11.07.2015 Views

Impact of Coal Mining on Vegetation: A Case Study in Jaintia Hills ...

Impact of Coal Mining on Vegetation: A Case Study in Jaintia Hills ...

Impact of Coal Mining on Vegetation: A Case Study in Jaintia Hills ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAand 23 families <strong>in</strong> z<strong>on</strong>e-III, and 34 species bel<strong>on</strong>g<strong>in</strong>g to 33 genera and 21 families <strong>in</strong> z<strong>on</strong>e-IV (Table4.1).Table 4.1: Species, generic and family compositi<strong>on</strong>s <strong>in</strong> different z<strong>on</strong>esSpecies compositi<strong>on</strong> C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTreesNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 27 4 7 3 11No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 24 4 7 3 10No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 19 4 7 3 9ShrubsNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 27 19 25 22 34No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 22 18 25 23 33No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 18 13 17 16 21HerbsNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 23 39 41 40 34No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 21 38 41 39 33No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 15 25 26 23 21S<strong>in</strong>ce the m<strong>in</strong>ed and unm<strong>in</strong>ed areas had similar climatic, edaphic and physiographic features thedifferences <strong>in</strong> species compositi<strong>on</strong> could be attributed to the m<strong>in</strong><strong>in</strong>g activities. This is <strong>in</strong> agreementwith the f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> Das Gupta (1999), Baig (1992), Jha and S<strong>in</strong>gh (1990). Sarma (2002), whilestudy<strong>in</strong>g the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> the vegetati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nokrek Biosphere Reserve<str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya outl<strong>in</strong>ed that the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> reduces <strong>in</strong> the m<strong>in</strong>ed areas with that <str<strong>on</strong>g>of</str<strong>on</strong>g> theadjacent unm<strong>in</strong>ed areas. Lyngdoh et al. (1992) reported less number <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> the m<strong>in</strong>e spoils <str<strong>on</strong>g>of</str<strong>on</strong>g>different ages to that the unm<strong>in</strong>d sites. Ivers<strong>on</strong> and Wali (1982) observed an <strong>in</strong>crease <strong>in</strong> speciesrichness with age <strong>in</strong> reclaimed coal m<strong>in</strong>e spoils.4.1.2. DensityThe tree density <strong>in</strong> the m<strong>in</strong>ed areas ranged between 515 and 647 stems per ha while <strong>in</strong> the unm<strong>in</strong>edarea it was 1040 stems per ha. There was not much variati<strong>on</strong> <strong>in</strong> the shrub density but density <str<strong>on</strong>g>of</str<strong>on</strong>g>herbaceous species was remarkably higher <strong>in</strong> the m<strong>in</strong>ed areas (154-178 <strong>in</strong>dividual/m 2 ) than theunm<strong>in</strong>ed area (32 <strong>in</strong>dividual/m 2 ) (Table 4.2).The unm<strong>in</strong>ed area had greater plant density compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed areas because <str<strong>on</strong>g>of</str<strong>on</strong>g> the acidicpH, moisture stress and nutrient property <str<strong>on</strong>g>of</str<strong>on</strong>g> litter. Low grow form, sparse density and ability totolerate low nutrient levels and low moisture c<strong>on</strong>diti<strong>on</strong>s are probably the adaptati<strong>on</strong>s to the harshphysical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate. Low nutrient habitats are usually col<strong>on</strong>ized by species with low relativegrowth rates. These adaptati<strong>on</strong>s enable col<strong>on</strong>iz<strong>in</strong>g species to maximize the nutrient uptake and ensurehigh nutrient use efficiency <strong>in</strong> low nutrient envir<strong>on</strong>ments (Baig, 1992). Lyngdoh (1995), Das Gupta(1999) and Sarma’s (2002) works lend support to the present f<strong>in</strong>d<strong>in</strong>gs. Bradshaw and Chadwick(1980) work<strong>in</strong>g <strong>on</strong> the colliery spoils reported that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> species col<strong>on</strong>iz<strong>in</strong>g <strong>on</strong> the m<strong>in</strong>edareas was <strong>in</strong>fluenced by its pH.30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!