11.07.2015 Views

Vector Function Continuity of Vector Function Differentiability of a ...

Vector Function Continuity of Vector Function Differentiability of a ...

Vector Function Continuity of Vector Function Differentiability of a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Acceleration 6• Example Let a be a positive constant. Find the curvature <strong>of</strong> the curver(t) = (a sin t, a cos t, t).soWe haveConsequentlyT =drdtdTdt= (a cos t, −a sin t, 1),∥ ds ∥∥∥∥dt = dr ∥ ∥∥dt ∥ = √ a 2 + 1,drdt∥ dr∥dt=(a cos t, −a sin t, 1)√ ,a2 + 1(−a sin t, −a cos t, 0)= √ .a2 + 1∥ ∥ dT∥∥ dTκ =∥ ds ∥ = ∥dtdsdt= aa 2 + 1 .NormalThe tangent vector T satisfies T · T = 1. When this identity is differentiated withrespect to s, we obtaindTds · T + T · dTds = 0.Therefore T · dTds = 0. At a point where κ= ∥ ∥ ∥dTdsis given byThusdTdsN = ∥ ∥ dT= 1 dT∥ κ ds .dsdTds = κN.∥ ∥∥ is nonzero, the principal unit normalAccelerationSince the velocity v satisfiesv = drdt = drdsdsdt = T dsdt , March 17, 2001


Curvature for a Plane Curve 7the acceleration a satisfiesa = dvdt = dT dsdt dt + T d2 sdt = dT2 ds= κ( ) 2dsN + d2 sdt dt T. 2( ) 2ds+ T d2 sdt dt 2In this way, the quantity d2 sis expressed as the tangential component <strong>of</strong> accelerationdt 2while the quantity κ ( ) 2dsdt is expressed as the normal component <strong>of</strong> acceleration. Since⎛v · a = T ds ( ) ⎞2dsdt · ⎝κ N + d2 sdt dt T 2the tangential component <strong>of</strong> acceleration isThe computationv × a = dsdt T × ⎛⎝κd 2 sdt = v · a2 dsdtand the fact ‖T × N‖ = 1 show that= r′ (t) · r ′′ (t)‖r ′ (t)‖ .( ) ⎞2dsN + d2 sdt dt T ⎠ = κ2⎠ = dsdtd 2 sdt 2 ,( ) 3dsT × Ndtκ =‖v × a‖( dsdt) 3= ‖r′ (t) × r ′′ (t)‖‖r ′ (t)‖ 3 .Therefore, the normal component <strong>of</strong> acceleration may be expressed as‖r ′ (t) × r ′′ (t)‖.‖r ′ (t)‖Curvature for a Plane CurveSuppose that the plane curve is given by (x(t), y(t)). Regard it as a space curve r(t) =(x(t), y(t), 0), its curvature equalsκ = ‖r′ (t) × r ′′ (t)‖‖r ′ (t)‖ 3= ‖(x′ , y ′ , 0) × (x ′′ , y ′′ , 0)‖‖(x ′ , y ′ , 0)‖ 3= |x′ y ′′ − y ′ x ′′ |[(x ′ ) 2 + (y ′ ) 2 ] 3/2 . March 17, 2001


Radius,Center,Circle <strong>of</strong> Curvature 8Suppose that the plane curve is the graph y = f(x) <strong>of</strong> the function f(x). It can beregarded as the parametric curve(x, f(x), 0).Hence its curvature equalsκ = |1 · f ′′ (x) − f ′ (x) · 0|[1 2 + (f ′ (x)) 2 ] 3/2 =|f ′′ (x)|[1 + (f ′ (x)) 2 ] 3/2 .Geometric Interpretation∣ ∣κ = ∣∣ ∣∣∣dφds ∣φ =the angle that the tangent makes with the x-axisSince tan φ = y ′ , it follows that φ = tan −1 y ′ soIt follows from the chain rule thatdφdx = y ′′1 + (y ′ ) 2 .dφdx = dφ dsds dx = dφ √1 + (yds′ ) 2 .Hence∣ dφ∣ ∣∣ =∣ ds∣ dφ∣dx√1 + (y ′ ) = |y ′′ |= κ.2 (1 + (y ′ ) 2 3/2)Radius,Center,Circle <strong>of</strong> CurvatureThe reciprocalρ = 1 κ<strong>of</strong> the curvature is called the radius <strong>of</strong> curvature. A point at a distance ρ from thecurve in the direction <strong>of</strong> principal normal is called the center <strong>of</strong> curvature. Thecircle with center at center <strong>of</strong> curvature and radius ρ is called the osculating circle(also called the circle <strong>of</strong> curvature.) Thus the position vector <strong>of</strong> the center <strong>of</strong> curvatureis r + N κ = r + ρN. March 17, 2001


Binormal 10for some scalar function τ which is known as the torsion <strong>of</strong> the curve. We now showhow this function may be computed as function <strong>of</strong> t :Differentiating both sides <strong>of</strong>with respect to t we obtainSinceand sinceit follows thatd 2 ( ) 2r dsdt = a = κ N + d2 s2 dt dt T 2⎡d 3 rdt = d ( ) ⎤ 2⎣ d2 s ds3 dt dt T + κN ⎦2 dt( )= d3 sdt T + d2 s dT ds d 2 ( ) 2 ( ) 2 3 dt 2 dt + 2 s dsdt dt κN + dκ ds2 dt dt N + κ dN dt dt .dTdt = κds dt NdNdt = dN dsds dt = dsdt (dB ds × T + B × dTds )= ds (−τN × T + B × (κN))dt= ds (τB − κT ),dtd 3 [r d 3 ] [dt = s3 dt − (ds 3 dt )3 κ 2 T + 3( ds sdt )(d2 )κ + (dsdt2 dt )2 ( dκdt ) ]N + ( dsdt )3 κτB.Also we haveThereforeConsequently[drdt × d2 rd 2 ]dt = (ds 2 dt T ) × sdt T + (ds2 dt )2 κNτ == ( dsdt )3 κT × N = ( dsdt )3 κB.d 3 [ ]r drdt · 3 dt × d2 r= ( dsdt 2 dt )6 κ 2 τ.dr · d2 r× d3 rdt dt 2 dt[ 3( dsdt) 3κ] 2=dr · d2 rdt dt 2× d3 rdt 3∥ ∥∥ drdt × d2 rdt 2 ∥ ∥∥ 2 . March 17, 2001


Formula <strong>of</strong> Frenet 11Formula <strong>of</strong> FrenetDifferentiating N · N = 1 with respect to s we haveTherefore dNdsdNds · N = 0.can be expressed asdNds = α 1T + α 2 Bfor some scalars α 1 , α 2 . To determine these scalars we haveα 1 = α 1 T · T = (α 1 T + α 2 B) · T = dNds · T = −dT ds · N= −κN · N = −κandThereforeSummery:α 2 = α 2 B · B = (α 1 T + α 2 B) · B = dNds · B = −dB ds · NdT= dsdNdsdNds= τN · N = τ.= −κT + τB.κN= −κT +τBdBds = −τB March 17, 2001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!