the Laboratory for<strong>Nuclear</strong> Science (LNS) at Tohoku University us<strong>in</strong>g the Neutral-Kaon Spectrometer (NKS) [211, 212].The semi-<strong>in</strong>clusive neutral-kaon photoproduction cross section from deuterium was measured <strong>in</strong>two photon-energy b<strong>in</strong>s close to threshold. The data are averaged over 100 MeV-wide energyb<strong>in</strong>s <strong>and</strong> <strong>in</strong>tegrated over 0.9 < cos θ K < 1. The NKS spectrometer has s<strong>in</strong>ce been upgraded toNKS2. In 2005 – 2006, new data has been collected with significantly higher count rates <strong>and</strong> anextended solid-angle coverage [213–215]. The NKS2 data comprises four angular b<strong>in</strong>s <strong>in</strong> the forwardhemisphere (∆ cos θ K = 0.1). In addition, semi-<strong>in</strong>clusive Λ-production cross sections have beenextracted from the NKS2 data set. These data are presented as hyperon-momentum distributions <strong>in</strong>two angular b<strong>in</strong>s <strong>in</strong> the forward hemisphere (∆ cos θ Y = 0.05) <strong>and</strong> a partial total cross section asfunction of the photon energy.


Chapter 6. Results for kaon production from the deuteron 10510810E γ = 900 MeV cosθ K= 1.00810cosθ K= 0.958= 0.90cosθ K666444222(nb/MeV/sr)dσ/d|p K|dΩ K60600 E 200 400 600 800 1000γ = 1100 MeV505040403030202010101001000 E = 200 1300 MeV 400 600 800 1000γ808060604040200 400 600 8006010005040302010200 400 600 8001001000806040200 400 600 800200 400 600 800RPWIARPWIA + YN­FSI202020000 200 400 600 800 10000200 400 600 800 1000|p | (MeV)K200 400 600 800Figure 6.17 – The 2 H(γ, K + )Y N differential cross section as function of the three-momentum of theoutgo<strong>in</strong>g kaon <strong>in</strong> the LAB frame. The results <strong>in</strong> the upper, middle <strong>and</strong> lower panels represent photonenergies E γ = 900, 1100 <strong>and</strong> 1300 MeV respectively. The results are obta<strong>in</strong>ed at three values for the kaon’sscatter<strong>in</strong>g angle <strong>in</strong> the LAB (from left to right: cos θ K = 1, 0.95 <strong>and</strong> 0.9). The dashed l<strong>in</strong>es represent theRPWIA result with the shaded region <strong>in</strong>dicat<strong>in</strong>g the contribution of the 2 H(γ, K + Λ)n channel. The fullresult, which <strong>in</strong>cludes the on-shell YN-FSI contribution, corresponds to the solid l<strong>in</strong>es.In Figures 6.18 <strong>and</strong> 6.19, our RPWIA results for neutral-kaon momentum distributions are comparedto both the NKS <strong>and</strong> NKS2 data sets. The model calculations are performed at the centre of thephoton-energy b<strong>in</strong>. As photon energies close to the Σ-production threshold are probed, the crosssections are predom<strong>in</strong>antly uni-modal except <strong>in</strong> the highest energy b<strong>in</strong> at forward angles. The RPWIApredictions reproduce the shape of the data <strong>and</strong> the characteristic quasi-elastic peaks of semi-<strong>in</strong>clusivekaon production. At the lowest energy b<strong>in</strong>, the strength of the reaction is underpredicted by roughlya factor of two-to-three at all angles. Whereas the model calculations suggest the differential crosssections falls off when the angle between kaon <strong>and</strong> photon momentum grows, the LNS data <strong>in</strong> bothangular b<strong>in</strong>s have the same size. One notices that the resonant contributions to the elementaryproductionoperator play an unsubstantial role. At E γ = 1050 MeV, the size of the cross sections <strong>in</strong>the RPWIA is <strong>in</strong> l<strong>in</strong>e with the measurements <strong>and</strong> the reaction is still dom<strong>in</strong>ated by the Reggeizedbackground. Yet, one notes that nucleon-resonance contributions are essential to reproduce theobserved shoulder at |⃗p K| ≈ 200 MeV. These k<strong>in</strong>ematics correspond to quasi-free Σ-production.In Section 6.1, the error bars on experimental helicity amplitudes emerged as the chief source oftheoretical uncerta<strong>in</strong>ties <strong>in</strong> our formalism. Because both elementary K 0 Λ <strong>and</strong> K 0 Σ 0 productionfrom the neutron contribute to the 2 H(γ, K 0 )Y N cross section, one can expect a considerable impact.The shaded b<strong>and</strong> <strong>in</strong> Figures 6.20 <strong>and</strong> 6.21 represents the range of cross sections obta<strong>in</strong>ed with


106 6.3. Photoproduction data2.52.01.52.5E γ = 950 MeV 0.9


Chapter 6. Results for kaon production from the deuteron 107| (nb/MeV)Kdσ/d|p3.0 E γ = 950 MeV 0.9


108 6.3. Photoproduction data| (nb/MeV)Kdσ/d|p88E7γ = 1050 MeV 0.9


Chapter 6. Results for kaon production from the deuteron 109(µb)σ partial54321+Λ+KK Λ + K0Λ0800 850 900 950 1000 1050 1100(MeV)E γFigure 6.23 – The total 2 H(γ, Λ)KN cross section for forward hyperon angles (0.9 ≤ cos θ Y ≤ 1) as afunction of the photon energy E γ . The full l<strong>in</strong>e gives the RPWIA prediction us<strong>in</strong>g the RPR model, whereasthe dashed l<strong>in</strong>e s<strong>in</strong>gles out the contribution of the 2 H(γ, K + Λ)n channel. Data are from Ref. [215].| (nb/MeV)Kdσ/d|p2.52.01.51.00.50.9< E γ (GeV)


110 6.3. Photoproduction data2.52.01.52.50.9


Chapter 6. Results for kaon production from the deuteron 1111.00.81.0E γ = 900 MeV cosθ K= 1.000.81.0cosθ K= 0.950.8= 0.90cosθ K0.60.60.60.40.40.40.20.20.2(nb/MeV/sr)dσ/d|p K|dΩ K660 E = 200 1100 MeV 400 600 800 1000γ554321140 E 200 400 γ = 1300 MeV 600 800 14 1000121210108866442200 200 400 600 800010004321200 400 600 800610005200 400 600 800 14 100012108642200 400 600 80001000|p | (MeV)K4321200 400 600 800200 400 600 800RPWIARPWIA + YN­FSI200 400 600 800Figure 6.27 – The 2 H(γ, K 0 )Y N differential cross section as a function of |⃗p K |. The results <strong>in</strong> the upper,middle <strong>and</strong> lower panels represent photon energies E γ = 900, 1100 <strong>and</strong> 1300 MeV respectively. The resultsare obta<strong>in</strong>ed at three values for cos θ K (from left to right: cos θ K = 1, 0.95 <strong>and</strong> 0.9). The dashed l<strong>in</strong>esrepresent the RPWIA result with the shaded region <strong>in</strong>dicat<strong>in</strong>g the contribution of the 2 H(γ, K + Λ)n channel.The full result, which <strong>in</strong>cludes the on-shell YN-FSI contribution, corresponds to the solid l<strong>in</strong>es.In Figure 6.16, cross sections for neutral-kaon production are shown as a function of the kaon’sscatter<strong>in</strong>g angle. The effect of the YN-FSI contribution is generally small <strong>and</strong> is most outspoken <strong>in</strong> asmall angular range at extreme-forward angles. This is evident <strong>in</strong> Figure 6.27 which features thesemi-<strong>in</strong>clusive cross section at forward angles. For cos θ K = 1, the Σ peak dom<strong>in</strong>ates <strong>and</strong> YN-FSIeffects result <strong>in</strong> an 25 % <strong>in</strong>crease of the cross section. However, as soon as the kaon is no longerproduced along the photon, Λ production has the upper h<strong>and</strong> <strong>and</strong> rescatter<strong>in</strong>g effects are m<strong>in</strong>imal.S<strong>in</strong>ce the NKS <strong>and</strong> NKS2 data are <strong>in</strong>tegrated over angular b<strong>in</strong>s that have a width of ∆ cos θ K = 0.1,the overall YN-FSI contribution is unimportant. Our calculations po<strong>in</strong>t to an effect of at most 1–2%.6.4 Electroproduction dataAlso for the 2 H(e, e ′ K)Y N reaction, few data are available. To our knowledge, a total of two datapo<strong>in</strong>ts have been published. These data have been obta<strong>in</strong>ed at Jefferson Lab’s Hall-C [216] <strong>in</strong> adouble-co<strong>in</strong>cidence experiment. The <strong>in</strong>cident-beam energy was fixed at 3245 MeV <strong>and</strong> scatteredelectrons where measured at an angle of 14.93 ◦ . The virtual photon has virtuality Q 2 = 0.35 GeV 2<strong>and</strong> energy E γ = 1668 MeV. Even though data was collected at different configurations for the kaon


112 6.4. Electroproduction data)2(nb/GeV/sre dΩ KedΩ’dσ/dE’20151052 +H(γ,K Λ)nRegge + resonances 15Regge00 20 40 60 80θ K201052 +H(γ,K Σ)N00 20 40 60 80(deg)Figure 6.28 – Five-fold differential LAB cross sections for 2 H(e, e ′ K + Λ)n (left panel) <strong>and</strong>2 H(e, e ′ K + Σ)N (right panel) as a function of θ K . The <strong>in</strong>cident-beam energy is fixed at 3245 MeV <strong>and</strong> theelectron scatters at an angle 14.93 ◦ . The virtual photon has Q 2 = 0.35 GeV 2 <strong>and</strong> E γ = 1668 MeV. Thedashed curve shows the contribution of the Reggeized background, whereas the solid curve also <strong>in</strong>cludesthe s-channel resonant contributions of the full RPR amplitude. Data from Ref. [216].spectrometer, cross sections have only been published for a s<strong>in</strong>gle value of the kaon scatter<strong>in</strong>g angle.These cross sections have been averaged over the azimuthal angle.By fitt<strong>in</strong>g miss<strong>in</strong>g-mass distributions to data, Λ <strong>and</strong> Σ production have been separated. Ow<strong>in</strong>gto the small mass difference between the Σ 0 <strong>and</strong> Σ − hyperons, only the total Σ strength could bedeterm<strong>in</strong>ed via the miss<strong>in</strong>g-mass technique. Ref. [216] disentangles the Σ 0 <strong>and</strong> Σ − contributionsbased on a dedicated phenomenological model developed <strong>in</strong> Ref. [217]. Inevitably, this <strong>in</strong>troduces acritical model dependence <strong>in</strong> the published exclusive Σ-production results. Therefore we will onlyuse the <strong>in</strong>clusive Σ-production cross sections.In Figure 6.28, RPWIA predictions are confronted with the Hall-C data. The model calculationsclearly overestimate the data. No experimental angular distributions have been published to verifythe predicted θ K -dependence of the cross section.


CHAPTER 7Conclusions <strong>and</strong> outlookMotivated by the desire to underst<strong>and</strong> the structure of baryons <strong>in</strong> the conf<strong>in</strong>ement regime, theexploration of the nucleon’s excitation spectrum has been a cornerstone of modern hadronic physics.Nucleon spectroscopy presents a unique opportunity to judge the validity of the constituent-quarkparadigm. Pion-nucleon scatter<strong>in</strong>g is the conventional tool to chart the excited states of the nucleon.Yet strangeness production is highly complementary, because of its <strong>in</strong>herent sensitivity to the nucleonsea.The Regge-plus-resonance formalismThe traditional approach to EM meson production is based on isobar models. For kaon production,however, one quickly runs <strong>in</strong>to trouble because of the high threshold <strong>and</strong> the dom<strong>in</strong>ance of backgroundterms. This calls for a description <strong>in</strong> terms of alternative degrees of freedom. Regge theory providesan efficient account of the reaction dynamics <strong>in</strong> the high-energy region, where partonic degrees offreedom dom<strong>in</strong>ate. We successfully model charged-kaon photoproduction at high energies throughthe exchange of K + (494) <strong>and</strong> K ∗+ (892) Regge-trajectories. Extrapolat<strong>in</strong>g this amplitude <strong>in</strong>to theresonance region, we f<strong>in</strong>d that it accounts for the general trends of the data. Apply<strong>in</strong>g the Reggemodel as a parametrisation of the troublesome background contributions, the coupl<strong>in</strong>g constants ofthe resonance-exchange diagrams can be determ<strong>in</strong>ed <strong>in</strong>dependently. In this way, the analysis of theresonant <strong>and</strong> non-resonant content of strangeness production is effectively decoupled.An RPR model <strong>in</strong>clud<strong>in</strong>g different resonance-exchange diagrams is optimised to the resonance-regiondata, while the three free parameters of the Regge model are held fixed. In the K + Λ channel, theset of established resonances found <strong>in</strong> the RPP turns out to be <strong>in</strong>sufficient <strong>and</strong> a miss<strong>in</strong>g D 13 (1900)resonance is <strong>in</strong>troduced. For K + Σ 0 production, both established nucleon <strong>and</strong> ∆ resonances areconsidered <strong>and</strong> a successful description of the data is achieved. Interest<strong>in</strong>gly, <strong>in</strong> both K + Λ <strong>and</strong>K + Σ 0 production, the two-star P 13 (1900) resonance emerges as a vital model <strong>in</strong>gredient. S<strong>in</strong>ce thisstate is not predicted by quark-diquark models, it represents strong evidence <strong>in</strong> favour of a picture113


114 Chapter 7. Conclusions <strong>and</strong> outlookof the nucleon with three constituent quarks.Us<strong>in</strong>g the most recent photo- <strong>and</strong> electroproduction data, the reliability of the RPR model can beevaluated. Some <strong>in</strong>terest<strong>in</strong>g extensions to the current RPR model are formulated. These aim atimprov<strong>in</strong>g the description of the differential cross section at backward angles. In addition, it is alsodesirable to consider sp<strong>in</strong>-5/2 resonances <strong>in</strong> the analysis of the resonant content of the reaction.The RPR framework has recently been updated <strong>in</strong> this direction <strong>and</strong> a re-analysis of the completedatabase is forthcom<strong>in</strong>g. In spite of its limited number of adjustable parameters, the RPR-2007 modeldisplays a remarkable ability to describe <strong>and</strong> predict the available p(γ (∗) , K + )Λ <strong>and</strong> p(γ (∗) , K + )Σ 0observables from threshold up to E γ = 16 GeV.In order to gauge the predictive power of the RPR model, whose parameters are constra<strong>in</strong>ed by dataobta<strong>in</strong>ed off proton targets, we extend the formalism to reactions with a neutron target or a neutralkaon <strong>in</strong> the f<strong>in</strong>al state. The conversion to neutron targets of kaon production models that <strong>in</strong>cluderesonant diagrams requires knowledge of helicity amplitudes. Beyond the second resonance region,the latter are either unknown or poorly constra<strong>in</strong>ed by pion-production data. As a consequence, theyput severe limits on the predictive power of both the RPR <strong>and</strong> isobar approaches. The Regge model,by contrast, offers an elegant <strong>and</strong> economical description of EM kaon production. Isosp<strong>in</strong> symmetrysuffices to anchor the neutron to the proton channel.Apply<strong>in</strong>g the RPR formalism to neutral-kaon production fails to account for the available p(γ, K 0 )Σ +data. Because the K 0 (494)-exchange diagram does not contribute, a s<strong>in</strong>gle trajectory rema<strong>in</strong>s <strong>in</strong>the Regge amplitude. We consider the option of add<strong>in</strong>g an additional trajectory <strong>and</strong> identify theK ∗ (1410)-trajectory with a constant phase as the best solution. S<strong>in</strong>ce there are no data available athigh energies to reliably anchor the parameters of this contribution, we opt for a more pragmaticapproach. In the N(γ, K 0 )Σ channels, the EM coupl<strong>in</strong>g constant of the K ∗ (892)-exchange diagramis re-adjusted to the available data, result<strong>in</strong>g <strong>in</strong> a good description of the observables.The usefulness of the RPR formalism is illustrated by consider<strong>in</strong>g K − radiative capture <strong>in</strong> flight onthe proton, which is related to kaon photoproduction through cross<strong>in</strong>g symmetry. This reaction isideally suited for study<strong>in</strong>g the spectrum of excited hyperon states. Recently, the first differentialcross-sectionresults for the γΛ <strong>and</strong> γΣ 0 f<strong>in</strong>al states have been published. A theoretical analysis isperformed with the RPR approach. The non-resonant contributions to the reaction amplitude can beparametrised by the Regge model that has been optimised aga<strong>in</strong>st kaon-photoproduction data. Us<strong>in</strong>gthe cross-section data, we explore the possible contributions of hyperon resonances listed <strong>in</strong> the RPP.The γΣ 0 f<strong>in</strong>al state is dom<strong>in</strong>ated by hyperon-resonance exchange <strong>and</strong> h<strong>in</strong>ts at an important role fora resonance <strong>in</strong> the 1700 MeV mass region. In the γΛ f<strong>in</strong>al state, on the other h<strong>and</strong>, the non-resonantcontributions account for half of the measured strength, <strong>and</strong> the data suggest the importance of aresonance <strong>in</strong> the mass region around 1550 MeV.Strangeness production from the deuteronIn the f<strong>in</strong>al part of this work, we focus on EM strangeness production from the deuteron. Bystudy<strong>in</strong>g kaon production from this barely bound state of a proton <strong>and</strong> a neutron, one hopes toextract the elementary reaction from the neutron. To date, the strangeness-production databaseis heavily dom<strong>in</strong>ated by charged-kaon production from the proton. Measur<strong>in</strong>g all six possible f<strong>in</strong>alstates would <strong>in</strong> some sense constitute an isosp<strong>in</strong>-complete experiment <strong>and</strong> would help constra<strong>in</strong> the


Chapter 7. Conclusions <strong>and</strong> outlook 115reaction dynamics.We develop a covariant formalism for 2 H(γ, KY )N based on the RIA us<strong>in</strong>g the RPR model aselementary-production operator. The lead<strong>in</strong>g contribution to the reaction amplitude stems fromthe RPWIA. The momentum distribution of the deuteron emerges as the dom<strong>in</strong>ant factor thatdictates the angular <strong>and</strong> momentum dependence of the cross sections. Studied as a function of themomentum of the outgo<strong>in</strong>g nucleon, one notices that the reaction strength falls off exponentially asthe miss<strong>in</strong>g momentum <strong>in</strong>creases <strong>and</strong> that the distribution is nearly isotropic. The semi-<strong>in</strong>clusivekaon-production cross section is dom<strong>in</strong>ated by those phase-space regions where the spectator nucleonis almost at rest.We <strong>in</strong>vestigate the sensitivity of the computed cross sections to the various model <strong>in</strong>gredients. Thedetails of the deuteron wave functions do not have a large impact on the f<strong>in</strong>al results, except atlarge miss<strong>in</strong>g momenta. A similar observation is made for the effect of off-shell extrapolations ofthe elementary-production operator. The variations <strong>in</strong>duced by the poorly constra<strong>in</strong>ed helicityamplitudes, on the other h<strong>and</strong>, are large. We judge the extrapolation of the resonance <strong>in</strong>formationfrom proton to neutron targets to be the most important source of uncerta<strong>in</strong>ties.Model predictions for semi-<strong>in</strong>clusive K 0 <strong>and</strong> Λ photoproduction are compared to experimental resultsobta<strong>in</strong>ed <strong>in</strong> the threshold region with the NKS <strong>and</strong> NKS2 spectrometers at LNS. Except at the lowestenergy for 2 H(γ, K 0 )Y N, all predictions compare favourably to the data. The agreement of theRPR-model with the two published charged-kaon electroproduction data po<strong>in</strong>ts is less satisfactory.The data is overpredicted by roughly a factor two to three. Additional measurements are clearlyneeded to further <strong>in</strong>vestigate the 2 H(e, e ′ KY )N reaction.The effectiveness of the deuteron as a neutron target is threatened by f<strong>in</strong>al-state <strong>in</strong>teractions. We<strong>in</strong>vestigate the effect of a photoproduced hyperon which rescatters of the spectator nucleon. Thiscontribution can be split up <strong>in</strong> an on-shell part, with all rescatter<strong>in</strong>g particles on mass shell, <strong>and</strong>an off-shell term. The latter <strong>in</strong>volves a virtual hyperon <strong>and</strong> requires a computationally expensivepr<strong>in</strong>cipal-value <strong>in</strong>tegration. The effect of YN-FSI is important when the <strong>in</strong>variant mass of thehyperon-nucleon system is close to threshold. For semi-<strong>in</strong>clusive kaon production, rescatter<strong>in</strong>gcontributes exclusively when the kaon is emitted along the direction of the <strong>in</strong>cident photon. S<strong>in</strong>cethe YN-FSI-diagram is unimportant at low miss<strong>in</strong>g momenta, the quasi-free strangeness-productioncross section can be effectively extracted when judicious cuts are applied on the momentum of theoutgo<strong>in</strong>g nucleon. Thus, the deuteron can be considered as a reliable effective neutron target.From an alternative po<strong>in</strong>t of view, strangeness production from the deuteron can be thought of as anuclear laboratory to study the hyperon-nucleon <strong>in</strong>teraction. Such a program requires that one focuseson phase-space regions where YN-FSI dom<strong>in</strong>ate the reaction dynamics. Our model calculations<strong>in</strong>dicate that this implies exclusive measurements at high miss<strong>in</strong>g momenta. The reliable extractionof <strong>in</strong>formation on the hyperon-nucleon force at these k<strong>in</strong>ematics will however be challeng<strong>in</strong>g. Athigh miss<strong>in</strong>g momenta, the cross section is small <strong>and</strong> count rates will be low. Moreover, this region<strong>in</strong> phase space is most prone to theoretical uncerta<strong>in</strong>ties orig<strong>in</strong>at<strong>in</strong>g from the adopted deuteronwave function <strong>and</strong> the off-shell extrapolation of the elementary-production operator. Therefore, weconclude that <strong>in</strong> order to distill trustworthy <strong>in</strong>formation on the hyperon-nucleon <strong>in</strong>teraction fromstrangeness-production data, the deuteron structure <strong>and</strong> the reaction dynamics need be <strong>in</strong>vestigatedfurther.


116 Chapter 7. Conclusions <strong>and</strong> outlookOutlookIn this dissertation, we have studied strangeness production from the nucleon <strong>and</strong> the deuteron us<strong>in</strong>gthe RPR formalism. This framework provides a unique approach to kaon production, <strong>and</strong> makesit possible to describe data <strong>in</strong> the resonance region with a small number of free parameters, whilethe correct high-energy limit is ensured. We have demonstrated the ability of the RPR formalismto predict results for strangeness production from the neutron, as well as neutral-kaon production.In the foreseeable future, new experimental <strong>in</strong>formation for the N(γ, K 0 )Y reaction channels willbecome available. These data will constitute an important test for the extensions to the RPR-modelpresented <strong>in</strong> Chapter 3.For the transformation of the Regge-model amplitudes to neutral-kaon production reactions, we havemade use of the limited database <strong>in</strong> the resonance region. The planned upgrade of the acceleratorfacility at Jefferson Lab offers the opportunity to measure strangeness production at photon energieswell beyond the resonance region. These results would constitute <strong>in</strong>valuable <strong>in</strong>put for the constructionof more reliable Regge models, mak<strong>in</strong>g it possible to constra<strong>in</strong> Regge-model amplitudes for all sixstrangeness f<strong>in</strong>al states <strong>in</strong> an energy region where resonant contributions have died out.Our results for strangeness production from the deuteron rely chiefly on the elementary-productionoperator. In Section 2.4, we have anticipated a re-analysis of the current N(γ, K)Y database <strong>in</strong> anupgraded RPR framework. This forthcom<strong>in</strong>g model will ma<strong>in</strong>ly provide an improved account of thereaction mechanisms at backward angles. Apply<strong>in</strong>g this model <strong>in</strong> future deuteron calculations willlead to more reliable results.Our primary motivation to study the 2 H(γ, KY )N reaction stems from the prospect to extract<strong>in</strong>formation on quasi-free kaon-production from the neutron. Our YN-FSI results have providedevidence that the deuteron <strong>in</strong>deed constitutes a dependable neutron target. In order to furthersubstantiate this claim, other possible rescatter<strong>in</strong>g contributions need to be considered. Especiallythe two-step process, where an <strong>in</strong>termediary pion is produced by the <strong>in</strong>com<strong>in</strong>g photon, can play animportant role, s<strong>in</strong>ce the elementary pion-production cross section is nearly one order of magnitudelarger than the kaon-production one. The two-step process can be calculated <strong>in</strong> an analogous way tothe YN-FSI contribution, <strong>and</strong> requires models for the elementary pion-production operator <strong>and</strong> theπN → KY rescatter<strong>in</strong>g vertex. For the former, many reliable models that are constra<strong>in</strong>ed by a largedatabase are available. Experimental <strong>in</strong>formation on the latter, on the other h<strong>and</strong>, is scant, <strong>and</strong> asuccessful evaluation of the two-step process will h<strong>in</strong>ge on a reliable description of the N(π, K)Yreaction.


APPENDIX ANotations <strong>and</strong> conventionsIf you obey all the rules, you miss all the fun.— Kathar<strong>in</strong>e HepburnThroughout this document, we adopt the conventions used <strong>in</strong> the textbook of Gross [218]. Ourconventions with regard to Lorentz transformations <strong>and</strong> rotations largely follow those of Leader’stextbook on sp<strong>in</strong> <strong>in</strong> particle physics [100]. For the benefit of a self-conta<strong>in</strong>ed manuscript, ourconventions <strong>and</strong> notations will be summarised <strong>in</strong> this appendix.In this work, we assume God-given units [171], where = c = 1 .(A.1)In order to convert lengths <strong>and</strong> cross sections to SI units, the follow<strong>in</strong>g conversion constants areuseful [1]c = 197.3 MeV fm ,(c) 2 = 389.4 GeV 2 µbarn .(A.2)A.1 Four-vectors <strong>and</strong> tensorsA contravariant four-vector x is written asx µ = (x 0 , ⃗x) = (x 0 , x i ) = (x 0 , x 1 , x 2 , x 3 ) ,(A.3)where the Greek <strong>in</strong>dex µ runs from 0 to 3 <strong>and</strong> Roman <strong>in</strong>dices run over spatial coord<strong>in</strong>ates 1 to 3.The covariant four-vector is obta<strong>in</strong>ed by lower<strong>in</strong>g the Lorentz <strong>in</strong>dexx µ = g µν x ν = (x 0 , −⃗x) .(A.4)117


118 A.2. Rotations <strong>and</strong> Lorentz transformationsIn this expression, we tacitly assume summation over the duplicated <strong>in</strong>dices <strong>and</strong> <strong>in</strong>troduce the metrictensor⎛⎞1 0 0 0g µν = g µν 0 −1 0 0= ⎜⎟⎝ 0 0 −1 0 ⎠ .(A.5)0 0 0 −1The symbol p is used to denote the energy-momentum four-vector. One has the E<strong>in</strong>ste<strong>in</strong> relation forfree particlesp 2 = p · p = p µ p µ = g µν p µ p ν = (p 0 ) 2 − |⃗p| 2 = m 2 ≥ 0 ,(A.6)where m is the rest mass.The totally antisymmetric tensor is def<strong>in</strong>ed accord<strong>in</strong>g to⎧⎪⎨+1 for even permutations of (0,1,2,3) ,ɛ αβγδ = −1 for odd permutations of (0,1,2,3) ,⎪⎩0 for repeated <strong>in</strong>dices .(A.7)A.2 Rotations <strong>and</strong> Lorentz transformationsConventionally, transformations are considered either from the active or passive po<strong>in</strong>t of view.Here, we adopt a different convention. A transformation t denotes the physical operation of thetransformation on the object on which it acts. The notation tp implies that p is physically boosted<strong>and</strong>/or rotated. In literature, this action corresponds to the active po<strong>in</strong>t of view. The transformationt of the axes of a reference frame O is referred to as tO.A rotation is completely specified by three real parameters. In this document we will adopt twodifferent descriptions:ˆ <strong>in</strong> terms of Euler angles α, β <strong>and</strong> γ the rotation r(α, β, γ) is performed by successive rotationsthrough angle γ (0 ≤ α < 2π) about the z axis, angle β (0 ≤ β ≤ π) about the y axis <strong>and</strong>f<strong>in</strong>ally angle α (0 ≤ γ < 2π) about the z axis. Denot<strong>in</strong>g by r i (θ) (i = x, y, z) a rotation throughangle θ about the i axis, we haver(α, β, γ) = r z (α)r y (β)r z (γ) .(A.8)ˆ as a s<strong>in</strong>gle rotation through the angle ω (0 ≤ ω ≤ π) about the unit axis ˆ⃗n def<strong>in</strong>ed by the polar<strong>and</strong> azimuthal angles θ <strong>and</strong> φ. We use the notation r(ω; θ, φ) or r(⃗ω) with ⃗ω = ωˆ⃗n.An arbitrary Lorentz boost l( ⃗ β) is equivalently fixed by three real parameters: the boost speed | ⃗ β|<strong>and</strong> the azimuthal <strong>and</strong> polar angles of the boost direction ˆ⃗ β ≡ ⃗ β/| ⃗ β|. For a boost with velocity valong the x, y or z axis, we adopt the notation: l i (v) (i = x, y, z).Any physical Lorentz transformation t can be decomposed as a rotation r(⃗ω) followed by a pureLorentz boost l( β). ⃗ For such a Lorentz transformation act<strong>in</strong>g on a four-vector, we adopt the follow<strong>in</strong>gst<strong>and</strong>ard notation(tp) µ = [Λ(t)] µ ν pν ,(A.9)


Appendix A. Notations <strong>and</strong> conventions 119hav<strong>in</strong>g⎛Λ(t) ≡ Λ(l( β))Λ(r(⃗ω)) ⃗ = ⎜⎝γ γβ x γβ y γβ zγβ x 1 + αβx 2 αβ x β y αβ x β zγβ y αβ y β x 1 + αβy 2 αβ y β zγβ z αβ z β x αβ z β y 1 + αβz2⎞ ⎛⎟ ⎜⎠ ⎝1 0 0 000 R ij0⎞⎟⎠ ,(A.10)where<strong>and</strong>with i, j = 1, 2, 3.γ =α =1√1 − | ⃗ β| 2 ,γ2γ + 1 ,R ij = cos ωδ ij + (1 − cos ω)ˆ⃗ω iˆ⃗ωj − s<strong>in</strong> ωɛ ijk ˆ⃗ωk ,(A.11)(A.12)A Lorentz transformation t act<strong>in</strong>g on the Dirac <strong>in</strong>dices of sp<strong>in</strong>ors is denoted by S(t). For a rotationr(⃗ω), we have explicitlyS(r(⃗ω)) = cos ω 2 − i s<strong>in</strong> ω 2 ˆ⃗ω i γ 5 γ 0 γ i .(A.13)The representation of a boost l( ⃗ β) is given byS(l( β)) ⃗ = cosh ξ 2 + s<strong>in</strong>h ξ ˆ⃗β i γ 0 γ i ,2(A.14)with ξ the rapidity <strong>and</strong>cosh ξ =1√1 − | ⃗ β| 2 ,cosh ξ √cosh ξ + 12 = 2s<strong>in</strong>h ξ √cosh ξ − 12 = 2,.(A.15)F<strong>in</strong>ally, we <strong>in</strong>troduce the Wigner rotation matrices D J (r) as the unitary (2J + 1)-dimensionalrepresentation matrices of the rotation r. They obey the follow<strong>in</strong>g property[DJmm ′(r) ] ∗= (−1)m−m ′ D J -m,-m′(r) . (A.16)Describ<strong>in</strong>g the rotation <strong>in</strong> terms of Euler angles, the Wigner matrices are given byD J mm ′(α, β, γ) = e−imα d J mm ′(β)e−im′γ ,(A.17)where the non-trivial part is conta<strong>in</strong>ed <strong>in</strong> the real-valued d-functions. The latter enjoy severalsymmetry propertiesd J mm ′(β) = dJ −m ′ ,−m (β) = (−1)m−m′ d J m ′ m (β) = (−1)J+m d J m,−m ′(π − β) = dJ m ′ m (−β) .(A.18)


