11.07.2015 Views

kniga 7 - Probability and Statistics 1 - Sheynin, Oscar

kniga 7 - Probability and Statistics 1 - Sheynin, Oscar

kniga 7 - Probability and Statistics 1 - Sheynin, Oscar

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

f i = i S + i , i = 1, 2, 3, 4, (36)all the stationary solutions are determined by the common solution of equations (27), weconclude that all these solutions are determined by formulas (35) with the parameter k = 4 / 3taking all possible values from 0 to .There thus exist such positive values 4 / 3 that the other coordinates 1 / 3 <strong>and</strong> 2 / 3 determined by the equations (35) are also positive. Therefore, by continuously varyingthe parameter we can make at least one coordinate (for example, 4 / 3 ) vanish with the otherones being non-negative. Then, with 1 , 2 , 3 taking the respective positive values <strong>and</strong>replacing 4 by zero, we note that (36.4) vanishes which is impossible because all thecoefficients there are positive.Let us now pass on to the general case <strong>and</strong> show by the same method that if the Theoremis valid for some n it holds for (n + 1). Indeed, if it is valid for n, the equations (36) with i =1, 2, …, n cannot include dependent equations 1 = 0, 2 = 0, …, n – 1 = 0when all the coefficients in f i are positive. Therefore, the similar equations 1 = 0, 2 = 0, …, n = 0,where f i are the same as in (36) but with i = 1, 2, …, (n + 1), cannot be connected by morethan one dependence; i.e., the stationarity condition for (n + 1) classes cannot depend onmore than one parameter.Consequently, the requirement thatkf n – f n+1 = 0,if only it does not hold identically for some k, leads to a restricted number of possible valuesfor f 1 , f 2 , …, f n , f n+1 . Therefore, uniting the n-th <strong>and</strong> the (n + 1)-th classes into one, <strong>and</strong>assuming that in the initial distribution n = /(1 + k), n+1 = k/(1 + k),the functions i = f i [ 1 ; 2 ; …; /(1 + k); k/(1 + k)], i = 1, 2, …, n – 1, n = f n [ 1 ; 2 ; …; /(1 + k); k/(1 + k)] +f n+1 [ 1 ; 2 ; …; /(1 + k); k/(1 + k)]if onlyF k = kf n [ 1 ; 2 ; …; /(1 + k); k/(1 + k)] –f n+1 [ 1 ; 2 ; …; /(1 + k); k/(1 + k)] = 0 (37)can take only a restricted number of values, <strong>and</strong>, owing to their continuity, have only onedefinite system of values 15 . It follows that if{the left side of} equation (37) is not an exactsquare, then i = i ( 1 + … + n–1 + ) 2 + µ i F k , i = 1, 2, …, n. (38)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!