11.07.2015 Views

Shear localization and damage in metallic glasses at high - National ...

Shear localization and damage in metallic glasses at high - National ...

Shear localization and damage in metallic glasses at high - National ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS – Mechanics <strong>and</strong> Applic<strong>at</strong>ionsVolume 1, Number 1, September 2009, pp. 15-29<strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong><strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>uresR. Ekambaram a , P. Thamburaja a,∗ , Nikabdullah ba Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, N<strong>at</strong>ional University of S<strong>in</strong>gapore, S<strong>in</strong>gapore 117576b Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Universiti Kebangsaan Malaysia, Bangi, Malaysia 43600AbstractStudies of shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> fracture behavior <strong>in</strong> bulk-<strong>metallic</strong> <strong>glasses</strong> (BMGs) have been primarily limited totemper<strong>at</strong>ure regimes well-below the glass transition temper<strong>at</strong>ure. In this work, we <strong>in</strong>vestig<strong>at</strong>e the shear <strong>localiz<strong>at</strong>ion</strong><strong>and</strong> <strong>damage</strong> behavior of BMGs <strong>at</strong> temper<strong>at</strong>ures with<strong>in</strong> the supercooled liquid region where manufactur<strong>in</strong>g processes ofcomponents made out of BMGs typically take place.To model the deform<strong>at</strong>ion behavior of BMGs, we use the constitutive model developed by Thamburaja <strong>and</strong> Ekambaram(2007) <strong>and</strong> augment it to <strong>in</strong>clude a <strong>damage</strong>/fracture criterion. The modified constitutive model is then implemented <strong>in</strong>the ABAQUS (2008) f<strong>in</strong>ite-element program by writ<strong>in</strong>g a user-m<strong>at</strong>erial subrout<strong>in</strong>e. The m<strong>at</strong>erial parameters <strong>in</strong> theconstitutive model is then fitted to stress-stra<strong>in</strong> curves obta<strong>in</strong>ed from a set of simple compression experiments conductedby Lu et al. (2003) under various stra<strong>in</strong>-r<strong>at</strong>es <strong>at</strong> an ambient test temper<strong>at</strong>ure with<strong>in</strong> the supercooled liquid region.With the model calibr<strong>at</strong>ed, we study the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> behavior of the aforementioned Zr-based BMG byperform<strong>in</strong>g FEM simul<strong>at</strong>ions <strong>at</strong> various temper<strong>at</strong>ures with<strong>in</strong> the supercooled liquid region. Our simul<strong>at</strong>ions show th<strong>at</strong> theorient<strong>at</strong>ion of the shear b<strong>and</strong>s with respect to the load<strong>in</strong>g direction are strongly sensitive to the ambient test temper<strong>at</strong>ure<strong>and</strong> specimen geometry.F<strong>in</strong>ally, we show th<strong>at</strong> with the aid of f<strong>in</strong>ite-element simul<strong>at</strong>ions, potential spots of <strong>damage</strong>d m<strong>at</strong>erial can be determ<strong>in</strong>edfrom a simul<strong>at</strong>ed net-shape form<strong>in</strong>g process of a <strong>metallic</strong> glass component.Key words:Metallic glass, constitutive model<strong>in</strong>g, viscoplasticity, shear <strong>localiz<strong>at</strong>ion</strong>, f<strong>in</strong>ite-elements1. IntroductionRecently there has been a surge <strong>in</strong> activity concern<strong>in</strong>g the deform<strong>at</strong>ion behavior of bulk <strong>metallic</strong> <strong>glasses</strong>(BMGs). This is due to the ability <strong>in</strong> form<strong>in</strong>g specimen sizes as large as a few centimeters which makes physicaltest<strong>in</strong>g more convenient (Du<strong>in</strong>e et al., 1992; Peker <strong>and</strong> Johnson, 1993; Bruck et al., 1994; De Hey et al., 1998;Saotome et al., 2001; Wang et al., 2005b; Shen et al., 2005) etc.Typically form<strong>in</strong>g of components e.g. micro-gear parts, biomedical devices, sport<strong>in</strong>g goods, cell phone cas<strong>in</strong>gsetc. made out of BMGs are conducted <strong>at</strong> temper<strong>at</strong>ures above its glass transition temper<strong>at</strong>ure, θ g <strong>and</strong> below itscrystalliz<strong>at</strong>ion temper<strong>at</strong>ure, θ x i.e. <strong>in</strong> the supercooled liquid region. This is because BMGs flow <strong>in</strong> a fluid-likemanner with<strong>in</strong> this temper<strong>at</strong>ure range due to hav<strong>in</strong>g low viscosities <strong>and</strong> thus able to exhibit superplastic behavior(Saotome et al. (2001)). Therefore the fabric<strong>at</strong>ion of complic<strong>at</strong>ed geometries <strong>and</strong> (near) net-shape process<strong>in</strong>g ofBMGs can be easily performed <strong>in</strong> the supercooled liquid region. However, as shown by the experiments of Lu∗ Correspond<strong>in</strong>g authorEmail address: mpept@nus.edu.sg (P. Thamburaja)


16 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)et al. (2003) <strong>and</strong> Wang et al. (2005b), shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> fracture of BMGs <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>urescan occur if the (absolute) applied deform<strong>at</strong>ion r<strong>at</strong>es are large enough. Normally the applied deform<strong>at</strong>ion-r<strong>at</strong>eto cause fracture <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g ambient test temper<strong>at</strong>ure. Furthermore, the coupl<strong>in</strong>g between thedeform<strong>at</strong>ion <strong>and</strong> temper<strong>at</strong>ure fields can also <strong>in</strong>fluence the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> eventual <strong>damage</strong> process <strong>in</strong> them<strong>at</strong>erial. In the design of the components mentioned above, it is of paramount importance to be able to predictthe loc<strong>at</strong>ion of potential <strong>damage</strong>d m<strong>at</strong>erial po<strong>in</strong>ts.The characteriz<strong>at</strong>ion of shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> behavior <strong>in</strong> BMGs <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ureshave ma<strong>in</strong>ly been experimental work. Among recent works <strong>in</strong>clude the experimental efforts of Wang et al.(2005c) which <strong>in</strong>vestig<strong>at</strong>e the fracture characteristics of a Zr-based BMG under tensile conditions. Wang et al.(2005b) have also studied the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> fracture for the same Zr-based BMG under compressiveload<strong>in</strong>g conditions. In this work, they <strong>at</strong>tribute the chang<strong>in</strong>g of the shear b<strong>and</strong> orient<strong>at</strong>ion with respect toambient test temper<strong>at</strong>ure is due to the vari<strong>at</strong>ion of certa<strong>in</strong> m<strong>at</strong>erial parameters with ambient test temper<strong>at</strong>ures<strong>and</strong> applied stra<strong>in</strong>-r<strong>at</strong>es. The <strong>in</strong>fluence of <strong>high</strong> temper<strong>at</strong>ure deform<strong>at</strong>ion on the fracture behavior of a Zr-basedBMG was <strong>in</strong>vestig<strong>at</strong>ed by Guo et al. (2008). By conduct<strong>in</strong>g simple compression experiments under quasi-st<strong>at</strong>icload<strong>in</strong>g r<strong>at</strong>es, they <strong>at</strong>tribute the suppression of plasticity (which eventually leads to fracture) <strong>at</strong> <strong>high</strong> homologoustemper<strong>at</strong>ures is due to aggreg<strong>at</strong>ed nanocrystall<strong>in</strong>e particles which develop dur<strong>in</strong>g deform<strong>at</strong>ion. The effects ofchanges <strong>in</strong> ambient test temper<strong>at</strong>ure <strong>and</strong> load<strong>in</strong>g conditions on the fracture toughness of a Zr-Based BMG hasbeen studied by Hassan et al. (2008). In this work, a fracture mechanism map was developed by conduct<strong>in</strong>g avariety of experiments under different load<strong>in</strong>g conditions rang<strong>in</strong>g from room temper<strong>at</strong>ure to the glass transitiontemper<strong>at</strong>ure. The work of Liu et al. (2009) <strong>in</strong>vestig<strong>at</strong>es the nanoscale fe<strong>at</strong>ures on fracture surfaces of a Vitreloy1 BMG <strong>and</strong> l<strong>in</strong>ks it to the <strong>in</strong>tr<strong>in</strong>sic structure <strong>and</strong> the n<strong>at</strong>ure of plasticity of BMGs.Model<strong>in</strong>g of the <strong>high</strong> homologous temper<strong>at</strong>ure deform<strong>at</strong>ion behavior of BMGs have been performed by us<strong>in</strong>ga fictive stress-based model (K<strong>at</strong>o et al., 1998, 2001; Lu et al., 2003; Kim et al., 2004). The work of Huang et al.(2002) <strong>in</strong>vestig<strong>at</strong>es the <strong>in</strong>homogeneous deform<strong>at</strong>ion <strong>and</strong> shear <strong>localiz<strong>at</strong>ion</strong> of BMGs by develop<strong>in</strong>g a physicallybasedconstitutive model. However, their constitutive model is small-stra<strong>in</strong>-based <strong>in</strong> n<strong>at</strong>ure. Yang et al. (2006)have developed a f<strong>in</strong>ite-deform<strong>at</strong>ion-based constitutive model to describe the deform<strong>at</strong>ion behavior of BMGsunder a wide r<strong>at</strong>e of temper<strong>at</strong>ures <strong>and</strong> deform<strong>at</strong>ion-r<strong>at</strong>es. However, their model is not thermo-mechanicallycoupled<strong>and</strong> employs the use of shear <strong>localiz<strong>at</strong>ion</strong> elements which a priori assumes the orient<strong>at</strong>ion of the shearb<strong>and</strong>s. Recently, Thamburaja <strong>and</strong> Ekambaram (2007) have derived a thermo-mechanically-coupled, isotropicplasticity<strong>and</strong> f<strong>in</strong>ite-deform<strong>at</strong>ion-based constitutive theory for BMGs us<strong>in</strong>g fundamental thermodynamic pr<strong>in</strong>ciples.They have also implemented their constitutive model <strong>in</strong>to the commercially-available f<strong>in</strong>ite-element programABAQUS/Explicit (2008) by writ<strong>in</strong>g a user-m<strong>at</strong>erial subrout<strong>in</strong>e. The model<strong>in</strong>g of the mechanical response ofa Vitreloy-1 BMG <strong>at</strong> <strong>high</strong> temper<strong>at</strong>ures spann<strong>in</strong>g the glass transition temper<strong>at</strong>ure was recently conducted byHenann <strong>and</strong> An<strong>and</strong> (2008). However, these aforementioned theories do not address the issue of <strong>damage</strong> <strong>in</strong> them<strong>at</strong>erial as their models do not conta<strong>in</strong> a <strong>damage</strong> criterion.Therefore, the ma<strong>in</strong> objectives of this work are: (1) to augment the constitutive model of Thamburaja<strong>and</strong> Ekambaram (2007); Ekambaram et al. (2008)) to <strong>in</strong>clude a <strong>damage</strong> criterion suitable for model<strong>in</strong>g the<strong>damage</strong> process <strong>in</strong> BMGs; (2) to study the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> process for a BMG under suitableload<strong>in</strong>g conditions; <strong>and</strong> (3) to simul<strong>at</strong>e the net-shap<strong>in</strong>g of a component made out of a BMG via f<strong>in</strong>ite-elementsimul<strong>at</strong>ions <strong>and</strong> to predict the loc<strong>at</strong>ions of <strong>damage</strong>d m<strong>at</strong>erial po<strong>in</strong>ts.In Section 2, we summarize the key equ<strong>at</strong>ions <strong>in</strong> the constitutive model of Thamburaja <strong>and</strong> Ekambaram(2007) <strong>and</strong> modify it to <strong>in</strong>clude a <strong>damage</strong> criterion. We study the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> process for aVitreloy 1 BMG <strong>at</strong> temper<strong>at</strong>ures with<strong>in</strong> the supercooled liquid region under compressive stress st<strong>at</strong>es <strong>in</strong> Section3. We use the experimental results of Lu et al. (2003) to calibr<strong>at</strong>e the m<strong>at</strong>erial parameters <strong>in</strong> the constitutivemodel. In this section, we will also <strong>at</strong>tempt to simul<strong>at</strong>e the net shape form<strong>in</strong>g of a m<strong>in</strong>i<strong>at</strong>ure gear part us<strong>in</strong>gthe form<strong>in</strong>g process described <strong>in</strong> Wang et al. (2005a). We conclude <strong>and</strong> provide directions for future works <strong>in</strong>Section 4.