120 A.3. Pauli <strong>and</strong> Dirac matricesThe d-functions used <strong>in</strong> this work ared 1/21/2,1/2 (β) = cos β 2 ,d 1/21/2,−1/2 (β) = − s<strong>in</strong> β 2 ,d 1 11(β) = 1 + cos β2d 1 10(β) = − s<strong>in</strong> √ β , 2,(A.19)d 1 00(β) = cos β .The Wigner rotation matrices for rotations <strong>in</strong> the representation r(⃗ω) or r(ω; θ, φ) are def<strong>in</strong>ed asD J mm ′(⃗ω) = DJ mm ′(ω; θ, φ) = 〈Jm| e−i⃗ω· ˆ⃗ J∣ ∣ Jm ′〉 ,(A.20)with ˆ⃗ J ≡ ( Ĵ x , Ĵy, Ĵz) the angular momentum operators, which are the generators of rotations. TheWigner matrix for J = 1/2 is given by [219]()D 1/2 cos ω(ω; θ, φ) =2 − i s<strong>in</strong> ω 2 cos θ − s<strong>in</strong> ω 2 s<strong>in</strong> θei(φ+ π 2 )− s<strong>in</strong> ω 2 s<strong>in</strong> θe−i(φ+ π 2 ) cos ω 2 + i s<strong>in</strong> ω 2 cos θ . (A.21)A.3 Pauli <strong>and</strong> Dirac matricesThe Pauli sigma matrices are given by( ) (σ 1 0 1=, σ 2 =1 00 −ii 0), σ 3 =(1 00 −1), (A.22)<strong>and</strong> obey the relationσ i σ j = iɛ ijk σ k ,where we have <strong>in</strong>troduced the antisymmetric tensor(A.23)ɛ 123 = ɛ 231 = ɛ 312 = 1 <strong>and</strong> ɛ jik = −ɛ ijk . (A.24)The Pauli matrices fulfil the follow<strong>in</strong>g commutation <strong>and</strong> anticommutation relations[σ i , σ j ] = 2iɛ ijk σ k ,{σ i , σ j } = 2δ ij .(A.25)Dirac or gamma matrices are def<strong>in</strong>ed as the set of n × n matrices γ µ that generate the Cliffordalgebra def<strong>in</strong>ed by the anticommutation relation{γ µ , γ ν } ≡ γ µ γ ν + γ ν γ µ = 2g µν × 1 n , (A.26)with 1 n the n-dimensional unity matrix. In four-dimensional M<strong>in</strong>kowski space, several representationsof the Dirac matrices exist. We adopt the Dirac representation which, <strong>in</strong> terms of Pauli matrices,givesγ 0 =()1 2 00 −1 2<strong>and</strong> γ i =(0 σ i−σ i 0), (A.27)


Appendix A. Notations <strong>and</strong> conventions 121for i = 1, 2, 3. Several <strong>in</strong>terest<strong>in</strong>g matrices can be constructed from these γ matrices. We def<strong>in</strong>e thetraceless productγ 5 = iγ 0 γ 1 γ 2 γ 3 ,(A.28)the traceless antisymmetric comb<strong>in</strong>ation<strong>and</strong> the charge conjugation matrixσ µν = i 2 [γµ , γ ν ] ,C = −iγ 0 γ 2 .(A.29)(A.30)A.4 Dirac sp<strong>in</strong>orsThe positive- <strong>and</strong> negative-energy four-component sp<strong>in</strong>ors u(⃗p; m s ) <strong>and</strong> v(⃗p; m s ) of an on-mass-shellparticle with four-momentum p = (E p , ⃗p) <strong>and</strong> mass m = √ p µ p µ are solutions to the Dirac equationwhere we have adopted Feynman’s notation0 = ( /p − m ) u(⃗p; m s ) = ( /p + m ) v(⃗p; m s ) , (A.31)/A ≡ A µ γ µ . (A.32)Def<strong>in</strong><strong>in</strong>g the conjugate sp<strong>in</strong>or u(⃗p; m s ) ≡ u † (⃗p; m s )γ 0 , <strong>and</strong> impos<strong>in</strong>g the normalisationsu(⃗p; m s )u(⃗p; m ′ s) = 2mδ msm ′ s, v(⃗p; m s )v(⃗p; m ′ s) = −2mδ msm ′ s , (A.33)the sp<strong>in</strong>ors readu(⃗p; m s ) = √ E p + mv(⃗p; m s ) = √ E p + m(12⃗σ·⃗pE p+m)χ ms ,( ) ⃗σ·⃗pE p+mη ms .1 2(A.34)The two-component sp<strong>in</strong>ors χ ms <strong>and</strong> η ms are orthogonal <strong>and</strong> normalised so thatχ † m sχ m ′ s= η † m sη m ′ s= δ msm ′ s .(A.35)Associat<strong>in</strong>g m s with the physical sp<strong>in</strong> component of the fermion along the z axis, one can adopt thefollow<strong>in</strong>g representation( )( )10χ +1/2 (θ = 0, φ = 0) = , χ −1/2 (θ = 0, φ = 0) = . (A.36)01A sp<strong>in</strong>or u(⃗p; m s , θ, φ) with sp<strong>in</strong>-projection m s along an axis fixed by (θ, φ), can be obta<strong>in</strong>ed byrotat<strong>in</strong>g the sp<strong>in</strong>or u(⃗p; m ′ s) ≡ u(⃗p; m ′ s, 0, 0) with the Wigner matrices def<strong>in</strong>ed <strong>in</strong> (A.17), i.e.u(⃗p; m s , θ, φ) = D 1/2m ′ s ms(φ, θ, −φ)u(⃗p; m′ s) .(A.37)


122 A.4. Dirac sp<strong>in</strong>orsExplicitly, the two-component sp<strong>in</strong>ors are given by( )(cos θχ +1/2 (θ, φ) =2e iφ s<strong>in</strong> θ , χ −1/2 (θ, φ) =2−e −iφ s<strong>in</strong> θ 2cos θ 2). (A.38)The two-component sp<strong>in</strong>ors for particle <strong>and</strong> antiparticle states are related to each other up to anarbitrary phase. We def<strong>in</strong>e the follow<strong>in</strong>g phase conventionη ms = χ −ms .(A.39)The u <strong>and</strong> v sp<strong>in</strong>ors are then related by charge conjugation as followsCv T (⃗p; m s ) = (2m s ) u(⃗p; m s ) , Cu T (⃗p; m s ) = (2m s ) v(⃗p; m s ) . (A.40)One can def<strong>in</strong>e projection operators for positive- <strong>and</strong> negative-energy states asΛ + (⃗p) = /p + m ,Λ − (⃗p) = m − /p ,(A.41)or <strong>in</strong> terms of sp<strong>in</strong>or components[Λ + (⃗p)] ab= ∑ m su a (⃗p; m s )u b (⃗p; m s ) ,[Λ − (⃗p)] ab= − ∑ m sv a (⃗p; m s )v b (⃗p; m s ) .(A.42)This allows one to write the completeness relation[Λ + (⃗p) + Λ − (⃗p)] ab= 2m δ ab . (A.43)F<strong>in</strong>ally, the propagator of a Dirac particle of mass m <strong>and</strong> four-momentum p is given byG 1 (p, m) =2/p + mp 2 − m 2 + iɛ ,(A.44)<strong>and</strong> has the follow<strong>in</strong>g useful decompositionG 1 (p, m) = 1 (Λ+ (⃗p)2 2E p p 0 − E p + iɛ − Λ )−(−⃗p)p 0 , (A.45)+ E p − iɛwith E p = √ |⃗p| 2 + m 2 .


APPENDIX BBiquaternionsAnd here there dawned on me the notion that we must admit,<strong>in</strong> some sense,a fourth dimension of space for the purpose of calculat<strong>in</strong>g with triples. . .An electric circuit seemed to close, <strong>and</strong> a spark flashed forth.— W. R. HamiltonIt is well known that an arbitrary complex number has a unique representation on the two-dimensionalplane. By virtue of Euler’s formula, one hasx + iy = r cos φ + ir s<strong>in</strong> φ = re iφ ,(B.1)where r <strong>and</strong> φ are the modulus <strong>and</strong> phase respectively. S<strong>in</strong>ce e iφ e iφ′ = e i(φ+φ′) , we see <strong>in</strong>tuitivelythat complex numbers with unit norm form a representation of the rotation group <strong>in</strong> two dimensions,denoted by O(2).The number system of quaternions H was <strong>in</strong>troduced by W. R. Hamilton <strong>in</strong> 1843 <strong>in</strong> an attempt toextend the concept of complex numbers to three dimensions. A set of three numbers turned out tobe <strong>in</strong>sufficient to form an algebra. The breakthrough occurred when Hamilton decided to ab<strong>and</strong>onthe commutative law of multiplications. He <strong>in</strong>troduced two additional imag<strong>in</strong>ary units j <strong>and</strong> k,obey<strong>in</strong>g the rulesi 2 = j 2 = k 2 = ijk = −1 .(B.2)A quaternion Q is represented byQ ≡ q 0 + iq 1 + jq 2 + kq 3 ,(B.3)with q 0 , q 1 , q 2 <strong>and</strong> q 3 real numbers. Later, Hamilton extended the notion of quaternions by allow<strong>in</strong>gthe four components to be complex numbers. He dubbed these objects biquaternions.It is not our <strong>in</strong>tention to give a extensive review on biquaternions <strong>and</strong> their role <strong>in</strong> number theory<strong>and</strong> physics. We will restrict ourselves to provid<strong>in</strong>g their def<strong>in</strong>ition <strong>and</strong> some of their basic properties<strong>in</strong> Section B.1. In this thesis, biquaternions will prove to be a useful alternate representation of theLorentz group. To this end, the relevant formulae connect<strong>in</strong>g biquaterions to rotations <strong>and</strong> Lorentzboosts will be presented <strong>in</strong> Section B.2123


124 B.1. Def<strong>in</strong>itionB.1 Def<strong>in</strong>itionWe adopt a number of different notations for a biquaternion QQ ≡3∑q i e i ≡ (q 0 , q 1 , q 2 , q 3 ) ≡ (q 0 , ⃗q) ,i=0(B.4)where q i ∈ C. The imag<strong>in</strong>ary units of the biquaternions are denoted by e i (i = 1, 2, 3) <strong>and</strong> theirmultiplication is def<strong>in</strong>ed ase i e j = −δ ij e 0 + ɛ ijk e k ,(B.5)for i, j = 1, 2, 3. Here, we have def<strong>in</strong>ed e 0 = 1.Biquaternions are added, subtracted <strong>and</strong> multiplied with scalars accord<strong>in</strong>g to the usual laws ofarithmetic. Due to the property (B.5) of the imag<strong>in</strong>ary units, they obey the follow<strong>in</strong>g non-commutativemultiplication lawQQ ′ = (q 0 q 0 ′ − ⃗q · ⃗q ′ , q 0 ⃗q ′ + q 0⃗q ′ + ⃗q × ⃗q ′ ) ,(B.6)with (□ · □) <strong>and</strong> (□ × □) the usual scalar <strong>and</strong> vector product of three-vectors.We def<strong>in</strong>e biquaternion conjugationas well as complex conjugationQ = (q 0 , −⃗q) ,Q ∗ = (q ∗ 0, ⃗q ∗ ) .(B.7)(B.8)In addition, hermitian conjugation is def<strong>in</strong>ed byQ † = Q ∗ .(B.9)In general, the norm N (Q) of a biquaternion is a complex number<strong>and</strong> obeys the ruleN (Q) = QQ = QQ = q 2 0 + q 2 1 + q 2 2 + q 2 3 ,N (QQ ′ ) = N (Q)N (Q ′ ) .(B.10)(B.11)For biquaternions of non-zero norm, one can def<strong>in</strong>e an <strong>in</strong>verseQ −1 = 1N (Q) Q .(B.12)B.2 Representation of the Lorentz groupIn a biquaternion representation, a four-vector p readsQ(p) = (p 0 , i⃗p) ,(B.13)<strong>in</strong> which case the norm of the biquaternion is equal to the four-vector’s lengthN (Q(p)) = p 2 .(B.14)


Appendix B. Biquaternions 125The biquaternion representation of a general Lorentz transformation t act<strong>in</strong>g on a four-vector isdef<strong>in</strong>ed byQ(tp) = Q(t)Q(p)Q(t) † .(B.15)It is easily shown that the four-vector’s length is <strong>in</strong>variant as long as N (Q(t)) = 1. Therefore, biquaternionsof unit norm form a representation of the Lorentz group. Multiple Lorentz transformationscan be cha<strong>in</strong>ed by multiply<strong>in</strong>g them from the left.A boost <strong>in</strong> the direction ˆ⃗ β with rapidity ξ (see Eq. (A.15)) is represented asQ(l( ⃗ β)) = (cosh ξ 2 , i ˆ⃗ β s<strong>in</strong>hξ2 ) , (B.16)whereas a rotation through the angle |⃗ω| about the unit axis ˆ⃗ω can be accomplished by the follow<strong>in</strong>goperatorQ(r(⃗ω)) = (cos ω 2 , ˆ⃗ω s<strong>in</strong> ω 2 ) .(B.17)Remark that the biquaternion representation of a rotation is expressed <strong>in</strong> terms of half of the rotationangle ω. This is an important observation with regard to the rotation of (helicity) sp<strong>in</strong>ors, a subjectthat we will discuss <strong>in</strong> Section C.2. Clearly, two dist<strong>in</strong>ct quaternions represent the same rotation.This is rem<strong>in</strong>iscent of the group SU(2) be<strong>in</strong>g a surjective homomorphism with regard to the rotationgroup SO(3). Indeed, quaternions of unit norm are isomorphic to the group SU(2).F<strong>in</strong>ally, we wish to po<strong>in</strong>t out a useful feature of the biquaternion representation of the Lorentz group.A Lorentz transformation t can always be decomposed as a rotation r that is followed by a Lorentzboost l. Given the matrix representation (A.10) of a Lorentz transformation, it is difficult to uniquelydeterm<strong>in</strong>e r <strong>and</strong> l. Start<strong>in</strong>g from the biquaternion representation Q(t), however, a straightforwardrecipe exists. Def<strong>in</strong><strong>in</strong>g two quaternions R [Q(t)] <strong>and</strong> I [Q(t)] as the real <strong>and</strong> imag<strong>in</strong>ary part of Q(t),i.e.R [Q(t)] =I [Q(t)] =3∑R[Q(t) i ]e i ,i=03∑I[Q(t) i ]e i ,i=0(B.18)we haveQ(r) = 1 µ R [Q(t)] ,Q(l) = (µ, −i 1 (B.19)R [Q(t)] I [Q(t)]) ,µwithµ =√R [Q(t)] R [Q(t)] .(B.20)


126 B.2. Representation of the Lorentz group


APPENDIX CHelicity sp<strong>in</strong>orsIn Section A.4, we have <strong>in</strong>troduced the four-component Dirac-sp<strong>in</strong>or solutions u(⃗p; m s , θ, φ) <strong>and</strong>v(⃗p; m s , θ, φ) to the free Dirac equation. In this representation, the sp<strong>in</strong> quantisation axis needs to bespecified <strong>in</strong> a particular frame, <strong>and</strong> s<strong>in</strong>ce this axis is a three-vector, it cannot be readily transformedto another frame. Suppose the state of a particle with momentum p is given by u(⃗p; m s ) <strong>in</strong> theframe O. Say that we wish to express this state <strong>in</strong> a different frame O ′ = l −1 O. With the sp<strong>in</strong>orrepresentation of Section A.4, one f<strong>in</strong>ds u(l⃗p; m ′ s). However, it rema<strong>in</strong>s absolutely unclear what thecorrespond<strong>in</strong>g sp<strong>in</strong> projection m ′ s is <strong>in</strong> O ′ . The helicity formalism, which we will <strong>in</strong>troduce hereafter,provides an elegant solution to this problem.C.1 Def<strong>in</strong>itionOur discussion of helicity states applies to particles as well as antiparticles. For this reason, we<strong>in</strong>troduce the notation|p; m s , θ, φ〉 ,(C.1)to describe the state of a (anti)particle with four-momentum p <strong>and</strong> sp<strong>in</strong> projection m s along an axisfixed by the polar angle θ <strong>and</strong> azimuthal angle φ. For each particle of mass m <strong>and</strong> three-momentum⃗p <strong>in</strong> some frame O, we can def<strong>in</strong>e a so-called helicity transformation,h(⃗p) = r(φ p , θ p , 0)l z (v) ,(C.2)where θ p <strong>and</strong> φ p are the polar <strong>and</strong> azimuthal angle of the three-momentum ⃗p respectively, <strong>and</strong>v =|⃗p|√|⃗p| 2 + m 2 .(C.3)This helicity transformation allows to associate a helicity rest-frameO p = h(⃗p)O ,(C.4)127


128 C.2. Lorentz transformationswith each particle. In its helicity rest-frame, a particle is at resth −1 (⃗p)p = ˚p ≡ (m,⃗0) .(C.5)Us<strong>in</strong>g the helicity transformation, we def<strong>in</strong>e the helicity state |p, λ〉 for a particle with four-momentump <strong>in</strong> some frame O as|p, λ〉 = S(h(⃗p)) |˚p; λ〉 ,(C.6)Thus, λ can be regarded as the z-component of the particle’s sp<strong>in</strong> <strong>in</strong> its helicity rest-frame O p .Moreover, the state |p, λ〉 is an eigenstate of the helicity operator, i.e.ˆ⃗J · ˆ⃗p|⃗p||p, λ〉 = λ |p, λ〉 ,(C.7)where ˆ⃗ J is the total angular momentum operator.Before proceed<strong>in</strong>g, a word of caution is <strong>in</strong> order. Our def<strong>in</strong>ition (C.6) for helicity states differs fromthose <strong>in</strong> the sem<strong>in</strong>al paper of Jacob <strong>and</strong> Wick [220] <strong>in</strong> two respects. First, they employ a morecomplex rotation <strong>in</strong> their expression for the helicity transformation. In addition, a dist<strong>in</strong>ction ismade between the states for different particles based on their role <strong>in</strong> a reaction, e.g. beam or target.In accordance with Ref. [100], we have chosen to treat all particles on an equal foot<strong>in</strong>g. Thesedifferences <strong>in</strong> conventions result <strong>in</strong> different phases for our helicity states.Adher<strong>in</strong>g to our choices for Dirac matrices <strong>and</strong> antiparticle two-component sp<strong>in</strong>ors described <strong>in</strong>Appendix A, the helicity sp<strong>in</strong>ors for particles of mass m with three-momentum ⃗p are given explicitlyby(u(⃗p, λ = ± 1 2 ) = 1√Ep + m(v(⃗p, λ = ± 1 2 ) = 1√Ep + mE p + m2λ|⃗p|−2λ|⃗p|E p + m))ξ λ (θ p , φ p ) ,ξ −λ (θ p , φ p ) ,(C.8)where θ p <strong>and</strong> φ p are the polar <strong>and</strong> azimuthal angle of the three-momentum ⃗p respectively. Thetwo-component sp<strong>in</strong>ors read()()e −iφp/2 cos θ p /2−e −iφp/2 s<strong>in</strong> θ p /2ξ +1/2 (θ p , φ p ) =e iφp/2 , ξ −1/2 (θ p , φ p ) =s<strong>in</strong> θ p /2e iφp/2 . (C.9)cos θ p /2C.2 Lorentz transformationsSuppose a particle with momentum p <strong>and</strong> helicity λ is described <strong>in</strong> some frame O by the state∣ p, λ 〉 . Let O ′ = t −1 O be a second reference frame obta<strong>in</strong>ed by carry<strong>in</strong>g out a physical Lorentztransformation t −1 . The momentum for the particle <strong>in</strong> this new frame is p ′ = tp <strong>and</strong> we can expressthe state as|p, λ〉 O ′ = S(t) |p, λ〉 .(C.10)Invok<strong>in</strong>g our def<strong>in</strong>ition for helicity states (C.6) <strong>and</strong> <strong>in</strong>sert<strong>in</strong>g the unit operator 1 = h(⃗p ′ )h −1 (⃗p ′ ), wef<strong>in</strong>d|p, λ〉 O ′ = S(h(⃗p ′ ))S(r(t, ⃗p)) |˚p; λ〉 ,(C.11)


Appendix C. Helicity sp<strong>in</strong>ors 129where we have <strong>in</strong>troduced the transformationr(t, ⃗p) = h −1 (⃗p ′ ) t h(⃗p) ,(C.12)commonly referred to as the Wick helicity rotation. As its name suggests this transformation alwaysrepresents a rotation, irrespective of the transformation t. One easily sees that r(t, ⃗p) is the rotationthat connects the two helicity rest-frames O p <strong>and</strong> O p ′, i.e.O p = r(t, ⃗p)O p ′ .(C.13)Us<strong>in</strong>g the Wigner rotation matrices def<strong>in</strong>ed <strong>in</strong> Section A.2, one can directly apply the Wick rotation<strong>in</strong> Eq. (C.11). We f<strong>in</strong>d|p, λ〉 O ′ = S(h(⃗p ′ ))D 1/2λ ′ λ(r(t, ⃗p)) |˚p; λ〉 .(C.14)As the D 1/2λ ′ λare scalars, the helicity transformation can act directly on the state on the right-h<strong>and</strong>side. Us<strong>in</strong>g the def<strong>in</strong>ition for helicity states, we obta<strong>in</strong> our f<strong>in</strong>al, elegant result|p, λ〉 O ′ = D 1/2λ ′ λ (r(t, ⃗p)) ∣ ∣p ′ , λ ′〉 .(C.15)This proves that it is straightforward to express helicity states with a helicity def<strong>in</strong>ed <strong>in</strong> a particularframe <strong>in</strong> any other frame. It suffices to work out the Wick rotation (C.12) for the Lorentz transformationconnect<strong>in</strong>g both frames <strong>and</strong> to compute the appropriate elements of the Wigner rotation matrix.The biquaternion representation of the Lorentz group, <strong>in</strong>troduced <strong>in</strong> Appendix B, is particularly wellsuited to address this issue. By virtue of Eq. (B.19), one can easily extract the axis of rotation <strong>and</strong>rotation angle. In addition, the unit-norm quaternions are isomorphic to the group SU(2). It is wellknown that sp<strong>in</strong>ors only transform up to a sign under the rotation group SO(3). The isomorphismto SU(2), <strong>in</strong> conjunction with the expression (A.21) for the Wigner matrices as a function of ω/2,allows one to correctly transform the helicity sp<strong>in</strong>ors.


130 C.2. Lorentz transformations


APPENDIX DFeynman rulesIf I could expla<strong>in</strong> it to the average person,I wouldn’t have been worth the Nobel Prize.— Richard FeynmanThis appendix summarises the rules <strong>and</strong> other <strong>in</strong>gredients needed to compute cross sections <strong>and</strong>decay rates. First, the formulae for the observables are given <strong>in</strong> terms of the transition amplitude.In the next section, we review the rules needed to construct these transition amplitudes from givenFeynman diagrams. For the description of the elementary kaon-production reaction, we adopt aneffective field-theoretical description <strong>in</strong> this work. Section D.3 lists the relevant Lagrangians <strong>and</strong>propagators which are required to calculate N(γ ∗ , K)Y transition amplitudes.D.1 Cross sections <strong>and</strong> decay ratesWhen the transition amplitude T for the scatter<strong>in</strong>g process A + B → 1 + 2 + . . . n is known, thedifferential cross section is given by(1 1 ∑ n)∏dσ =|T |2 d 3 ⃗p i|⃗v A − ⃗v B | 2E A 2E B 2E i (2π) 3 (2π) 4 δ (4) (p A + p B −i=1n∑p i ) ,i=1(D.1)where ⃗v i = ⃗p iE iare the velocities of the <strong>in</strong>cident particles. With ∑ we denote summ<strong>in</strong>g (averag<strong>in</strong>g)over f<strong>in</strong>al- (<strong>in</strong>itial-) states.The differential decay rate for a particle of mass m at rest reads(dΓ = 1 ∑ n)∏|T |2 d 3 ⃗p i2m2Ei=1 i (2π) 3 (2π) 4 δ (4) (p −n∑p i ) .i=1(D.2)131


132 D.2. Transition amplitudeD.2 Transition amplitudeThe Lorentz-<strong>in</strong>variant transition amplitude T is a sum of a comprehensive <strong>and</strong> adequate set ofFeynman diagrams. Each diagram is translated to a numerical value by follow<strong>in</strong>g a strict set of rules:ˆ Each amplitude requires a factor of i.ˆ At each <strong>in</strong>teraction vertex an appropriate operator is to be <strong>in</strong>serted. Each vertex implies anenergy-momentum conserv<strong>in</strong>g delta function.ˆ Each <strong>in</strong>ternal l<strong>in</strong>e is to be substituted by a propagator.ˆ Incom<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g l<strong>in</strong>es should be replaced by the free fields which they represent.ˆ Internal four-momenta p that are not fixed by energy-momentum conservation are <strong>in</strong>tegratedover as follows∫ d 4 p(2π) 4 .ˆ Every closed fermion loop results <strong>in</strong> an additional m<strong>in</strong>us-sign.The precise form of the propagators <strong>and</strong> the operators at the <strong>in</strong>teraction vertices is the subject ofthe next section.D.3 Effective fields <strong>and</strong> <strong>in</strong>teractionsIn order to translate the Feynman diagrams to transition amplitudes, expressions for propagators<strong>and</strong> <strong>in</strong>teraction vertices are required. The latter are derived from an <strong>in</strong>teraction Lagrangian apply<strong>in</strong>ga set of rules:ˆ Gradient operators act<strong>in</strong>g on an <strong>in</strong>com<strong>in</strong>g (outgo<strong>in</strong>g) field Ψ (Ψ † ) with four-momentum p aresubstituted as follows∂ µ Ψ → −ip µ Ψ ,∂ µ Ψ † → ip µ Ψ † .(D.3)ˆ The Lagrangian is multiplied with the imag<strong>in</strong>ary unit i.ˆ All external fields are removed, reveal<strong>in</strong>g the bare <strong>in</strong>teraction vertex.


Appendix D. Feynman rules 133D.3.1PropagatorsInternal l<strong>in</strong>es represent<strong>in</strong>g a sp<strong>in</strong>-0, sp<strong>in</strong>-1/2, sp<strong>in</strong>-1 or sp<strong>in</strong>-3/2 particle with four-momentum p,mass m <strong>and</strong> width Γ are replaced with the follow<strong>in</strong>g propagators,G 0 (p) =1p 2 − m 2 + imΓ ,/p + mG 1 (p) =2 p 2 − m 2 + imΓ ,G µν1 (p) = 1(−g µνp 2 − m 2 + pµ p ν )+ imΓ m 2 ,G µν3 (p) =21p 2 − m 2 + imΓ(g µν − 1 3 γµ γ ν − 2pµ p ν3m 2 − γµ p ν − γ ν p µ3m).(D.4)D.3.2Effective LagrangiansIn this paragraph, we list our choices with regard to the <strong>in</strong>teraction Lagrangians relevant to thiswork. In case of electroproduction, the photon field is virtual <strong>and</strong> a form factor should be <strong>in</strong>serted atevery EM coupl<strong>in</strong>g constant.For the photon field A µ <strong>and</strong> vector-meson field V µ , we def<strong>in</strong>e an antisymmetric tensorF µν = ∂ ν A µ − ∂ µ A ν ,V µν = ∂ ν V µ − ∂ µ V ν .(D.5)For convenience of notation, two functions are <strong>in</strong>troduced that take a different value depend<strong>in</strong>g onthe parity of the exchanged particle{1 (P = −1)Γ =γ 5 (P = +1) ,{ (D.6)γΓ ′ 5(P = −1)=1 (P = +1) .Born terms The EM <strong>in</strong>teraction Lagrangian for a photon field A µ coupl<strong>in</strong>g to a ground statenucleon N, kaon K or hyperon Y is given byL γNN = −eNγ µ NA µ + eκ NNσ µν NF µν ,4m p(L γKK = −ie K † ∂ µ K − K∂ µ K †) A µ ,L γY Y = −eY γ µ Y A µ + eκ Y4m pY σ µν Y F µν ,(D.7)(D.8)(D.9)When the kaon is neutral, the photon doesn’t couple to it. For neutral nucleons <strong>and</strong> hyperons, thefirst term <strong>in</strong> Eqs. (D.7) <strong>and</strong> (D.9) vanishes.For the strong KY N-vertex, a pseudoscalar coupl<strong>in</strong>g is adoptedL KY N = −ig KY N K † Y γ 5 N + h.c. .(D.10)


134 D.3. Effective fields <strong>and</strong> <strong>in</strong>teractionsVector-meson exchange For the EM <strong>in</strong>teraction Lagrangian of the γKK ∗ -vertex, we make adist<strong>in</strong>ction between positive-parity vector mesons<strong>and</strong> negative-parity vector mesonsL γKK1 = i eκ K 1 KM (∂ µA ν ∂ µ V ν − ∂ µ A ν ∂ ν V µ ) K . (D.11)L γKK ∗ = eκ K ∗ K4M ɛµνλσ F µν V λσ K + h.c. , (D.12)Conventionally, the normalisation is fixed at M = 1 GeV.In the strong-<strong>in</strong>teraction vertex one hasL K ∗ Y N = −g v K ∗ Y NY Γ µ NV µ +g t K ∗ Y N2 (m Λ + m p ) Y σ µνV µν ΓN + h.c. . (D.13)Sp<strong>in</strong>-1/2 resonance exchangeThe EM <strong>in</strong>teraction Lagrangian for sp<strong>in</strong>-1/2 resonances readsAt the strong vertex, the <strong>in</strong>teraction Lagrangian is given byL γNN ∗ = eκ N ∗ N4m pRΓ ′ σ µν NF µν + h.c. . (D.14)L KY N ∗ = −ig KY N∗K † Y ΓR + h.c. .(D.15)Sp<strong>in</strong>-3/2 resonance exchange The EM <strong>in</strong>teraction of a sp<strong>in</strong>-3/2 resonance, described by aRarita-Schw<strong>in</strong>ger field R µ , is given by the follow<strong>in</strong>g effective LagrangianL γpN ∗ = i eκ(1) N ∗ NR µ θ µν (Y ) Γγ λ NF λν − eκ(2)2m pN ∗ N4m 2 pR µ θ µν (X) Γ (∂ λ N) F νλ + h.c. .(D.16)At the strong-<strong>in</strong>teraction we takeL KY N ∗ = g KY N ∗R µ θ µν (Z) Γ ′ Y (∂ ν K) + h.c. .M K+In both the EM- <strong>and</strong> strong-<strong>in</strong>teraction vertices, the tensor(θ µν (z) = g µν − z + 1 )γ µ γ ν ,2(D.17)(D.18)features. The coupl<strong>in</strong>g constant z is called an off-shell parameter.D.3.3N(γ, K)Y transition amplitudesAfter hav<strong>in</strong>g <strong>in</strong>troduced our choice of effective <strong>in</strong>teraction Lagrangians, we now list the formulaefor the different contributions to the transition amplitude for kaon photoproduction. The relevantFeynman diagrams are drawn <strong>in</strong> Figure 1.2. In Chapters 2 <strong>and</strong> 3, a RPR-model optimised to theavailable photoproduction data is presented. The fitted coupl<strong>in</strong>g constants of this model are tabulated<strong>in</strong> Appendix I.


