11.07.2015 Views

Assignment 2 Solution to Problem 1 on Fluidized Beds

Assignment 2 Solution to Problem 1 on Fluidized Beds

Assignment 2 Solution to Problem 1 on Fluidized Beds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Assignment</str<strong>on</strong>g> 2<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>Problem</str<strong>on</strong>g> 1 <strong>on</strong> <strong>Fluidized</strong> <strong>Beds</strong>


Data givenParameterValueParticle Size (m) 350 x 10 -6Particle Density (kg m -3 ) 2400Gas Density (kg m -3 ) 1.01Specific heat of particles (J kg -1 K -1 ) 800Specific heat of gas (J kg -1 K -1 ) 1050C<strong>on</strong>ductivity of particles (W m -1 K -1 ) 18.9C<strong>on</strong>ductivity of gas (W m -1 K -1 ) 0.027Gas viscosity (kg m -1 s -1 ) 1.9 x 10 -5Bed voidage (-) 0.4Bed Diameter (m) 0.1Bed Height (m) 0.15


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q11. What is the Geldart type of this particle? What are its expected flow characteristics?Answer: From the data given the particle diameter is 350 µm and particle density is 2400 kg/m 3 .From the above figure which divides area in four different regi<strong>on</strong>s based <strong>on</strong> theparticle properties, the said particles are of type “B”. These particles will have goodfluidizati<strong>on</strong> quality, vigorous bubbling, slug at high velocity, small bed expansi<strong>on</strong>, goodsolids mixing in bubbling


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q22. What is the minimum fluidizati<strong>on</strong> velocity?Answer: For whole range of Reynolds numberAll properties are known, hence simply finding the value of minimum fluidizati<strong>on</strong> velocityHence U mf = 0.089 m s -1 for this case Reynolds number isRe p,mf = 1.65


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q33. What is the terminal settling velocity?Answer: Single particle settling velocity, We assume that 0.4


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q3Answer: Hindered particle settling velocity, We assume that Rep>500,( )( )1/2⎡ 3.1 ρ ⎤p-ρg gdpurel,t= ⎢⎥ εf ( ε ),⎢⎣ρg ⎥⎦where0.4f ε =ε =0.693.Hence,urel,t=1.4 m s-1Checking validity of assumpti<strong>on</strong> by recalculating Reynolds numberρRe=whereρd uave p rel,tμeffave f g=25637>500, which justify our assumpti<strong>on</strong>=ερ +(1-ε)ρ =1440 kg mμμeff= =2.74 × 100.4εkg m-3s-5 -1 -1


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q4, 5 and 64. What will be the bed c<strong>on</strong>diti<strong>on</strong> if the bed height is doubled?5. What will be the bed c<strong>on</strong>diti<strong>on</strong> if the velocity is twice minimum fluidizati<strong>on</strong> velocity6. What is the recommended operating velocityAnswer: Before we answer the questi<strong>on</strong>, we need <str<strong>on</strong>g>to</str<strong>on</strong>g> know the bed c<strong>on</strong>diti<strong>on</strong> with existingc<strong>on</strong>diti<strong>on</strong>. First we calculate Froude number, Reynolds number and bed height atminimum fluidizing c<strong>on</strong>diti<strong>on</strong> [2,3] ,mf p gRep,mf= =1.7,mfpu d ρμ2umfFrmf= =2.3,d gH =1.3d0.175t=1.3mNext, we determine fluidizati<strong>on</strong> regime by using⎛ ρs-ρg ⎞⎛ L ⎞mfFr Re =12072>100⎜⎟⎜ρ ⎟ ⎟⎝ g ⎠ ⎝ dt⎠( mf )( p,mf )[2]A. S. Mujumdar, 2010, Heat Transfer in <strong>Fluidized</strong> <strong>Beds</strong>- An overview. Available <strong>on</strong>line at: www.serve.me.nus.edu.sg/arun[3]J. P. C<strong>on</strong>stantineau, J.R. Grace, C.J. Lim, G.G. Richards, 2007, Generalized bubbling–slugging fluidized bed reac<str<strong>on</strong>g>to</str<strong>on</strong>g>r model, Chemical Engineering Science Vol 62 pp. 70 – 81


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q4, 5 and 6This implies that fluidizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> is bubbling or aggregative fluidizati<strong>on</strong>.If the bed height is doubled, the bed c<strong>on</strong>diti<strong>on</strong> will not change except that it will increasepressure drop across the bed, for which higher pumping power is required.Now we check slugging criteriauums mf tms=u +0.07 gd=0.31m shence,2u