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 172. Constitutive modelUs<strong>in</strong>g the methodology developed <strong>in</strong> the work of Thamburaja <strong>and</strong> Ekambaram (2007) <strong>and</strong> modify<strong>in</strong>g it to<strong>in</strong>clude <strong>damage</strong>, we list out their key equ<strong>at</strong>ions which describe the deform<strong>at</strong>ion behavior of amorphous <strong>glasses</strong><strong>in</strong> this section. As a first-cut assumption, all the m<strong>at</strong>erial parameters <strong>in</strong> the constitutive model are tre<strong>at</strong>ed asconstants <strong>and</strong> strictly not functions of <strong>damage</strong>(unless st<strong>at</strong>ed otherwise).The govern<strong>in</strong>g variables 1 <strong>in</strong> the constitutive model are taken as: (i) The Helmholtz free energy per unitreference volume, ψ. (ii) The Cauchy stress, T = T ⊤ . (iii) The deform<strong>at</strong>ion gradient, F with det F > 0. (iv)Absolute temper<strong>at</strong>ure, θ. (v) The <strong>in</strong>elastic deform<strong>at</strong>ion gradient, F p with det F p > 0. The <strong>in</strong>elastic deform<strong>at</strong>iongradient represents the cumul<strong>at</strong>ive deform<strong>at</strong>ion due to plasticity <strong>and</strong> the gener<strong>at</strong>ion of free volume. (vi) Theelastic deform<strong>at</strong>ion gradient, F e with det F e > 0. It represents the elastic deform<strong>at</strong>ion th<strong>at</strong> gives rise to theCauchy stress, T. Us<strong>in</strong>g the Kroner-Lee decomposition (Kroner (1960); Lee (1969)) the elastic deform<strong>at</strong>iongradient is given by F e = FF p−1 . From the polar decomposition theory, we also have F e = R e U e whereR e = R e−⊤ <strong>and</strong> U e = U e⊤ represent the elastic rot<strong>at</strong>ion <strong>and</strong> the elastic stretch, respectively. (vii) The plasticshear stra<strong>in</strong>, γ ≥ 0. (viii) The free volume concentr<strong>at</strong>ion (units of volume per unit volume), ξ ≥ 0. (ix) The<strong>damage</strong> parameter, d with 0 ≤ d ≤ 1. The value of d = 0 corresponds to an un<strong>damage</strong>d m<strong>at</strong>erial po<strong>in</strong>t whereasa value of d = 1 <strong>in</strong>dic<strong>at</strong>es a fully-<strong>damage</strong>d m<strong>at</strong>erial po<strong>in</strong>t.2.1. Effect of <strong>damage</strong> on the elastic constantsIn this work, we assume for simplicity th<strong>at</strong> the <strong>damage</strong> process <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> is isotropic although recentwork on the <strong>in</strong>vestig<strong>at</strong>ion of fracture surfaces <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> have <strong>in</strong>dic<strong>at</strong>ed th<strong>at</strong> the <strong>damage</strong> process <strong>in</strong><strong>metallic</strong> <strong>glasses</strong> is anisotropic (Bouchaud et al., 2008)). Further ref<strong>in</strong>ements of our present assumption will bemade <strong>in</strong> future efforts.Typically the elastic constants i.e. the Young’s modulus <strong>and</strong> the Poisson’s r<strong>at</strong>io are a function of <strong>damage</strong>.Follow<strong>in</strong>g the work of Lemaitre (1985), we assume th<strong>at</strong> the Young’s modulus reduces l<strong>in</strong>early with <strong>in</strong>creas<strong>in</strong>g<strong>damage</strong> i.e.Ē =(1− d) E (1)where Ē <strong>and</strong> E denotes the <strong>damage</strong>d <strong>and</strong> un<strong>damage</strong>d Young’s modulus, respectively. Therefore, the <strong>damage</strong>dshear modulus (¯μ) <strong>and</strong> bulk modulus (¯κ) are respectively given by¯μ =Ē2(1 + ¯ν)<strong>and</strong> ¯κ =Ē3(1 − 2¯ν)(2)where ¯ν denotes the <strong>damage</strong>d Poisson’s r<strong>at</strong>io.Further assum<strong>in</strong>g th<strong>at</strong> the un<strong>damage</strong>d Poisson’s r<strong>at</strong>io, ν is equal to the <strong>damage</strong>d Poisson’s r<strong>at</strong>io i.e. ν =¯ν,we substitute equ<strong>at</strong>ion (1) <strong>in</strong>to equ<strong>at</strong>ion (2) to yield¯μ =(1− d) μ <strong>and</strong> ¯κ =(1− d) κ with μ =E2(1 + ν)<strong>and</strong> κ =E3(1 − 2ν)(3)denot<strong>in</strong>g the un<strong>damage</strong>d shear modulus <strong>and</strong> bulk modulus, respectively.1 Not<strong>at</strong>ion : ∇ <strong>and</strong> ∇ 2 denote the referential gradient <strong>and</strong> the referential Laplacian, respectively. For a second-order tensor B,B ⊤ denotes the transpose of the tensor B, B −1 denotes the <strong>in</strong>verse of the tensor B, <strong>and</strong>(B −1 ) ⊤ = B −⊤ . The trace of the tensorB is denoted by trace(B) =1 · B. The magnitude of tensor B is denoted by |B| = √ B · B. The devi<strong>at</strong>oric (traceless) portion oftensor B is denoted by dev(B) =B − (1/3) [trace(B)] 1. The symmetric <strong>and</strong> skew-symmetric portion of the tensor B are denotedby sym(B) =(1/2) (B + B ⊤ )<strong>and</strong>skew(B) =(1/2) (B − B ⊤ ), respectively.