Appendix D. Feynman rules 135Born s-channelT Born-s = eg KY N u Y γ 5/p γ+ /p N+ m Ns KY − m 2 N(γ µ + κ N2m Niσ µν k ν)u N ε µ .(D.19)Born t-channel(T Born-t = eg KY N u Y 2pµK − p µ ) 1γt − m 2 γ 5 u N ε µ .K(D.20)Born u-channel(T Born-u = eg KY N u Y γ µ +κ )pY /iσ µν Y− /p γ+ m Yk ν2m N u − m 2 γ 5 u N ε µ .Y(D.21)Positive-parity vector-meson exchangeT K1 = e [M u Y p λ (γ pµK − ) pµ γ − g µλ p γ · (p ) ] 1K − p γt − m 2 K 1+ im K1 Γ K1[×G v K 1γ λ + Gt K 1m Λ + m piσ λξ(p ξ Y − pξ N) ] γ 5 u N ε µ .(D.22)Negative-parity vector-meson exchangeg αλT K ∗ = e M u Y iɛ µναβ p ν γp β Kt − m 2 K ∗ + im ∗Γ K K[∗× G v ∗γ K λ +Gt )K ∗iσ λξ(p ] ξ Ym Λ + m − pξ Nu N ε µ .p(D.23)Sp<strong>in</strong>-1/2 nucleon-resonance exchangeT N ∗ = e G /pN ∗N+ /p γ+ m N∗u Y Γ2m p s KY − m 2 N ∗ + im ∗Γ iσ µν p ν γΓ ′ u N ε µ .N N ∗(D.24)Sp<strong>in</strong>-1/2 hyperon-resonance exchangeT Y ∗ = e G /pY ∗u Y Γ ′ iσ µν p ν Y− /p γ+ m Y∗γ2m p u − m 2 Y ∗ + iM ∗Γ Γu N ε µ .Y Y ∗(D.25)Sp<strong>in</strong>-3/2 nucleon-resonance exchangeeT N ∗ =2m p m K +×u Y Γ ′ p α Kθ αβ (Z) G βη32(pγ + p N)[G (1)N ∗θ ην (Y ) γ µ − G (2)N ∗θ ην (X) p N,µ] (pνγ ε µ − p µ γε ν) Γu N .(D.26)Sp<strong>in</strong>-3/2 hyperon-resonance exchangeeT Y ∗ = u Y Γ ( p ν2m p mγε µ − p µ γε ν) [ ]G (1)Y ∗ γ µθ νη (Y ) − G (2)Y ∗ p Y,µθ νη (X)K +× G ηα ( )3 pY − p γ θαβ (Z) p β K Γ′ u N .2(D.27)


136 D.3. Effective fields <strong>and</strong> <strong>in</strong>teractions


APPENDIX ELorentz-<strong>in</strong>variant cross sectionsThe differential cross section for the reaction 2 H(γ (∗) , KY )N is given by1dσ =|T |2√λ(s, 2 (2π) 4 δ (4) d 3 ⃗p K(p γ + p D − p K − p Y − p N )−Q 2 , m 2 D ) 2E K (2π) 3with s = (p γ + p D) 2 <strong>and</strong>λ(x, y, z) ≡ x 2 + y 2 + z 2 − 2xy − 2xz − 2yz ,d 3 ⃗p Y2E Y (2π) 3d 3 ⃗p N2E N (2π) 3 ,(E.1)(E.2)the triangle function [221], which is totally symmetric <strong>in</strong> each of its arguments. Even though thedifferential cross section is a Lorentz <strong>in</strong>variant, cross sections are often presented as a function ofk<strong>in</strong>ematical variables expressed <strong>in</strong> a particular frame.In this Appendix, we derive expressions that are frame <strong>in</strong>dependent. In order to do so, the threebodyphase space needs to be expressed <strong>in</strong> terms of <strong>in</strong>dependent Lorentz-<strong>in</strong>variant quantities (seeEq. (5.11a) for def<strong>in</strong>itions). This is a non-trivial problem <strong>and</strong> has been dealt with <strong>in</strong> Ref. [170] forthe general case of n particles. After <strong>in</strong>tegrat<strong>in</strong>g out the momentum-conserv<strong>in</strong>g delta function, onef<strong>in</strong>ds that Eq. (E.1) reduces todσ =1(4π) 4 λ(s, −Q 2 , m 2 D )|T |2 1√ −∆4ds KY ds Y N dt γK dt DN .Here we have <strong>in</strong>troduced the symmetric Gram determ<strong>in</strong>ant−Q 2 p γ · p Dp γ · p Kp γ · p N2m 216∆ 4 =Dp D · p Kp D · p N2m 2 Kp K · p N∣2m 2 ∣N−Q 2 s + Q 2 − m 2 D−t γK − Q 2 + m 2 Ks − s KY + t DN − m 2 D2m 2=Ds − s Y N + t γK + Q 2 −t DN + m 2 D + m2 N2m 2 Ks − s KY − s Y N + m 2 .Y∣2m 2 ∣N137(E.3)(E.4)


138 E.1. Dalitz cross sectionAn explicit form for the Gram determ<strong>in</strong>ant can be found <strong>in</strong> Ref. [222]. It is a second-degree polynomial<strong>in</strong> any of the <strong>in</strong>variants s, s KY , s Y N , t γK <strong>and</strong> t DN . Conveniently, the ranges of physical values forthese Lorentz-<strong>in</strong>variant variables co<strong>in</strong>cide with the region ∆ 4 ≤ 0.The four-fold differential cross section def<strong>in</strong>ed <strong>in</strong> (E.3) is of limited use. By <strong>in</strong>tegrat<strong>in</strong>g over aselection of <strong>in</strong>variants, different potentially <strong>in</strong>terest<strong>in</strong>g semi-<strong>in</strong>clusive observables can be def<strong>in</strong>ed. Wewill present two famous distributions: the Dalitz [223] <strong>and</strong> Chew-Low [224] plots.E.1 Dalitz cross sectionThe Dalitz plott<strong>in</strong>g technique <strong>in</strong>volves study<strong>in</strong>g the cross section as a function of the <strong>in</strong>variant massof two pairs of f<strong>in</strong>al-state particles, e.g. s KY <strong>and</strong> s Y N . This implies that the expression (E.3) needsto be <strong>in</strong>tegrated over t γK <strong>and</strong> t DN for a fixed s, s KY <strong>and</strong> s Y N . The physical regions for the thelatter variables are given by(m K + m Y ) 2 ≤s KY ≤ ( √ s − m N ) 2 ,(m Y + m N ) 2 ≤s Y N ≤ ( √ s − m K ) 2 .(E.5)For a given s KY , the energies of the hyperon <strong>and</strong> nucleon can be readily determ<strong>in</strong>ed <strong>in</strong> the kaonhyperonrest frameE ∗ Y = s KY + Q 2 − m 2 K + m2 Y2 √ s KY,E ∗ N = s − s KY − m 2 N2 √ s KY.(E.6)The upper <strong>and</strong> lower values of s Y N are reached when the hyperon’s three-momentum is (anti-)parallelto the nucleon’s, i.e.s m<strong>in</strong>/maxY N(√√2= (EY ∗ + EN) ∗ 2 − EY∗2 − m2 Y ± EN N) ∗2 − m2 . (E.7)In order to <strong>in</strong>tegrate over the momentum transfers t γK <strong>and</strong> t DN <strong>in</strong> (E.3), we require the <strong>in</strong>tegrationlimits for fixed values of s, s KY <strong>and</strong> s Y N . To <strong>in</strong>tegrate over t DN , we determ<strong>in</strong>e the roots of16∆ 4 = At 2 DN + 2Bt DN + C = 0 ,(E.8)whereA = λ(s, s Y N , m 2 K) ,B = ss KY t γK + ss Y N t γK + ss KY s Y N + s KY s Y N t γK − s 2 t γK − s KY s 2 Y N+ m 2 Dm 2 Km 2 Y − 2m 2 Dm 2 Km 2 N − m 4 Km 2 N − m 4 Km 2 D + s KY s Y N m 2 D − s 2 m 2 Y− s Y N m 2 Dm 2 Y + st γK m 2 N + ss Y N m 2 Y + sm 2 Km 2 N − Q 2 sm 2 Y − Q 2 m 2 Km 2 N− Q 2 s Y N m 2 Y + 2Q 2 s KY s Y N − 2st γK m 2 Y + s Y N m 2 Km 2 N + t γK m 2 Km 2 N(E.9)+ sm 2 Dm 2 K + s KY m 2 Dm 2 K + s Y N m 2 Dm 2 Ks Y N − Q 2 ss Y N + Q 2 sm 2 N− s Y N t γK m 2 N − ss KY m 2 D + sm 2 Dm 2 Y + Q 2 s 2 Y N + sm 2 Km 2 Y − 2ss Y N m 2 K+ Q 2 m 2 Km 2 Y − Q 2 s Y N m 2 K + s KY s Y N m 2 K − s KY t γK m 2 K + st γK m 2 K


Appendix E. Lorentz-<strong>in</strong>variant cross sections 139<strong>and</strong> the discrim<strong>in</strong>ant is given by4B 2 − 4AC = 16G(s KY , s Y N , s, m 2 Y , m 2 K, m 2 N)G(s, t γK , s Y N , −Q 2 , m 2 D, m 2 K) .(E.10)In the previous step, we have def<strong>in</strong>ed the useful functionG(x, y, z, u, v, w) ≡ x 2 y + xy 2 + z 2 u + zu 2 + v 2 w + vw 2 + xzw + xuv + yzv + yuw− xy(z + u + v + w) − zu(x + y + v + w) − vw(x + y + z + u) .(E.11)As it as a second-order polynomial <strong>in</strong> y, it can be rewritten asG(x, y, z, u, v, w) = x(y − y − )(y − y + ) ,(E.12)withy ± = u + w + 11 √(x − v + u)(z − x − w) ± λ(x, u, v)λ(x, z, w) .2x 2xThe roots of the constra<strong>in</strong>t ∆ 4 = 0 determ<strong>in</strong>e the <strong>in</strong>tegration limits for t DNt max/m<strong>in</strong>DN(E.13)= −B ± 2 √G(s KY , s Y N , s, m 2 Y , m2 K , m2 N )G(s, t γK, s Y N , −Q 2 , m 2 D , m2 K )λ(s, s Y N , m 2 K ) , (E.14)under the condition that the discrim<strong>in</strong>ant (E.10) is not negative. Solv<strong>in</strong>g the first factor for s Y Nwith the help of (E.13), it can be easily shown that the roots ofG(s KY , s Y N , s, m 2 Y , m 2 K, m 2 N) ,(E.15)correspond to the limits we have def<strong>in</strong>ed <strong>in</strong> Eq. (E.7). S<strong>in</strong>ce Eq. (E.15) is positive with<strong>in</strong> thesebounds, this implies that the second G function <strong>in</strong> the discrim<strong>in</strong>ant (E.10) should be negative. Thiscondition results <strong>in</strong> <strong>in</strong>tegrations limits for t γK , i.e.t max/m<strong>in</strong>γK= −Q 2 +m 2 K + 1 2s (s−Q2 −m 2 D)(s Y N −s−m 2 K)± 1 2s√λ(s, −Q 2 , m 2 D )λ(s, s Y N, m 2 K ) . (E.16)The product of triangle functions under the square-root sign is always positive given the physicalregion for s Y N def<strong>in</strong>ed <strong>in</strong> (E.5)Collect<strong>in</strong>g the above results, we obta<strong>in</strong> our f<strong>in</strong>al result for the Dalitz cross sectiondσdW KY dW Y N=∫4W KY W t maxY NγK(4π) 4 λ(s, −Q 2 , m 2 D )t m<strong>in</strong>γKdt γK∫ t maxDNt m<strong>in</strong>DNdt DN|T | 2√ −∆4.(E.17)E.2 Chew-Low cross sectionA Chew-Low plot represents a scatter plot as a function of one <strong>in</strong>variant mass <strong>in</strong> conjunction with atransferred momentum. For the reaction at h<strong>and</strong>, it is relevant to consider cross sections <strong>in</strong> terms ofthe <strong>in</strong>variant mass of the hyperon-nucleon system <strong>and</strong> the momentum transferred from photon tokaon. This implies that the differential cross section needs to be <strong>in</strong>tegrated over s KY <strong>and</strong> t DN . If oneadopts the exact same approach as <strong>in</strong> the preced<strong>in</strong>g section, the Chew-Low cross section becomesdσdW Y N dt γK=∫2W s maxY NKY(4π) 4 λ(s, −Q 2 , m 2 D )s m<strong>in</strong>KYds KY∫ t maxDNt m<strong>in</strong>DNdt DN|T | 2√ −∆4.(E.18)


140 E.2. Chew-Low cross sectionFor fixed values of s Y N <strong>and</strong> t γK with<strong>in</strong> their physical bound given by (E.5) <strong>and</strong> (E.16) respectively,the <strong>in</strong>tegration limits for t DN are the same as <strong>in</strong> Eq. (E.14). The limits on s KY are imposed by theroots of the factor <strong>in</strong> the discrim<strong>in</strong>ant (E.10). S<strong>in</strong>ceG(s KY , s Y N , s, m 2 Y , m 2 K, m 2 N) = G(s Y N , s KY , s, m 2 Y , m 2 N, m 2 K) ,(E.19)we can make use of (E.13) to f<strong>in</strong>ds max/m<strong>in</strong>KY= m 2 K + m 2 Y + 1 (s Y N + m 2 Y − m 22sN)(s − s Y N − m 2 K)Y N± 1 √λ(s Y N , m 2 Y2s , m2 N )λ(s, s Y N, m 2 K ) .Y N(E.20)


APPENDIX FDensity matrixScatter<strong>in</strong>g experiments that make use of polarised beams <strong>and</strong>/or targets deal with quantum-mechanicalparticles without a def<strong>in</strong>ite polarisation <strong>in</strong> the classical sense. Indeed, for <strong>in</strong>coherent mixtures ofparticles, only statements about the average properties of the statistical ensemble are mean<strong>in</strong>gful.The density-matrix formalism is a convenient tool to account for the polarisation properties of the<strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al particles when address<strong>in</strong>g cross sections [225]. In this appendix, this formalism issketched. After <strong>in</strong>troduc<strong>in</strong>g the density matrix <strong>and</strong> some of its basic properties <strong>in</strong> Section F.1, wediscuss the most general decomposition of the density matrix for an ensemble of sp<strong>in</strong>-1/2 particles,sp<strong>in</strong>-1 particles <strong>and</strong> photons.F.1 Def<strong>in</strong>itionFor a particle of sp<strong>in</strong> s, one def<strong>in</strong>es a complete set of normalised basis states |s; m s 〉 with m s =−s, . . . , s. A pure quantum-mechanical sp<strong>in</strong> state |Ψ α 〉 can be decomposed ass∑|Ψ α 〉 = c α m s|s; m s 〉 .m s=−s(F.1)The expectation value of an observable ˆΩ is def<strong>in</strong>ed by〈Ω〉 = 〈Ψ α | ˆΩ |Ψ α 〉= ∑c α∗m sΩ msm ′ s cα m ′ ,sm s,m ′ s(F.2)where we have <strong>in</strong>troduced a matrix notation for the operator ˆΩ <strong>in</strong> the basis {|s; m s 〉}, i.e.Ω msm ′ s = 〈s; m s| ˆΩ ∣ ∣s; m ′ s〉. (F.3)141


142 F.2. Sp<strong>in</strong>-1/2 systemA statistical ensemble of sp<strong>in</strong>-s particles does not need to be <strong>in</strong> a pure state <strong>and</strong> is described by an<strong>in</strong>coherent sum of pure states∑p α |Ψ α 〉 ,(F.4)αwith p α ∈ R the statistical weight of each state <strong>in</strong> the ensemble such that ∑ α p α = 1. The meanvalue of the observable ˆΩ over the entire ensemble then reads〈Ω〉 = ∑ α= Tr (Ωρ) ,p α 〈Ψ α | ˆΩ |Ψ α 〉 ,(F.5)where we have <strong>in</strong>troduced the sp<strong>in</strong> density matrixρ ij = ∑ αp α c α i c α∗j . (F.6)The density matrix obeys a number of properties, which we shall not prove here (see Ref. [100] foran <strong>in</strong>troduction). We only mention that ρ is a hermitian matrix with unit trace.In this work we deal with sp<strong>in</strong>-1/2 <strong>and</strong> sp<strong>in</strong>-1 particles. Therefore we <strong>in</strong>vestigate the density matrixfor those systems.F.2 Sp<strong>in</strong>-1/2 systemAfter select<strong>in</strong>g a quantisation axis, a sp<strong>in</strong>-1/2 particle can occupy two basis states (up or down).This implies the density matrix of a sp<strong>in</strong>-1/2 system will be a 2x2-matrix. A hermitian matrix withdimension two <strong>and</strong> unit trace can be decomposed as [225]()ρ (1/2) = 1 (12 + p x σ 1 + p y σ 2 + p z σ 3) = 1 1 + p z p x − ip y, (F.7)22 p x + ip y 1 − p zwhere σ i are the Pauli matrices of Eq. (A.22). The <strong>in</strong>terpretation of the coefficients p i becomes clearupon consider<strong>in</strong>g the expectation value of the sp<strong>in</strong>-1/2 angular-momentum operators S i = 1 2 σ i(〈S i 〉 = Tr S i ρ (1/2)) = p i2 , (F.8)where we made use of (σ 0 ≡ 1 2 )Tr(σ i σ j ) = 2δ ij .(F.9)The three-vector ⃗p = (p x , p y , p z ) can be <strong>in</strong>terpreted as the sp<strong>in</strong>-polarisation vector for the ensembleof sp<strong>in</strong>-1/2 particles.F.3 Sp<strong>in</strong>-1 systemThe sp<strong>in</strong> structure of a sp<strong>in</strong>-1 particle is more <strong>in</strong>volved. The density matrix ρ (1) is a hermitian 3x3-matrix with unit trace. In literature, they are either expressed <strong>in</strong> terms of rectangular operators [225]or spherical tensor operators [226]. For completeness we will present both <strong>and</strong> show how they arerelated to each other.


Appendix F. Density matrix 143The sp<strong>in</strong>-1 angular-momentum operators can be def<strong>in</strong>ed as [225]⎛ ⎞⎛⎞S x = √ 1 0 1 0⎜ ⎟⎝ 1 0 1 ⎠ , S y = 1 0 −i 0⎜√ ⎝ i 0 −i2 20 1 00 i 0⎟⎠ , S z =⎛⎜⎝1 0 00 0 00 0 −1⎞⎟⎠ .(F.10)With these operators one def<strong>in</strong>es six traceless symmetric rank-two tensorsP ij = 3 2 (S iS j + S j S i ) − 2δ ij 1 3 .(F.11)This leaves us with an over-complete set of operators which span the space of traceless hermitian3x3-matrices⎛ ⎞0 1 0⎛⎞ ⎛⎞0 −i 01 0 0P x = √ 1 ⎜ ⎟2⎝ 1 0 1 ⎠ , P y = √1⎜⎟ ⎜⎟⎝ i 0 −i ⎠ , P 2 z = ⎝ 0 0 0 ⎠ ,0 1 00 i 00 0 −1P xy = 3i2P xx = 1 2⎛⎜⎝⎛⎜⎝0 0 −10 0 01 0 0−1 0 30 2 03 0 −1⎞⎟⎠ , P xz = 32 √ 2⎞⎟⎠ , P yy = 1 2⎛⎜⎝⎛⎜⎝0 1 01 0 −10 −1 0−1 0 −30 2 0−3 0 −1⎞⎞⎟⎠ , P yz = 3i2 √ 2⎟⎠ , P zz =⎛⎜⎝⎛⎜⎝0 −1 01 0 10 −1 01 0 00 −2 00 0 1⎞⎟⎠ .⎞⎟⎠ ,(F.12)The redundancy can be elim<strong>in</strong>ated us<strong>in</strong>g the follow<strong>in</strong>g relation⎛ ⎞0 0 0⎜ ⎟P xx + P yy + P zz = ⎝ 0 0 0 ⎠ .0 0 0(F.13)F<strong>in</strong>ally, we wish to impose a normalisation condition. Extend<strong>in</strong>g the normalisation of the sp<strong>in</strong>-1/2sp<strong>in</strong> operators (F.9), we take the conventional [225]Tr(Ω i Ω j ) = 3δ ij .(F.14)This leads to the follow<strong>in</strong>g set of normalised rectangular operators Ω i{1 3 ,√32 P x,√32 P y,√32 P z,√23 P xy,√23 P xz,√23 P yz,√16 (P xx − P yy ) ,√12 P zz}, (F.15)which allow to decompose the density matrix of a sp<strong>in</strong>-1 systemρ (1) = 1 (1 3 + 3 3 2 (p xP x + p y P y + p z P z ) + 2 3 (p xyP xy + p xz P xz + p yz P yz )+ 1 6 (p xx − p yy ) (P xx − P yy ) + 1 )2 p zzP zz .(F.16)In analogy to the sp<strong>in</strong>-1/2 case, the coefficients can be <strong>in</strong>terpreted as polarisation probabilities forthe ensemble. For a sp<strong>in</strong>-1 system, one has three vector polarisations p i , <strong>and</strong> five tensor polarisationsp ij . These quantities are bounded by [225]−1 ≤ p i ≤ 1 ,− 3 2 ≤ p ij ≤ 3 2 ,(F.17)−2 ≤ p ii ≤ 1 .


144 F.3. Sp<strong>in</strong>-1 systemAs mentioned previously, the decomposition (F.16) is not unique. Some authors prefer to exp<strong>and</strong>the density matrix <strong>in</strong> terms of spherical tensor operators τM I of rank I with their correspond<strong>in</strong>gorientation parameters P IM [226, 227]ρ (1) = 1 ∑(−1) M τ I3MP I−M .(F.18)The operators τ I are def<strong>in</strong>ed through their reduced matrix elementsIM〈1†τ I †1〉 = √ 3 √ 2I + 1 ,(F.19)allow<strong>in</strong>g us to write the density matrix as function of 3j-symbols [226]ρ (1)mm ′ = 1 3∑(−1) M 〈1m| τMIIM∣∣1m ′〉 P I−M(= √ 1 ∑ √(−1) 1+m′ 2I + 1 3IM1 1 Im ′ −m −M)P IM ,(F.20)or explicitly,⎛ρ (1) = 1 ⎜3 ⎝√31 +√−√ √2 P 10 + √ 132P 20 2 P 31−1 +2 P 2−1√32 P 311 −2 P 21 1 − √ √32P 20 2 P 1−1 −√3P22 −√32 P 11 +√32 P 21 1 −√3P2−2√32 P 2−1√32 P 10 + 1⎞⎟⎠ .√2P 20(F.21)Equat<strong>in</strong>g (F.16) <strong>and</strong> (F.21), allows to establish a relation between the expectation values of spherical<strong>and</strong> rectangular operatorsP 10 =√32 P z ,(F.22a)√3P 1±1 = ∓2 (P x ± iP y ) , (F.22b)P 20 = √ 1 P zz ,(F.22c)2P 2±1 = ∓ 1 √3(P xz ± iP yz ) ,(F.22d)P 2±2 =12 √ 3 (P xx − P yy ± 2iP xy ) . (F.22e)Us<strong>in</strong>g the follow<strong>in</strong>g property of the spherical tensor operators <strong>and</strong> their expectation values,(τIM) †= (−1) M τ I −M <strong>and</strong> P ∗ IM = (−1) M P I−M , (F.23)we f<strong>in</strong>d the <strong>in</strong>verse relationsP x = − 2 √3R(P 11 ), P y = − 2 √3I(P 11 ), P z =√23 P 10,P xy = √ 3I(P 22 ), P xz = − √ 3R(P 21 ), P yz = − √ 3I(P 21 ),P xx = √ 3R(P 22 ) − 1 √2P 20 , P yy = − √ 3R(P 22 ) − 1 √2P 20 , P zz = √ 2P 20 .(F.24)


Appendix F. Density matrix 145When polarised sp<strong>in</strong>-1 particles are used as target <strong>in</strong> an actual experiment, the density matrix willbe diagonal with respect to a quantisation axis ⃗ d def<strong>in</strong>ed by the polar <strong>and</strong> azimuthal angles θ d <strong>and</strong>φ d [227],ρ (1)mm ′ ( ⃗ d) = p m δ mm ′ .(F.25)Us<strong>in</strong>g the decomposition of the density matrix (F.21) <strong>and</strong> the orthogonality relation for 3j-symbols∑m 1 m 2(2j 3 + 1)() (j 1 j 2 j 3m 1 m 2 m 3j 1 j 2 j 3′m 1 m 2 m ′ 3we can relate the orientation parameters to the diagonal elementswhich yields P IM ( ⃗ d) = δ M0 P I , with(P IM ( d) ⃗ √ ∑= δ M0 3 (−1) 1−m√ 2I + 1p mm)= δ j3 j ′ 3 δ m 3 m ′ 3 , (F.26)1 1 Im −m 0), (F.27)P 0 = 1 ,P 1 =√32 (p 1 − p −1 ) ,P 2 = 1 √2(1 − 3p 0 ) .(F.28)Ow<strong>in</strong>g to the elegant properties of the spherical tensor operators under rotation, we can easily expressthe density matrix of a sp<strong>in</strong>-1 particle oriented along ⃗ d, <strong>in</strong> a reference frame with the quantisationaxis along the z axis,ρ (1)mm ′ (⃗z) = (−1)1−m √3(∑ √2I + 1IM1 1 Im ′ −m M)e −iMφ dd I M0(θ d )P I ,(F.29)where d j mm ′ (θ) are Wigner’s small rotation matrices.F.4 PhotonsAlthough the photon is a sp<strong>in</strong>-1 particle, it has only two polarisation states. Therefore, the photondensity matrix has a structure analogous to that of an ensemble of sp<strong>in</strong>-1/2 particlesρ (γ) = 1 2(1 2 + P (γ)l)σ x + P (γ) σ y + P c (γ) σ z , (F.30)with respect to the circular polarisation basis {|+〉 , |−〉}. We added the superscript γ to thecoefficients P (γ)ito emphasise that their physical <strong>in</strong>terpretation is very different from those for thesp<strong>in</strong>-1/2 case. Us<strong>in</strong>g the def<strong>in</strong>ition (F.6), we can write down density matrices for some explicit cases,t


146 F.4. Photonswhere the photon ensemble is <strong>in</strong> a pure state|RC〉 = |+〉 ⇒ ρ (γ)RC = 1 2 (1 2 + σ z ) ,|LC〉 = |−〉 ⇒ ρ (γ)LC = 1 2 (1 2 − σ z ) ,|Lx〉 = 1 √2(|+〉 − |−〉) ⇒ ρ (γ)Lx= 1 2 (1 2 − σ x ) ,|Ly〉 = i √2(|+〉 + |−〉) ⇒ ρ (γ)Ly= 1 2 (1 2 + σ x ) ,|T x〉 = 1 √2(|Lx〉 − |Ly〉) ⇒ ρ (γ)T x= 1 2 (1 2 − σ y ) ,|T y〉 = 1 √2(|Lx〉 + |Ly〉) ⇒ ρ (γ)T y= 1 2 (1 2 + σ y ) .(F.31)From these equations it is clear why the polarisation coefficients are labelled c, l <strong>and</strong> t. The quantityP c(γ) can be <strong>in</strong>terpreted as the degree of circular polarisation, with P c(γ) > 0 (< 0) <strong>in</strong>dicat<strong>in</strong>g right-(left-)h<strong>and</strong>ed orientation. The coefficient P (γ)lexpresses the amount of l<strong>in</strong>ear polarisation along they (P (γ)l> 0) or x (P (γ)l< 0) axis, whereas P (γ)t > 0 (< 0) quantifies l<strong>in</strong>ear polarisation along the y(x) axis rotated − π 4about the z axis.


APPENDIX GParametrisations of the deuteron wave functionIn Section 5.5, we have dealt with the deuteron. After discuss<strong>in</strong>g the covariant Dnp-vertex, we<strong>in</strong>troduced the non-relativistic <strong>and</strong> relativistic wave functions. In this dissertation, we use thedeuteron wave functions obta<strong>in</strong>ed with a number of different NN potentials. For all but one of thesewave functions, convenient parametrisations exist.In Section G.1 of this appendix, we discuss a parametrisation for the non-relativistic Paris <strong>and</strong>CD-Bonn wave functions. Sections G.2 <strong>and</strong> G.3 are devoted to the parametrisations used <strong>in</strong> the Grossformalism. To our knowledge, no parametrisation for the deuteron wave functions obta<strong>in</strong>ed withthe Nijmegen potential is available. The latter wave functions can be found on-l<strong>in</strong>e <strong>in</strong> a tabulatedformat [228].G.1 Non-relativistic wave-function parametrisationRealistic NN potentials, such as the Paris potential [229] <strong>and</strong> the charge-dependent Bonn potential[179], are often expressed as a discrete superposition of Yukawa terms. This naturally leads one tothe follow<strong>in</strong>g algebraic parametrisation of the deuteron wave functions <strong>in</strong> configuration spaceu(r) =w(r) =n∑C i e −mir ,i=1n∑D i e −m iri=1(1 + 3m i r + 3m 2 i r2 ),(G.1)with m i = α+(i−1)m 0 . In the limit r → 0, the radial wave functions satisfy the boundary conditionsu(r) → r <strong>and</strong> w(r) → r 3 . (G.2)147


148 G.1. Non-relativistic wave-function parametrisationTable G.1 – Expansion coefficients of the parametrised radial deuteron wave functions (G.1) correspond<strong>in</strong>gwith the Paris potential [229] <strong>and</strong> the CD-Bonn potential [179].Paris (n = 13) CD-Bonn (n = 11)i C i (fm −1/2 ) D i (fm −1/2 ) C i (fm −1/2 ) D i (fm −1/2 )1 0.88688076 · 10 +0 0.23135193 · 10 −1 0.88472985 · 10 +0 0.22623762 · 10 −12 −0.34717093 · 10 +0 −0.85604572 · 10 +0 −0.26408759 · 10 +0 −0.50471056 · 10 +03 −0.30502380 · 10 +1 0.56068193 · 10 +1 −0.44114404 · 10 −1 0.56278897 · 10 +04 0.56207766 · 10 +2 −0.69462922 · 10 +2 −0.14397512 · 10 +2 −0.16079764 · 10 +25 −0.74957334 · 10 +3 0.41631118 · 10 +3 0.85591256 · 10 +2 0.11126803 · 10 +36 0.53365279 · 10 +4 −0.12546621 · 10 +4 −0.31876761 · 10 +3 −0.44667490 · 10 +37 −0.22706863 · 10 +5 0.12387830 · 10 +4 0.70336701 · 10 +3 0.10985907 · 10 +48 0.60434469 · 10 +5 0.33739172 · 10 +4 −0.90049586 · 10 +3 −0.16114995 · 10 +49 −0.10292058 · 10 +6 −0.13041151 · 10 +5 0.66145441 · 10 +3 see (G.3b)10 0.11223357 · 10 +6 0.19512524 · 10 +5 −0.25958894 · 10 +3 see (G.3b)11 −0.75925226 · 10 +5 see (G.3b) see (G.3a) see (G.3b)12 0.29059715 · 10 +5 see (G.3b)13 see (G.3a) see (G.3b)α 0.23162461 fm −1 0.2315380 fm −1m 0 1.0 fm −1 0.9 fm −1This gives rise to the follow<strong>in</strong>g constra<strong>in</strong>ts for the coefficients of Eq. (G.1)0 =0 =n∑C i ,i=1n∑D i =i=1n∑D i m 2 i =i=1n∑D im 2 i=1 i(G.3a). (G.3b)In table G.1, we have listed the coefficients C i , D i , α <strong>and</strong> m 0 for the Paris <strong>and</strong> CD-Bonn wavefunctions.Us<strong>in</strong>g (H.2), it is straightforward to f<strong>in</strong>d the parametrised radial wave functions <strong>in</strong> momentum space√2u(p) =π√2w(p) =πn∑i=1C ip 2 + m 2 <strong>in</strong>∑ −D ip 2 + m 2 ii=1,,(G.4)where we have made use of the boundary conditions <strong>in</strong> (G.3b).


