11.07.2015 Views

Harmonic functions on planar and almost planar graphs and ...

Harmonic functions on planar and almost planar graphs and ...

Harmonic functions on planar and almost planar graphs and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

586 I. Benjamini, O. SchrammLet C be the following tree. Start with an infinite ray, then to every vertex<strong>on</strong> that ray add another infinite ray, rooted at that vertex. One can show [21]that C × Z is a transient graph. Yet C × Z admits no n<strong>on</strong> c<strong>on</strong>stant boundedharm<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. Hence, √ n separati<strong>on</strong> <strong>and</strong> transience do not together implythe existence of bounded n<strong>on</strong> c<strong>on</strong>stant harm<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.To date, we did not manage to prove that T ×Z is not <strong>almost</strong> <strong>planar</strong> wheneverT is a tree with infinitely many ends.7.2. Lemma Let T be a tree, then T × Z has the √ n separati<strong>on</strong> property.Proof. Let W be a set of n vertices in T × Z. Let j 0 ∈ Z be such that there areat least n/2 vertices in W of the form (t, i) with i ≤ j 0 <strong>and</strong> at least n/2 verticeswith i ≥ j 0 . Let j + be the least j ≥ j 0 such that there are less than √ n verticesin W ∩ T ×{j}, <strong>and</strong> let j − be the largest j ≤ j 0 such that there are less than √ nvertices in W ∩ T ×{j}. Clearly, 0 ≤ j + − j − ≤ √ n.It is easy to see that there is a t 0 ∈ T so that for every comp<strong>on</strong>ent T 1 ofT −{t 0 }the number of vertices in W ∩ (T 1 × Z) is at most n/2. (Just chooset 0 ∈ T to minimize the maximum of |W ∩ (T 1 × Z)| over all comp<strong>on</strong>ents T 1 ofT −{t 0 }.) Now setW ′ = {(t 0 , j ) ∈ W : j − < j < j + }∪{(t,j)∈W :j =j − or j = j + }.Then W ′ c<strong>on</strong>tains at most 3 √ n vertices, <strong>and</strong> any comp<strong>on</strong>ent of W −W ′ c<strong>on</strong>tainsat most n/2 vertices. ⊓⊔References1. Anc<strong>on</strong>a, A.: Positive harm<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>and</strong> hyperbolicity, Potential theory, surveys <strong>and</strong> problems.In: J. Král et al., (eds.) Lecture Notes in Mathematics, vol. 1344, Heidelberg: Springer-Verlag, pp. 1–23 (1988)2. Benjamini, I., Cao, J.: Examples of simply-c<strong>on</strong>nected Liouville manifolds with positive spectrum,J. Diff. Geom. Appl. 6, 31–50 (1996)3. Benjamini, I., Schramm, O.: R<strong>and</strong>om walks <strong>and</strong> harm<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> infinite <strong>planar</strong> <strong>graphs</strong>,using square tilings. Annals of Probability (to appear)4. Brightwell, G.R., Scheinerman, E.R.: Representati<strong>on</strong>s of <strong>planar</strong> <strong>graphs</strong>. SIAM J. Discrete Math.6, 214–229 (1993)5. Cartwright, D.I., Woess, W.: Infinite <strong>graphs</strong> <strong>and</strong> n<strong>on</strong>c<strong>on</strong>stant Dirichlet finite harm<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.SIAM J. Discrete Math., 5, 380–385 (1992)6. Colin De Verdiére, Y.: Un principe variati<strong>on</strong>nel pour les empilements de cercles. Invent. math.104, 655–669 (1991)7. DeBaun, D.R.: L 2 -cohomology of n<strong>on</strong>compact surfaces. Tran. Amer. Math. Soc., 284, 543–565(1984)8. Doyle, P.G., Snell, J.L.: R<strong>and</strong>om walks <strong>and</strong> electric networks. In: The Carus Math. M<strong>on</strong>o<strong>graphs</strong>22, Math. Associati<strong>on</strong> of America, (1984)9. Duffin, R.J.: The extremal length of a network. Journal of Mathematical Analysis <strong>and</strong> Applicati<strong>on</strong>s5, 200–215, 196210. Glasner, M., Katz, R.: Limits of Dirichlet Finite Functi<strong>on</strong>s Al<strong>on</strong>g Curves. Rocky Mountain J.Math. 12, 429–435 (1982)11. Gromov, M.: Groups of polynomial growth <strong>and</strong> exp<strong>and</strong>ing maps. Publ. Math. I. H. E. S. 53,53–73 (1981)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!