18 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)2.2. Free energyWith E e =lnU e <strong>and</strong> θ o represent<strong>in</strong>g the elastic stra<strong>in</strong> <strong>and</strong> a reference temper<strong>at</strong>ure, respectively, the freeenergy per unit reference volume is assumed to be <strong>in</strong> the separable form 2ψ = ˆψ(E e ,θ,ξ,d)= ¯ψ e + ψ θ + ψ ξ where (4)¯ψ e = ˆ¯ψe (E e ,θ,d)=¯μ |dev(E e )| 2 +(1/2) ¯κ [trace(E e )] 2 − 3¯κα th (θ − θ o )[trace(E e )] , (5)ψ θ = ˆψ θ (θ) =c [(θ − θ o ) − θ log(θ/θ o )] <strong>and</strong> (6)ψ ξ = ˆψ ξ (θ, ξ) =(1/2)s ξ1 ξ 2 − s ξ1 ξξ T . (7)The m<strong>at</strong>erial constant α th represents the coefficient of thermal expansion. The specific he<strong>at</strong> per unit referencevolume is denoted by c>0. The m<strong>at</strong>erial parameter s ξ1 ≥ 0 (units of energy per unit volume) representsthe coefficient th<strong>at</strong> rel<strong>at</strong>e the changes <strong>in</strong> the flow-defect free energy density, ψ ξ due to vari<strong>at</strong>ions <strong>in</strong> ξ. F<strong>in</strong>ally,ξ T denotes the thermal equilibrium free volume concentr<strong>at</strong>ion which can be approxim<strong>at</strong>ed by a Vogel-Fulcher-Tammann-like l<strong>in</strong>ear <strong>in</strong> temper<strong>at</strong>ure function (Masuhr et al., 1999) : ξ T = ξ ∗ + k θ (θ − θ g )wherek θ is a constantof proportionality (units of temper<strong>at</strong>ure <strong>in</strong>verse) <strong>and</strong> ξ ∗ is the thermal equilibrium free volume concentr<strong>at</strong>ion <strong>at</strong>the glass transition temper<strong>at</strong>ure, θ g . Equ<strong>at</strong>ion (5) can also be re-written as¯ψ e =(1− d) ψ e with ψ e = μ |dev(E e )| 2 + κ [(1/2) trace(E e ) − 3 α th (θ − θ o )] trace(E e ) (8)denot<strong>in</strong>g the thermo-elastic free energy of an un<strong>damage</strong>d m<strong>at</strong>erial.2.3. Stress-stra<strong>in</strong> constitutive lawThe constitutive equ<strong>at</strong>ion for the elastic stress, T ∗ ≡ (det F) R e⊤ TR eis given byT ∗ =∂ψ∂E e =2¯μ [dev(Ee )] + ¯κ [trace(E e ) − 3α th (θ − θ o )] 1. (9)2.4. Flow ruleThe flow rule provides the evolution equ<strong>at</strong>ion for the plastic deform<strong>at</strong>ion gradient, F p . Guided by thework of An<strong>and</strong> <strong>and</strong> Gurt<strong>in</strong> (2003) we assume the plastic velocity gradient, L p = Ḟp F p−1 to be irrot<strong>at</strong>ional i.e.skew(L p )=0. By decompos<strong>in</strong>g the plastic velocity gradient <strong>in</strong>to purely devi<strong>at</strong>oric <strong>and</strong> volumetric portions, theflow rule is then written asL p =sym(L p )= ˙γ ( √ 1/2)N + ˙ξ (1/3) 1 where N = dev(T∗ )|dev(T ∗ )| . (10)Here ˙γ ≥ 0<strong>and</strong> ˙ξ represent the plastic shear stra<strong>in</strong>-r<strong>at</strong>e <strong>and</strong> the freevolumegener<strong>at</strong>ion r<strong>at</strong>e, respectively.2 Compared to the full expression for the free energy density <strong>in</strong> the work Thamburaja <strong>and</strong> Ekambaram (2007), we have neglectedthe free energy terms due to ∇ξ <strong>in</strong> this work for the sake compactness as we are assum<strong>in</strong>g the size of the test specimens are severalorders of magnitude larger than the length scale for free-volume diffusion.


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 192.5. Evolution equ<strong>at</strong>ion for the plastic shear stra<strong>in</strong>The plastic shear stra<strong>in</strong>-r<strong>at</strong>e is taken as()¯τ˙γ =2˙γ o s<strong>in</strong>h. (11)s + χ¯p + ζ f ¯τ vHere ¯τ =( √ 1/2)|dev(T ∗ )|≥0representstheequivalent shear stress. Guided by the work of Spaepen (1977)<strong>and</strong> modify<strong>in</strong>g to <strong>in</strong>clude the effect of <strong>damage</strong>, the st<strong>at</strong>ic resistance to plastic flow, s =ŝ(θ, d) istakentohavethe follow<strong>in</strong>g form :[ ] 2kb θs =(1− d)(12)Ωwhere k b is the Boltzmann constant <strong>and</strong> Ω > 0 the activ<strong>at</strong>ion volume (units of volume). As shown <strong>in</strong> equ<strong>at</strong>ion (11)the resistance to plastic flow is also affected by the hydrost<strong>at</strong>ic pressure, ¯p = −(1/3) [trace(T ∗ )] <strong>and</strong> the viscousstress, ¯τ v = s ξ1 (ξ − ξ T ). The m<strong>at</strong>erial constant χ represents the pressure-sensitivity parameter. We take theparameter ζ f =(1−d) ζ f where ζ f > 0 is a dimensionless fit parameter which determ<strong>in</strong>es the magnitude by whichthe plastic resistance of the un<strong>damage</strong>d m<strong>at</strong>erial is affected by the viscous stress ¯τ v . Us<strong>in</strong>g the aforementionedexpression for ζ f ensures th<strong>at</strong> a fully-<strong>damage</strong>d m<strong>at</strong>erial is not <strong>in</strong>fluenced by the effect of viscous stress.F<strong>in</strong>ally, the reference stra<strong>in</strong>-r<strong>at</strong>e ˙γ o is given by{˙γ o = f o exp − Zk b θ − ϕ }(13)ξwhere f o > 0 (units of time <strong>in</strong>verse) represents the <strong>at</strong>omic vibr<strong>at</strong>ion frequency, Z>0 the activ<strong>at</strong>ion energy(units of energy) <strong>and</strong> ϕ>0 a dimensionless geometric factor.2.6. K<strong>in</strong>etic equ<strong>at</strong>ion for the free volume concentr<strong>at</strong>ionNeglect<strong>in</strong>g free-volume diffusion, the gener<strong>at</strong>ion of free volume occurs through free volume cre<strong>at</strong>ion by plasticdeform<strong>at</strong>ion, applic<strong>at</strong>ion of hydrost<strong>at</strong>ic pressure, <strong>and</strong> structural relax<strong>at</strong>ion. We def<strong>in</strong>e the m<strong>at</strong>erial parameters ξ2 > 0 (units of energy per unit volume) as the resistance to free volume gener<strong>at</strong>ion due to hydrost<strong>at</strong>ic pressure<strong>and</strong> structural relax<strong>at</strong>ion (Thamburaja <strong>and</strong> Ekambaram, 2007). Therefore, the cre<strong>at</strong>ion-annihil<strong>at</strong>ion equ<strong>at</strong>ionfor the free volume concentr<strong>at</strong>ion is given by( ) ( )˙γo ¯p ˙γo s ξ1˙ξ = ζ ˙γ − − (ξ − ξ T ) . (14)s ξ2 s ξ2The first term on the right-h<strong>and</strong> side of equ<strong>at</strong>ion (14) is the cre<strong>at</strong>ion of free volume due to plastic deform<strong>at</strong>ionwith ζ = ˆζ (T ∗ ) ≥ 0 represent<strong>in</strong>g a dimensionless free volume cre<strong>at</strong>ion parameter. The second term on theright-h<strong>and</strong> side of equ<strong>at</strong>ion (14) is the gener<strong>at</strong>ion of free volume due to hydrost<strong>at</strong>ic pressure. F<strong>in</strong>ally, the thirdterm on the right-h<strong>and</strong> side of equ<strong>at</strong>ion (14) represents the gener<strong>at</strong>ion of free volume due to structural relax<strong>at</strong>ion.The analysis of 2004 also show the free volume cre<strong>at</strong>ion parameter to be an <strong>in</strong>creas<strong>in</strong>g function of stress.Thus, for simplicity we take ζ to follow a simple piecewise functional form Thamburaja <strong>and</strong> Ekambaram (2007):⎧⎨ ζ c if ¯τ ≤ ¯τ 1ζ =⎩ζ c + k 1 (¯τ − ¯τ 1 ) if ¯τ ≥ ¯τ 1 .Here ζ c > 0 denotes a m<strong>in</strong>imum threshold value for the free volume cre<strong>at</strong>ion coefficient, ¯τ 1 ≥ 0<strong>at</strong>hresholdequivalent shear stress <strong>and</strong> k 1 (units of stress <strong>in</strong>verse) a positive constant of proportionality.