Appendix G. Parametrisations of the deuteron wave function 149G.2 Relativistic wave-function parametrisation IBuck <strong>and</strong> Gross developed an analytical form for their relativistic wave functions [230] which is <strong>in</strong>l<strong>in</strong>e with the parametrisation of Eq. (G.1)φ i (q) =N∑b i,n G n L(q) with i = 3 S 1 , 3 D 1 , 3 P 1 , 1 P 1 , (G.5)n=1with L the angular momentum of the state. This parametrisation is valid both <strong>in</strong> configuration as <strong>in</strong>momentum space, visualised by the q dependence. As their non-relativistic counterparts, these wavefunctions obey the boundary conditions (G.2). These conditions can be met by the follow<strong>in</strong>g choicewithN+2∑G n L(q) = f L,n (q) −K n L,i =i=1(ML,N+iM L,n) L L+2∏j=1j≠iM L,i = α L + (i + 1)m L,0 .K n L,if L,N+i (q) ,ML,N+j 2 − M L,n2ML,N+j 2 − M L,N+i2 ,(G.6)(G.7)In analogy with the non-relativistic parametrisation we havef 0,n (r) = e −M0,nr ,(f 1,n (r) = e −M 1,nr1 + 1 ),M 1,n r()f 2,n (r) = e −M 2,nr1 + 3M 2,n r + 3M2,n 2 ,r2(G.8)<strong>in</strong> configuration space <strong>and</strong>√2 1f 0,n (p) =π p 2 + M0,n2 ,√ ( ) 2 p 1f 1,n (p) =π M 1,n p 2 + M1,n2 ,√ ( ) 2 p 21f 2,n (p) =π M 2,n p 2 + M2,n2 ,(G.9)<strong>in</strong> momentum space.In table G.2 we have listed the expansion coefficients [231] for the relativistic wave function labelledIIb <strong>in</strong> Ref. [181].G.3 Relativistic wave-function parametrisation IIIn Ref. [182], Gross <strong>and</strong> Stadler have <strong>in</strong>troduced a parametrisation for the deuteron wave functionsthat are obta<strong>in</strong>ed from the OBE potential presented <strong>in</strong> Ref. [183]. The different components are


150 G.3. Relativistic wave-function parametrisation IITable G.2 – Expansion coefficients of the relativistic deuteron wave function labelled IIb <strong>in</strong> Ref. [181] to beused with the wave-function parametrisation of Section G.2. The coefficients α L <strong>and</strong> b i,n have dimensionsMeV <strong>and</strong> MeV 1/2 respectively. The parameter m L,0 is fixed at 138 MeV for all states.3 S 1 3 D 1 3 P 1 1 P 1α L 0.45702000 · 10 +2 0.45702000 · 10 +2 0.13800000 · 10 +3 0.13800000 · 10 +3b i,1 1.23473909 · 10 +1 3.04445499 · 10 −1 3.58649195 · 10 −2 9.01574296 · 10 −3b i,2 −9.79182548 · 10 −1 −2.28389143 · 10 +0 −1.11941519 · 10 +0 −5.62298514 · 10 −1b i,3 −1.33149654 · 10 +1 −1.25535880 · 10 +1 1.24100281 · 10 +0 5.90732942 · 10 +0b i,4 2.03598985 · 10 +1 4.75484843 · 10 +0 3.01054706 · 10 +1 −1.88499536 · 10 +1b i,5 −5.49883687 · 10 +1 3.44785873 · 10 +0 −5.39212864 · 10 +1 7.36252577 · 10 +0b i,6 −3.35208211 · 10 +1 1.06337512 · 10 +0 −2.96869223 · 10 +1 1.35240434 · 10 +1b i,7 1.42816421 · 10 +1 −7.15449045 · 10 −3 2.39138486 · 10 +1 7.26850340 · 10 +0b i,8 4.58613894 · 10 +1 −2.60000217 · 10 −1 5.34140258 · 10 +1 5.58906563 · 10 −1b i,9 5.36566194 · 10 +1 −2.11957448 · 10 −1 5.34280647 · 10 +1 −2.62991867 · 10 +0b i,10 4.42571196 · 10 +1 −1.11702589 · 10 −1 3.71934963 · 10 +1 −2.81893558 · 10 +0b i,11 2.71001008 · 10 +1 −4.10060436 · 10 −2 1.84515566 · 10 +1 −1.67873493 · 10 +0b i,12 1.03563424 · 10 +1 −8.54424870 · 10 −3 5.34193503 · 10 +0 −5.38676867 · 10 −1exp<strong>and</strong>ed like <strong>in</strong> Eq. (G.5). In momentum space, the expansion functions are given byG n L(p) =√2πp L M 2 L,n−2 M 2n L−LL,n−1(M 2 L,n−2 + p2 ) (M 2 L,n−1 + p2 ) , (G.10)for n = 1, . . . , (N − 1), with M L,i def<strong>in</strong>ed <strong>in</strong> Eq. (G.7). The f<strong>in</strong>al expansion function, labelled thetail wave function, ensures a correct falloff as p → ∞ <strong>and</strong> is def<strong>in</strong>ed asG N L (p) =√2πp L M 2n L+1−LL,N−1(M 2 L,N−1 + p2 ) nL +1/2 . (G.11)The expansion functions <strong>in</strong> configuration space are more <strong>in</strong>volved. For the terms n < N, we haveG n 0 (r) =M0,n−2 2 M {[(0,n−14() 2e −rM 0,n−2− e −rM 0,n−11 + rM0,n−1 2 − M 0,n−22 2 M 0,n−1 1 − M )] }0,n−22M0,n−12 , (G.12)G n 1 (r) =M1,n−2 2 M {1,n−14 M 1,n−2() 2M1,n−1 2 − M 1,n−22M 1,n−1e −rM 1,n−2− e −rM 1,n−1[1 +[]11 +rM 1,n−2(1+ rM 1,n−11 − M )] }1,n−22rM 1,n−1 2 M1,n−12 , (G.13)


Appendix G. Parametrisations of the deuteron wave function 151G i 2(r) =M2,n−2 2 M { [2,n−16 M22,n−2() 3M2,n−1 2 − M 2,n−22 M2,n−12 e −rM 2,n−21 +[− e −rM 3 32,n−11 + +rM 2,n−1 r 2 M2,n−123rM 2,n−2++ 1 + rM 2,n−12+ r2 M 2 2,n−183r 2 M 2 2,n−2((]1 − M 2 2,n−2M 2 2,n−11 − M 2 2,n−2M 2 2,n−1)) ⎤ 2 }⎦. (G.14)F<strong>in</strong>ally, the tail wave functions <strong>in</strong> configuration space readwhereG N 0 (r) = 2r23π M 4 0,N−1K 1 (rM 0,N−1 ) ,G N 1 (r) = 2r23π M 4 1,N−1K 0 (rM 1,N−1 ) ,G N 2 (r) = 2r315π M 5 2,N−1K 0 (rM 2,N−1 ) ,K n (z) =z n(2n − 1)!!∫ ∞are the modified Bessel functions of the second k<strong>in</strong>d.1dte −zt (t 2 − 1) n− 1 2 ,(G.15)(G.16)In table G.3, we have listed the expansion coefficients for the wave functions obta<strong>in</strong>ed with theWJC-1 model of Ref. [183]. As was po<strong>in</strong>ted out <strong>in</strong> Ref. [182], the CST wave functions obey thefollow<strong>in</strong>g normalisation condition∫ ∞〈 〉] dV1 = dpp[u 2 2 (p) + w 2 (p) + vt 2 (p) + vs(p) 2 + . (G.17)dm D0The last term, which does not feature <strong>in</strong> the conventional normalisation of the deuteron wave function,is of the order of a few percent. Therefore, the authors put forward a scaled wave function thatconforms to the conventional normalisation condition <strong>and</strong> recommend it for use <strong>in</strong> EM calculationsbased on the RIA. When we refer to the WJC-1 wave function <strong>in</strong> this work, we will always allude tothis scaled wave function.


152 G.3. Relativistic wave-function parametrisation IITable G.3 – Expansion coefficients of the relativistic deuteron wave function labelled WJC-1 <strong>in</strong> Ref. [183]to be used with the wave-function parametrisation of Section G.3. The parameters α L <strong>and</strong> m L,0 are given<strong>in</strong> MeV. The coefficients b i,n have dimensions GeV −3/2 . The tail mass M L,N−1 is not given by Eq. (G.7),but is fixed at 2 GeV <strong>in</strong>stead.3 S 1 3 D 1 3 P 1 1 P 1N 17 16 12 12n L 2 3 2 2α L 45.716 45.716 488.000 633.000m L,0 75.000 80.000 109.090 109.090b i,1 134.963 23.813 −27.120 −78.763b i,2 52.871 32.709 233.155 688.895b i,3 −217.709 −111.381 −998.893 −2910.298b i,4 1876.699 844.861 2679.013 7690.084b i,5 −11369.449 −4376.965 −4894.348 −13861.596b i,6 49427.176 16489.297 6277.553 17571.825b i,7 −156695.247 −45122.587 −5674.481 −15720.926b i,8 369322.468 91061.493 3550.952 9747.293b i,9 −655367.189 −136672.748 −1467.429 −3994.747b i,10 879178.453 152411.033 360.796 975.086b i,11 −887103.150 −124633.670 −40.010 −107.489b i,12 662786.733 72617.712 −498 · 10 −7 −394 · 10 −7b i,13 −355720.583 −28549.974b i,14 129738.381 6790.953b i,15 −28805.739 −738.436b i,16 2939.797 −100 · 10 −6b i,17 −125 · 10 −6


APPENDIX HConnect<strong>in</strong>g (non-)relativistic wave functions with the covariant Dnp-vertexIn Section 5.5, we <strong>in</strong>troduced the covariant Dnp-vertex (5.82). This vertex is the most generalstructure that describes the breakup of a deuteron <strong>in</strong>to two nucleons, with the second nucleon on itsmass-shell. It is given <strong>in</strong> terms of four Lorentz-<strong>in</strong>variant form factors.In Eq. (5.85) we def<strong>in</strong>ed two energy-projected wave functions <strong>in</strong> terms of the covariant Dnp-vertex,<strong>and</strong> <strong>in</strong> paragraphs 5.5.2 <strong>and</strong> 5.5.3 we have argued that these wave functions can be l<strong>in</strong>ked to thewell-known (non-)relativistic wave-function decompositions <strong>in</strong> the 2S+1 L J basis. In this appendix,we will prove this correspondence explicitly. In addition, we will deduce a connection between theform factors <strong>and</strong> the wave functions.First, we require the deuteron’s wave functions given by Eqs. (5.88) <strong>and</strong> (5.92) <strong>in</strong> momentum space.This is readily achieved by tak<strong>in</strong>g the Fourier transform (5.87). We obta<strong>in</strong>Ψ ++ (⃗p; λ D ) = u(|⃗p|)χ 1λD Y 00 (ˆ⃗p) − w(|⃗p|) ∑ m S〈2, λ D -m S ; 1, m S | 1, λ D 〉 χ 1mS Y 2,λD -m S(ˆ⃗p) ,Ψ −+ (⃗p; λ D ) = −v s (|⃗p|)χ 00 Y 1λD (ˆ⃗p) − v t (|⃗p|) ∑ m S〈1, λ D -m S ; 1, m S | 1, λ D 〉 χ 1mS Y 1,λD -m S(ˆ⃗p) .(H.1)Here<strong>in</strong>, we have def<strong>in</strong>edφ i (p) =√2π∫ ∞0drrφ i (r)j L (pr) ,(H.2)with φ i (i = 1, 2, 3, 4) a shorth<strong>and</strong> notation for the u, w, v s <strong>and</strong> v t wave functions <strong>in</strong> configuration<strong>and</strong> momentum space. The functions j L (x) are spherical Bessel functions of the first k<strong>in</strong>d.The wave functions <strong>in</strong> (H.1) are expressed <strong>in</strong> the direct-product representation 1 2 ⊗ 1 2of the sp<strong>in</strong>sof both nucleons. Introduc<strong>in</strong>g the notation ⃗σ i χ SmS (i = 1, 2) for the Pauli matrices act<strong>in</strong>g <strong>in</strong> thesp<strong>in</strong>-space of particle i, one can easily prove identities such as⃗σ 1 · ⃗σ 2 χ SmS = χ SmS .(H.3)153


154 Chapter H. Connect<strong>in</strong>g (non-)relativistic wave functions with the covariant Dnp-vertexAfter some manipulations, one can rewrite the wave functions asΨ ++ (⃗p; λ D ) = √ 1 [u(|⃗p|)⃗σ 1 · ⃗σ 2 − w(|⃗p|)]√ (3⃗σ 1 · ˆ⃗p ⃗σ 2 · ˆ⃗p − ⃗σ 1 · ⃗σ 2 ) χ 1λD ,4π 8√ [ 3Ψ −+ vs (|⃗p|)(⃗p; λ D ) = −(⃗σ 1 − ⃗σ 2 ) ·4π 2ˆ⃗p − v ]t(|⃗p|)2 √ 2 (⃗σ 1 + ⃗σ 2 ) · ˆ⃗p χ 1λD .(H.4)In order to make a direct connection with the energy-projected wave functions (5.85) def<strong>in</strong>ed <strong>in</strong>terms of the covariant Dnp-vertex, we will first rewrite (H.4) <strong>in</strong> matrix representation, where( )( )1 00 1, |+〉0 01|−〉 2≡,0 0|+〉 1|+〉 2≡(|−〉 1|+〉 2≡0 01 0), |−〉 1|−〉 2≡(0 00 1).(H.5)In this representation, the coupled-sp<strong>in</strong> wave functions can conveniently be expressed as(χ 1m ≡ ⃗σ · ⃗ξ m iσ )∣y ∣∣∣λ2√ , (H.6)2 λ 1where we have taken the deuteron’s polarisation vectors as def<strong>in</strong>ed <strong>in</strong> Eq. (5.79). The <strong>in</strong>dices λ 1 <strong>and</strong>λ 2 are the sp<strong>in</strong>-projections of particles 1 <strong>and</strong> 2 along the z axis. For a general operator A 1 (B 2 )act<strong>in</strong>g <strong>in</strong> the sp<strong>in</strong>-space of particle 1 (2), one can prove the follow<strong>in</strong>g equivalence(A 1 B 2 χ 1m ≡ B ⃗σ · ⃗ξ m à iσ )∣y ∣∣∣λ2√ , (H.7)2 λ 1with à = σ 2A T σ 2 . After putt<strong>in</strong>g this relation to use, we f<strong>in</strong>d an expression for the wave functions <strong>in</strong>matrix representationΨ ++λ 1 λ 2(⃗p; λ D ) ≡ √ 1 [u(|⃗p|)⃗σ · ⃗ξ λ D+ w(|⃗p|)] ∣√ (3ˆ⃗p · ⃗ξ λ D⃗σ · ˆ⃗p − ⃗σ · ⃗ξ λ iσy ∣∣∣λ2D) √ ,4π 2 2 λ√1[ 3Ψ −+λ 1 λ 2(⃗p; λ D ) ≡ v s (|⃗p|)ˆ⃗p ·4π⃗ξ λ D+ v ] ∣ (H.8)t(|⃗p|)√ (⃗σ · ˆ⃗p⃗σ · ⃗ξ λ D− ˆ⃗p · ⃗ξ λ iσy ∣∣∣λ2D) √ .2 2 λ 1Note that the v s -term is antisymmetric <strong>in</strong> the <strong>in</strong>dices, whereas the other terms are symmetric.In order to l<strong>in</strong>k the form factors of the covariant Dnp-vertex with the deuteron wave functions, weneed to rewrite the energy-projected wave functions def<strong>in</strong>ed <strong>in</strong> terms of the Dnp-vertex <strong>in</strong> matrixrepresentation. Adopt<strong>in</strong>g the conventions for positive- <strong>and</strong> negative-energy Dirac sp<strong>in</strong>ors given <strong>in</strong>Section A.4, we are able to work out the deuteron wave functions as given <strong>in</strong> Eq. (5.85). After atedious calculation, one obta<strong>in</strong>sΨ ++(−1) 1 2 −λ 2λ 1 λ 2(⃗p; λ D ) = √(2π) 3 2m D 2E p (2E p − m D ){ [× ξ † λ 1⃗σ · ⃗ξ λ 2 DH(|⃗p|) (2E p − m D )(2m N + E p )3m N[+ (3ˆ⃗p · ⃗ξ λ D⃗σ · ˆ⃗p − ⃗σ · ⃗ξ λ D) 2 3]− F (|⃗p|)(2E p + m N ) − G(|⃗p|) |⃗p|2m NF (|⃗p|)(E p − m N ) + H(|⃗p|) (2E p − m D )(E p − m N )m N− G(|⃗p|) |⃗p|2m N]}η λ2 ,(H.9)


Chapter H. Connect<strong>in</strong>g (non-)relativistic wave functions with the covariant Dnp-vertex 155Ψ −+λ 1 λ 2(⃗p; λ D ) =× η † −λ 1{2⃗p · ⃗ξ λ D−(−1) 1 2 −λ 2√(2π) 3 2m D 2E p m D(F (|⃗p|) − G(|⃗p|) + I(|⃗p|) m )}DE pm 2 + 2(⃗σ · ⃗p⃗σ · ⃗ξ λ D− ˆ⃗p · ⃗ξ λ D)H(|⃗p|) m Dη λ2 .Nm N(H.10)Through an explicit computation, it is elementary to prove the follow<strong>in</strong>g properties for two-componentPauli sp<strong>in</strong>ors(−1) 1 2 −λ′ ξ † λ η λ ′ = −i σ y| λλ ′ ,(−1) 1 2 −λ′ ξ † λ ⃗ση λ ′ = −i ⃗σσ y| λλ ′ ,(H.11)<strong>and</strong> s<strong>in</strong>ce any complex 2x2-matrix A can be decomposed as A = A 0 1 + ∑ i A iσ i , we have <strong>in</strong> general(−1) 1 2 −λ′ ξ † λ Aη λ ′ = −i Aσ y| λλ ′ . (H.12)Apply<strong>in</strong>g this to our previous expression for the deuteron wave function, a direct comparison canbe made with Eq. (H.8). In this way, we obta<strong>in</strong> the deuteron wave functions u, w, v s <strong>and</strong> v t as afunction of the Dnp-vertex form factors. After <strong>in</strong>vert<strong>in</strong>g these relations, we reach our f<strong>in</strong>al resultF (|⃗p|) = π √ 2m D (2E p − m D )G(|⃗p|) = π √ 2m D (2E p − m D )H(|⃗p|) = π √ √3 E p m N2m D v t (|⃗p|) ,2 |⃗p|I(|⃗p|) = −π √ [m 2 N2m D (2E p − m D )m D[u(|⃗p|) − 1 √2w(|⃗p|) +√ ]3 m N2 |⃗p| v t(|⃗p|)[m N u(|⃗p|)+ m N(2E p + m N )E p + m N |⃗p| 2,w(|⃗p|)√2+√ ]3 m N2 |⃗p| v t(|⃗p|) ,( u(|⃗p|)− E ) √ ]p + 2m N w(|⃗p|) 3mDE p + m N |⃗p| 2 √ + v s (|⃗p|) .2 |⃗p|(H.13)


156 Chapter H. Connect<strong>in</strong>g (non-)relativistic wave functions with the covariant Dnp-vertex


APPENDIX IParameters of the Regge-plus-resonance modelEssentially, all models are wrong, but some are useful.— George E. P. BoxThe RPR formalism was <strong>in</strong>troduced <strong>in</strong> Chapter 2. It consists of non-resonant contributions thatare parametrised as Regge-trajectory exchange <strong>in</strong> the t-channel <strong>and</strong> the exchange of a selectionof nucleon <strong>and</strong> ∆ resonances <strong>in</strong> the s-channel. Expressions for the different contributions to thetransition amplitude are given <strong>in</strong> Paragraph D.3.3. In this appendix, we summarise the coupl<strong>in</strong>gconstants that feature <strong>in</strong> these amplitudes.The parameters for the Λ-production RPR model are given <strong>in</strong> Table I.1. This model has been published<strong>in</strong> Refs. [39, 69]. Table I.2 lists the coupl<strong>in</strong>g constants of the RPR model for the Σ-productionchannels discussed <strong>in</strong> Refs. [40, 69].In Chapter 3, we develop a formalism which permits to derive the coupl<strong>in</strong>g constants for the reactionchannels with a neutron target <strong>and</strong>/or a neutral kaon <strong>in</strong> the f<strong>in</strong>al state from those for p(γ, K + )Λ<strong>and</strong> p(γ, K + )Σ 0 . The EM coupl<strong>in</strong>g constants of resonance-exchange diagrams have error bars due tothe experimental uncerta<strong>in</strong>ties related to photocoupl<strong>in</strong>g helicity amplitudes. We have adopted thehelicity amplitude labelled SM95 <strong>in</strong> Table 3.1.157


158 Chapter I. Parameters of the Regge-plus-resonance modelTable I.1 – Coupl<strong>in</strong>g constants of the RPR-2007 model optimised for KΛ production. The cutoff mass forthe Gaussian form factor at the strong-<strong>in</strong>teraction vertices of the resonance-exchange diagrams is fixed atΛ = 1636.53 MeV.p(γ, K + )Λ n(γ, K 0 )ΛBorn g KΛN −1.064 · 10 +1 —K ∗ (892) G v K ∗ 1.082 · 10+1 −1.655 · 10 +1G t K ∗ −2.906 · 10+1 4.446 · 10 +1S 11 (1650) G N ∗ −2.251 · 10 −2 4.951±1.575 · 10 −3P 11 (1710) G N ∗ −2.348 · 10 −1 0.681±5.235 · 10 −1P 13 (1720) G (1)N ∗ 3.842 · 10 −2 −1.460±7.685 · 10 −2G (2)N ∗ −1.812 · 10 −2 0.906±1.957 · 10 −2X 1.437 · 10 +2 1.437 · 10 +2Y 5.696 · 10 +1 5.696 · 10 +1Z −3.117 · 10 −1 −3.117 · 10 −1P 13 (1900) G (1)N ∗ −7.499 · 10 −1 0.000±1.500 · 10 +0G (2)N ∗ 3.377 · 10 −1 0.000±6.754 · 10 −1X −1.770 · 10 +1 −1.770 · 10 +1Y 2.588 · 10 +0 2.588 · 10 +0Z −8.878 · 10 −1 −8.878 · 10 −1D 13 (1900) G (1)N ∗ 1.115 · 10 +0 0.000±2.230 · 10 +0G (2)N ∗ 5.105 · 10 −1 0.000±1.021 · 10 +0X 4.031 · 10 +1 4.031 · 10 +1Y −1.399 · 10 +1 −1.399 · 10 +1Z −3.969 · 10 −2 −3.969 · 10 −2


Chapter I. Parameters of the Regge-plus-resonance model 159Table I.2 – Coupl<strong>in</strong>g constants of the RPR-2007 model optimised for KΣ production. The cutoff mass forthe Gaussian form factor at the strong-<strong>in</strong>teraction vertices of the resonance-exchange diagrams is fixed atΛ = 1593.37 MeV.p(γ, K + )Σ 0 p(γ, K 0 )Σ + n(γ, K 0 )Σ 0 n(γ, K + )Σ −Born g KΣN 4.606 · 10 +0 — — 6.514 · 10 +0K ∗ (892) G v K ∗ 1.454 · 10+1 1.110 · 10 +0 −7.852 · 10 −1 2.056 · 10 +1G t K ∗ −2.725 · 10+1 −2.081 · 10 +0 1.472 · 10 +0 −3.854 · 10 +1S 11 (1650) G N ∗ −1.391 · 10 −1 −1.967 · 10 −1 −3.060±0.974 · 10 −2 4.328±1.377 · 10 −2D 33 (1700) G (1)N ∗ −2.463 · 10 +0 1.741 · 10 +0 −2.463 · 10 +0 −1.741 · 10 +0G (2)N ∗ −2.057 · 10 +0 1.455 · 10 +0 −2.057 · 10 +0 −1.455 · 10 +0X −4.999 · 10 +0 −4.999 · 10 +0 −4.999 · 10 +0 −4.999 · 10 +0Y −4.521 · 10 +0 −4.521 · 10 +0 −4.521 · 10 +0 −4.521 · 10 +0Z −1.577 · 10 −1 −1.577 · 10 −1 −1.577 · 10 −1 −1.577 · 10 −1P 11 (1710) G N ∗ 1.744 · 10 −1 2.466 · 10 −1 0.506±3.888 · 10 −1 −0.715±5.499 · 10 −1P 13 (1720) G (1)N ∗ 1.839 · 10 −1 2.600 · 10 −1 0.699±3.677 · 10 −1 −0.988±5.201 · 10 −1G (2)N ∗ 5.689 · 10 −2 8.045 · 10 −2 2.844±6.144 · 10 −2 −4.022±8.689 · 10 −2X −6.114 · 10 +0 −6.114 · 10 +0 −6.114 · 10 +0 −6.114 · 10 +0Y −4.490 · 10 −1 −4.490 · 10 −1 −4.490 · 10 −1 −4.490 · 10 −1Z 3.276 · 10 +0 3.276 · 10 +0 3.276 · 10 +0 3.276 · 10 +0P 13 (1900) G (1)N ∗ 9.811 · 10 −1 1.387 · 10 +0 0.000±1.962 · 10 +0 0.000±2.775 · 10 +0G (2)N ∗ 1.890 · 10 +0 2.674 · 10 +0 0.000±3.781 · 10 +0 0.000±5.347 · 10 +0X 4.465 · 10 +0 4.465 · 10 +0 4.465 · 10 +0 4.465 · 10 +0Y −3.495 · 10 +0 −3.495 · 10 +0 −3.495 · 10 +0 −3.495 · 10 +0Z −2.442 · 10 −1 −2.442 · 10 −1 −2.442 · 10 −1 −2.442 · 10 −1S 31 (1900) G N ∗ 3.236 · 10 −1 −2.288 · 10 −1 3.236 · 10 −1 2.288 · 10 −1P 31 (1910) G N ∗ −2.597 · 10 −1 1.836 · 10 −1 −2.597 · 10 −1 −1.836 · 10 −1P 33 (1920) G (1)N ∗ 4.709 · 10 −1 −3.329 · 10 −1 4.709 · 10 −1 3.329 · 10 −1G (2)N ∗ 4.589 · 10 −1 −3.245 · 10 −1 4.589 · 10 −1 3.245 · 10 −1X 8.031 · 10 +0 8.031 · 10 +0 8.031 · 10 +0 8.031 · 10 +0Y 2.416 · 10 +0 2.416 · 10 +0 2.416 · 10 +0 2.416 · 10 +0Z −5.272 · 10 −1 −5.272 · 10 −1 −5.272 · 10 −1 −5.272 · 10 −1


160 Chapter I. Parameters of the Regge-plus-resonance model


APPENDIX JExperimental dataFacts are mean<strong>in</strong>gless.You could use facts to prove anyth<strong>in</strong>g that’s even remotely true.— Homer SimpsonIn this appendix, an overview is given of the published datasets for kaon photoproduction from thenucleon.In Tables J.1 <strong>and</strong> J.2, the experimental data for the p(γ, K + )Λ <strong>and</strong> p(γ, K + )Σ 0 reactions is given.The datasets used <strong>in</strong> Refs. [39, 40] to optimise the RPR-2007 model are marked <strong>in</strong> the rightmostcolumn. The fitted coupl<strong>in</strong>g constants are listed <strong>in</strong> Appendix I.The p(γ, K 0 )Σ + reaction data is enumerated <strong>in</strong> Table J.3. The last column marks the datasets used<strong>in</strong> Section 3.3 to optimise the K ∗0 (892)’s EM coupl<strong>in</strong>g constant <strong>and</strong> explore the possibility of a thirdRegge trajectory.Table J.4 provides an overview of the published experimental data for the n(γ, K + )Σ − reaction. Todate, no results have been published for the n(γ, K 0 )Λ <strong>and</strong> n(γ, K 0 )Σ 0 reactions.161


162 Chapter J. Experimental dataTable J.1 – List of published experimental data for the reaction p(γ, K + )Λ <strong>in</strong> chronological order perobservable. The datasets used to determ<strong>in</strong>e the RPR-2007 model are marked <strong>in</strong> the last column.Observable Year Experiment Reference # data po<strong>in</strong>ts Fittedσ 1998 SAPHIR Tran et al. [124] 242004 SAPHIR Gl<strong>and</strong>er et al. [125] 362006 CLAS Bradford et al. [119] 78dσdΩ1969 SLAC Boyarski et al. [113] 56 ̌1998 SAPHIR Tran et al. [124] 902004 SAPHIR Gl<strong>and</strong>er et al. [125] 7202004 CLAS McNabb et al. [121] 9202006 CLAS Bradford et al. [119] 1377 ̌2006 LEPS Sumihama et al. [135] 542007 LEPS Hicks et al. [132] 122010 CLAS McCracken et al. [123] 2066Σ 1979 SLAC Qu<strong>in</strong>n et al. [114] 9 ̌2003 LEPS Zegers et al. [122] 45 ̌2006 LEPS Sumihama et al. [135] 542007 LEPS Hicks et al. [132] 42007 GRAAL Lleres et al. [120] 66 ̌P 1972 DESY Vogel et al. [115] 7 ̌1998 SAPHIR Tran et al. [124] 122004 SAPHIR Gl<strong>and</strong>er et al. [125] 302004 CLAS McNabb et al. [121] 233 ̌2007 GRAAL Lleres et al. [120] 66 ̌2010 CLAS McCracken et al. [123] 1707T 1978 BONN Althoff et al. [142] 3 ̌2008 GRAAL Lleres et al. [141] 66C x , C z 2007 CLAS Bradford et al. [140] 320O x ′, O z ′ 2008 GRAAL Lleres et al. [141] 66


Chapter J. Experimental data 163Table J.2 – List of published experimental data for the reaction p(γ, K + )Σ 0 <strong>in</strong> chronological order perobservable. The datasets used to determ<strong>in</strong>e the RPR-2007 model are marked <strong>in</strong> the last column.Observable Year Experiment Reference # data po<strong>in</strong>ts Fittedσ 1998 SAPHIR Tran et al. [124] 212004 SAPHIR Gl<strong>and</strong>er et al. [125] 332006 CLAS Bradford et al. [119] 72dσdΩ1969 SLAC Boyarski et al. [113] 48 ̌1998 SAPHIR Tran et al. [124] 702004 SAPHIR Gl<strong>and</strong>er et al. [125] 6602004 CLAS McNabb et al. [121] 7822006 CLAS Bradford et al. [119] 1280 ̌2006 LEPS Sumihama et al. [135] 542006 LEPS Kohri et al. [134] 732010 CLAS Dey et al. [130] 2089Σ 1979 SLAC Qu<strong>in</strong>n et al. [114] 9 ̌2003 LEPS Zegers et al. [122] 45 ̌2006 LEPS Sumihama et al. [135] 542006 LEPS Kohri et al. [134] 352007 GRAAL Lleres et al. [120] 42 ̌P 1998 SAPHIR Tran et al. [124] 122004 SAPHIR Gl<strong>and</strong>er et al. [125] 162004 CLAS McNabb et al. [121] 98 ̌2007 GRAAL Lleres et al. [120] 8 ̌2010 CLAS Dey et al. [130] 455C x , C z 2007 CLAS Bradford et al. [140] 190Table J.3 – List of published experimental data for the reaction p(γ, K 0 )Σ + <strong>in</strong> chronological order perobservable. The datasets used <strong>in</strong> Section 3.3 for fitt<strong>in</strong>g are marked <strong>in</strong> the last column.Observable Year Experiment Reference # data po<strong>in</strong>ts Fittedσ 1999 SAPHIR Goers et al. [232] 52005 SAPHIR Lawall et al. [154] 122008 CB/ELSA-TAPS Castelijns et al. [155] 12dσdΩ1999 SAPHIR Goers et al. [232] 182003 CLAS Carnahan [157] 48 ̌2005 SAPHIR Lawall et al. [154] 120 ̌2008 CB/ELSA-TAPS Castelijns et al. [155] 72 ̌P 1999 SAPHIR Goers et al. [232] 42005 SAPHIR Lawall et al. [154] 102008 CB/ELSA-TAPS Castelijns et al. [155] 72 ̌


164 Chapter J. Experimental dataTable J.4 – List of published experimental data for the reaction n(γ, K + )Σ − <strong>in</strong> chronological order perobservable.Observable Year Experiment Reference # data po<strong>in</strong>tsdσdΩ2006 LEPS Kohri et al. [134] 722010 CLAS Anefalos Pereira et al. [151] 388Σ 2006 LEPS Kohri et al. [134] 36


APPENDIX KHyperon-nucleon <strong>in</strong>teractionThis appendix deals with the hyperon-nucleon <strong>in</strong>teraction. In the first section, we sketch thek<strong>in</strong>ematics of the hyperon-nucleon scatter<strong>in</strong>g reaction. Section K.2 <strong>in</strong>troduces the transition matrixelements that are required for the calculation of the YN-FSI contribution to EM kaon production fromthe deuteron (see Section 5.6.3). They will be expressed <strong>in</strong> terms of the helicity amplitudes of thehyperon-nucleon scatter<strong>in</strong>g process. The latter can be obta<strong>in</strong>ed with<strong>in</strong> the context of non-relativistichyperon-nucleon potential models. The issue of the off-shell extrapolation of the scatter<strong>in</strong>g amplitudeis the subject of Section K.3. In the f<strong>in</strong>al section, we will briefly present the Jülich model whosescatter<strong>in</strong>g amplitudes will be adopted <strong>in</strong> this dissertation.K.1 K<strong>in</strong>ematicsThroughout this appendix, we will consider the follow<strong>in</strong>g (<strong>in</strong>)elastic scatter<strong>in</strong>g reactionY ′ + N ′ → Y + N ,(K.1)where we label the <strong>in</strong>com<strong>in</strong>g hyperon <strong>and</strong> nucleon with primes. This notation is somewhat uncommon,but simplifies the comparison with Section 5.6, where we present the YN-FSI contribution to kaonproduction from the deuteron.The k<strong>in</strong>ematics of the scatter<strong>in</strong>g process are fixed by specify<strong>in</strong>g the <strong>in</strong>variant mass W Y N <strong>and</strong> thehyperon’s scatter<strong>in</strong>g angle θY ∗ Y<strong>in</strong> the YN-CM frame. The latter is given by′cos θ ∗ Y Y ′ = ⃗p ∗ Y · ⃗p ∗ Y ′|⃗p ∗ Y ||⃗p ∗ Y ′ | .(K.2)As was po<strong>in</strong>ted out <strong>in</strong> Paragraph 5.6.3, the hyperon-nucleon rescatter<strong>in</strong>g diagram is most readilyobta<strong>in</strong>ed <strong>in</strong> the YN-CM frame us<strong>in</strong>g the primed reference frame that was <strong>in</strong>troduced <strong>in</strong> Eq. (5.3).Four-momenta <strong>in</strong> this frame are denoted with an asterisk, i.e. p ∗ i . The elementary scatter<strong>in</strong>g reaction,165