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q4, 5 and 6In fluidized bed operati<strong>on</strong>, velocity has <str<strong>on</strong>g>to</str<strong>on</strong>g> be higher than minimum fluidizati<strong>on</strong> velocity.However, we do not want velocity in which the particle is flashed out from the chamber; hence,it should not exceed hindered settling velocity.Maximum allowable velocity = 1.4 m s -1Minimum allowable velocity = 0.089 m s -1As such, recommended velocity is the velocity in between both value. Moreover, <str<strong>on</strong>g>to</str<strong>on</strong>g> achieveslugging c<strong>on</strong>diti<strong>on</strong>, recommended velocity is chosen as 4 u mf = 0.35 m s -1Of course the choice of velocity can be different depending <strong>on</strong> the c<strong>on</strong>diti<strong>on</strong>s of fluidizati<strong>on</strong><strong>on</strong>e is interested in, but for our next calculati<strong>on</strong>s, we have used this velocity


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q77. What is particle <str<strong>on</strong>g>to</str<strong>on</strong>g> gas heat transfer coefficient?Answer: Single Particle <str<strong>on</strong>g>to</str<strong>on</strong>g> gas heat transfer coefficient can be calculated as [1] ,h d =2+0.6Prks p 1/3g( Re ) 1/2pThe recommended velocity (0.35 m s -1 ) will be usedcpgμPr= =0.74,kgp gRep= =6.5,hencehsd p1/3 1/2=2+0.6 0.74 6.5 ,kghsd p=3.38,ksgud ρμh =261 W m K( ) ( )-2 -1[1]D. Kunii, O. Levenspiel, 1969, Fluidizati<strong>on</strong> Engineering, Wiley, New York


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q77. What is particle <str<strong>on</strong>g>to</str<strong>on</strong>g> gas heat transfer coefficient?Answer: For fluidized Bed, Particle <str<strong>on</strong>g>to</str<strong>on</strong>g> gas heat transfer coefficient can be calculated as [1] ,The recommended velocity (0.35 m s -1 ) will be usedcpgμPrg= =0.74,While usingkgudpρforgRep= =6.5,μhsdp h( ) 1.3 sdp=0.03 6.5 or =0.34,hencekkhsd p1/3 1.4=0.0282 0.74 6.5 ,kghsd p=0.351,ksgh =27.06 W m K( ) ( )-2 -1forforsgh =26.37 W m K-2 -1It can be seen that the particle-gas heat transfercoefficient for fluidized bed is much lower than forsingle particle – gas heat transfer coefficient.At higher particle Reynolds number, however, heattransfer coefficient in fluidized bed increases, mainlyfor particles of larger diameterg[1]D. Kunii, O. Levenspiel, 1969, Fluidizati<strong>on</strong> Engineering, Wiley, New York


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q88. What if operating velocity is <strong>on</strong>e half of the minimum fluidizing velocity? Estimate the heattransfer coefficient for this c<strong>on</strong>diti<strong>on</strong>Answer: At this c<strong>on</strong>diti<strong>on</strong> the bed will be in a fixed bed regime,p gRep= =0.83,hencehsd p1/3 0.6=2+1.1 0.74 0.83 ,kghsd p=2.89,ksgud ρμh =222.9 W m K( ) ( )-2 -1


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q99. Estimate the heat transfer coefficient for operating velocity of the fluidized bed which is 6times the minimum fluidizing velocity. What will be the fluidized bed c<strong>on</strong>diti<strong>on</strong> in this case?Answer: the bed c<strong>on</strong>diti<strong>on</strong> is slugging fluidizati<strong>on</strong> and the heat transfer coefficient is,h d =0.0282 Prks p 1/3gp gRep= =9.9,hence( Rep )1.4hsd p1/3 1.4=0.0282 0.74 9.9 ,kghsd p=0.63,ksgud ρμh =48.78 W m K( ) ( )-2 -1


<str<strong>on</strong>g>Soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> Q1010. Estimate heat transfer coefficient if a vertical tube of 5cm diameter is immersed in the bed.Answer: When a vertical tube is immersed in the bed, the heat transfer coefficient is [2] ,h ⎛ ρ ⎞ ⎛ ⎞ ⎛− ρ ⎞cdp 4 0.23Cpg gCps s= 3.51× 10 CR( 1 −ε) Rep⎜ ⎟ ⎜ ⎟ ⎜ ,k ρ ⎟g ⎝ kg ⎠ ⎝ Cpg ⎠ ⎝ g ⎠⎛ r ⎞ ⎛ r ⎞C =1.07+3.04⎜ ⎟-3.29 ⎜ ⎟ , where R =0.5 d⎝ Rb⎠ ⎝ Rb⎠R b tfor 10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!