20 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)2.7. Balance of energy <strong>and</strong> thermodynamicsFrom the first-law of thermodynamics, the balance equ<strong>at</strong>ion for the temper<strong>at</strong>ure isc ˙θ(= k th ∇ 2 θ ) {trace(Ėe }− 3κα th ) θ − s ξ1 k θ ˙ξθ + r + ˙ωp(15)where k th > 0<strong>and</strong>r represents thermal conductivity coefficient <strong>and</strong> the referential he<strong>at</strong> supply r<strong>at</strong>e per unitvolume, respectively. The r<strong>at</strong>e of mechanical dissip<strong>at</strong>ion per unit reference volume, ˙ω p is given by˙ω p =¯τ ˙γ − [s ξ1 (ξ − ξ T )+¯p ] ˙ξ + ψ e d˙≥ 0. (16)From <strong>in</strong>equality (16) we can see th<strong>at</strong> the power-conjug<strong>at</strong>e variable to the <strong>damage</strong> parameter is the un<strong>damage</strong>dthermo-elastic free energy density.2.8. Evolution equ<strong>at</strong>ion for the <strong>damage</strong> parameterFrom phenomenological consider<strong>at</strong>ions, we assume th<strong>at</strong> the <strong>damage</strong> <strong>and</strong> eventual fracture <strong>at</strong> a m<strong>at</strong>erial po<strong>in</strong>tis possible once a critical shear stress for <strong>damage</strong> <strong>in</strong>iti<strong>at</strong>ion, ¯τ max = ˆ¯τ max (θ) > 0 is reached. We let the <strong>in</strong>teger ito represent a switch which <strong>in</strong>dic<strong>at</strong>es the possibility of <strong>damage</strong> i.e. i = 1 when <strong>damage</strong> is possible whereas i =0when no <strong>damage</strong> is possible. Therefore, the <strong>damage</strong> criteria can be written as :• If ¯τ γ c is reached(Lemaitre, 1985)). When the plastic shear stra<strong>in</strong> γ reaches γ f the m<strong>at</strong>erial is deemed to be fully-<strong>damage</strong>d i.e.d = 1. Once the m<strong>at</strong>erial is fully-<strong>damage</strong>d, we will enforce th<strong>at</strong> there can be no further <strong>in</strong>crease <strong>in</strong> <strong>damage</strong>. Inlieu of these conditions, we will take the <strong>damage</strong> parameter to evolve as follows :• If i =1<strong>and</strong>γ ≤ γ c ,thend =0.• If i =1<strong>and</strong>γ c


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 21compressive fracture stress of approxim<strong>at</strong>ely 1300 MPa (please see Figure 3 of Lu et al. (2003). Hence, we have¯τ max = 750 GPa. The critical plastic shear stra<strong>in</strong>s for fracture are set to be γ c =0.2 <strong>and</strong>γ f =0.4 for reasonswe will specify l<strong>at</strong>er.At an ambient temper<strong>at</strong>ure of 643 K, we conduct isothermal simple compression FEM simul<strong>at</strong>ions under(absolute-valued) stra<strong>in</strong>-r<strong>at</strong>es rang<strong>in</strong>g from 2 × 10 −4 s −1 to 6.5 × 10 −2 s −1 us<strong>in</strong>g a s<strong>in</strong>gle ABAQUS C3D8Rcont<strong>in</strong>uum-three-dimensional brick element while assum<strong>in</strong>g (1) the m<strong>at</strong>erial is <strong>in</strong>itially <strong>in</strong> the fully-annealedcondition i.e. the <strong>in</strong>itial free volume is <strong>at</strong> the thermal equilibrium free volume 3 , <strong>and</strong> (2) the deform<strong>at</strong>ion ishomogeneous. These simul<strong>at</strong>ions <strong>and</strong> all other ensu<strong>in</strong>g FEM simul<strong>at</strong>ions <strong>in</strong> this work were conducted us<strong>in</strong>g them<strong>at</strong>erial parameters listed <strong>in</strong> Table 1.Table 1: List of m<strong>at</strong>erial parametersμ =11GPa κ =35.7GPa k th =11W/mK c =4.8MJ/m 3 Kχ =0.15 Ω = 1.49 × 10 −28 m 3 f o =1.1 × 10 14 s −1 Z =0.5 × 10 −19 Jθ g = 623 K k θ =13.75 × 10 −6 /K α th =10× 10 −6 /K ξ ∗ =0.00283ζ f =0.045 ζ c =9× 10 −4 ¯τ 1 = 400 MPa k 1 =6× 10 −12 Pa −1ϕ =0.105 s ξ1 = 10 000 GJ/m 3 s ξ2 = 960 GJ/m 3 ¯τ max = 750 GPaγ c =0.2 γ f =0.4 r =0J/m 3The stress-stra<strong>in</strong> curves from these simul<strong>at</strong>ions are shown <strong>in</strong> Figure 1. With <strong>in</strong>creas<strong>in</strong>g stra<strong>in</strong>-r<strong>at</strong>e, we see<strong>in</strong>creas<strong>in</strong>g peak stress <strong>and</strong> steady-st<strong>at</strong>e stress <strong>in</strong> the stress-stra<strong>in</strong> responses. The simul<strong>at</strong>ed results reproducesthe experimental stress-stra<strong>in</strong> curves to good accord 4 . Note th<strong>at</strong> the <strong>in</strong>iti<strong>at</strong>ion of <strong>damage</strong> <strong>and</strong> f<strong>in</strong>al fracture isonly observed for the simple compression simul<strong>at</strong>ion conducted <strong>at</strong> an applied stra<strong>in</strong>-r<strong>at</strong>e of 6.5 × 10 −2 s −1 .Thisis due to the activ<strong>at</strong>ion of the <strong>damage</strong> criteria given <strong>in</strong> Section 2.1800TRUE STRESS [MPa]16001400120010008006000.065/s - FEM0.032/s - FEM0.01/s - FEM0.005/s - FEM0.001/s - FEM0.0002/s - FEMIniti<strong>at</strong>ion of <strong>damage</strong> (d=0)400200F<strong>in</strong>al fracture (d=1)00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4TRUE STRAINFigure 1: Simul<strong>at</strong>ed isothermal stress-stra<strong>in</strong> response of a Vitreloy 1 BMG <strong>at</strong> an ambient temper<strong>at</strong>ure of 643 K <strong>in</strong> simple compression.The FEM simul<strong>at</strong>ion conducted <strong>at</strong> a compressive stra<strong>in</strong>-r<strong>at</strong>e of 0.065/s shows the <strong>in</strong>iti<strong>at</strong>ion <strong>and</strong> progression of <strong>damage</strong> due to theactiv<strong>at</strong>ion of the <strong>damage</strong> criterion given <strong>in</strong> Section 2. Absolute values of stress <strong>and</strong> stra<strong>in</strong> are plotted.3 Henceforth, all of our simul<strong>at</strong>ions will be conducted with the m<strong>at</strong>erial assumed to be be<strong>in</strong>g <strong>in</strong>itially <strong>in</strong> the fully-annealed conditioni.e. the <strong>in</strong>itial free volume of the m<strong>at</strong>erial is set to be the thermal equilibrium free volume <strong>at</strong> the given ambient temper<strong>at</strong>ure.4 Please refer to the results shown <strong>in</strong> Thamburaja <strong>and</strong> Ekambaram (2007) for the comparison between the theory <strong>and</strong> experiments.