166 K.2. Transition amplitudesFigure K.1 – Orientation of the dotted reference frame (ẋ, ẏ, ż) for the Y ′ N ′ → Y N reaction <strong>in</strong> theYN-CM frame.on the other h<strong>and</strong>, is typically described <strong>in</strong> a reference frame (ẋ, ẏ, ż) that has its ż axis along the<strong>in</strong>com<strong>in</strong>g hyperon <strong>and</strong> the ẏ axis perpendicular to the reaction plane. This dotted frame is illustrated<strong>in</strong> figure K.1 <strong>and</strong> is def<strong>in</strong>ed through˙⃗z = ⃗p ∗ Y ′|⃗p ∗ Y ′ | ,˙⃗y =⃗p ∗ Y ′ × ⃗p ∗ Y|⃗p ∗ Y ′ × ⃗p ∗ Y | , ˙⃗x = ˙⃗y × ˙⃗z . (K.3)The four-vectors of the particles participat<strong>in</strong>g <strong>in</strong> reaction (K.1) are represented <strong>in</strong> the dotted referenceframe asṗ ∗ i = rp i ∗ ,(K.4)with r the rotation that connects both frames. It consists of rotations about the z <strong>and</strong> y axis thatbr<strong>in</strong>g the momentum of the <strong>in</strong>com<strong>in</strong>g hyperon along the z axis <strong>and</strong> is followed by an additionalrotation about the z axis that moves the outgo<strong>in</strong>g particles <strong>in</strong> the xz plane. Caution is needed toensure that the momentum of the outgo<strong>in</strong>g hyperon lies along the positive x axis. Explicitly, we haver = r z (θ r )r y (−θ ∗ Y ′)r z(−φ ∗ Y ′) ,(K.5)with(θ r = π √1 − cos 22 − 2 arctan θY ∗ Y− s<strong>in</strong> θ ∗ ( ′ Y s<strong>in</strong> φ∗Y ′ cos φ ∗ Y − cos φ∗ Ys<strong>in</strong> φ ∗ ) )′ Y(cos θY ∗ s<strong>in</strong> θ ∗ ′ Y cos φ∗Y ′ cos φ ∗ Y + s<strong>in</strong> ) φ∗ Ys<strong>in</strong> φ ∗ ′ Y − s<strong>in</strong> θ∗Y ′ cos θY∗ , (K.6)for cos θ ∗ Y Y ′ ≠ 1. When cos θ ∗ Y Y ′ = 1, θ r is arbitrary. In case the argument of the arctangent iss<strong>in</strong>gular, θ r = ±π/2, where the positive (negative) sign occurs for a positive (negative) nom<strong>in</strong>ator.K.2 Transition amplitudesIn Paragraph 5.6.3, expressions are derived for the YN-FSI contribution to the kaon-productiontransition amplitude. There, the hyperon-nucleon rescatter<strong>in</strong>g diagram is written <strong>in</strong> terms of〈p Y , λ Y ; p N , λ N | ĴYN |p Y ′, λ Y ′; p N ′, λ N ′〉 YN-CM =u a (⃗p ∗ Y , λ Y )u b (⃗p ∗ N, λ N ) Γ YNab;cd u c(⃗p ∗ Y ′, λ Y ′)u d(⃗p ∗ N ′, λ N ′) ,(K.7)where the elementary rescatter<strong>in</strong>g vertex Γ YN is s<strong>and</strong>wiched between sp<strong>in</strong>ors for the <strong>in</strong>com<strong>in</strong>g <strong>and</strong>outgo<strong>in</strong>g particles. This transition amplitude is to be evaluated <strong>in</strong> the YN-CM frame with its helicities


Appendix K. Hyperon-nucleon <strong>in</strong>teraction 167def<strong>in</strong>ed <strong>in</strong> the primed reference frame. In the previous section, we <strong>in</strong>troduced dotted coord<strong>in</strong>ates asthe most natural reference frame for the description of the elementary hyperon-nucleon scatter<strong>in</strong>gprocess. In that frame, the hyperon-nucleon vertex operator readswhere˙Γ YNab;cd = S ae(r)S bf (r) Γ YNef;gh S gc(r −1 )S hd (r −1 ) ,S(t −1 ) = γ 0 S † (t)γ 0 ,(K.8)(K.9)is the representation of the <strong>in</strong>verse transformation t −1 <strong>in</strong> Dirac space [218]. After <strong>in</strong>sert<strong>in</strong>g the unityoperator several times <strong>in</strong> Eq. (K.7) <strong>and</strong> apply<strong>in</strong>g the transformation rule for helicity sp<strong>in</strong>ors provided<strong>in</strong> Paragraph C.2, we obta<strong>in</strong> for the transition amplitude∑ []〈p Y , λ Y ; p N , λ N | ĴYN |p Y ′, λ Y ′; p N ′, λ N ′〉 =D 1/2∗µ Y ,λ Y(r(r, ⃗p Y ∗ ))µ Y ′,µ N ′,µ Y ,µ N[]× D 1/2∗µ N ,λ N(r(r, ⃗p N))∗ 1/2 Dµ Y ′,λ (r(r, ⃗p ∗ Y ′ Y ′)) D1/2µ N ′,λ (r(r, ⃗p ∗ YNN ′ N ′)) Tµ Y ,µ N ;µ Y ′,µ , (K.10)N ′where we have <strong>in</strong>troduced helicity amplitudesT YNλ Y ,λ N ;λ Y ′,λ N ′= u a ( ˙⃗p ∗ Y , λ Y )u b ( ˙⃗p ∗ N, λ N )˙ΓYNab;cd u c( ˙⃗p ∗ Y ′, λ Y ′)u d( ˙⃗p ∗ N ′, λ N ′) ,(K.11)for the hyperon-nucleon scatter<strong>in</strong>g reaction with the helicities def<strong>in</strong>ed <strong>in</strong> the dotted reference frame.With the help of the explicit form of the rotation r <strong>and</strong> the def<strong>in</strong>ition of the helicity transformationgiven <strong>in</strong> Eq. (C.2), the different Wick rotations can be worked out. One f<strong>in</strong>dsr(r, ⃗p ∗ i ) = r z (Φ i ) ,(K.12)for i = Y ′ , N ′ , Y, N. S<strong>in</strong>ce the Wigner rotation matrix is diagonal for rotations about the z axis (seeSection A.2), this implies that the rotation r conserves the helicities <strong>and</strong> merely <strong>in</strong>troduces anadditional phase. We wish to stress the importance of us<strong>in</strong>g the quaternion representation of therotation group <strong>in</strong>troduced <strong>in</strong> Appendix B. S<strong>in</strong>ce we are rotat<strong>in</strong>g sp<strong>in</strong>ors, the isomorphism betweenthis representation <strong>and</strong> SU(2) is crucial to obta<strong>in</strong> the correct phases. In the most general case, noelegant closed form exists for the rotation angles Φ i . However, they can easily be found numerically.The phase for the <strong>in</strong>com<strong>in</strong>g hyperon is the noted exception. It simply readsΦ Y ′ = θ r .(K.13)Introduc<strong>in</strong>g the Wick rotations <strong>in</strong>to the Wigner rotation matrices of Eq. (K.10), we obta<strong>in</strong>〈p Y , λ Y ; p N , λ N | ĴYN |p Y ′, λ Y ′; p N ′, λ N ′〉 = e −i(λ Y ′θr+λ N ′Φ N ′−λ Y Φ Y −λ N Φ N ) T YNλ Y ,λ N ;λ Y ′,λ N ′ .(K.14)K.3 Off-shell scatter<strong>in</strong>gIn the previous section, we have focused on the frame-dependence of the helicities that feature <strong>in</strong> thetransition amplitude for hyperon-nucleon scatter<strong>in</strong>g. A second important aspect of the amplitude isthe k<strong>in</strong>ematics at which it is to be evaluated. In Section K.1, we have noted that the elementaryscatter<strong>in</strong>g process depends on the variables W Y N <strong>and</strong> θ ∗ Y Y ′ . However, when the rescatter<strong>in</strong>g vertexis <strong>in</strong>serted <strong>in</strong> a loop diagram such as the YN-FSI contribution considered <strong>in</strong> Paragraph 5.6.3, this no


168 K.4. Jülich modellonger holds true. Because of the deuteron’s b<strong>in</strong>d<strong>in</strong>g energy <strong>and</strong> the energy-momentum conserv<strong>in</strong>gdelta functions at the different <strong>in</strong>teraction vertices, the rescatter<strong>in</strong>g hyperon is generally off its massshell, i.e.p 2 Y ′ ≠ m2 Y ′ .(K.15)The hyperon-nucleon scatter<strong>in</strong>g vertex operator Γ YN has, to our knowledge, not been considered <strong>in</strong> acovariant field-theoretical framework. A number of hyperon-nucleon potential models are available onthe other h<strong>and</strong> [199–201], <strong>and</strong> the question arises how the scatter<strong>in</strong>g amplitude with one off-mass-shellleg can be obta<strong>in</strong>ed with<strong>in</strong> the context of non-relativistic scatter<strong>in</strong>g theory.Potential models construct a phenomenological potential that serves as a kernel to solve a Lippmann-Schw<strong>in</strong>ger equation. In do<strong>in</strong>g so, one obta<strong>in</strong>s a half-off-energy-shell amplitudeT YNλ Y ,λ N ;λ Y ′,λ N ′ (W, θ∗ Y Y ′; W ′ ) ,(K.16)with W ′ <strong>and</strong> W the <strong>in</strong>variant masses of the <strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al state respectively. As one can haveW ′ ≠ W , the ΣN → ΛN transitions can occur below the physical threshold of the <strong>in</strong>itial hyperonnucleonstate, for example. In the limit of physical scatter<strong>in</strong>g, one has W ′ → W <strong>and</strong> the half-off-shellamplitude converges to the on-shell amplitudeTλ YNY ,λ N ;λ Y ′,λ (W, N ′ θ∗ YNY Y ′) ≡ Tλ Y ,λ N ;λ Y ′,λ (W, N ′ θ∗ Y Y ′; W ) .(K.17)It can be shown that off-energy-shell amplitudes <strong>in</strong> non-relativistic scatter<strong>in</strong>g theory <strong>and</strong> amplitudeswith off-mass-shell legs from relativistic quantum field theory have the same on-shell limit [233]. Theoff-shell extrapolations, however, are not unique. When the hyperon-nucleon transition amplitudewith one leg off-mass-shell is needed <strong>in</strong> the off-shell contribution to the YN-FSI diagram (seeEq. (5.131)), we will consider the follow<strong>in</strong>g half off-energy-shell amplitudewithT YNλ Y ,λ N ;λ Y ′,λ N ′ (W Y N, θ ∗ Y Y ′; ˜W Y ′ N ′) ,√˜W Y ′ N√|⃗p ′ = Y ∗ | 2 + m 2 ′ Y+ |⃗p ∗ ′ Y| 2 + m 2 ′ N. ′In the limit that the rescatter<strong>in</strong>g hyperon Y ′ <strong>in</strong>side the loop is on its mass shell, one has(K.18)(K.19)˜W Y ′ N ′ → W Y N ,(K.20)<strong>and</strong> the half off-energy-shell amplitude converges to the on-shell amplitude.K.4 Jülich modelIn Section 6.2, the effect of the YN-FSI contribution to the dynamics of strangeness productionfrom the deuteron is <strong>in</strong>vestigated. As <strong>in</strong>put, we adopt the hyperon-nucleon transition amplitudes ascalculated with<strong>in</strong> the Jülich model, which is discussed at length <strong>in</strong> Ref. [199].The different elastic <strong>and</strong> <strong>in</strong>elastic hyperon-nucleon scatter<strong>in</strong>g reactions can be grouped <strong>in</strong> four chargechannelsq = +2 : Σ + p → Σ + p , (K.21)q = +1 : Λp, Σ + n, Σ 0 p → Λp, Σ + n, Σ 0 p , (K.22)q = 0 : Λn, Σ 0 n, Σ − p → Λn, Σ 0 n, Σ − p , (K.23)q = −1 : Σ − n → Σ − n . (K.24)


Appendix K. Hyperon-nucleon <strong>in</strong>teraction 169Table K.1 – Coefficients of the isosp<strong>in</strong> decomposition of the hyperon-nucleon amplitudes <strong>in</strong> the particlebasis. 〈Y N| T 1/2 |Y N〉 <strong>and</strong> 〈ΣN| T 3/2 |ΣN〉 are the isosp<strong>in</strong> I = 1/2 <strong>and</strong> I = 3/2 amplitudes respectively.〈ΛN| T 1/2 |ΛN〉 〈ΣN| T 1/2 |ΣN〉 〈ΣN| T 3/2 |ΣN〉 〈ΛN| T 1/2 |ΣN〉〈Λp|T |Λp〉 1 0 0√0〈Λp|T |Σ + n〉 0 0 0 −〈Λp|T ∣ ∣Σ 0 p 〉 √0 0 0 −〈Λn|T |Λn〉 1 0 0 02313√13〈Λn|T ∣ ∣Σ 0 n 〉 0 0 0√〈Λn|T |Σ − p〉 0 0 0 −〈Σ + p|T |Σ + p〉 0 0 1 0〈Σ + n|T |Σ + n〉 021〈Σ + n|T ∣ Σ 0 p 〉 0 −〈Σ 0 p ∣ ∣ T Σ 0 p 〉 10〈Σ 0 n ∣ ∣T ∣ ∣Σ 0 n 〉 10330√ √23− 23023302330√ √22330130〈Σ 0 n ∣ ∣T |Σ − p〉 0 −〈Σ − p|T |Σ − 2p〉 03〈Σ − n|T |Σ − n〉 0 0 1 023In the Jülich-model, however, the helicity amplitudes are obta<strong>in</strong>ed <strong>in</strong> the isosp<strong>in</strong> basis [234]. Forhyperon-nucleon scatter<strong>in</strong>g, there are only two isosp<strong>in</strong> channelsI = 1 2I = 3 2: ΛN, ΣN → ΛN, ΣN , (K.25): ΣN → ΣN . (K.26)In order to go from the isosp<strong>in</strong> basis to the particle basis, we calculate the isosp<strong>in</strong> decomposition ofthe amplitudes us<strong>in</strong>g the states def<strong>in</strong>ed <strong>in</strong> Eq. (3.7). The different coefficients are listed Table K.1.For every isosp<strong>in</strong> transition <strong>and</strong> each po<strong>in</strong>t <strong>in</strong> phase space, there are a total of sixteen helicityamplitudes. Parity <strong>in</strong>variance of the strong <strong>in</strong>teraction, however, yields [100]T YNλ Y ,λ N ;λ Y ′,λ N ′= (−1) λ Y ′−λ N ′−λ Y +λ NT YN−λ Y ,−λ N ;−λ Y ′,−λ N ′ ,(K.27)which allows to reduce the number of <strong>in</strong>dependent amplitude by a factor of two. We def<strong>in</strong>eT YN1 = T YN++;++ , T YN2 = T YN++;−− ,T YN3 = T YN+−;+− ,T YN5 = T YN++;+− ,T YN7 = T YN++;−+ ,T YN4 = T YN+−;−+ ,T YN6 = T YN+−;++ ,T YN8 = T YN−+;++ ,(K.28)where ± is shorth<strong>and</strong> notation for the helicities λ = ± 1 2. In case of elastic scatter<strong>in</strong>g, the amplitudesalso obey time-reversal <strong>in</strong>variance [100]T YNλ Y ,λ N ;λ Y ′,λ N ′= (−1) λ Y ′−λ N ′−λ Y +λ NT YNλ Y ′,λ N ′;λ Y ,λ N,(K.29)


170 K.4. Jülich model<strong>and</strong> one hasT YN5 = −T YN6 , <strong>and</strong> T YN7 = −T YN8 . (K.30)The mass differences between the different hyperons is relatively small, i.e. of the order of ≈ 78 MeV.This implies the ΛN <strong>and</strong> ΣN channels will be strongly coupled. Therefore, a non-relativisticCC Lippmann-Schw<strong>in</strong>ger equation is solved <strong>in</strong> momentum space <strong>in</strong> order to obta<strong>in</strong> the scatter<strong>in</strong>gamplitude. This is most readily done with partial-wave decomposed amplitudes <strong>in</strong> the JLS-basisT YN,JML,S;L ′ ,S ′ ≡ 〈JM; LS| T YN ∣ ∣JM; L ′ S ′〉 .(K.31)More details can be found <strong>in</strong> Ref. [193].S<strong>in</strong>ce we require helicity amplitudes as <strong>in</strong>put for our formalism, the amplitudes <strong>in</strong> the JLS-basisneed to be converted. This can be achieved by <strong>in</strong>vert<strong>in</strong>g Eqs. (B.13) <strong>and</strong> (B.14) of Ref. [193]. Aftersome algebra, one obta<strong>in</strong>s relations for the partial-wave helicity amplitudesT YN,J1,2 = ± 1 2 T YN,JMJ,0;J,0+ 1 J + 12 2J + 1 T YN,JMJ+1,1;J+1,1 + 1 J2 2J + 1 T YN,JMJ−1,1;J−1,1− 1 √J(J + 1)()T YN,JMJ+1,1;J−1,12 2J + 1+ T YN,JMJ−1,1;J+1,1, (K.32)T YN,J3,4 = ± 1 2 T YN,JMJ,1;J,1+ 1 J2 2J + 1 T YN,JMJ+1,1;J+1,1 + 1 J + 12 2J + 1 T YN,JMJ−1,1;J−1,1+ 1 √J(J + 1)()T YN,JMJ+1,1;J−1,12 2J + 1+ T YN,JMJ−1,1;J+1,1, (K.33)T YN,J5,7 = ∓ 1 2 T YN,JMJ,0;J,1+ 1 J2 2J + 1 T YN,JMJ+1,1;J−1,1 − 1 J + 12 2J + 1 T YN,JMJ−1,1;J+1,1− 1 √J(J + 1)()T YN,JMJ+1,1;J+1,12 2J + 1− T YN,JMJ−1,1;J−1,1, (K.34)T YN,J6,8 = ∓ 1 2 T YN,JMJ,1;J,0− 1 J + 12 2J + 1 T YN,JMJ+1,1;J−1,1 + 1 J2 2J + 1 T YN,JMJ−1,1;J+1,1− 1 √J(J + 1)()T YN,JMJ+1,1;J+1,12 2J + 1− T YN,JMJ−1,1;J−1,1. (K.35)F<strong>in</strong>ally, the partial-wave helicity amplitudes need to be recomposedT YN1 = ∑ JT YN3 = ∑ JT YN5 = ∑ JT YN7 = − ∑ J(2J + 1)T YN,J1 d J 0,0(θY ∗ YNY ′) , T2 = ∑ J(2J + 1)T YN,J3 d J 1,1(θY ∗ YNY ′) , T4 = ∑ J(2J + 1)T YN,J5 d J 1,0(θY ∗ YNY ′) , T6 = − ∑ J(2J + 1)T YN,J7 d J 1,0(θY ∗ YNY ′) , T8 = ∑ J(2J + 1)T YN,J2 d J 0,0(θ ∗ Y Y ′) ,(2J + 1)T YN,J4 d J −1,1(θ ∗ Y Y ′) ,(2J + 1)T YN,J6 d J 1,0(θ ∗ Y Y ′) ,(2J + 1)T YN,J8 d J 1,0(θY ∗ Y ′) . (K.36)In our calculations, we have considered partial waves up to J = 5.


Samenvatt<strong>in</strong>gNederl<strong>and</strong>s is geen taal,maar een verkoudheid— Jacques BrelInleid<strong>in</strong>gVooraleer een fenomeen doorgerekend kan worden, dient men er allereerst de relevante vrijheidsgradenvan te bepalen. Dit lijkt triviaal, maar het antwoord ligt vaak niet voor de h<strong>and</strong> en vereist het eengrondige kennis van de materie.De hadronenfysica confronteert ons met een weelde aan fenomenen. Enerzijds is er het deuteron, eenproton-neutron paar dat slechts met een fractie van zijn restmassa gebonden is. Aan de <strong>and</strong>ere kantvan het spectrum spelen zich overal <strong>in</strong> de kosmos hoogenergetische reacties af, die men poogt na tebootsen <strong>in</strong> deeltjesversnellers. Dit alles kan verklaard worden aan de h<strong>and</strong> van de theorie van desterke wisselwerk<strong>in</strong>g, kwantum-chromodynamica, en de bijbehorende elementaire velden, quarks engluonen.De sterke wisselwerk<strong>in</strong>g voldoet aan enkele opmerkelijke eigenschappen die ervoor zorgen dat hetzich onderscheidt van de <strong>and</strong>ere fundamentele krachten. De wisselwerk<strong>in</strong>g wordt kle<strong>in</strong>er naarmate<strong>in</strong>teragerende deeltjes zich naar elkaar toe bewegen. Anderzijds neemt de kracht van de wisselwerk<strong>in</strong>gtoe met toenemende afst<strong>and</strong> tussen de deeltjes. Dit contra-<strong>in</strong>tuïtieve aspect geeft aanleid<strong>in</strong>g totconf<strong>in</strong>ement. Quarks worden nooit vrij waargenomen maar enkel gebonden <strong>in</strong> kleurloze objecten. Dekoppel<strong>in</strong>gssterkte van de sterke wisselwerk<strong>in</strong>g variëert snel als functie van de lengte- en energieschaal,waardoor de relevante vrijheidsgraden constant wijzigen.Het nucleon is de alomtegenwoordige manifestatie van de conf<strong>in</strong>ement van quarks. Door middel v<strong>and</strong>iep-<strong>in</strong>elastische verstrooi<strong>in</strong>gsexperimenten is een vrij compleet beeld opgebouwd van de <strong>in</strong>trigerendestructuur van het nucleon. Gluonen staan <strong>in</strong> voor ongeveer de helft van de impuls van het proton ende vreemde quarks <strong>in</strong> de zee leveren een niet te verwaarlozen bijdrage tot de sp<strong>in</strong>. Desalniettem<strong>in</strong>kan dit complexe systeem gemiddeld gezien beschreven worden als een gebonden toest<strong>and</strong> van drievalentie quarks. Dit vormt het uitgangspunt van constituente-quarkmodellen die ontegensprekelijk171


172 Samenvatt<strong>in</strong>ghadronspectra, symmetrie-eigenschappen en elektromagnetische vormfactoren succesvol weten tebeschrijven. Maar waar ligt de limiet van deze gemiddeld-veldbeschrijv<strong>in</strong>g? Vanaf welke energieëntreedt de overgang naar partonische vrijheidsgraden op?NucleonspectroscopieHet <strong>in</strong> kaart brengen van alle baryonen en hun aangeslagen toest<strong>and</strong>en speelt een cruciale rol b<strong>in</strong>nende hadronenfysica. De massa’s, vervalbreedtes en transitie-vormfactoren van nucleonresonantiesvormen namelijk de l<strong>in</strong>k met de modellen die trachten de structuur van baryonen te doorgronden.De st<strong>and</strong> van zaken op experimenteel gebied wordt tweejaarlijks gebundeld <strong>in</strong> de Review of Particle<strong>Physics</strong> (RPP). Die haalt zijn <strong>in</strong>formatie vooral uit partiële-golfanalyses (partial-wave analysis, PWA)van pion-nucleon (πN) verstrooi<strong>in</strong>gsdata. Deze experimentele gegevens kunnen echter ook verwerktworden samen met data uit <strong>in</strong>elastische kanalen en fotongeïnduceerde reacties. De verschillendeanalyses slagen er niet <strong>in</strong> om een eenduidige <strong>in</strong>terpretatie te geven, terwijl zij toch een vergelijkbareovereenkomst v<strong>in</strong>den met het experiment. Over de eerste paar aangeslagen toest<strong>and</strong>en van hetnucleon is er eensgez<strong>in</strong>dheid, maar reeds heel snel lopen de bev<strong>in</strong>d<strong>in</strong>gen over het aantal resonanties,hun massa’s en de bijbehorende kwantumgetallen uiteen.De overeenkomst tussen theoretische voorspell<strong>in</strong>gen en de opgelijste resonanties <strong>in</strong> de RPP vertoonteen gelijkaardig patroon. Onder de 1800 MeV-grens slagen constituente-quarkmodellen er<strong>in</strong> omeen adequaat beeld te schetsen. Hogerop <strong>in</strong> het nucleonspectrum loopt het echter mis. Het aantalvoorspelde toest<strong>and</strong>en is een veelvoud van hetgeen experimenteel is vastgesteld. In de literatuurwordt verwezen naar de ontbrekende (miss<strong>in</strong>g) resonanties. Dit kan erop wijzen dat constituentequarkmodellengebruik maken van de verkeerde vrijheidsgraden. Alternatieve modellen, die één paarquarks als gebonden beschouwen, voorspellen namelijk dat het nucleonspectrum veel m<strong>in</strong>der rijkis. Een <strong>and</strong>ere verklar<strong>in</strong>g bestaat er<strong>in</strong> dat vele aangeslagen toest<strong>and</strong>en niet worden waargenomen,vanwege de dom<strong>in</strong>antie van de πN data bij het opstellen van de RPP.Vreemdheidsproductie aan het nucleonElektromagnetische (EM) vreemdheidsproductie biedt mogelijks een antwoord op deze situatie.De aanwezigheid van vreemde deeltjes als e<strong>in</strong>dproduct van de reactie duidt erop dat een vreemdquark-antiquarkpaar <strong>in</strong> de zee van het nucleon wordt aangeslagen. De productie van kaonen isbijgevolg gevoelig voor nieuwe vrijheidsgraden <strong>in</strong> het nucleon. Dit kan ertoe leiden dat bepaalde(ontbrekende) resonanties niet vervallen naar een pion en een nucleon, maar naar een kaon eneen hyperon. Dit <strong>in</strong>tuïtieve beeld wordt bovendien bevestigd door bereken<strong>in</strong>gen aan de h<strong>and</strong> vanconstituente-quarkmodellen.De zoektocht naar ontbrekende resonanties heeft ertoe geleid dat EM vreemdheidsproductie eenessentieel deel uitmaakt van de onderzoeksactiviteiten aan toonaangevende experimentele faciliteitenzoals ELSA en MAMI <strong>in</strong> Duitsl<strong>and</strong>, ESFR <strong>in</strong> Frankrijk, Jefferson Lab <strong>in</strong> de VS en SPr<strong>in</strong>g-8 <strong>in</strong> Japan.In de afgelopen jaren zijn dan ook veel nieuwe experimentele resultaten verschenen. Aangezien hetverval van het geproduceerde hyperon zelf-analyserend is, bekomt men de polarisatie van het uitga<strong>and</strong>ebaryon zonder bijkomende apparatuur. Dit biedt de mogelijkheid om een compleet kaonproductieexperimentuit te voeren. Mits de bepal<strong>in</strong>g van de ongepolariseerde differentiële werkzame doorsnede,aangevuld met zeven weloverwogen polarisatieobservabelen, kan de onderliggende reactieamplitude


Samenvatt<strong>in</strong>g 173namelijk ondubbelz<strong>in</strong>nig bepaald worden. Op deze manier kunnen heel str<strong>in</strong>gente beperk<strong>in</strong>genopgelegd worden aan modellen die trachten de dynamica van de vreemdheidsproductiereactie tedoorgronden. Bij dit alles dient echter een kantteken<strong>in</strong>g geplaatst te worden. In de praktijk is iederexperiment uiteraard onderhevig aan fouten <strong>in</strong>herent aan het meetproces. Deze meetfouten doenteniet aan de volledigheid van een compleet experiment en <strong>in</strong> de praktijk zullen een hele resemobservabelen vereist zijn om een eenduidig beeld te vormen van de reactiedynamica.Vreemdheidsproductie aan het deuteronTot op heden gaat, zowel op experimenteel gebied als vanuit theoretisch st<strong>and</strong>punt, de meestea<strong>and</strong>acht uit naar kaonproductie-experimenten aan het proton. De beschikbare database wordtnamelijk gedom<strong>in</strong>eerd door de p(γ (∗) , K + )Λ- en p(γ (∗) , K + )Σ 0 -reacties. Een grondige studie v<strong>and</strong>e vier overige kaonproductiekanalen biedt echter de mogelijkheid om vreemdheidsproductie beterte begrijpen aangezien deze reacties sterk complementair zijn. Een dergelijk <strong>in</strong>itiatief vereist datook experimenten op het neutron uitgevoerd worden. Omdat dit deeltje onstabiel is, neemt mentoevlucht tot deuterium als trefkern. Deze zwakgebonden toest<strong>and</strong> van een proton en een neutron isnamelijk de ideale bron van neutronen. Vanuit dit oogpunt, wordt <strong>in</strong> dit doctoraat een model voorkaonproductie aan het deuteron ontwikkeld.Het Regge-plus-resonantiemodelEen betrouwbare beschrijv<strong>in</strong>g van kaonproductie aan het proton en neutron is uiteraard van cruciaalbelang om vreemdheidsproductie aan het deuteron te modelleren. In eerste <strong>in</strong>stantie wordt deproductie van geladen kaonen aan het proton onder de loep genomen.Het isobaar modelDe EM productie van de verschillende pseudoscalaire mesonen vertoont vele gelijkenissen. Omdathet pion het lichtste meson is, werd pionproductie historisch als eerste bestudeerd. Bij lage energieënvertoont de werkzame doorsnede enkele markante pieken die een duidelijke manifestatie zijn v<strong>and</strong>e vorm<strong>in</strong>g van aangeslagen nucleontoest<strong>and</strong>en. Een beschrijv<strong>in</strong>g aan de h<strong>and</strong> van hadronischevrijheidsgraden is dan ook aan de orde. Men spreekt over een hadrodynamisch raamwerk. Aangezienmesonen, baryonen en hun aangeslagen toest<strong>and</strong>en geen elementaire deeltjes zijn, beschikt men nietover een fundamentele theorie om hun <strong>in</strong>teracties te begrijpen. Als alternatief wordt een effectieveveldentheoretischeformuler<strong>in</strong>g op poten gezet die steunt op fenomenologische <strong>in</strong>teractie-Lagrangianen.Die laatste beschrijven de meest algemene <strong>in</strong>teractie tussen hadronen en worden opgesteld op basisvan symmetriepr<strong>in</strong>cipes zodat aan de eigenschappen van de onderliggende elementaire veldentheorievoldaan is. De e<strong>in</strong>dige extensie van de hadronen wordt <strong>in</strong> reken<strong>in</strong>g gebracht met behulp vanvormfactoren. Dit dient echter doordacht geïmplementeerd te worden omdat vormfactoren deijk<strong>in</strong>variantie van de <strong>in</strong>teractie kunnen opheffen.B<strong>in</strong>nen het isobaar model wordt de reactiedynamica beschreven aan de h<strong>and</strong> van laagste-orde(tree-level) Feynm<strong>and</strong>iagrammen die opgesteld worden op basis van effectieve <strong>in</strong>teractie-Lagrangianen.Deze diagrammen worden op meerdere manieren geclassificeerd. Men maakt het onderscheid tussen


174 Samenvatt<strong>in</strong>ghet s-, t- en u-kanaal al naargelang er een niet-vreemd baryon, een meson of een hyperon uitgewisseldwordt. Wanneer het deeltje <strong>in</strong> de <strong>in</strong>termediaire toest<strong>and</strong> geen resonantie is, spreekt men over eenBorndiagram. Het laatste en belangrijkste onderscheid heeft te maken met de impulsoverdrachtb<strong>in</strong>nen het diagram. Doorgaans is het uitgewisselde deeltje virtueel. De k<strong>in</strong>ematica van kaonproductiezijn dusdanig dat bij de uitwissel<strong>in</strong>g van nucleon- en deltaresonanties de <strong>in</strong>termediaire toest<strong>and</strong>zich echter op zijn massaschaal (on-shell) kan bev<strong>in</strong>den. Hierdoor wordt de propagator s<strong>in</strong>gulier envertoont de transitieamplitude een pool. Men spreekt over een resonant diagram. De voornaamstedrijfveer voor mesonproductie-experimenten is het potentiëel om nucleonresonanties te ontdekken.Vanuit dit oogpunt worden alle niet-resonante diagrammen beschouwd als achtergrondprocessen diede bepal<strong>in</strong>g van het nucleonspectrum <strong>in</strong> de weg staan.Het isobaar model steunt op een hadrodynamische beschrijv<strong>in</strong>g en niet op een fundamentele theorie.Hierdoor zijn de sterktes van de verschillende bijdragen tot de wisselwerk<strong>in</strong>g niet gekend en dienen zijbepaald te worden door middel van een fit aan de experimentele gegevens. Omdat de parameters van deresonante en achtergronddiagrammen gelijktijdig geoptimaliseerd worden, zijn zij sterk gecorreleerdmet elkaar. Een correcte <strong>in</strong>schatt<strong>in</strong>g van de belangrijkste achtergrondcontributies is dan ookelementair. Wanneer het isobaar model aangewend wordt voor de studie van vreemdheidsproductiegeldt dit gegeven des te meer. De gemeten werkzame doorsnede heeft een egaal energieverloop envertoont niet de markante kenmerken die duiden op de aanwezigheid van overheersende resonantestructuren. Dit wijst erop dat de achtergrondprocessen dom<strong>in</strong>eren en bijgevolg is het cruciaal dat zijcorrect <strong>in</strong> reken<strong>in</strong>g gebracht worden.B<strong>in</strong>nen het isobaar model wordt de achtergrond van de vreemdheidsproductiereactie beschreven doormiddel van de uitwissel<strong>in</strong>g van de drie Borndiagrammen. Deze termen divergeren echter waardoorhun aanwezigheid nefast is bij hogere energieën. Deze situatie kan gecorrigeerd worden door deuitwissel<strong>in</strong>g van vectormesonen <strong>in</strong> het t-kanaal en eventueel hyperonresonanties <strong>in</strong> het u-kanaalte beschouwen. Op deze manier worden echter een groot aantal extra parameters <strong>in</strong> het modelgeïntroduceerd. Bovendien blijkt dat de afschatt<strong>in</strong>g van de resonantieparameters sterk afhangt v<strong>and</strong>e techniek waarmee de achtergrond onder controle wordt gehouden. Dit vraagt om een alternatievebeschrijv<strong>in</strong>g van de achtergrondbijdragen.De Regge-plus-resonantiestrategieBij hoge energieën zijn hadronische vrijheidsgraden niet langer aangewezen. De dynamica van hetvreemdheidsproductieproces wordt niet langer bepaald door nucleonresoanties en dit uit zich <strong>in</strong>vloeiende, egale werkzame doorsnedes die uitsluitend bepaald worden door achtergrondcontributies. Inpr<strong>in</strong>cipe is dit het dome<strong>in</strong> van de partonische vrijheidsgraden. Door middel van Regge-fenomenologiehoeven we echter geen afst<strong>and</strong> te doen van de isobaar beschrijv<strong>in</strong>g. Regge theorie laat ons toe om opeen efficiënte manier een ganse familie aan deeltjes, een trajectorie 1 , uit te wisselen met behulp vanéén enkel diagram. De kaonproductiedata <strong>in</strong> het hoge-energiegebied kan succesvol beschreven wordenmet de uitwissel<strong>in</strong>g van een K(494)- en een K ∗ (892)-trajectorie <strong>in</strong> het t-kanaal. Deze beschrijv<strong>in</strong>gomvat slechts drie parameters.Alhoewel Regge theorie afgeleid wordt bij asymptotisch hoge energieën en <strong>in</strong> de limiet van voorwaartseverstrooi<strong>in</strong>gshoeken, blijkt het Regge model ook <strong>in</strong> het resonantiegebied een bevredigende beschrijv<strong>in</strong>gte geven van de beschikbare data. Uiteraard slaagt dit zuivere achtergrondmodel er niet <strong>in</strong> om1 een Regge-trajectorie wordt aangeduid met de naam van het lichtste hadron dat er deel van uitmaakt.