22 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)To calibr<strong>at</strong>e the values for γ c <strong>and</strong> γ f , we perform coupled thermo-mechanical simul<strong>at</strong>ions on a two-dimensionalcross-section of the test specimens used <strong>in</strong> the experiments of Lu et al. (2003). Figure 2a shows the <strong>in</strong>itiallyundeformedf<strong>in</strong>ite-element mesh of the specimen cross-section with dimensions of 3.7mm by 7.4mm measuredalong axis-1 <strong>and</strong> axis-2, respectively. The specimen section is meshed us<strong>in</strong>g 3200 ABAQUS CPE4RT cont<strong>in</strong>uumtwo-dimensionalplane-stra<strong>in</strong> elements with a temper<strong>at</strong>ure degree of freedom. A geometrical imperfection <strong>in</strong> thespecimen is <strong>in</strong>troduced by provid<strong>in</strong>g a small taper along the length of the specimen i.e. axis-2. The temper<strong>at</strong>ureof the nodes on the top <strong>and</strong> bottom surfaces of the specimen is always ma<strong>in</strong>ta<strong>in</strong>ed <strong>at</strong> ambient temper<strong>at</strong>urethroughout the dur<strong>at</strong>ion of the simul<strong>at</strong>ions. F<strong>in</strong>ally, a velocity profile along axis-2 (the load<strong>in</strong>g axis) is impartedon the nodes on the top surface to achieve the desired test stra<strong>in</strong>-r<strong>at</strong>e whereas the nodes on the bottom surfaceare constra<strong>in</strong>ed from mov<strong>in</strong>g along axis-2.25002000TRUE STRESS [MPa]15001000FEM : 623 K @ 0.0030/sFEM : 633 K @ 0.015/sFEM : 643 K @ 0.065/sFEM : 653 K @ 0.28/sFEM : 663 K @ 1.2/s2 (load<strong>in</strong>g axis)5001a)b)00 0.05 0.1 0.15 0.2 0.25TRUE STRAINFigure 2: (a) Initially-undeformed f<strong>in</strong>ite-element mesh us<strong>in</strong>g 3200 ABAQUS CPE4RT cont<strong>in</strong>uum-plane-stra<strong>in</strong> elements with temper<strong>at</strong>uredegree of freedom. A small taper along the load<strong>in</strong>g axis is <strong>in</strong>troduced to provide a site for geometrical imperfection. (b)Simul<strong>at</strong>ed stress-stra<strong>in</strong> response from simul<strong>at</strong>ions conducted under compressive plane-stra<strong>in</strong> conditions <strong>at</strong> various ambient temper<strong>at</strong>ures<strong>in</strong> the supercooled liquid region. The results obta<strong>in</strong>ed from simul<strong>at</strong>ions conducted under the m<strong>in</strong>imum absolute-valued appliedstra<strong>in</strong>-r<strong>at</strong>e to cause fracture <strong>at</strong> different ambient test temper<strong>at</strong>ures are shown. Absolute values of stress <strong>and</strong> stra<strong>in</strong> are plotted.The values for γ c <strong>and</strong> γ f are fitted to the transition locus from homogeneous to shear <strong>localiz<strong>at</strong>ion</strong> behavioras given <strong>in</strong> the experiments of Lu et al. (2003). In our simul<strong>at</strong>ions, we def<strong>in</strong>e the critical applied stra<strong>in</strong>-r<strong>at</strong>e tofracture as the absolute-valued m<strong>in</strong>imum stra<strong>in</strong>-r<strong>at</strong>e which will cause a soften<strong>in</strong>g <strong>in</strong> the stress-stra<strong>in</strong> responsefrom a peak stress to zero stress without the <strong>at</strong>ta<strong>in</strong>ment of a steady-st<strong>at</strong>e response 5 . Once a st<strong>at</strong>e of zero stressis reached <strong>in</strong> the specimen, it will no longer be able to bear any load as full <strong>damage</strong> has occurred throughout aparticular cross-section of the specimen.Us<strong>in</strong>g the <strong>in</strong>itially-undeformed FEM mesh of the specimen section shown <strong>in</strong> Figure 2a, the stress-stra<strong>in</strong>curves obta<strong>in</strong>ed from the coupled thermo-mechanical FEM simul<strong>at</strong>ions <strong>in</strong> compression conducted under differentambient temper<strong>at</strong>ures are plotted <strong>in</strong> Figure 2b. From these stress-stra<strong>in</strong> responses, we can see th<strong>at</strong> the (absolute)critical applied stra<strong>in</strong>-r<strong>at</strong>e to fracture <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g ambient test temper<strong>at</strong>ure. The vari<strong>at</strong>ion of thecritical applied stra<strong>in</strong>-r<strong>at</strong>e to fracture with respect to ambient test temper<strong>at</strong>ure is plotted <strong>in</strong> Figure 3 along withthe experimental results obta<strong>in</strong>ed from Lu et al. (2003). Although the results from the constitutive model fits theoverall experimentally-determ<strong>in</strong>ed d<strong>at</strong>a reasonably well 6 , slight discrepancies <strong>in</strong> the fit <strong>at</strong> <strong>high</strong>er temper<strong>at</strong>uresi.e. 653 K <strong>and</strong> 663 K are probably due to the over-estim<strong>at</strong>ion of the critical shear stress for <strong>damage</strong> <strong>in</strong>iti<strong>at</strong>ion,¯τ max <strong>at</strong> these temper<strong>at</strong>ures. We shall address the issue of the dependence of ¯τ max on temper<strong>at</strong>ure <strong>in</strong> futureworks.5 We realize th<strong>at</strong> this criterion for the selection of the m<strong>in</strong>imum applied stra<strong>in</strong>-r<strong>at</strong>e to cause fracture is ad-hoc.6 Generally, γ c <strong>and</strong> γ f are functions of temper<strong>at</strong>ure. As a first-cut assumption, we will assume th<strong>at</strong> γ c <strong>and</strong> γ f are constants. Wealso recognize th<strong>at</strong> the values of γ c <strong>and</strong> γ f are not necessarily unique.


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 2310 0 AMBIENT TEST TEMPERATURE [K]STRAIN RATE [/s]10 -110 -210 -3Critical Stra<strong>in</strong> R<strong>at</strong>e - ExperimentalCritical Stra<strong>in</strong> R<strong>at</strong>e - FEM620 625 630 635 640 645 650 655 660 665Figure 3: The simul<strong>at</strong>ed locus of critical (absolute) applied stra<strong>in</strong>-r<strong>at</strong>e to cause shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> fracture versus ambient testtemper<strong>at</strong>ure. Also plotted is the experimentally-determ<strong>in</strong>ed locus obta<strong>in</strong>ed from the work of Lu et al. (2003)).The contours of <strong>damage</strong> <strong>at</strong> f<strong>in</strong>al fracture obta<strong>in</strong>ed from the coupled thermo-mechanical simul<strong>at</strong>ions performedabove are plotted <strong>in</strong> Figure 4. From the contour plots shown <strong>in</strong> Figure 4, we can see th<strong>at</strong> the orient<strong>at</strong>ion ofthe shear b<strong>and</strong>s i.e. the fracture planes with respect to the load<strong>in</strong>g axis strongly depends on the ambient testtemper<strong>at</strong>ure. This f<strong>in</strong>d<strong>in</strong>g concurs with the experimental results obta<strong>in</strong>ed by Wang et al. (2005b) for a Zr-based<strong>metallic</strong> glass <strong>at</strong> temper<strong>at</strong>ures <strong>in</strong> the supercooled liquid region. The analysis of Wang et al. (2005b) <strong>at</strong>tributes thechange <strong>in</strong> the shear b<strong>and</strong> orient<strong>at</strong>ion to the chang<strong>in</strong>g of the Mohr-Coulomb friction coefficient <strong>and</strong> the cohesivestrength of the m<strong>at</strong>erial with respect to the ambient temper<strong>at</strong>ure <strong>and</strong> test<strong>in</strong>g r<strong>at</strong>e. But our explan<strong>at</strong>ion for thechang<strong>in</strong>g shear b<strong>and</strong> orient<strong>at</strong>ion with respect to the ambient test temper<strong>at</strong>ure is as follows: S<strong>in</strong>ce the appliedstra<strong>in</strong>-r<strong>at</strong>es to cause failure <strong>at</strong> these temper<strong>at</strong>ures are moder<strong>at</strong>ely <strong>high</strong>, the coupl<strong>in</strong>g between the mechanical<strong>and</strong> temper<strong>at</strong>ure fields become stronger (Mol<strong>in</strong>ari (1997)) i.e. a transient he<strong>at</strong>-transfer problem is be<strong>in</strong>g solvedcf. equ<strong>at</strong>ion (15). This can be verified by plott<strong>in</strong>g the temper<strong>at</strong>ure contours <strong>in</strong> the specimen <strong>at</strong> f<strong>in</strong>al fracture asobta<strong>in</strong>ed from the coupled thermo-mechanical simul<strong>at</strong>ions conducted above cf. Figure 5. Compar<strong>in</strong>g the resultsshown <strong>in</strong> Figures 4 <strong>and</strong> 5, it can be seen th<strong>at</strong> the region with the largest temper<strong>at</strong>ure rise <strong>in</strong> the specimenco<strong>in</strong>cides with the region of the shear b<strong>and</strong>. From the results shown <strong>in</strong> Figure 5, we can see the utility ofperform<strong>in</strong>g couple thermo-mechanical simul<strong>at</strong>ions as the magnitude of temper<strong>at</strong>ure rise <strong>in</strong> the shear b<strong>and</strong>s arelarge enough such th<strong>at</strong> isothermal test conditions are viol<strong>at</strong>ed dur<strong>in</strong>g the simul<strong>at</strong>ions.However, extreme care must be taken when report<strong>in</strong>g shear b<strong>and</strong> orient<strong>at</strong>ion for experiments conducted<strong>at</strong> temper<strong>at</strong>ures with<strong>in</strong> the supercooled liquid region. To illustr<strong>at</strong>e this po<strong>in</strong>t, we repe<strong>at</strong> the coupled thermomechanicalcompression simul<strong>at</strong>ions performed above with the <strong>in</strong>itially-undeformed f<strong>in</strong>ite-element mesh shown<strong>in</strong> Figure 2a hav<strong>in</strong>g <strong>in</strong>itial cross-section dimensions of 1.75mm by 3.7mm (Simul<strong>at</strong>ion A) <strong>and</strong> 7.4mm by 14.8(Simul<strong>at</strong>ion B) <strong>in</strong>stead. These two compression simul<strong>at</strong>ions were conducted <strong>at</strong> an ambient temper<strong>at</strong>ure of 623 Kunder an applied stra<strong>in</strong>-r<strong>at</strong>e of 3 × 10 −3 s −1 . Figures 6a <strong>and</strong> 6b respectively show the contour plots for <strong>damage</strong><strong>and</strong> temper<strong>at</strong>ure obta<strong>in</strong>ed from Simul<strong>at</strong>ions A <strong>and</strong> B <strong>at</strong> the <strong>in</strong>stant of f<strong>in</strong>al fracture <strong>in</strong> the specimen i.e. whenthe specimen has lost load-bear<strong>in</strong>g capacity. The previously obta<strong>in</strong>ed result with the specimen hav<strong>in</strong>g <strong>in</strong>itialcross-section dimensions of 3.7mm by 7.4mm is also repe<strong>at</strong>edly plotted <strong>in</strong> Figure 6c for the sake of convenientcomparison. From Figure 6a, we can see th<strong>at</strong> the fracture plane is oriented <strong>at</strong> an angle of 43 o measured withrespect to the load<strong>in</strong>g axis. This value for the fracture plane orient<strong>at</strong>ion concurs well with the experimentallydeterm<strong>in</strong>edvalue from the work of Wang et al. (2005b) which st<strong>at</strong>es th<strong>at</strong> fracture characteristic for experimentsconducted <strong>at</strong> θ g <strong>and</strong> temper<strong>at</strong>ures well below θ g are similar i.e. the fracture plane orient<strong>at</strong>ion is less than 45 owhen measured with respect to the load<strong>in</strong>g axis. Also note th<strong>at</strong> for Simul<strong>at</strong>ion A, the temper<strong>at</strong>ure rise <strong>in</strong>the shear b<strong>and</strong> is about 0.3K. Therefore, the temper<strong>at</strong>ure conditions for specimen dur<strong>in</strong>g the dur<strong>at</strong>ion of thesimul<strong>at</strong>ion are nearly isothermal. For Simul<strong>at</strong>ion B, the fracture plane is oriented <strong>at</strong> an angle of 54 o measuredwith respect to the load<strong>in</strong>g axis. Furthermore the temper<strong>at</strong>ure rise <strong>in</strong> the shear b<strong>and</strong> from Simul<strong>at</strong>ion B isapproxim<strong>at</strong>ely 58K i.e. isothermal test conditions <strong>in</strong> the specimen are not achieved dur<strong>in</strong>g the dur<strong>at</strong>ion of thesimul<strong>at</strong>ion. The simul<strong>at</strong>ion results shown <strong>in</strong> Figure 6c also show different orient<strong>at</strong>ion of the fracture plane <strong>and</strong>


24 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)DAMAGE1.00.90.80.70.60.50.40.30.20.10.02 (load<strong>in</strong>g axis)148 51a) b)623 K @ 0.0030/s 633 K @ 0.015/s49 43 34c) d) e)643 K @ 0.065/s 653 K @ 0.28/s 663 K @ 1.2/sFigure 4: Simul<strong>at</strong>ed contours of <strong>damage</strong> plotted for the specimen <strong>at</strong> the first <strong>in</strong>stance when <strong>damage</strong> has spread throughout thecross-section of the specimen i.e. when the specimen has lost the ability to bear load. These contours were determ<strong>in</strong>ed from theFEM simul<strong>at</strong>ions which provided the stress-stra<strong>in</strong> curves as plotted <strong>in</strong> Figure 3b. Also shown is the applied stra<strong>in</strong>-r<strong>at</strong>e imposed onthe specimen along with the ambient test temper<strong>at</strong>ure. The orient<strong>at</strong>ions of the shear b<strong>and</strong>s with respect to the load<strong>in</strong>g directionare also shown.TEMPERATURE654.2648.0641.8635.6629.4623.2TEMPERATURE682.6672.7662.9653.0643.1633.3a) b)TEMPERATURE TEMPERATURE TEMPERATURE692.4682.6708.7697.7716.2705.8672.8686.7695.5663.0675.7685.2653.2664.8674.9643.4653.8664.5c) d) e)Figure 5: Simul<strong>at</strong>ed contours of temper<strong>at</strong>ure <strong>in</strong> the specimen obta<strong>in</strong>ed from the plane-compression compression simul<strong>at</strong>ion conductedan an (absolute) applied stra<strong>in</strong>-r<strong>at</strong>e <strong>and</strong> ambient test temper<strong>at</strong>ure of (a) 0.003/s <strong>at</strong> 623K, (b) 0.015/s <strong>at</strong> 633K, (c) 0.065/s <strong>at</strong> 643K,(d) 0.28/s <strong>at</strong> 653K, <strong>and</strong> (e) 1.2/s <strong>at</strong> 663K. Figures 5a to 5e are plotted <strong>at</strong> the same <strong>in</strong>stance when Figures 4a to 4e are plotted,respectively.


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 25temper<strong>at</strong>ure rise <strong>in</strong> the shear b<strong>and</strong> as compared to the results obta<strong>in</strong>ed from Simul<strong>at</strong>ions A <strong>and</strong> B.Figure 6: Simul<strong>at</strong>ed contours of <strong>damage</strong> <strong>and</strong> temper<strong>at</strong>ure for a specimen with <strong>in</strong>itial cross-section dimensions of (a) 1.85mm by3.7mm, (b) 7.4mm by 14.8mm, <strong>and</strong> (c) 3.7mm by 7.4mm. These contours were plotted <strong>at</strong> the first <strong>in</strong>stance when the specimens havelost its ability to bear load. All these simul<strong>at</strong>ions were conducted <strong>at</strong> an ambient temper<strong>at</strong>ure of 623K under an applied compressivestra<strong>in</strong>-r<strong>at</strong>e of 0.003/s. The orient<strong>at</strong>ions of the shear b<strong>and</strong>s with respect to the load<strong>in</strong>g direction are also shown.Therefore, we can conclude from the results plotted <strong>in</strong> Figure 6 th<strong>at</strong> the orient<strong>at</strong>ion of the fracture planemeasured with respect to the load<strong>in</strong>g axis is also strongly dependent on the specimen dimensions. This is to beexpected s<strong>in</strong>ce, as mentioned previously, a transient he<strong>at</strong> transfer problem is be<strong>in</strong>g solved dur<strong>in</strong>g the coupledthermo-mechanical simul<strong>at</strong>ions i.e. the he<strong>at</strong> conduction term <strong>in</strong> equ<strong>at</strong>ion (15) <strong>in</strong>troduces a length-scale <strong>in</strong>to theenergy balance equ<strong>at</strong>ion. This <strong>in</strong>herent length scale is responsible for the observed sensitivity of the fractureplane orient<strong>at</strong>ions to the specimen dimensions 7 . To the best of our knowledge, the present work is the first ofits k<strong>in</strong>d <strong>in</strong> characteriz<strong>in</strong>g the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> fracture behavior <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> temper<strong>at</strong>ures <strong>in</strong> thesupercooled liquid region.3.1. (Near)net-shape form<strong>in</strong>g of a bulk-<strong>metallic</strong> glass componentThe superplastic form<strong>in</strong>g of components made out of bulk-<strong>metallic</strong> <strong>glasses</strong> are typically conducted <strong>at</strong> temper<strong>at</strong>ures<strong>in</strong> the supercooled liquid region Saotome et al. (2001) <strong>and</strong> Wang et al. (2005a). This is done because<strong>metallic</strong> <strong>glasses</strong> exhibit fluid-like properties <strong>and</strong> flows very easily when deformed <strong>in</strong> this temper<strong>at</strong>ure regime.Hence net-shape form<strong>in</strong>g can be easily achieved when <strong>metallic</strong> <strong>glasses</strong> are deformed <strong>at</strong> temper<strong>at</strong>ures above θ g .In this work, we will simul<strong>at</strong>e the net-shape form<strong>in</strong>g of a <strong>metallic</strong> glass sample <strong>in</strong>to a micro-gear component.As an example, we will assume th<strong>at</strong> this <strong>metallic</strong> glass sample has the same m<strong>at</strong>erial properties as listed <strong>in</strong> Table1. The geometry for the micro-gear forg<strong>in</strong>g mould is taken from the work of Wang et al. (2005a) <strong>and</strong> is shown <strong>in</strong>Figure 7a. Also shown <strong>in</strong> Figure 7a is the <strong>in</strong>itial geometry for the cyl<strong>in</strong>drically-shaped <strong>metallic</strong> glass workpiece.Due to the symmetry of the form<strong>in</strong>g process, we will only model 1/12-th of an <strong>in</strong>itially-cyl<strong>in</strong>drical <strong>metallic</strong> glassworkpiece <strong>and</strong> the forg<strong>in</strong>g mould. Figure 7b shows the <strong>in</strong>itially-undeformed mesh of the <strong>metallic</strong> glass workpiece7 In fact, the orient<strong>at</strong>ion of the shear b<strong>and</strong>s are also very sensitive to the thermal conductivity coefficient, k th .