Samenvatt<strong>in</strong>g 175de subtiele structuren <strong>in</strong> de gemeten observabelen die het gevolg zijn van resonante bijdragen tebeschrijven. Dit kan echter opgelost worden door resonante bijdragen toe te voegen.De Regge-plus-resonantiestrategie (Regge-plus-resonance, RPR) bestaat er<strong>in</strong> om een hybridisch modelop te stellen dat enerzijds de resonante bijdragen bij lage energieën beschrijft en terzelfertijd overde correcte hoge-energielimiet beschikt. Dit wordt verwezenlijkt door <strong>in</strong> eerste <strong>in</strong>stantie het Reggemodel te optimaliseren aan de h<strong>and</strong> van experimentele gegevens bij hoge energieën. Vervolgensdoet dit model dienst als parametrisatie van de achtergrondprocessen <strong>in</strong> het resonantiegebied.Zonder de achtergrondparameters aan te passen, worden resonante diagrammen toegevoegd en hunkoppel<strong>in</strong>gssterktes gefit aan de data. Het resulterende model heeft beduidend m<strong>in</strong>der vrije parameters<strong>in</strong> vergelijk<strong>in</strong>g met isobare modellen. Bovendien slaagt men er op deze manier <strong>in</strong> om de bepal<strong>in</strong>g v<strong>and</strong>e sterktes van de resonante en niet-resonante diagrammen te ontkoppelen.Het modelIn het kader van het doctoraat van T. Corthals is een RPR-model ontwikkeld aan de h<strong>and</strong> van dedestijds gepubliceerde data voor p(γ (∗) , K + )Λ- en p(γ (∗) , K + )Σ 0 -productie. Dit model vormt hetonderwerp van hoofdstuk 2. Aan de h<strong>and</strong> van hoge-energiedata stelt men het Regge model op. Ditachtergrondmodel wordt vervolgens aangerijkt met resonante contributies.In het Λ-productiekanaal bekomt men een RPR-amplitude die er<strong>in</strong> slaagt de beschikbare data correctte beschrijven. De resonante bijdragen worden geleverd door de S 11 (1650), P 11 (1710), P 13 (1720),P 13 (1900) en D 13 (1900) nucleonresonanties. Over het bestaan van de eerste drie bestaat we<strong>in</strong>ig twijfelaangezien ze ook een belangrijke rol spelen <strong>in</strong> <strong>and</strong>ere reacties. De noodzaak om twee resonanties meteen massa van 1900 MeV <strong>in</strong> te voeren is echter <strong>in</strong>teressant. De P 13 (1900)-resonantie werd reeds <strong>in</strong>enkele eerdere analyses geïntroduceerd en maakt deel uit van het door constituente-quarkmodellenvoorspelde nucleonsprectrum. Er is echter geen plaats voor b<strong>in</strong>nen het quark-diquark beeld. Het isdus een k<strong>and</strong>idaat om de controverse tussen beide op te lossen en de meest aangewezen vrijheidsgradenvoor de beschrijv<strong>in</strong>g van nucleonstructuur vast te stellen. De D 13 (1900)-resonantie tenslotte is <strong>in</strong> deRPR-analyse essentieel om de data te beschrijven, maar staat niet <strong>in</strong> de RPP. We hebben hier duste maken met een mogelijke ontbrekende resonantie.De beschrijv<strong>in</strong>g van het Σ-productiekanaal is m<strong>in</strong>der éénduidig. De hoge-energiedata laten niet toeom een uniek Regge model te bepalen. Het teken van de tensorkoppel<strong>in</strong>g van de K ∗ (892)-trajectorieblijft <strong>in</strong> het ongewisse. De twee bekomen modelvarianten worden Regge-3 en Regge-4 gedoopt. Inhet resonantiegebied is dezelfde set resonanties als <strong>in</strong> het Λ-kanaal van toepass<strong>in</strong>g met uitzonder<strong>in</strong>gvan de D 13 (1900)-resonantie. Bovendien spelen <strong>in</strong> dit reactiekanaal ook ∆-resonanties een rol. DeD 33 (1700)-, S 31 (1900)-, P 31 (1910)- en P 33 (1920)-resonanties maken deel uit van het RPR-model. Debeschrijv<strong>in</strong>g van Σ-productie wijst dus ook <strong>in</strong> de richt<strong>in</strong>g van de P 13 (1900)-resonantie. Er zijn echtergeen aanwijz<strong>in</strong>gen voor ontbrekende resonanties.S<strong>in</strong>ds de publicatie van het RPR-model werden een groot aantal nieuwe experimentele resultatengepubliceerd. Enerzijds werden reeds gekende grootheden met een veel hogere precisie gemeten en<strong>and</strong>erzijds kwamen ook enkele voorheen onbepaalde observabelen ter beschikk<strong>in</strong>g. De nieuwe datamaken het mogelijk om het RPR-model kritisch tegen het licht te houden. De enkele conceptueletekortkom<strong>in</strong>gen van het huidige RPR-model werden weggewerkt <strong>in</strong> het kader van de doctoraten vanL. De Cruz en T. Vrancx. Op basis van dit verbeterde RPR-model is momenteel een heranalyse van


176 Samenvatt<strong>in</strong>gde experimentele gegevens aan de gang.Niettegensta<strong>and</strong>e de enkele imperfecties, blijkt uit de confrontatie van de RPR-modelbereken<strong>in</strong>genmet de nieuwe data de sterke voorspellende kracht van het formalisme. Dit is vooral treffend wanneervergeleken wordt met dubbele-polarisatieasymmetrieën. Deze worden adequaat beschrijven overeen ruim energiegebied en dit zowel bij voorwaartse als achterwaartse hoeken. Bovendien is ook deextrapolatie naar reacties met virtuele fotonen uiterst betrouwbaar. De RPR-modelvoorspell<strong>in</strong>genvoor electrongeïnduceerde vreemdheidsproductie zijn zondermeer impressionant te noemen, gegevenhet feit dat geen nieuwe vrije parameters <strong>in</strong>gevoerd werden.Uitbreid<strong>in</strong>g van het RPR-formalismeHet RPR-model werd geoptimaliseerd voor de beschrijv<strong>in</strong>g van de K + Λ- en K + Σ 0 -productiekanalen.Om betrouwbare bereken<strong>in</strong>gen uit te voeren voor vreemdheidsproductie aan het deuteron is hetechter noodzakelijk om ook de resterende kanalen correct te karakteriseren. Dit wordt bemoeilijktdoor de relatief kle<strong>in</strong>e experimentele database. Om het gefitte RPR-model te kunnen gebruiken,dienen transformatieregels opgesteld te worden voor de koppel<strong>in</strong>gsconstanten van de relevantediagrammen. Concreet zijn dit de t-kanaaldiagrammen van het K(494)- en K ∗ (892)-meson en deresonante diagrammen waarbij een resonantie uitgewisseld wordt <strong>in</strong> het s-kanaal. Dit onderwerpwordt uitvoerig beh<strong>and</strong>eld <strong>in</strong> hoofdstuk 3.Vreemdheidsproductie aan het neutronIn eerste <strong>in</strong>stantie wordt de productie van kaonen aan een vrij neutron onderzocht. De conversievan de koppel<strong>in</strong>gsconstanten <strong>in</strong> de sterke-<strong>in</strong>teractievertices steunt op SU(2)-isosp<strong>in</strong>symmetrie. Detransformatie <strong>in</strong> de EM vertices heeft meer voeten <strong>in</strong> de aarde. De verhoud<strong>in</strong>g van EM koppel<strong>in</strong>gssterktesvoor de resonante diagrammen kan uitgedrukt worden <strong>in</strong> termen van heliciteitsamplitudes.Deze amplitudes dienen experimenteel bepaald te worden <strong>in</strong> <strong>and</strong>ere productiereacties zoals photongeïnduceerdepionproductie. De heliciteitsamplitudes die opgelijst staan <strong>in</strong> de RPP, hebbenechter relatief grote foutenvlaggen. Bovendien zijn de heliciteitsamplitudes voor de P 13 (1900)- enD 13 (1900)-resonanties onbepaald.De kwaliteit van de RPR-modelverspell<strong>in</strong>gen aan het neutron wordt nagegaan aan de h<strong>and</strong> vanexperimentele gegevens voor het n(γ, K + )Σ − kanaal. Deze data laten toe om een onderscheid temaken tussen de twee evenwaardige RPR-modellen <strong>in</strong> het Σ-productiekanaal. Vergelijk<strong>in</strong>gen met dedata laten duidelijk zien dat het Regge-4 model de werkzame doorsnede niet correct beschrijft. HetRegge-3 model daarentegen geeft wel een bevredigend resultaat. Wanneer ook de resonante bijdragenbeschouwd worden, verbetert de overeenkomst met het experiment nog verder. De foutenvlaggen opde experimenteel bepaalde heliciteitsamplitudes spelen echter een belangrijke rol. De onzekerhedenpropageren naar het e<strong>in</strong>dresultaat en geven aanleid<strong>in</strong>g tot grote fluctuaties bij de bereken<strong>in</strong>g vanwerkzame doorsnedes. Enerzijds zet dit een limiet op de voorspellende kracht van het RPR-formalisme.Anderzijds zullen bijkomende met<strong>in</strong>gen op het neutron ook toelaten om de heliciteitsamplitudesnauwkeuriger te bepalen.


Samenvatt<strong>in</strong>g 177Productie van neutrale kaonenOok bij de transformatie van de RPR-amplitudes naar reactiekanalen met een neutraal kaon <strong>in</strong> def<strong>in</strong>ale toest<strong>and</strong> kunnen we steunen op isosp<strong>in</strong>symmetrie <strong>in</strong> de sterke-<strong>in</strong>teractievertex. Dit is de enigevereiste aanpass<strong>in</strong>g voor de resonante diagrammen. Het kaonuitwissel<strong>in</strong>gsdiagram daarentegen isexact nul en de EM koppel<strong>in</strong>gsconstantes van de K ∗ (892)-trajectorie moeten getransformeerd wordenop basis van gegevens over het EM verval van dit meson.Wanneer voorspell<strong>in</strong>gen op basis van deze naïeve aanpak vergeleken worden met de beschikbaredata <strong>in</strong> het K 0 Σ − -productiekanaal, blijkt de predictie de meetresultaten ruimschoots te overtreffen.Meerdere methodes worden onderzocht om dit problematische gedrag te corrigeren. Uite<strong>in</strong>delijkwordt er gekozen voor een pragmatische aanpak waarbij de EM koppel<strong>in</strong>gssterkte artificieel kle<strong>in</strong>ergemaakt wordt door hem te fitten aan de beschikbare data. Op deze manier wordt een behoorlijkebeschrijv<strong>in</strong>g van de data gerealiseerd.Radiatieve kaonvangstVooraleer het formalisme voor vreemdheidsproductie aan het deuteron geïntroduceerd wordt, is er eenkle<strong>in</strong> <strong>in</strong>termezzo <strong>in</strong> hoofstuk 4. De kruissymmetrische partner van photongeïnduceerde kaonproductiewordt er besproken. De radiatieve kaonvangstreactie geeft complementaire <strong>in</strong>formatie vanwege zijngevoeligheid voor hyperonresonanties. Net als het nucleonsprectrum is ook het bepalen van deaangeslagen toest<strong>and</strong>en van vreemde baryonen een belangrijk ijkpunt voor baryonstructuurmodellen.Door de kruissymmetrie wordt de rol van de s- en u-kanaal <strong>in</strong> de transitieamplitude omgekeerd. Bijradiatieve kaonvangst zijn het dus de u-kanaaldiagrammen met hyperonresonanties <strong>in</strong> de <strong>in</strong>termediairetoest<strong>and</strong> die voor de resonante bijdragen zorgen. Aangezien de t-kanaalcontributie dezelfde blijft, kanhet Regge-model uit hoofdstuk 2 opnieuw als parametrisatie van de achtergrond gebruikt worden.De resultaten van het Regge-model worden vergeleken met de allereerste experimentele gegevensvoor de differentiële werkzame doorsnede. In het p(K − , γ)Λ-kanaal geeft de Regge-voorspell<strong>in</strong>g reedseen goede beschrijv<strong>in</strong>g van de data. Het p(K − , γ)Σ 0 -resultaat daarentegen wijst op een belangrijkerol voor resonante bijdragen. Bij wijze van verkende analyse wordt getracht de beschrijv<strong>in</strong>g van dedata te optimaliseren door één voor één enkele gekende hyperonresonaties uit de RPP aan de Reggeamplitudetoe te voegen. De data laten niet toe om meerdere resonanties gelijktijdig te overwegen ener kunnen geen sluitende conclusies getrokken worden. De analyse wijst op een belangrijke rol voorhyperonresonanties <strong>in</strong> het 1550 (1700) MeV massagebied <strong>in</strong> het γΛ (γΣ 0 )-productiekanaal.Vreemdheidsproductie aan het deuteronNu het RPR-formalisme geïntroduceerd is en er een efficiënt model voor de beschrijv<strong>in</strong>g van EMvreemdheidsproductie aan het vrije nucleon op punt staat, kan de stap gezet worden naar hetdeuteron.


178 Samenvatt<strong>in</strong>gTheoretisch raamwerkBehalve de elementaire productieamplitude is ook de beschrijv<strong>in</strong>g van de structuur van de trefkern eenessentieel <strong>in</strong>grediënt om tot een correcte beschrijv<strong>in</strong>g te komen van kaonproductie aan het deuteron.B<strong>in</strong>nen een covariant formalisme wordt de transitievertex van een deuteron dat overgaat naar tweeongebonden nucleonen beschreven aan de h<strong>and</strong> van vier vormfactoren. Deze vormfactoren zijn op hunbeurt gedef<strong>in</strong>iëerd <strong>in</strong> functie van de golffuncties van het deuteron. Op basis van niet-relativistischerealistische nucleon-nucleon potentialen kunnen de deuterongolffuncties berekend worden. Er zijnook relativistische resultaten beschikbaar die steunen op een parametrisatie van de nucleon-nucleon<strong>in</strong>teractie op basis van een één-bosonuitwissel<strong>in</strong>gspotentiaal bekomen <strong>in</strong> de covariante spectatortheorie(covariant spectator theory, CST). Alle modelresultaten zijn onderl<strong>in</strong>g consistent zolang de relatieveimpuls van de constituenten kle<strong>in</strong>er is dan 400 MeV. Bij die energieën is de waarschijnlijkheid omnog een nucleon <strong>in</strong> het deuteron aan te treffen echter reeds ettelijke grootteordes geslonken.In hoofdstuk 5 wordt een covariant formalisme gepresenteerd voor de transitieamplitude van dekaonproductiereactie aan het deuteron op basis van de relativistische impulsbenader<strong>in</strong>g. Dezebenader<strong>in</strong>g houdt <strong>in</strong> dat het <strong>in</strong>komende foton <strong>in</strong>terageert met slechts één enkel nucleon b<strong>in</strong>nen hetdeuteron. Op die manier kan de complexe veeldeeltjestransitieoperator herleid worden tot een somvan ééndeeltjestransitieoperatoren.De belangrijkste bijdrage tot het reactiemechanisme wordt geleverd door de relativistische vlakkegolfimpulsbenader<strong>in</strong>g(relativistic plane-wave impulse approximation, RPWIA). Dit diagram beschrijftde situatie waarbij de drie reactieproducten na de wisselwerk<strong>in</strong>g met het foton ongestoord de<strong>in</strong>teractieregio verlaten. Hogere-orde effecten komen voor wanneer het kaon-hyperonpaar of hethyperon-nucleonpaar herverstrooien. In dit doctoraat wordt enkel de laatste mogelijkheid beschouwd.De bijdrage van de hyperon-nucleon herverstooi<strong>in</strong>g (hyperon-nucleon f<strong>in</strong>al-state <strong>in</strong>teraction, YN-FSI)wordt berekend <strong>in</strong> de veronderstell<strong>in</strong>g dat het spectatornucleon altijd on-shell is. Het YN-FSI-diagramvalt uiteen <strong>in</strong> een on-shell en een off-shell stuk. In het eerste geval zijn de <strong>in</strong>komende en uitga<strong>and</strong>edeeltjes <strong>in</strong> de herverstrooi<strong>in</strong>gsvertex op hun massaschaal. Bij de off-shell-contributie daarentegenis het <strong>in</strong>termediair hyperon virtueel. Dit maakt het mogelijk dat de ΣN → ΛN transitie reedsbijdragen levert vooraleer de fysische drempelenergie overschreden wordt.ResultatenHoofdstuk 6 is gewijd aan de resultaten die bekomen werden aan de h<strong>and</strong> van het formalisme uithoofdstuk 5. Het RPR-model uit hoofdstuk 2 wordt hierbij toegepast als elementaire kaonproductieoperator.Voor de bereken<strong>in</strong>g van reacties op het gebonden neutron en processen waarbij eenneutraal kaon gevormd wordt, zijn de transformaties uit hoofdstuk 3 essentieel.In eerste <strong>in</strong>stantie wordt het belang van de verschillende model<strong>in</strong>grediënten <strong>in</strong> de RPWIA onderzocht.De momentumdistributie van het deuteron blijkt de bepalende factor die de differentiële werkzamedoorsnede vorm geeft. De momentumdistributie piekt wanneer het spectatornucleon een impulsvan om en bij de 50 MeV heeft. De regio’s <strong>in</strong> de faseruimte van de vreemdheidsproductiereactiewaar dit geldt, dragen dan ook maximaal bij tot de werkzame doorsnede. De absolute sterktevan de reactie wordt bepaald door de onderliggende elementaire reactieamplitude. Aangezien hetfoton koppelt aan een gebonden deeltje is de elementaire amplitude altijd off-shell. Aan de h<strong>and</strong>van een on-shell-reductie van de RPWIA-amplitude wordt het belang en de bijdrage van deze


Samenvatt<strong>in</strong>g 179off-shell-extrapolatie nagegaan. Er is enkel een belangrijk effect wanneer het spectatornucleon eenhoge impuls wegdraagt en de werkzame doorsnede dus kle<strong>in</strong> is. In diezelfde k<strong>in</strong>ematische situatie isook de gevoeligheid aan de gebruikte deuteron golffunctie het grootst. De allergrootste bron vanonzekerheden op de bekomen resultaten zijn echter de heliciteitsamplitudes die aangewend wordenom de elementaire reactie op het neutron uit te rekenen.Na de studie van de RPWIA wordt de a<strong>and</strong>acht gevestigd op het effect van het YN-FSI-diagram.Hierbij wordt gebruik gemaakt van amplitudes die berekend werden met de hyperon-nucleon potentiaalvan het Jülich model. Bij lage impulsen van het uitga<strong>and</strong>e nucleon is het effect van YN-FSIverwaarloosbaar. Bij hoge impulsen daarentegen wordt de kenmerkende isotrope productie vanhet nucleon verstoord door de herverstrooi<strong>in</strong>g. Zowel het on-shell als het off-shell stuk van hetdiagram versterken de emissie van nucleonen <strong>in</strong> de voortwaartse richt<strong>in</strong>g. Voor de semi-<strong>in</strong>clusivekaonproductiereactie v<strong>in</strong>den we een gelijkaardig effect. Het YN-FSI-diagram speelt vooral een rolwanner de impuls van het foton en het kaon op één lijn liggen. Over het algemeen kan men vaststellendat de relatieve bijdrage van het YN-FSI-diagram enkel significant is daar waar het quasi-vrijereactieproces niet dom<strong>in</strong>eert en de werkzame doorsnede bijgevolg kle<strong>in</strong> is. Dit heeft als gevolg dathet deuteron als een efficiënte bron van neutronen kan beschouwd worden.De modelbereken<strong>in</strong>gen worden tenslotte vergeleken met de beschikbare data. Aan het LNS werdenwerkzame doorsnedes gemeten bij fotonenergieën dicht bij de drempelenergie. Het effect van YN-FSIis verwaarloosbaar bij deze k<strong>in</strong>ematieken. De RPWIA-voorspell<strong>in</strong>gen voor de semi-<strong>in</strong>clusive neutralekaonproductiedatazijn bevredigend. De vorm van de werkzame doorsnedes wordt correct beschrevenen op de laagste fotonenergie na wordt ook de sterkte van de reactie goed voorspeld. De resultaten voorsemi-<strong>in</strong>clusive Λ-productie zijn van dezelfde kwaliteit. Op gebied van electrongeïnduceerde processenis de hoeveelheid beschikbare data eerder beperkt. In totaal zijn er twee gepubliceerde datapuntenvoor semi-<strong>in</strong>clusive geladen-kaonproductie bij voorwaartse hoeken. De RPWIA-voorspell<strong>in</strong>g overschatde data met ruwweg een factor twee à drie. Met<strong>in</strong>gen over een groter energie- en hoekbereik zoudenhet mogelijk maken om de discrepantie tussen model en experiment beter te begrijpen.VooruitblikIn dit werk werd vreemdheidsproductie aan het nucleon en het deuteron uitgebreid besproken<strong>in</strong> het kader van het RPR-raamwerk. De reactiemechanismen zijn goed begrepen en de overeenkomsttussen theorie en experiment is bevredigend. Er blijft echter ruimte om de beschrijv<strong>in</strong>g vankaonproductiereacties verder te ontwikkel<strong>in</strong>gen en te verbeteren.In de nabije toekomst zullen een reeks nieuwe polarisatiemet<strong>in</strong>gen voor de n(γ, K 0 )Λ en n(γ, K 0 )Σ 0reacties via de CLAS collaboratie beschikbaar worden. Deze data zullen toelaten om de uitbreid<strong>in</strong>genvan het RPR-model die <strong>in</strong> hoofdstuk 3 gepresenteerd werden te evalueren. De gepl<strong>and</strong>e uitbreid<strong>in</strong>g v<strong>and</strong>e <strong>in</strong>frastructuur aan Jefferson Lab biedt bovendien de mogelijkheid om EM vreemdheidsproductiete bestuderen bij hoge energieën. De experimentele bepal<strong>in</strong>g van de werkzame doorsnede vankaonproductiereacties aan het neutron of met een ongeladen kaon <strong>in</strong> de f<strong>in</strong>ale toest<strong>and</strong> zou waardevolle<strong>in</strong>formatie bevatten om het Regge formalisme verder te verbeteren. Zoals <strong>in</strong> hoofdstuk 3 duidelijkwerd, wordt het opstellen van een volledig RPR-model momenteel enigsz<strong>in</strong>s beperkt door een gebrekaan data <strong>in</strong> het energiegebied waar resonante bijdragen geen rol meer spelen.Het elementaire kaonproductiemodel speelt uiteraard een essentiële rol bij de beschrijv<strong>in</strong>g van


180 Samenvatt<strong>in</strong>gvreemdheidsproductie aan het deuteron. De resultaten die <strong>in</strong> dit werk gepresenteerd worden,maken gebruik van het RPR-2007 model uit hoofdstuk 2. Zoals vermeld, is een heranalyse van dekaonproductiedatabase op basis van het uitgebreide RPR-formalisme aan de gang. Dit vernieuwdemodel zal uiteraard een betere beschrijv<strong>in</strong>g geven van het reactiemechanisme en toelaten om meerbetrouwbare bereken<strong>in</strong>gen voor vreemdheidsproductie aan het deuteron te bekomen.De studie van vreemdheidsproductie aan het deuteron wordt voornamelijk gemotiveerd door demogelijkheid om het reactiemechanisme aan het neutron te onderzoeken. De resultaten <strong>in</strong> hoofdstuk6 hebben aangetoond dat het deuteron <strong>in</strong>derdaad een goede potentiële neutronenbron is. Omdeze vaststell<strong>in</strong>g verder te bevestigen is het van belang om overige herverstrooi<strong>in</strong>gsdiagrammen tebeschouwen. Met name het tweestapsproces, waarbij <strong>in</strong> eerste <strong>in</strong>stantie een pion geproduceerd wordt,kan mogelijk een belangrijke bijdrage leveren. De bereken<strong>in</strong>g van dit diagram verloopt analoog a<strong>and</strong>ie van YN-FSI. In de literatuur zijn meerdere modellen beschikbaar die EM pionproductie adequaatbeschrijven. Om het tweestapsdiagram te evalueren, dient men ook over een correcte beschrijv<strong>in</strong>g v<strong>and</strong>e N(π, K)Y -reactie te beschikken. Voor dit proces zijn we<strong>in</strong>ig experimentele gegevens beschikbaaren de betrouwbaarheid van de bereken<strong>in</strong>g van het tweestapsdiagram zal dan ook verder theoretischwerk vereisen.


List of publicationsPart of the results presented <strong>in</strong> this dissertation have been published <strong>in</strong> the literature, or presentedat <strong>in</strong>ternational conferences.Papersˆ T. Corthals, T. Van Cauteren, P. Vancraeyveld, J. Ryckebusch, <strong>and</strong> D. G. Irel<strong>and</strong>, Electroproductionof kaons from the proton <strong>in</strong> a Regge-plus-resonance approach. Phys.Lett. B656 (2007)186, arXiv:0704.3691 [nucl-th]ˆ P. Vancraeyveld, L. De Cruz, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Regge-plus-resonance predictionsfor kaon photoproduction from the neutron. Phys.Lett. B681 (2009) 428, arXiv:0908.0446[nucl-th]ˆ S. Prakhov, P. Vancraeyveld, et al., Measurement of K − p radiative capture to γΛ <strong>and</strong> γΣ 0 forp K − between 514 <strong>and</strong> 750 MeV/c. Phys.Rev. C82 (2009) 015201, arXiv:0912.1653 [nucl-th]ˆ L. De Cruz, D. G. Irel<strong>and</strong>, P. Vancraeyveld, <strong>and</strong> J. Ryckebusch, Bayesian model selection forelectromagnetic kaon production on the nucleon. Phys.Lett. B694 (2010) 33, arXiv:1004.0353[nucl-th]ˆ T. Vrancx, L. De Cruz, J. Ryckebusch, <strong>and</strong> P. Vancraeyveld, Consistent <strong>in</strong>teractions forhigh-sp<strong>in</strong> fermion fields. Phys.Rev. C84 (2011) 045201, arXiv:1105.2688 [nucl-th]Presentationsˆ P. Vancraeyveld, T. Corthals, J. Ryckebusch <strong>and</strong> T. Van Cauteren, Electromagnetic productionof kaons from the proton <strong>in</strong> the Regge-plus-resonance model. Poster presented at JLab’s UsersGroup Meet<strong>in</strong>g, Newport News, VA, USA (June 16, 2008).ˆ P. Vancraeyveld, L. De Cruz, D. G. Irel<strong>and</strong>, J. Ryckebusch <strong>and</strong> T. Van Cauteren, Kaonphoto- <strong>and</strong> electroproduction <strong>in</strong> a Regge-plus-resonance approach. Contributed talk at Spr<strong>in</strong>gmeet<strong>in</strong>g of the DPG Division Hadronic <strong>and</strong> <strong>Nuclear</strong> <strong>Physics</strong> <strong>and</strong> EPS European <strong>Nuclear</strong> <strong>Physics</strong>Conference, Bochum, Germany (March 18, 2009).181


182 List of publicationsˆ P. Vancraeyveld, L. De Cruz, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Regge-model predictions forK + Σ photoproduction from the nucleon. AIP Conf.Proc. 1182 (2009) 619, arXiv:0906.5505[nucl-th]. Contributed talk at 10 th Conference on the Intersection of Particle <strong>and</strong> <strong>Nuclear</strong><strong>Physics</strong>, San Diego, CA, USA (May 26, 2009).ˆ P. Vancraeyveld, L. De Cruz, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Regge-plus-resonancepredictions for charged-kaon photoproduction from the deuteron. EPJ Web Conf. 3 (2010) 03013,arXiv:0912.2679 [nucl-th]. Contributed talk at 19 th International IUPAP Conference onFew-Body Problems <strong>in</strong> <strong>Physics</strong>, Bonn, Germany (September 1, 2009).ˆ P. Vancraeyveld, L. De Cruz, <strong>and</strong> J. Ryckebusch, Regge-plus-resonance predictions for neutralkaonphotoproduction from the deuteron. AIP Conf.Proc. 1374 (2011) 335, arXiv:1010.0113[nucl-th]. Contributed talk at 12 th International Conference on Meson-Nucleon <strong>Physics</strong> <strong>and</strong>the Structure of the Nucleon, Williamsburg, VA, USA (June 2, 2010).ˆ P. Vancraeyveld, L. De Cruz <strong>and</strong> J. Ryckebusch, Regge-plus-resonance predictions for kaonphotoproduction from the deuteron. Poster presented at Gordon Research Conference onPhotonuclear Reactions, Tilton, NH, USA (August 3, 2010).