26 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)Top ViewSide ViewR 1.50Forg<strong>in</strong>g mouldMetallic glass workpiece23R 0.05R 0.30R 0.800.5R 0.102311120 o 0.6R 0.05R 2.01.0a) All dimensions are <strong>in</strong> mm.Forg<strong>in</strong>g mould0.01mm/sb)12 3Metallic glass workpieceFigure 7: (a) Initial geometry of the micro-forg<strong>in</strong>g mould <strong>and</strong> the <strong>metallic</strong> glass workpiece obta<strong>in</strong>ed from the work of Wang et al.(2005c)). (b) Initially-undeformed f<strong>in</strong>ite-element mesh of the forg<strong>in</strong>g mould (meshed us<strong>in</strong>g 1002 ABAQUS R3D4 rigid elements)<strong>and</strong> the <strong>metallic</strong> glass workpiece (meshed us<strong>in</strong>g 64560 ABAQUS C3D8R elements). Due to symmetry, we only mesh <strong>and</strong> simul<strong>at</strong>e1/12-th of the whole ensemble as shown <strong>in</strong> Figure 7a.<strong>and</strong> the forg<strong>in</strong>g mould. The <strong>metallic</strong> glass workpiece is meshed us<strong>in</strong>g 64560 ABAQUS C3D8R elements. Theforg<strong>in</strong>g mould is idealized as be<strong>in</strong>g a rigid body <strong>and</strong> it is meshed us<strong>in</strong>g 1002 ABAQUS R3D4 rigid elements.The whole ensemble is kept <strong>at</strong> a constant temper<strong>at</strong>ure of 663K <strong>and</strong> we assume th<strong>at</strong> isothermal conditions prevailthroughout the dur<strong>at</strong>ion of the simul<strong>at</strong>ion. The nodes on the bottom of the <strong>metallic</strong> glass workpiece is preventedfrom hav<strong>in</strong>g motion along axis-3. The rigid forg<strong>in</strong>g mould is then pressed <strong>in</strong>to the <strong>metallic</strong> glass workpiece <strong>at</strong> aspeed of 0.01mm/s along axis-3 with its other degrees of freedom be<strong>in</strong>g suppressed.Figure 8 shows the simul<strong>at</strong>ed forg<strong>in</strong>g load versus the displacement of the forg<strong>in</strong>g mould once the forg<strong>in</strong>gmould comes <strong>in</strong>to contact with the <strong>metallic</strong> glass specimen. Figures 8a to 8f show the geometry of the micro-gearrespectively keyed to po<strong>in</strong>ts a to f on the force-displacement curve shown <strong>in</strong> the same figure. Also plotted on thegeometry of the micro-gear are the contours of <strong>damage</strong> <strong>in</strong> the <strong>metallic</strong> glass specimen. As shown <strong>in</strong> Figure 8f, theforg<strong>in</strong>g mould is fully-filled once po<strong>in</strong>t f is reached on the force-displacement response. Hence net-shape form<strong>in</strong>gof the micro-gear component has been achieved <strong>at</strong> this po<strong>in</strong>t. The simul<strong>at</strong>ions are also able to predict the areas<strong>in</strong> the micro-gear which are <strong>damage</strong>d once the form<strong>in</strong>g process is completed cf. Figure 8f. Thus our simul<strong>at</strong>ionscan be used as a tool to aid <strong>in</strong> the design process of <strong>metallic</strong> glass specimens undergo<strong>in</strong>g superplastic form<strong>in</strong>g byidentify<strong>in</strong>g potential failure spots.4. Conclusion <strong>and</strong> future workThe coupled thermo-mechanical, three-dimensional <strong>and</strong> f<strong>in</strong>ite-deform<strong>at</strong>ion-based constitutive equ<strong>at</strong>ions for<strong>metallic</strong> <strong>glasses</strong> developed by Thamburaja <strong>and</strong> Ekambaram (2007) which have been modified to <strong>in</strong>clude a <strong>damage</strong>criterion has been shown to be capable of model<strong>in</strong>g the shear <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> eventual fracture process <strong>in</strong> <strong>metallic</strong>glass specimens tested <strong>at</strong> temper<strong>at</strong>ures with<strong>in</strong> the supercooled liquid region.


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 272520FEMfFORCE [kN]1510e5bcda00 0.05 0.1 0.15 0.2 0.25 0.3DISPLACEMENT OF FORGING MOULD [mm]DAMAGE1.00.90.80.70.60.50.40.30.20.10.0a)b)c)d)e) f)Figure 8: Simul<strong>at</strong>ed forg<strong>in</strong>g force versus mould displacement for the forg<strong>in</strong>g simul<strong>at</strong>ion described <strong>in</strong> Section 3.1. The simul<strong>at</strong>edcontours of <strong>damage</strong> plotted on the <strong>metallic</strong> glass workpiece keyed to po<strong>in</strong>ts a to f on the force-displacement curve are also shown.Furthermore, the present work also shows th<strong>at</strong> the orient<strong>at</strong>ion of shear b<strong>and</strong>s (fracture planes) with respectto the load<strong>in</strong>g direction under compressive stress-st<strong>at</strong>es is strongly dependent on the ambient test temper<strong>at</strong>ure<strong>and</strong> specimen geometry. This is to be expected s<strong>in</strong>ce a transient he<strong>at</strong> transfer problem is solved dur<strong>in</strong>g thedeform<strong>at</strong>ion of the <strong>metallic</strong> glass i.e. the he<strong>at</strong> conduction term <strong>in</strong> the energy balance equ<strong>at</strong>ion <strong>in</strong>troduces alength-scale <strong>in</strong>to the theory.Some future works <strong>in</strong>clude the model<strong>in</strong>g of physical experiments conducted under multi-axial load<strong>in</strong>g conditionse.g. form<strong>in</strong>g, three-po<strong>in</strong>t bend<strong>in</strong>g etc. These experiments are to be conducted under a variety of temper<strong>at</strong>ures<strong>and</strong> deform<strong>at</strong>ion r<strong>at</strong>es.AcknowledgementsThe f<strong>in</strong>ancial support for this work was provided by the M<strong>in</strong>istry of Science, Technology <strong>and</strong> Innov<strong>at</strong>ion,Malaysia under Grant 03-01-02-SF0257. The ABAQUS f<strong>in</strong>ite-element software was made available under anacademic license from SIMULIA.ReferencesAn<strong>and</strong>, L. <strong>and</strong> Gurt<strong>in</strong>, M. (2003). A theory of amorphous solids undergo<strong>in</strong>g large deform<strong>at</strong>ions, with applic<strong>at</strong>ionto polymeric <strong>glasses</strong>, Intern<strong>at</strong>ional Journal of Solids <strong>and</strong> Structures 40, pp. 1465–1487.


28 Ekambaram et al. / Intern<strong>at</strong>ional Journal of Structural Changes <strong>in</strong> Solids 1(2009)Bouchaud, E., Boiv<strong>in</strong>, D., Pouchou, J., Bonamy, D., Poon, B. <strong>and</strong> Ravich<strong>and</strong>ran, G. (2008). Fracture throughcavit<strong>at</strong>ion <strong>in</strong> a <strong>metallic</strong> glass, Europhysics Letters 83, p. 66006.Bruck, H., Christman, T., Rosakis, A. <strong>and</strong> Johnson, W. (1994). Quasi-st<strong>at</strong>ic constitutive behavior of zr-ti-cu-nibebulk amorphous alloy, Scripta Metallurgica et M<strong>at</strong>eriala 30, pp. 429–434.De Hey, P., Sietsma, J. <strong>and</strong> Van Den Beukel, A. (1998). Structural disorder<strong>in</strong>g <strong>in</strong> a amorphous pd-ni-p <strong>in</strong>ducedby <strong>high</strong> temper<strong>at</strong>ure deform<strong>at</strong>ions, Acta M<strong>at</strong>erialia 46, pp. 5873–5882.Du<strong>in</strong>e, P., Sietsma, J. <strong>and</strong> van den Beukel, A. (1992). Defect production <strong>and</strong> annihil<strong>at</strong>ion near equilibrium <strong>in</strong>amorphous pd-ni-p <strong>in</strong>vestig<strong>at</strong>ed from viscosity d<strong>at</strong>a, Acta Metallurgica M<strong>at</strong>erialia 40, pp. 743–751.Ekambaram, R., Thamburaja, P. <strong>and</strong> Nikabdullah, N. (2008). On the evolution of free volume dur<strong>in</strong>g thedeform<strong>at</strong>ion of <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures, Mechanics of M<strong>at</strong>erials 40, pp. 487–506.Guo, B., Guo, X., Ma, M., Shan, D. <strong>and</strong> Zhang, W. (2008). Influence of <strong>high</strong> temper<strong>at</strong>ure deform<strong>at</strong>ion on thefracture behavior of a bulk zr-based <strong>metallic</strong> glass, Journal of Non-Crystall<strong>in</strong>e Solids 354, pp. 3348–3353.Hassan, H., Kecskes, L. <strong>and</strong> Lew<strong>and</strong>owski, J. (2008). Effects of changes <strong>in</strong> test temper<strong>at</strong>ure <strong>and</strong> load<strong>in</strong>g conditionson fracture toughness of a zr-based bulk <strong>metallic</strong> glass, Metallurgical <strong>and</strong> M<strong>at</strong>erials Transactions A 39, pp.2077–2085.Heggen, M., Spaepen, F. <strong>and</strong> Feuerbacher, M. (2004). Plastic deform<strong>at</strong>ion of pd-ni-cu bulk <strong>metallic</strong> glass, M<strong>at</strong>erialsScience <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g A 375-377, pp. 1186–1190.Henann, D. <strong>and</strong> An<strong>and</strong>, L. (2008). A constitutive theory for the mechanical response of amorphous metals <strong>at</strong><strong>high</strong> temper<strong>at</strong>ures spann<strong>in</strong>g the glass transition temper<strong>at</strong>ure: Applic<strong>at</strong>ion to microscale thermoplastic form<strong>in</strong>g,Acta M<strong>at</strong>erialia 56, pp. 3290–3305.Huang, R., Suo, Z., Prevost, J. <strong>and</strong> Nix, W. (2002). Inhomogeneous deform<strong>at</strong>ion <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong>, Journal ofthe Mechanics <strong>and</strong> Physics of Solids 50, pp. 1011–1027.K<strong>at</strong>o, H., Kawamura, Y., Inoue, A. <strong>and</strong> Chen, H. (1998). Newtonian to non-newtonian master flow curves of abulk glass alloy pd-ni-cu-p, Applied Physics Letters 73, pp. 3665–3667.K<strong>at</strong>o, H., Kawamura, Y., Inoue, A. <strong>and</strong> Chen, H. (2001). Model<strong>in</strong>g of stress-stra<strong>in</strong> curves for pd-ni-cu-p glassalloy under constant stra<strong>in</strong>-r<strong>at</strong>e deform<strong>at</strong>ion, M<strong>at</strong>erials Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g A 304, pp. 758–762.Kim, H., K<strong>at</strong>o, H., Inoue, A., Chen, H. <strong>and</strong> Hong, S. (2004). Microform<strong>in</strong>g of bulk <strong>metallic</strong> <strong>glasses</strong> : Constitutivemodell<strong>in</strong>g <strong>and</strong> applic<strong>at</strong>ions, M<strong>at</strong>erials Transactions - JIM 45, pp. 1228–1232.Kroner, E. (1960). Allgeme<strong>in</strong>e kont<strong>in</strong>uumstheorie der versetzungen und eigenspannungen, Archive for R<strong>at</strong>ionalMechanics <strong>and</strong> Analysis 4, pp. 273–334.Lee, E. (1969). Elastic plastic deform<strong>at</strong>ion <strong>at</strong> f<strong>in</strong>ite stra<strong>in</strong>, Journal of Applied Mechanics 36, pp. 1–6.Lemaitre, J. (1985). Coupled elasto-plasticity <strong>and</strong> <strong>damage</strong> constitutive equ<strong>at</strong>ions, Computer Methods <strong>in</strong> AppliedMechanics <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g 51, pp. 31–49.Liu, L., Zhang, H., Li, H. <strong>and</strong> Zhang, G. (2009). Nanoscale morphologies on the fracture surface of bulk <strong>metallic</strong><strong>glasses</strong> <strong>in</strong> the supercooled liquid region, scripta m<strong>at</strong>erialia 60, pp. 795–798.Lu, J., Ravich<strong>and</strong>ran, G. <strong>and</strong> Johnson, W. (2003). Deform<strong>at</strong>ion behavior of the zr-ti-cu-ni-be bulk <strong>metallic</strong> glassover a wide range of stra<strong>in</strong>-r<strong>at</strong>es <strong>and</strong> temper<strong>at</strong>ures, Acta M<strong>at</strong>erialia 51, pp. 3429–3443.Masuhr, A., Busch, R. <strong>and</strong> Johnson, W. (1999). Thermodynamics <strong>and</strong> k<strong>in</strong>etics of the zr-ti-cu-ni-be bulk <strong>metallic</strong>glass form<strong>in</strong>g liquid: glass form<strong>at</strong>ion from a strong liquid, Journal of Non-Crystall<strong>in</strong>e Solids 252, pp. 566–571.Mol<strong>in</strong>ari, A. (1997). Collective behavior <strong>and</strong> spac<strong>in</strong>g of adiab<strong>at</strong>ic shear b<strong>and</strong>s, Journal of the Mechanics <strong>and</strong>Physics of Solids 45, pp. 1551–1575.Peker, A. <strong>and</strong> Johnson, W. (1993). A <strong>high</strong>ly processable <strong>metallic</strong> glass : Zr-ti-cu-ni-be, Applied Physics Letters63, pp. 2342–2344.Saotome, Y., H<strong>at</strong>ori, T., Zhang, T. <strong>and</strong> Inoue, A. (2001). Superplastic micro/nano-formability ofla 60 al 20 ni 10 co 5 cu 5 amorphous alloy <strong>in</strong> supercooled liquid st<strong>at</strong>e, M<strong>at</strong>erials Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g A 304-306, pp. 716–720.Shen, J., Wang, G., Sun, J., Stachurski, Z., Yan, C., Ye, L. <strong>and</strong> Zhou, B. (2005). Superplastic deform<strong>at</strong>ionbehavior of zr-ti-ni-cu-be bulk <strong>metallic</strong> glass <strong>in</strong> the supercooled liquid region, Inter<strong>metallic</strong>s 13, pp. 79–85.Thamburaja, P. <strong>and</strong> Ekambaram, R. (2007). Coupled thermo-mechanical modell<strong>in</strong>g of bulk-<strong>metallic</strong> <strong>glasses</strong> :Theory, f<strong>in</strong>ite-element simul<strong>at</strong>ions <strong>and</strong> experimental verific<strong>at</strong>ion, Journal of the Mechanics <strong>and</strong> Physics ofSolids 55, pp. 1236–1273.


Ekambaram et al. / <strong>Shear</strong> <strong>localiz<strong>at</strong>ion</strong> <strong>and</strong> <strong>damage</strong> <strong>in</strong> <strong>metallic</strong> <strong>glasses</strong> <strong>at</strong> <strong>high</strong> homologous temper<strong>at</strong>ures 29Wang, G., Shen, J., Sun, J., Huang, Y., Zou, J., Lu, Z., Stachurski, Z. <strong>and</strong> Zhou, B. (2005a). Superplasticity<strong>and</strong> superplastic form<strong>in</strong>g ability of a zr-t<strong>in</strong>icube bulk <strong>metallic</strong> glass <strong>in</strong> the supercooled liquid region, Journalof Non-Crystall<strong>in</strong>e Solids 351, pp. 209–217.Wang, G., Shen, J., Sun, J., Lu, Z., Stachurski, Z. <strong>and</strong> Zhou, B. (2005b). Compressive fracture characteristics ofa zr-based bulk <strong>metallic</strong> glass <strong>at</strong> <strong>high</strong> test temper<strong>at</strong>ures, M<strong>at</strong>erials Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g A 398, pp. 82–87.Wang, G., Shen, J., Sun, J., Lu, Z., Stachurski, Z. <strong>and</strong> Zhou, B. (2005c). Tensile fracture characteristics <strong>and</strong>deform<strong>at</strong>ion behavior of a zr-based bulk <strong>metallic</strong> glass <strong>at</strong> <strong>high</strong> temper<strong>at</strong>ures, Inter<strong>metallic</strong>s 13, pp. 642–648.Yang, Q., Mota, A. <strong>and</strong> Ortiz, M. (2006). A f<strong>in</strong>ite-deform<strong>at</strong>ion constitutive model of bulk <strong>metallic</strong> glass plasticity,Comput<strong>at</strong>ional Mechanics 37, pp. 194–204.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!