BibliographyIf you steal from one author, it’s plagiarism;if you steal from many, it’s research.— Wilson Mizner[1] K. Nakamura et al., Review of particle physics. J.Phys. G37 (2010) 075021. Available fromhttp://pdglive.lbl.gov. Page 2, 22, 23, 34, 35, 43, 44, 55, 56, 117, 200.[2] G. Höhler, Pion-nucleon scatter<strong>in</strong>g, vol. I/9b2 of L<strong>and</strong>olt-Börnste<strong>in</strong>. Spr<strong>in</strong>ger Verlag, 1983.Page 2.[3] R. E. Cutkosky, C. P. Forsyth, R. E. Hendrick, <strong>and</strong> R. L. Kelly, Pion-nucleon partial waveamplitudes. Phys.Rev. D20 (1979) 2839. Page 2.[4] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, <strong>and</strong> R. L. Workman, George-Wash<strong>in</strong>gton (GW)Data Analysis Center (DAC) Scatter<strong>in</strong>g Analysis Interactive Dail-<strong>in</strong> (SAID). Available fromhttp://gwdac.phys.gwu.edu. Page 2, 200.[5] V. Shklyar, H. Lenske, <strong>and</strong> U. Mosel, A coupled-channel analysis of KΛ production <strong>in</strong> thenucleon resonance region. Phys.Rev. C72 (2005) 015210, arXiv:nucl-th/0505010[nucl-th]. Page 2, 23, 24.[6] Excited Baryon Analysis Center (EBAC). Available from http://ebac-theory.jlab.org.Page 2.[7] M. Dör<strong>in</strong>g, C. Hanhart, F. Huang, S. Krewald, <strong>and</strong> U.-G. Meissner, Analytic properties of thescatter<strong>in</strong>g amplitude <strong>and</strong> resonances parameters <strong>in</strong> a meson exchange model. Nucl.Phys. A829(2009) 170, arXiv:0903.4337 [nucl-th]. Page 2.[8] Bonn-Gatch<strong>in</strong>a partial-wave analysis. Available from http://pwa.hiskp.uni-bonn.de.Page 2.[9] G. Y. Chen, S. Kamalov, S. N. Yang, D. Drechsel, <strong>and</strong> L. Tiator, Nucleon resonances <strong>in</strong> πNscatter<strong>in</strong>g up to energies √ s ≤ 2.0 GeV. Phys.Rev. C76 (2007) 035206,arXiv:nucl-th/0703096 [nucl-th]. Page 2.183


184 Bibliography[10] A. Usov <strong>and</strong> O. Scholten, KΛ <strong>and</strong> KΣ photoproduction <strong>in</strong> a coupled channels framework.Phys.Rev. C72 (2005) 025205, arXiv:nucl-th/0503013 [nucl-th]. Page 2, 5.[11] E. Klempt <strong>and</strong> J.-M. Richard, Baryon spectroscopy. Rev.Mod.Phys. 82 (2010) 1095,arXiv:0901.2055 [hep-ph]. Page 2, 3, 23.[12] M. Anselm<strong>in</strong>o, E. Predazzi, S. Ekel<strong>in</strong>, S. Fredriksson, <strong>and</strong> D. Lichtenberg, Diquarks.Rev.Mod.Phys. 65 (1993) 1199. Page 2.[13] R. Koniuk <strong>and</strong> N. Isgur, Baryon decays <strong>in</strong> a quark model with chromodynamics. Phys.Rev.D21 (1980) 1868. Page 2.[14] S. Capstick, Photoproduction <strong>and</strong> electroproduction of nonstrange baryon resonances <strong>in</strong> therelativized quark model. Phys.Rev. D46 (1992) 2864. Page 2.[15] S. Capstick <strong>and</strong> W. Roberts, Strange decays of nonstrange baryons. Phys.Rev. D58 (1998)074011, arXiv:nucl-th/9804070 [nucl-th]. Page 2.[16] T. Kuo, Low-energy photoproduction of Λ 0 <strong>and</strong> K + from protons. Phys.Rev. 129 (1963) 2264.Page 2.[17] H. Thom, Phenomenological analysis of K + Λ photoproduction. Phys.Rev. 151 (1966) 1322.Page 2, 8.[18] F. Renard <strong>and</strong> Y. Renard, Photoproduction of K + Λ <strong>and</strong> K + Σ 0 <strong>and</strong> g ΛKN , g ΣKN coupl<strong>in</strong>gconstants. Nucl.Phys. B25 (1971) 490. Page 2.[19] R. Adelseck, C. Bennhold, <strong>and</strong> L. Wright, Kaon photoproduction operator for use <strong>in</strong> nuclearphysics. Phys.Rev. C32 (1985) 1681. Page 2.[20] R. A. Adelseck <strong>and</strong> B. Saghai, Kaon photoproduction: data consistency, coupl<strong>in</strong>g constants,<strong>and</strong> polarization observables. Phys.Rev. C42 (1990) 108. Page 2, 15.[21] R. Williams, C. Ji, <strong>and</strong> S. Cotanch, Cross<strong>in</strong>g <strong>and</strong> duality consistent study of Λ, Σ 0 , <strong>and</strong>Λ(1405) production by kaon photoproduction <strong>and</strong> radiative capture. Phys.Rev. C43 (1991) 452.Page 2, 56.[22] J. David, C. Fayard, G. Lamot, <strong>and</strong> B. Saghai, Electromagnetic production of associatedstrangeness. Phys.Rev. C53 (1996) 2613. Page 2, 8, 24, 27, 56.[23] T. Mart, C. Bennhold, H. Haberzettl, <strong>and</strong> L. Tiator, Kaon–MAID. Available fromhttp://www.kph.uni-ma<strong>in</strong>z.de/MAID/kaon/kaonmaid.html. Page 2, 40, 41.[24] B. S. Han, M. K. Cheoun, K. Kim, <strong>and</strong> I.-T. Cheon, An isobaric model for kaonphotoproduction. Nucl.Phys. A691 (2001) 713, arXiv:nucl-th/9912011 [nucl-th]. Page 2,24.[25] T. Mart <strong>and</strong> C. Bennhold, Evidence for a miss<strong>in</strong>g nucleon resonance <strong>in</strong> kaon photoproduction.Phys.Rev. C61 (2000) 012201, arXiv:nucl-th/9906096 [nucl-th]. Page 2.[26] S. Hsiao, D. Lu, <strong>and</strong> S. N. Yang, Pseudovector versus pseudoscalar coupl<strong>in</strong>g <strong>in</strong> kaonphotoproduction: revisited. Phys.Rev. C61 (2000) 068201, arXiv:nucl-th/0004007[nucl-th]. Page 2.


Bibliography 185[27] S. Janssen, J. Ryckebusch, D. Debruyne, <strong>and</strong> T. Van Cauteren, Kaon photoproduction:background contributions, form factors <strong>and</strong> miss<strong>in</strong>g resonances. Phys.Rev. C65 (2002) 015201,arXiv:nucl-th/0107028. Page 2, 5.[28] O. V. Maxwell, Model dependence <strong>in</strong> the photoproduction of kaons from protons <strong>and</strong> deuterons.Phys.Rev. C70 (2004) 044612. Page 2, 8.[29] A. de la Puente, O. V. Maxwell, <strong>and</strong> B. A. Raue, New fits to the reaction γp → K + Λ.Phys.Rev. C80 (2009) 065205, arXiv:0809.3805 [nucl-th]. Page 2, 24.[30] T. Mart, Electromagnetic production of kaon near threshold. Phys.Rev. C82 (2010) 025209,arXiv:1007.5366 [nucl-th]. Page 2.[31] Z.-P. Li, The kaon photoproduction of nucleons <strong>in</strong> the chiral quark model. Phys.Rev. C52(1995) 1648, arXiv:hep-ph/9502218 [hep-ph]. Page 2.[32] Z.-P. Li, W.-H. Ma, <strong>and</strong> L. Zhang, Kaon production via γN → KΣ <strong>in</strong> the chiral quark model.Phys.Rev. C54 (1996) 2171(R). Page 2.[33] D.-H. Lu, R. L<strong>and</strong>au, <strong>and</strong> S. Phatak, Kaon photoproduction <strong>in</strong> the color dielectric model.Phys.Rev. C52 (1995) 1662. Page 2.[34] Z.-P. Li, H.-X. Ye, <strong>and</strong> M.-H. Lu, An unified approach to pseudoscalar meson photoproductionsoff nucleons <strong>in</strong> the quark model. Phys.Rev. C56 (1997) 1099–1113, arXiv:nucl-th/9706010[nucl-th]. Page 2.[35] S. Ahlig, R. Alkofer, C. Fischer, M. Oettel, H. Re<strong>in</strong>hardt, et al., Production processes as a toolto study parameterizations of quark conf<strong>in</strong>ement. Phys.Rev. D64 (2001) 014004,arXiv:hep-ph/0012282 [hep-ph]. Page 2.[36] R. Alkofer, S. Ahlig, C. Fischer, <strong>and</strong> M. Oettel, Kaon photoproduction <strong>and</strong> form-factors <strong>in</strong> acovariant <strong>and</strong> conf<strong>in</strong><strong>in</strong>g diquark quark model. Nucl.Phys. A680 (2001) 70. Page 2.[37] E. Henley <strong>and</strong> K. Pham, A simple quark model for γp → K + Λ 0 . Nucl.Phys. A842 (2010) 72,arXiv:1003.3438 [nucl-th]. Page 2.[38] M. Guidal, J. M. Laget, <strong>and</strong> M. V<strong>and</strong>erhaeghen, Pion <strong>and</strong> kaon photoproduction at highenergies: forward <strong>and</strong> <strong>in</strong>termediate angles. Nucl.Phys. A627 (1997) 645. Page 2, 5, 6, 19, 20,26, 33.[39] T. Corthals, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Forward-angle K + Λ photoproduction <strong>in</strong> aRegge-plus-resonance approach. Phys.Rev. C73 (2006) 045207, arXiv:nucl-th/0510056.Page 2, 6, 8, 11, 21, 22, 23, 24, 25, 26, 28, 91, 157, 161.[40] T. Corthals, D. G. Irel<strong>and</strong>, T. Van Cauteren, <strong>and</strong> J. Ryckebusch, Regge-plus-resonancetreatment of the p(γ, K + )Σ 0 <strong>and</strong> p(γ, K 0 )Σ + reactions at forward kaon angles. Phys.Rev. C75(2007) 045204, arXiv:nucl-th/0612085. Page 2, 6, 8, 11, 21, 22, 23, 24, 25, 26, 28, 39, 91,157, 161.[41] T. Mart <strong>and</strong> T. Wijaya, Extend<strong>in</strong>g isobar model for kaon photoproduction up to 16 GeV. ActaPhys.Pol. B34 (2003) 2651. Page 2, 6.[42] T. Mart <strong>and</strong> C. Bennhold, Kaon photoproduction <strong>in</strong> the Feynman <strong>and</strong> Regge theories.arXiv:nucl-th/0412097 [nucl-th]. Page 2, 6.


186 Bibliography[43] W.-T. Chiang, F. Tabak<strong>in</strong>, T. Lee, <strong>and</strong> B. Saghai, Coupled channel study of γp → K + Λ.Phys.Lett. B517 (2001) 101, arXiv:nucl-th/0104052 [nucl-th]. Page 2.[44] J. Caro Ramon, N. Kaiser, S. Wetzel, <strong>and</strong> W. Weise, Chiral SU(3) dynamics with coupledchannels: <strong>in</strong>clusion of p-wave multipoles. Nucl.Phys. A672 (2000) 249–269,arXiv:nucl-th/9912053 [nucl-th]. Page 2.[45] B. Juliá-Díaz, B. Saghai, T.-S. Lee, <strong>and</strong> F. Tabak<strong>in</strong>, Dynamical coupled-channel approach tohadronic <strong>and</strong> electromagnetic production of kaon-hyperon on the proton. Phys.Rev. C73 (2006)055204, arXiv:nucl-th/0601053 [nucl-th]. Page 2, 23.[46] A. Anisovich, V. Kleber, E. Klempt, V. Nikonov, A. Sarantsev, et al., Baryon resonances <strong>and</strong>polarization transfer <strong>in</strong> hyperon photoproduction. Eur.Phys.J. A34 (2007) 243,arXiv:0707.3596 [hep-ph]. Page 2.[47] B. Borasoy, P. Bruns, U.-G. Meissner, <strong>and</strong> R. Nissler, A Gauge <strong>in</strong>variant chiral unitaryframework for kaon photo- <strong>and</strong> electroproduction on the proton. Eur.Phys.J. A34 (2007) 161,arXiv:0709.3181 [nucl-th]. Page 2.[48] R. Shyam, O. Scholten, <strong>and</strong> H. Lenske, The associated photoproduction of K + meson offproton with<strong>in</strong> a coupled-channels K-matrix approach. Phys.Rev. C81 (2010) 015204,arXiv:0911.3351 [hep-ph]. Page 2.[49] T. Mart <strong>and</strong> A. Sulaksono, Kaon photoproduction <strong>in</strong> a multipole approach. Phys.Rev. C74(2006) 055203, arXiv:nucl-th/0609077 [nucl-th]. Page 3, 23.[50] R. L. Workman, Multipole analysis of kaon photoproduction data. arXiv:1105.2967[nucl-th]. Page 3.[51] A. S<strong>and</strong>orfi, S. Hoblit, H. Kamano, <strong>and</strong> T.-S. Lee, Determ<strong>in</strong><strong>in</strong>g pseudoscalar mesonphoto-production amplitudes from complete experiments. J.Phys.G 38 (2011) 053001,arXiv:1010.4555 [nucl-th]. Page 3, 15.[52] V. Burkert <strong>and</strong> T. Lee, Electromagnetic meson production <strong>in</strong> the nucleon resonance region.Int.J.Mod.Phys. E13 (2004) 1035, arXiv:nucl-ex/0407020 [nucl-ex]. Page 3.[53] I. S. Barker, A. Donnachie, <strong>and</strong> J. K. Storrow, Complete experiments <strong>in</strong> pseudoscalarphotoproduction. Nucl.Phys. B95 (1975) 347. Page 3, 15.[54] W.-T. Chiang <strong>and</strong> F. Tabak<strong>in</strong>, Completeness rules for sp<strong>in</strong> observables <strong>in</strong> pseudoscalar mesonphotoproduction. Phys.Rev. C55 (1997) 2054. Page 3, 15.[55] H. Haberzettl, Gauge <strong>in</strong>variant theory of pion photoproduction with dressed hadrons. Phys.Rev.C56 (1997) 2041, arXiv:nucl-th/9704057 [nucl-th]. Page 4, 5.[56] L. De Cruz, D. G. Irel<strong>and</strong>, P. Vancraeyveld, <strong>and</strong> J. Ryckebusch, Bayesian model selection forelectromagnetic kaon production on the nucleon. Phys.Lett. B694 (2010) 33,arXiv:1004.0353 [nucl-th]. Page 4, 11, 21, 23.[57] S. Janssen, J. Ryckebusch, W. Van Nespen, D. Debruyne, <strong>and</strong> T. Van Cauteren, The role ofhyperon resonances <strong>in</strong> p(γ, K + )Λ processes. Eur.Phys.J. A11 (2001) 105,arXiv:nucl-th/0105008. Page 5.


Bibliography 187[58] D. G. Irel<strong>and</strong>, S. Janssen, <strong>and</strong> J. Ryckebusch, A genetic algorithm analysis of N ∗ resonances<strong>in</strong> p(γ, K + )Λ reactions. Nucl.Phys. A740 (2004) 147. Page 5.[59] R. Davidson <strong>and</strong> R. Workman, Form-factors <strong>and</strong> photoproduction amplitudes. Phys.Rev. C63(2001) 025210, arXiv:nucl-th/0101066 [nucl-th]. Page 5.[60] F. Gross <strong>and</strong> D. Riska, Current conservation <strong>and</strong> <strong>in</strong>teraction currents <strong>in</strong> relativistic mesontheories. Phys.Rev. C36 (1987) 1928. Page 5.[61] M. M. Kaskulov <strong>and</strong> U. Mosel, Deep exclusive charged π electroproduction above the resonanceregion. Phys.Rev. C81 (2010) 045202, arXiv:1001.1952 [hep-ph]. Page 6.[62] B. G. Yu, T. K. Choi, <strong>and</strong> W. Kim, Regge phenomenology of pion photoproduction off thenucleon at forward angles. Phys.Rev. C83 (2011) 025208, arXiv:1103.1203 [nucl-th].Page 6.[63] W.-T. Chiang, S. N. Yang, L. Tiator, M. V<strong>and</strong>erhaeghen, <strong>and</strong> D. Drechsel, A Reggeized modelfor η <strong>and</strong> η ′ photoproduction. Phys.Rev. C68 (2003) 045202. Page 6, 22.[64] J. He <strong>and</strong> B. Saghai, η production off the proton <strong>in</strong> a Regge-plus-chiral quark approach.Phys.Rev. C82 (2010) 035206, arXiv:1005.2797 [nucl-th]. Page 6, 22.[65] S. Ozaki, H. Nagahiro, <strong>and</strong> A. Hosaka, Charged K ∗ photoproduction <strong>in</strong> a Regge model.Phys.Rev. C81 (2010) 035206, arXiv:0910.0384 [hep-ph]. Page 6.[66] S.-i. Nam <strong>and</strong> C.-W. Kao, Λ(1520) photoproduciton off the proton target with Reggecontributions. Phys.Rev. C81 (2010) 055206, arXiv:1003.0700 [hep-ph]. Page 6.[67] M. Guidal, J. M. Laget, <strong>and</strong> M. V<strong>and</strong>erhaeghen, Exclusive electromagnetic production ofstrangeness on the nucleon: review of recent data <strong>in</strong> a Regge approach. Phys.Rev. C68 (2003)058201. Page 6, 21.[68] R. Schumacher <strong>and</strong> M. Sargsian, Scal<strong>in</strong>g <strong>and</strong> resonances <strong>in</strong> elementary K + Λ photoproduction.Phys.Rev. C83 (2011) 025207, arXiv:1012.2126 [hep-ph]. Page 6.[69] T. Corthals, Regge-plus-resonance approach to kaon production from the proton. PhD thesis,Ghent University, 2007. Available from http://<strong>in</strong>wpent5.ugent.be/papers/phdtamara.pdf.Page 6, 7, 8, 11, 19, 22, 27, 47, 91, 157.[70] R. Machleidt <strong>and</strong> I. Slaus, The Nucleon-nucleon <strong>in</strong>teraction. J.Phys.G G27 (2001) R69,arXiv:nucl-th/0101056 [nucl-th]. Page 6.[71] R. A. Gilman <strong>and</strong> F. Gross, Electromagnetic structure of the deuteron. J.Phys. G28 (2002)R37, arXiv:nucl-th/0111015 [nucl-th]. Page 6.[72] M. Garçon <strong>and</strong> J. Van Orden, The deuteron: structure <strong>and</strong> form-factors. Adv.Nucl.Phys. 26(2001) 293, arXiv:nucl-th/0102049 [nucl-th]. Page 6.[73] R. A. Adelseck <strong>and</strong> L. E. Wright, Lambda-neutron <strong>in</strong>teraction <strong>in</strong> kaon photoproduction fromthe deuteron. Phys.Rev. C39 (1989) 580. Page 7, 8.[74] B. F. Gibson <strong>and</strong> E. V. Hungerford, A Survey of hypernuclear physics. Phys.Rept. 257 (1995)349. Page 7.[75] E. Hungerford, Electroproduction of strange nuclei. Nucl.Phys. A691 (2001) 21. Page 7.


188 Bibliography[76] O. Hashimoto <strong>and</strong> H. Tamura, Spectroscopy of Λ hypernuclei. Prog.Part.Nucl.Phys. 57 (2006)564. Page 7.[77] F. M. Renard <strong>and</strong> Y. Renard, Hyperon-nucleon <strong>in</strong>teractions <strong>and</strong> associate production on thedeuteron. Nucl.Phys. B1 (1967) 389. Page 8.[78] F. M. Renard <strong>and</strong> Y. Renard, F<strong>in</strong>al state Λ-neutron <strong>in</strong>teractions <strong>in</strong> γ + d → K + + Λ + n.Phys.Lett. B24 (1967) 159. Page 8.[79] X. Li <strong>and</strong> L. Wright, F<strong>in</strong>al-state Λn <strong>in</strong>teraction <strong>in</strong> K photoproduction from the deuteron.J.Phys.G G17 (1991) 1127. Page 8.[80] X. Li, L. Wright, <strong>and</strong> C. Bennhold, Kaon photoproduction on the neutron us<strong>in</strong>g deuterium.Phys.Rev. C45 (1992) 2011. Page 8.[81] H. Yamamura, K. Miyagawa, T. Mart, C. Bennhold, <strong>and</strong> W. Gloeckle, Inclusive K + <strong>and</strong>exclusive K + Y photoproduction on the deuteron: Λ- <strong>and</strong> Σ-threshold phenomena. Phys.Rev.C61 (2000) 014001, arXiv:nucl-th/9907029. Page 8.[82] K. Miyagawa, T. Mart, C. Bennhold, <strong>and</strong> W. Glöckle, Polarization observables <strong>in</strong> exclusivekaon photoproduction on the deuteron. Phys.Rev. C74 (2006) 034002,arXiv:nucl-th/0608052 [nucl-th]. Page 8.[83] A. Salam <strong>and</strong> H. Arenhövel, Interaction effects <strong>in</strong> K + photoproduction on the deuteron.Phys.Rev. C70 (2004) 044008, arXiv:nucl-th/0407098. Page 8.[84] A. Salam, Rescatter<strong>in</strong>g effects <strong>and</strong> two-step process <strong>in</strong> kaon photoproduction on the deuteron.PhD thesis, Johannes-Gutenberg Universität Ma<strong>in</strong>z, 2003. Page 8.[85] A. Salam, K. Miyagawa, T. Mart, C. Bennhold, <strong>and</strong> W. Glöckle, K 0 photoproduction on thedeuteron <strong>and</strong> the extraction of the elementary amplitude. Phys.Rev. C74 (2006) 044004,arXiv:nucl-th/0608053 [nucl-th]. Page 8.[86] A. Salam, T. Mart, <strong>and</strong> K. Miyagawa, Neutral kaon photoproduction on the deuteron.Mod.Phys.Lett. A24 (2009) 968, arXiv:0906.0316 [nucl-th]. Page 8.[87] B. O. Kerbikov, Hyperon-nucleon f<strong>in</strong>al state <strong>in</strong>teraction <strong>in</strong> kaon photoproduction of thedeuteron. Phys.Atom.Nucl. 64 (2001) 1835, arXiv:nucl-th/0009074. Page 8.[88] O. V. Maxwell, Rescatter<strong>in</strong>g contributions to the photoproduction of kaons from the deuteron.Phys.Rev. C69 (2004) 034605. Page 8.[89] P. Bydzovsky, Photo- <strong>and</strong> electroproduction of kaons. Int.J.Mod.Phys. E19 (2010) 2369,arXiv:0905.0999 [nucl-th]. Page 8.[90] P. Bydzovsky <strong>and</strong> M. Sotona, Strangeness electromagnetic production on nucleons <strong>and</strong> nuclei.Nucl.Phys. A835 (2010) 246, arXiv:0912.0415 [nucl-th]. Page 8.[91] A. Gasparyan, J. Haidenbauer, C. Hanhart, <strong>and</strong> K. Miyagawa, ΛN scatter<strong>in</strong>g length from thereaction γd → K + Λn. Eur.Phys.J. A32 (2007) 61, arXiv:nucl-th/0701090 [nucl-th].Page 8.[92] J.-M. Laget, Rescatter<strong>in</strong>g <strong>in</strong> meson photoproduction from few body systems. Phys.Rev. C73(2006) 044003. Page 8.


Bibliography 189[93] J. Laget, Pentaquark, cusp <strong>and</strong> rescatter<strong>in</strong>g <strong>in</strong> s<strong>in</strong>gle kaon photoproduction off deuterium.Phys.Rev. C75 (2007) 014002, arXiv:nucl-th/0603009 [nucl-th]. Page 8.[94] S. Hsiao <strong>and</strong> S. Cotanch, Deuteron electrodis<strong>in</strong>tegration with kaon production. Phys.Lett.B163 (1985) 300. Page 8.[95] S. Cotanch <strong>and</strong> S. Hsiao, Electromagnetic production of strangeness. Nucl.Phys. A450 (1986)419c. Page 8.[96] T. Lee, V. Stoks, B. Saghai, <strong>and</strong> C. Fayard, Study of hyperon-nucleon <strong>in</strong>teractions withd(e, e ′ K) reactions. Nucl.Phys. A639 (1998) 247. Page 8.[97] T. Corthals, T. Van Cauteren, P. Vancraeyveld, J. Ryckebusch, <strong>and</strong> D. G. Irel<strong>and</strong>,Electroproduction of kaons from the proton <strong>in</strong> a Regge-plus-resonance approach. Phys.Lett.B656 (2007) 186, arXiv:0704.3691 [nucl-th]. Page 8, 11, 23, 26, 27, 39.[98] L. De Cruz, Bayesian model selection for electromagnetic kaon production <strong>in</strong> theRegge-plus-resonance framework. PhD thesis, Ghent University, 2011. Available fromhttp://<strong>in</strong>wpent5.ugent.be/papers/phdlesley.pdf. Page 11, 23, 24, 25, 26, 46.[99] T. Vrancx, L. De Cruz, J. Ryckebusch, <strong>and</strong> P. Vancraeyveld, Consistent <strong>in</strong>teractions forhigh-sp<strong>in</strong> fermion fields. Phys.Rev. C84 (2011) 045201, arXiv:1105.2688 [nucl-th].Page 11, 23, 25.[100] E. Leader, Sp<strong>in</strong> <strong>in</strong> particle physics. Camb. Monogr. Part. Phys. Nucl.Phys. Cosmol. 15 (2001)1. Page 14, 117, 128, 142, 169.[101] E. Pasyuk, CLAS+FROST: New generation of photoproduction experiments at Jefferson Lab.Ch<strong>in</strong>.Phys. C33 (2009) 1205, arXiv:0906.4221 [hep-ex]. Page 15.[102] K. Ardashev et al., JLab Hall-B experiment E-06-101. Available fromhttp://www.jlab.org/exp_prog/proposals/06/PR-06-101.pdf. Page 15.[103] D. G. Irel<strong>and</strong>, Information content of polarization measurements. Phys.Rev. C82 (2010)025204, arXiv:1004.5250 [hep-ph]. Page 15.[104] C. Fasano, F. Tabak<strong>in</strong>, <strong>and</strong> B. Saghai, Sp<strong>in</strong> observables at threshold for mesonphotoproduction. Phys.Rev. C46 (1992) 2430. Page 15.[105] G. Knochle<strong>in</strong>, D. Drechsel, <strong>and</strong> L. Tiator, Photoproduction <strong>and</strong> electroproduction of etamesons. Z.Phys. A352 (1995) 327, arXiv:nucl-th/9506029 [nucl-th]. Page 15, 16, 17.[106] X. Artru, M. Elchikh, J.-M. Richard, J. Soffer, <strong>and</strong> O. V. Teryaev, Sp<strong>in</strong> observables <strong>and</strong> sp<strong>in</strong>structure functions: <strong>in</strong>equalities <strong>and</strong> dynamics. Phys.Rept. 470 (2009) 1, arXiv:0802.0164[hep-ph]. Page 15.[107] B. Dey, M. E. McCracken, D. G. Irel<strong>and</strong>, <strong>and</strong> C. A. Meyer, Polarization observables <strong>in</strong> thelongitud<strong>in</strong>al basis for pseudo-scalar meson photoproduction us<strong>in</strong>g a density matrix approach.Phys.Rev. C83 (2010) 055208, arXiv:1010.4978 [hep-ph]. Page 15.[108] T. Regge, Introduction to complex orbital momenta. Nuovo Cim. 14 (1959) 951. Page 18.[109] P. Coll<strong>in</strong>s, An Introduction to Regge Theory <strong>and</strong> High Energy <strong>Physics</strong>. CambridgeMonographs on Mathematical <strong>Physics</strong>. Cambridge University Press, 2009. Page 19.


190 Bibliography[110] S. Donnachie, Pomeron physics <strong>and</strong> QCD. Cambridge monographs on particle physics, nuclearphysics, <strong>and</strong> cosmology. Cambridge University Press, 2002. Page 19.[111] A. V. Anisovich, V. V. Anisovich, <strong>and</strong> A. V. Sarantsev, Systematics of q¯q states <strong>in</strong> the (n, M 2 )<strong>and</strong> (J, M 2 ) planes. Phys.Rev. D62 (2000) 051502. Page 19.[112] M. Guidal, Photoproduction de mésons sur le nucléon aux énergies <strong>in</strong>termédiaires. PhD thesis,Université de Paris-Sud, U.F.R. Scientifique d’Orsay, 1997. Page 19, 26.[113] A. M. Boyarski et al., Photoproduction of K + Λ <strong>and</strong> K + Σ 0 from hydrogen from 5 to 16 GeV.Phys.Rev.Lett. 22 (1969) 1131. Page 19, 20, 162, 163.[114] D. J. Qu<strong>in</strong>n et al., Study of charged-pseudoscalar-meson photoproduction from hydrogen <strong>and</strong>deuterium with 16 GeV l<strong>in</strong>early polarized photons. Phys.Rev. D20 (1979) 1553. Page 19, 20,21, 162, 163.[115] G. Vogel, H. Burfe<strong>in</strong>dt, G. Buschhorn, P. Heide, U. Kötz, et al., Recoil polarization <strong>in</strong> K + Λphotoproduction at 5 GeV. Phys.Lett. B40 (1972) 513. Page 20, 21, 162.[116] J. Storrow, Exchange mechanisms of hadronic reactions. Rept.Prog.Phys. 50 (1987) 1229.Page 21.[117] H. Holvoet, Study of the helicity dependence of double pion photoproduction on the proton.PhD thesis, Ghent University, 2002. Page 22.[118] M. Benmerrouche, R. M. Davidson, <strong>and</strong> N. C. Mukhopadhyay, Problems of describ<strong>in</strong>g sp<strong>in</strong>- 3 2baryon resonances <strong>in</strong> the effective Lagrangian theory. Phys.Rev. C39 (1989) 2339. Page 22.[119] R. Bradford et al., Differential cross sections for γ + p → K + + Y for Λ <strong>and</strong> Σ 0 hyperons.Phys.Rev. C73 (2006) 035202, arXiv:nucl-ex/0509033. Page 22, 24, 25, 26, 46, 48, 162, 163.[120] A. Llères et al., Polarization observable measurements for γp → K + Λ <strong>and</strong> γp → K + Σ 0 forenergies up to 1.5 GeV. Eur.Phys.J. A31 (2007) 79. Page 22, 26, 162, 163.[121] J. W. C. McNabb et al., Hyperon photoproduction <strong>in</strong> the nucleon resonance region. Phys.Rev.C69 (2004) 042201(R), arXiv:nucl-ex/0305028. Page 22, 25, 26, 162, 163.[122] R. G. T. Zegers et al., Beam-polarization asymmetries for the p(⃗γ, K + )Λ <strong>and</strong> p(⃗γ, K + )Σ 0reactions at E γ = 1.5 GeV − 2.4 GeV. Phys.Rev.Lett 91 (2003) 092001. Page 22, 26, 162, 163.[123] M. McCracken et al., Differential cross section <strong>and</strong> recoil polarization measurements for theγp → K + Λ reaction us<strong>in</strong>g CLAS at Jefferson Lab. Phys.Rev. C81 (2010) 025201,arXiv:0912.4274 [nucl-ex]. Page 22, 23, 24, 26, 162.[124] M. Q. Tran et al., Measurement of γp → K + Λ <strong>and</strong> γp → K + Σ 0 at photon energies up to 2GeV. Phys.Lett. B445 (1998) 20. Page 22, 162, 163.[125] K. H. Gl<strong>and</strong>er et al., Measurement of γp → K + Λ <strong>and</strong> γp → K + Σ 0 at photon energies up to2.6 GeV. Eur.Phys.J. A19 (2004) 251, arXiv:nucl-ex/0308025. Page 22, 24, 25, 26, 46, 48,162, 163.[126] P. Bydzovsky <strong>and</strong> T. Mart, Analysis of the data consistency on kaon photoproduction with Λ <strong>in</strong>the f<strong>in</strong>al state. Phys.Rev. C76 (2007) 065202, arXiv:nucl-th/0605014 [nucl-th]. Page 22.


Bibliography 191[127] M. Dugger et al., π + photoproduction on the proton for photon energies from 0.725 to 2.875GeV. Phys.Rev. C79 (2009) 065206, arXiv:0903.1110 [hep-ex]. Page 23, 35, 36, 39.[128] A. Sarantsev, V. Nikonov, A. Anisovich, E. Klempt, <strong>and</strong> U. Thoma, Decays of baryonresonances <strong>in</strong>to ΛK + , Σ 0 K + <strong>and</strong> Σ + K 0 . Eur.Phys.J. A25 (2005) 441,arXiv:hep-ex/0506011 [hep-ex]. Page 23, 24.[129] D. Merten, U. Lör<strong>in</strong>g, K. Kretzschmar, B. Metsch, <strong>and</strong> H. R. Petry, Electroweak form factorsof non-strange baryons. Eur.Phys.J. A14 (2002) 477, arXiv:hep-ph/0204024. Page 23, 34.[130] B. Dey et al., Differential cross sections <strong>and</strong> recoil polarizations for the reaction γp → K + Σ 0 .Phys.Rev. C82 (2010) 025202, arXiv:1006.0374 [nucl-ex]. Page 23, 25, 26, 163.[131] B. Dey <strong>and</strong> C. A. Meyer, Normalization discrepancies <strong>in</strong> photoproduction reactions.arXiv:1106.0479 [hep-ph]. Page 23, 26.[132] K. Hicks et al., Measurement of the ⃗γp → K + Λ reaction at backward angles. Phys.Rev. C76(2007) 042201. Page 24, 26, 162.[133] L. De Cruz, T. Vrancx, P. Vancraeyveld, <strong>and</strong> J. Ryckebusch, Bayesian <strong>in</strong>ference of theresonance content of p(γ, K + )Λ. arXiv:1111.6511 [nucl-th]. Page 24, 25, 26, 46.[134] H. Kohri et al., Differential cross section <strong>and</strong> photon-beam asymmetry for the ⃗γn → K + Σ −reaction at E γ = 1.5 − 2.4 GeV. Phys.Rev.Lett 97 (2006) 082003, arXiv:hep-ex/0602015.Page 25, 26, 36, 37, 40, 42, 46, 48, 163, 164.[135] M. Sumihama et al., The ⃗γp → K + Λ <strong>and</strong> ⃗γp → K + Σ 0 reactions at forward angles with photonenergies from 1.5 to 2.4 GeV. Phys.Rev. C73 (2006) 035214, arXiv:hep-ex/0512053.Page 25, 26, 46, 48, 162, 163.[136] W. Rarita <strong>and</strong> J. Schw<strong>in</strong>ger, On a theory of particles with half <strong>in</strong>tegral sp<strong>in</strong>. Phys.Rev. 60(1941) 61. Page 24.[137] M. Benmerrouche, R. Davidson, <strong>and</strong> N. Mukhopadhyay, Problems of describ<strong>in</strong>g sp<strong>in</strong>-3/2baryon resonances <strong>in</strong> the effective Lagrangian theory. Phys.Rev. C39 (1989) 2339. Page 24.[138] T. Mizutani, C. Fayard, G. Lamot, <strong>and</strong> B. Saghai, Off-shell effects <strong>in</strong> the electromagneticproduction of strangeness. Phys.Rev. C58 (1998) 75, arXiv:nucl-th/9712037 [nucl-th].Page 25.[139] V. Pascalutsa, Quantization of an <strong>in</strong>teract<strong>in</strong>g sp<strong>in</strong>-3/2 field <strong>and</strong> the ∆ isobar. Phys.Rev. D58(1998) 096002, arXiv:hep-ph/9802288 [hep-ph]. Page 25.[140] R. Bradford et al., First measurement of beam-recoil observables C x <strong>and</strong> C z <strong>in</strong> hyperonphotoproduction. Phys.Rev. C75 (2007) 035205, arXiv:nucl-ex/0611034. Page 26, 27, 162,163.[141] A. Llères et al., Measurement of beam-recoil observables O x , O z <strong>and</strong> target asymmetry for thereaction γp → K + Λ. Eur.Phys.J. A39 (2009) 149, arXiv:0807.3839 [nucl-ex]. Page 26,28, 162.[142] K. Althoff, M. Gies, H. Herr, E. Hilger, V. Kadansky, et al., Photoproduction of K + Λ onpolarized protons. Nucl.Phys. B137 (1978) 269. Page 26, 162.


192 Bibliography[143] M. Coman et al., Cross sections <strong>and</strong> Rosenbluth separations <strong>in</strong> 1 H(e, e ′ K + )Λ up toQ 2 = 2.35 GeV 2 . Phys.Rev. C81 (2010) 052201(R), arXiv:0911.3943 [nucl-ex]. Page 27,28, 29.[144] M. Guidal, J. M. Laget, <strong>and</strong> M. V<strong>and</strong>erhaeghen, Electroproduction of strangeness above theresonance region. Phys.Rev. C61 (2000) 025204, arXiv:hep-ph/9904511 [hep-ph]. Page 27.[145] R. Mohr<strong>in</strong>g et al., Separation of the longitud<strong>in</strong>al <strong>and</strong> transverse cross sections <strong>in</strong> the1 H(e, e ′ K + )Λ <strong>and</strong> 1 H(e, e ′ K + )Σ 0 reactions. Phys.Rev. C67 (2003) 055205,arXiv:nucl-ex/0211005 [nucl-ex]. Page 28.[146] D. Carman et al., Beam-recoil polarization transfer <strong>in</strong> the nucleon resonance region <strong>in</strong> theexclusive ⃗ep → e ′ K + ⃗ Λ <strong>and</strong> ⃗ep → e ′ K + ⃗ Σ 0 reactions at CLAS. Phys.Rev. C79 (2009) 065205,arXiv:0904.3246 [hep-ex]. Page 29.[147] T. Feuster <strong>and</strong> U. Mosel, Photon <strong>and</strong> meson <strong>in</strong>duced reactions on the nucleon. Phys.Rev. C59(1999) 460, arXiv:nucl-th/9803057 [nucl-th]. Page 34.[148] S. Kreuzer, “E<strong>in</strong> massenabhängiges Conf<strong>in</strong>ement-Potential für das Bethe-Salpeter-Modell,”Master’s thesis, HISKP, Universität Bonn, 2006. Page 35, 36.[149] R. A. Arndt, I. I. Strakovsky, <strong>and</strong> R. L. Workman, Updated resonance photo-decay amplitudesto 2 GeV. Phys.Rev. C53 (1996) 430, arXiv:nucl-th/9509005. Page 35, 36, 39.[150] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, <strong>and</strong> R. L. Workman, Extended partial-waveanalysis of πN Scatter<strong>in</strong>g data. Phys.Rev. C74 (2006) 045205, arXiv:nucl-th/0605082.Page 35, 36.[151] S. Anefalos Pereira et al., Differential cross section of γn → K + Σ − on bound neutrons with<strong>in</strong>cident photons from 1.1 to 3.6 GeV. Phys.Lett. B688 (2010) 289, arXiv:0912.4833[nucl-ex]. Page 37, 38, 42, 104, 164.[152] F. X. Lee, T. Mart, C. Bennhold, <strong>and</strong> L. E. Wright, Quasifree kaon photoproduction on nuclei.Nucl.Phys. A695 (2001) 237. Page 41.[153] N. Hassall, Sp<strong>in</strong> observables <strong>in</strong> kaon photoproduction from the bound neutron <strong>in</strong> a deuteriumtarget with CLAS. PhD thesis, University of Glasgow, 2010. Available fromhttp://nuclear.gla.ac.uk/npe-theses/Hassall_thesis.pdf. Page 43, 104.[154] R. Lawall et al., Measurement of the reaction γp → K 0 Σ + at photon energies up to 2.6 GeV.Eur.Phys.J. A24 (2005) 275, arXiv:nucl-ex/0504014. Page 43, 44, 45, 46, 48, 50, 51, 52, 53,163.[155] R. Castelijns et al., Nucleon resonance decay by the K 0 Σ + channel. Eur.Phys.J. A35 (2008)39, arXiv:nucl-ex/0702033. Page 43, 44, 45, 51, 52, 53, 163.[156] R. Castelijns, Photoproduction of strange mesons <strong>and</strong> hyperons on the proton. PhD thesis,Rijksuniversiteit Gron<strong>in</strong>gen, 2006. Available from http://irs.ub.rug.nl/ppn/291566405.Page 43, 44.[157] B. Carnahan, Strangeness photoproduction <strong>in</strong> the γp → K 0 Σ + reaction. PhD thesis, CatholicUniversity of America, Wash<strong>in</strong>gton, USA, 2003. Available from


Bibliography 193http://www.jlab.org/Hall-B/general/thesis/carnahan_thesis.ps. Page 43, 44, 50,163.[158] S. Janssen, Strangeness production on the nucleon. PhD thesis, Ghent University, 2002.Available from http://<strong>in</strong>wpent5.ugent.be/papers/thesis_stijn.pdf. Additionaltechnical notes available from http://<strong>in</strong>wpent5.ugent.be/papers/formalism.pdf.Page 43.[159] P. S<strong>in</strong>ger <strong>and</strong> G. A. Miller, Radiative meson decay <strong>in</strong> the cloudy bag model. Phys.Rev. D33(1986) 141. Page 44.[160] T. Van Cauteren. Private communication. Page 44, 47.[161] D. A. Whitehouse, Radiative kaon capture at rest <strong>in</strong> hydrogen. Phys.Rev.Lett. 63 (1989) 1352.Page 55.[162] P. B. Siegel <strong>and</strong> B. Saghai, Initial state <strong>in</strong>teractions for K − -proton radiative capture.Phys.Rev. C52 (1995) 392, arXiv:nucl-th/9505019 [nucl-th]. Page 55.[163] T. Van Cauteren, J. Ryckebusch, B. Metsch, <strong>and</strong> H.-R. Petry, Helicity amplitudes <strong>and</strong>electromagnetic decays of hyperon resonances. Eur.Phys.J. A26 (2005) 339,arXiv:nucl-th/0509047 [nucl-th]. Page 56, 57.[164] T. Van Cauteren, J. Ryckebusch, B. Metsch, <strong>and</strong> H. Petry, Electromagnetic properties ofstrange baryons <strong>in</strong> a relativistic quark model. Eur.Phys.J. A31 (2007) 613. Page 56, 57.[165] C.-R. Ji <strong>and</strong> S. R. Cotanch, Cross<strong>in</strong>g constra<strong>in</strong>ts for hyperon reactions. Phys.Rev. C38 (1988)2691. Page 56.[166] R. Williams, C. Ji, <strong>and</strong> S. Cotanch, Cross<strong>in</strong>g-consistent analysis of kaon photoproduction <strong>and</strong>radiative capture. Phys.Rev. D41 (1990) 1449. Page 56.[167] T. Van Cauteren, P. Vancraeyveld, <strong>and</strong> J. Ryckebusch, Hyperon resonances <strong>in</strong> radiative kaoncapture. Acta Phys.Pol. B, Proc.Suppl. 2 (2009) no. 2, 347. Available fromhttp://hdl.h<strong>and</strong>le.net/1854/LU-811997. Page 56.[168] S. Prakhov, P. Vancraeyveld, et al., Measurement of K − p radiative capture to γΛ <strong>and</strong> γΣ 0 forp K − between 514 <strong>and</strong> 750 MeV/c. Phys.Rev. C82 (2009) 015201, arXiv:0912.1653[nucl-th]. Page 57, 58, 59, 60.[169] T. Stanislaus, V. Abaev, D. Allen, C. Allgower, J. Alyea, et al., Measurement of the total crosssection of the reaction K − p → Σ 0 γ between 514 <strong>and</strong> 750 MeV/c. Phys.Rev. C79 (2009)015203. Page 59, 60.[170] N. Byers <strong>and</strong> C. N. Yang, Physical regions <strong>in</strong> <strong>in</strong>variant variables for n particles <strong>and</strong> thephase-space volume element. Rev.Mod.Phys. 36 (1964) 595. Page 64, 137.[171] M. E. Pesk<strong>in</strong> <strong>and</strong> D. V. Schroeder, An <strong>in</strong>troduction to quantum field theory. Addison-Wesley,Read<strong>in</strong>g, USA, 1995. Page 66, 117.[172] H. Arenhövel <strong>and</strong> A. Fix, Incoherent pion photoproduction on the deuteron with polarizationobservables. I: Formal expressions. Phys.Rev. C72 (2005) 064004, arXiv:nucl-th/0506015.Page 68, 71.


194 Bibliography[173] V. Dmitras<strong>in</strong>ovic <strong>and</strong> F. Gross, Polarization observables <strong>in</strong> deuteron photodis<strong>in</strong>tegration <strong>and</strong>electrodis<strong>in</strong>tegration. Phys.Rev. C40 (1989) 2479. Page 73, 74, 80.[174] S. Nozawa <strong>and</strong> T. S. H. Lee, Electroproduction of pions on the nucleon. II: Polarizationobservables. Nucl.Phys. A513 (1990) 543–556. Page 76.[175] J. Carlson <strong>and</strong> R. Schiavilla, Structure <strong>and</strong> dynamics of few-nucleon systems. Rev.Mod.Phys.70 (1998) 743. Page 76.[176] E. Kessler et al., The deuteron b<strong>in</strong>d<strong>in</strong>g energy <strong>and</strong> the neutron mass. Phys.Lett. A255 (1999)221. Page 76.[177] R. Blankenbecler <strong>and</strong> L. F. Cook, Bound states <strong>and</strong> dispersion relations. Phys.Rev. 119 (1960)1745. Page 78.[178] M. Lacombe et al., Parametrization of the Paris NN Potential. Phys.Rev. C21 (1980) 861.Page 79, 80, 97.[179] R. Machleidt, The high-precision, charge-dependent Bonn nucleon-nucleon potential(CD-Bonn). Phys.Rev. C63 (2001) 024001. Page 79, 80, 97, 147, 148.[180] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, <strong>and</strong> J. J. de Swart, Construction of highquality NN potential models. Phys.Rev. C49 (1994) 2950, arXiv:nucl-th/9406039. Page 79,80, 97.[181] F. Gross, J. W. Van Orden, <strong>and</strong> K. Hol<strong>in</strong>de, Relativistic one boson exchange model for thenucleon-nucleon <strong>in</strong>teraction. Phys.Rev. C45 (1992) 2094–2132. Page 79, 80, 81, 97, 149, 150.[182] F. Gross <strong>and</strong> A. Stadler, Covariant spectator theory of np scatter<strong>in</strong>g: effective rangeexpansions <strong>and</strong> relativistic deuteron wave functions. Phys.Rev. C82 (2010) 034004,arXiv:1007.0778 [nucl-th]. Page 79, 81, 149, 151.[183] F. Gross <strong>and</strong> A. Stadler, Covariant spectator theory of np scatter<strong>in</strong>g: phase shifts obta<strong>in</strong>edfrom precision fits to data below 350 MeV. Phys.Rev. C78 (2008) 014005, arXiv:0802.1552[nucl-th]. Page 80, 81, 91, 92, 94, 97, 149, 151, 152.[184] M. J. Zuilhof <strong>and</strong> J. A. Tjon, Electromagnetic properties of the deuteron <strong>and</strong> theBethe-Salpeter equation with one-boson exchange. Phys.Rev. C22 (1980) 2369. Page 80.[185] J. Carbonell <strong>and</strong> V. A. Karmanov, Relativistic deuteron wave function <strong>in</strong> the light frontdynamics. Nucl.Phys. A581 (1995) 625. Page 80.[186] F. Gross, Relativistic treatment of loosely bound systems <strong>in</strong> scatter<strong>in</strong>g theory. Phys.Rev. 140(1965) B410. Page 80, 87.[187] J. W. Van Orden, N. Dev<strong>in</strong>e, <strong>and</strong> F. Gross, Elastic electron scatter<strong>in</strong>g from the deuteron us<strong>in</strong>gthe Gross equation. Phys.Rev.Lett 75 (1995) 4369. Page 81.[188] W. Dickhoff <strong>and</strong> D. Van Neck, Many-body theory exposed! World Scientific Publish<strong>in</strong>g Co. Pte.Ltd., 2008. Page 82.[189] F. Gross, Three-dimensional covariant <strong>in</strong>tegral equations for low-energy systems. Phys.Rev.186 (1969) 1448. Page 87.


Bibliography 195[190] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, <strong>and</strong> F. Rossi, GNUscientific library: reference manual. Network Theory Ltd., 2003. Available fromhttp://www.gnu.org/software/gsl. Page 89, 199.[191] J. Haidenbauer, U.-G. Meissner, A. Nogga, <strong>and</strong> H. Pol<strong>in</strong>der, The hyperon-nucleon <strong>in</strong>teraction:conventional versus effective field theory approach. Lect.Notes Phys. 724 (2007) 113,arXiv:nucl-th/0702015. Page 98, 100.[192] M. M. Nagels, T. A. Rijken, <strong>and</strong> J. J. de Swart, Baryon-baryon scatter<strong>in</strong>g <strong>in</strong> aone-boson-exchange-potential approach. II. Hyperon-nucleon scatter<strong>in</strong>g. Phys.Rev. D15 (1977)2547. Page 99.[193] B. Holzenkamp, K. Hol<strong>in</strong>de, <strong>and</strong> J. Speth, A meson exchange model for the hyperon-nucleon<strong>in</strong>teraction. Nucl.Phys. A500 (1989) 485. Page 99, 170.[194] B. Sechi-Zorn, B. Kehoe, J. Twitty, <strong>and</strong> R. A. Burnste<strong>in</strong>, Low-energy Λ-proton elasticscatter<strong>in</strong>g. Phys.Rev. 175 (1968) 1735. Page 99, 100.[195] G. Alex<strong>and</strong>er, U. Karshon, A. Shapira, G. Yekutieli, R. Engelmann, H. Filthuth, <strong>and</strong>W. Lughofer, Study of the Λ − N System <strong>in</strong> Low-Energy Λ − p Elastic Scatter<strong>in</strong>g. Phys.Rev.173 (1968) 1452. Page 99, 100.[196] J. A. Kadyk, G. Alex<strong>and</strong>er, J. H. Chan, P. Gaposchk<strong>in</strong>, <strong>and</strong> G. H. Trill<strong>in</strong>g, Λp <strong>in</strong>teractions <strong>in</strong>momentum range 300 to 1500 MeV/c. Nucl.Phys. B27 (1971) 13. Page 99, 100.[197] F. Eisele, H. Filthuth, W. Foehlisch, V. Hepp, <strong>and</strong> G. Zech, Elastic Σ ± p scatter<strong>in</strong>g at lowenergies. Phys.Lett. B37 (1971) 204. Page 99, 100.[198] R. Engelmann, H. Filthuth, V. Hepp, <strong>and</strong> E. Kluge, Inelastic Σ − p-<strong>in</strong>teractions at lowmomenta. Phys.Lett. 21 (1966) 587. Page 99, 100.[199] J. Haidenbauer <strong>and</strong> U.-G. Meissner, The Jülich hyperon-nucleon model revisited. Phys.Rev.C72 (2005) 044005, arXiv:nucl-th/0506019. Page 99, 100, 168.[200] T. A. Rijken <strong>and</strong> Y. Yamamoto, Extended-soft-core baryon-baryon model. II. Hyperon-nucleon<strong>in</strong>teraction. Phys.Rev. C73 (2006) 044008. Page 99, 168.[201] K. Tom<strong>in</strong>aga <strong>and</strong> T. Ueda, Effective one-boson-exchange potential for ΛN <strong>and</strong> ΣN systems<strong>and</strong> hypertriton. Nucl.Phys. A693 (2001) 731. Page 99, 168.[202] H. Pol<strong>in</strong>der, J. Haidenbauer, <strong>and</strong> U.-G. Meissner, Hyperon nucleon <strong>in</strong>teractions: a chiraleffective field theory approach. Nucl.Phys. A779 (2006) 244, arXiv:nucl-th/0605050.Page 99, 100.[203] J. Haidenbauer, Baryon-baryon <strong>in</strong>teractions <strong>in</strong> effective field theory. Nucl.Phys. A835 (2010)168. Page 99.[204] J. M. Hauptman, J. A. Kadyk, <strong>and</strong> G. H. Trill<strong>in</strong>g, Experimental study of Λp <strong>and</strong> Ξ 0 p<strong>in</strong>teractions <strong>in</strong> the range 1–10 GeV/c. Nucl.Phys. B125 (1977) 29. Page 100.[205] T. A. Rijken, V. G. J. Stoks, <strong>and</strong> Y. Yamamoto, Soft-core hyperon nucleon potentials.Phys.Rev. C59 (1999) 21, arXiv:nucl-th/9807082. Page 99, 100.


196 Bibliography[206] P. Nadel-Turonski, B. Berman, Y. Ilieva, D. Irel<strong>and</strong>, <strong>and</strong> A. Tkabladze, Photoproduction <strong>and</strong>rescatter<strong>in</strong>g of polarized hyperons <strong>in</strong> deuterium. Few Body Syst. 43 (2008) 227. Page 101, 104.[207] B. Meck<strong>in</strong>g et al., JLab Hall-B experiment E-89-045. Available fromhttp://www.jlab.org/exp_prog/proposals/89/PR89-045.pdf. Page 104.[208] P. Nadel-Turonski <strong>and</strong> B. Berman, CLAS approved analysis CAA-HS06-01. Page 104.[209] P. Nadel-Turonski et al., JLab Hall-B experiment E-06-103. Available fromhttp://www.jlab.org/exp_prog/proposals/06/PR06-103.pdf. Page 104.[210] J. Johnstone, The photon beam asymmetry for KY production from the bound proton <strong>in</strong>deuterium. PhD thesis, University of Glasgow, 2009. Available fromhttp://nuclear.gla.ac.uk/npe-theses/Johnstone_thesis.pdf. Page 104.[211] K. Tsukada et al., Photoproduction of neutral kaons on the liquid deuterium target <strong>in</strong> thethreshold region. Phys.Rev. C78 (2008) 014001, arXiv:0712.0657 [nucl-ex]. Page 104, 106,107, 109, 110.[212] K. Tsukada et al., Erratum: Photoproduction of neutral kaons on a liquid deuterium target <strong>in</strong>the threshold region. Phys.Rev. C83 (2011) 039904. Page 104, 106, 107, 109, 110.[213] M. Kaneta et al., Neutral kaon photoproduction at LNS, Tohoku University. Int.J.Mod.Phys.E19 (2010) 2355. Page 104.[214] K. Futatsukawa, An <strong>in</strong>vestigation of the elementary photoproduction of strangeness <strong>in</strong> thethreshold region. PhD thesis, Tohoku University, 2011. Available fromhttp://lambda.phys.tohoku.ac.jp/~kenta-f/Dthesis_futatsukawa.pdf. Page 104.[215] K. Futatsukawa <strong>and</strong> H. K<strong>and</strong>a, Prelim<strong>in</strong>ary data from NKS2 at LNS, Tohoku University.Private communication. Page 104, 106, 107, 108, 109, 110.[216] F. Dohrmann et al., Quasifree Λ, Σ 0 , <strong>and</strong> Σ − electroproduction from 1,2 H, 3,4 He, <strong>and</strong> Carbon.Phys.Rev. C76 (2007) 054004, arXiv:0707.3059 [nucl-ex]. Page 111, 112.[217] J. Cha, Measurements of kaon electroproduction on hydrogen <strong>and</strong> deuterium. PhD thesis,Hampton University, 2000. Available fromhttp://www1.jlab.org/Ul/publications/documents/j<strong>in</strong>seok.pdf. Page 112.[218] F. Gross, Relativistic quantum mechanics <strong>and</strong> field theory. New York, USA: Wiley (1993) 629p. Page 117, 167.[219] D. A. Varshalovich, A. N. Moskalev, <strong>and</strong> V. K. Khersonsky, Quantum theory of angularmomentum. World Scientific Publish<strong>in</strong>g Co. Pte. Ltd., S<strong>in</strong>gapore, 1988. Page 120.[220] M. Jacob <strong>and</strong> G. C. Wick, On the general theory of collisions for particles with sp<strong>in</strong>.Ann.Phys. 7 (1959) 404–428. Page 128.[221] E. W. Weisste<strong>in</strong>, Triangle Function. Available fromhttp://mathworld.wolfram.com/TriangleFunction.html. From MathWorld – A WolframWeb Resource. Page 137.[222] P. Nyborg, H. S. Song, W. Kernan, <strong>and</strong> R. H. Good, Phase-space considerations forfour-particle f<strong>in</strong>al states. Phys.Rev. 140 (1965) B914. Page 138.


Bibliography 197[223] R. H. Dalitz, Decay of τ mesons of known charge. Phys.Rev. 94 (1954) 1046. Page 138.[224] G. F. Chew <strong>and</strong> F. E. Low, Unstable particles as targets <strong>in</strong> scatter<strong>in</strong>g experiments. Phys.Rev.113 (1959) 1640. Page 138.[225] G. G. Ohlsen, Polarization transfer <strong>and</strong> sp<strong>in</strong> correlation experiments <strong>in</strong> nuclear physics.Rep.Prog.Phys. 35 (1972) 717. Page 141, 142, 143.[226] B. A. Robson, The theory of polarization phenomena. Oxford, UK: Clarendon Press (1974) 119p. Page 142, 144.[227] H. Arenhövel <strong>and</strong> M. Sanzone, Photodis<strong>in</strong>tegration of the deuteron: a review of theory <strong>and</strong>experiment. Few Body Syst.Suppl. 3 (1991) 1. Page 144, 145.[228] Available from http://nn-onl<strong>in</strong>e.org. Page 147.[229] M. Lacombe et al., Parametrization of the deuteron wave function of the Paris N-N potential.Phys.Lett. B101 (1981) 139. Page 147, 148.[230] W. W. Buck <strong>and</strong> F. Gross, A family of relativistic deuteron wave functions. Phys.Rev. D20(1979) 2361. Page 149.[231] J. Van Orden. Private communication. Page 149.[232] S. Goers et al., Measurement of γp → K 0 Σ + at photon energies up to 1.55 GeV. Phys.Lett.B464 (1999) 331. Page 163.[233] F. Cout<strong>in</strong>ho, Off-the-mass shell scatter<strong>in</strong>g amplitude <strong>in</strong> a two-particle potential model.Am.J.Phys. 50 (1982) 41. Page 168.[234] J. Haidenbauer. Private communication. Page 169.[235] P. Vancraeyveld, L. De Cruz, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Regge-plus-resonancepredictions for kaon photoproduction from the neutron. Phys.Lett. B681 (2009) 428,arXiv:0908.0446 [nucl-th]. Page .[236] P. Vancraeyveld, L. De Cruz, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Regge-model predictionsfor K + Σ photoproduction from the nucleon. AIP Conf.Proc. 1182 (2009) 619,arXiv:0906.5505 [nucl-th]. Page .[237] P. Vancraeyveld, L. De Cruz, J. Ryckebusch, <strong>and</strong> T. Van Cauteren, Regge-plus-resonancepredictions for charged-kaon photoproduction from the deuteron. EPJ Web Conf. 3 (2010)03013, arXiv:0912.2679 [nucl-th]. Page .[238] P. Vancraeyveld, L. De Cruz, <strong>and</strong> J. Ryckebusch, Regge-plus-resonance predictions forneutral-kaon photoproduction from the deuteron. AIP Conf.Proc. 1374 (2011) 335,arXiv:1010.0113 [nucl-th]. Page .[239] CLAS collaboration. Available from http://www.jlab.org/Hall-B/. Page 199.[240] A. Stadler <strong>and</strong> F. Gross, Covariant spectator theory: foundations <strong>and</strong> applications. Few-BodySyst. 49 (2011) 91. Page 199.[241] LEPS collaboration. Available from http://www.rcnp.osaka-u.ac.jp/Divisions/np1-b/.Page 199.


198 Bibliography[242] SAPHIR collaboration. Available from http://saphir.physik.uni-bonn.de/. Page 200.


NomenclatureI strive to be brief, <strong>and</strong> I become obscure.— HoraceList of acronyms(23)-CM Centre-of-Mass of particles labelled 2 <strong>and</strong> 3, see page 62.Dnp Deuteron-neutron-proton, see page 77.CCCoupled-Channels.CLAS CEBAF Large Acceptance Spectrometer, see Ref. [239].CMCQMCentre-of-Mass (frame).Constituent-Quark Model.CST Covariant Spectator Theory, see Ref. [240].EFTEMEffective-Field Theory.Electromagnetic.FSI F<strong>in</strong>al-State Interaction, see page 83.GSL GNU Scientific Library, see Ref. [190].KY-CMLABKaon-Hyperon Centre-of-Mass frame.Laboratory (frame).LEPS Laser Electron Photon beaml<strong>in</strong>e at SPr<strong>in</strong>g-8, see Ref. [241].NRPWIA Non-Relativistic Plane-Wave Impulse Approximation, see page 84.OPEPWAQCDOne-Photon Exchange.Partial-Wave Analysis.Quantum chromodynamics.199


200 NomenclatureRIA Relativistic Impulse Approximation, see page 82.RPP Review of Particle <strong>Physics</strong>, see Ref. [1].RPR Regge-plus-Resonance, see page 11.RPWIA Relativistic Plane-Wave Impulse Approximation, see page 84.SAID Scatter<strong>in</strong>g Analysis Interactive Dail-<strong>in</strong>, see Ref. [4].SAPHIR Spectrometer Arrangement for PHoton Induced Reactions, see Ref. [242].YN-CMHyperon-Nucleon Centre-of-Mass frame.YN-FSI Hyperon-Nucleon F<strong>in</strong>al-State Interaction, see page 86.List of symbols/A Feynman-slash notation, see equation (A.32).Ce iɛ ijkɛ αβγδCharge conjugation matrix, see equation (A.30).Imag<strong>in</strong>ary unit of the quaternion group H, see equation (B.5).Levi-Civita tensor, see equation (A.24).Totally antisymmetric tensor, see equation (A.7).Γ DnpCovariant Dnp-vertex, see equation (5.82).γ µG i (p)Dirac gamma matrices, see equation (A.27).Propagator for particle of sp<strong>in</strong>-i, see equation (D.4).h(⃗p)Helicity transformation, see equation (C.2).ˆ J λγ Transition current for EM kaon-production from the deuteron, see page 83.Ĵ λγ Transition current for EM kaon-production from the nucleon, see page 13.ξRapidity of a Lorentz boost, see equation (A.15).ξ λ DDeuteron polarisation vector, see equation (5.79).λ(x, y, z)Triangle function, see equation (E.2).p i Four-vector <strong>in</strong> the LAB frame, see equation (5.5).p ∗ i Four-vector <strong>in</strong> the (23)-CM frame, see equation (5.6).ṗ ∗ iFour-vector <strong>in</strong> the YN-CM frame, see equation (K.4).Ψ ++ Positive-energy projected deuteron wave function, see equation (5.88).Ψ −+ Negative-energy projected deuteron wave function, see equation (5.92).r(α, β, γ) Rotation def<strong>in</strong>ed by the Euler angles α, β <strong>and</strong> γ, see page 118.r(l, ⃗p)Wick helicity rotation, see equation (C.12).


Nomenclature 201r(⃗ω) Rotation through the angle | ⃗ω | about the unit axis ˆ⃗ω, see page 118.σ iPauli matrices, see equation (A.22).T λγλ N λ YHadronic transition matrix elements for N(γ (∗) , K)Y , see equation (2.10).T λγλ D λ Y λ NHadronic transition matrix elements for 2 H(γ (∗) , KY )N, see equation (5.27).u(⃗p, λ)Positive-energy helicity sp<strong>in</strong>or, see equation (C.8).u(⃗p; m s )v(⃗p, λ)v(⃗p; m s )Positive-energy Dirac sp<strong>in</strong>or, see equation (A.34).Negative-energy helicity sp<strong>in</strong>or, see equation (C.8).Negative-energy Dirac sp<strong>in</strong>or, see equation (A.34).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!