28.11.2012 Views

Mechanisms of aluminium neurotoxicity in oxidative stress-induced ...

Mechanisms of aluminium neurotoxicity in oxidative stress-induced ...

Mechanisms of aluminium neurotoxicity in oxidative stress-induced ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Universidade de Santiago de Compostela<br />

Facultade de Medic<strong>in</strong>a<br />

Departamento de Bioquímica e Bioloxía Molecular<br />

<strong>Mechanisms</strong> <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> <strong>in</strong><br />

<strong>oxidative</strong> <strong>stress</strong>-<strong>in</strong>duced degenerative<br />

processes <strong>in</strong> relation to Park<strong>in</strong>son's disease<br />

Tesis doctoral<br />

S<strong>of</strong>ía Sánchez Iglesias<br />

2009


Universidade de Santiago de Compostela<br />

Facultade de Medic<strong>in</strong>a<br />

Departamento de Bioquímica e Bioloxía Molecular<br />

<strong>Mechanisms</strong> <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> <strong>in</strong><br />

<strong>oxidative</strong> <strong>stress</strong>-<strong>in</strong>duced degenerative processes <strong>in</strong><br />

relation to Park<strong>in</strong>son’s disease<br />

Estudio de los mecanismos de neurotoxicidad del alum<strong>in</strong>io<br />

en procesos degenerativos por estrés oxidativo<br />

relacionados con la enfermedad de Park<strong>in</strong>son<br />

MEMORIA presentada por<br />

SOFÍA SÁNCHEZ IGLESIAS<br />

para optar al Grado de Doctor en Bioquímica<br />

Santiago de Compostela<br />

2009


Don Ramón Soto Otero y Doña Estefanía Méndez Álvarez, pr<strong>of</strong>esores titulares del<br />

Departamento de Bioquímica y Biología Molecular de la Universidad de Santiago de<br />

Compostela,<br />

INFORMAN:<br />

Que la presente memoria titulada Estudio de los Mecanismos de Neurotoxicidad<br />

del Alum<strong>in</strong>io en Procesos Degenerativos por Estrés Oxidativo Relacionados con la<br />

Enfermedad de Park<strong>in</strong>son, presentada por Doña S<strong>of</strong>ía Sánchez Iglesias para optar al<br />

grado de Doctor en Bioquímica, ha sido realizada bajo nuestra dirección en los<br />

Laboratorios del Departamento de Bioquímica y Biología Molecular de esta<br />

Universidad, y considerando que constituye trabajo de tesis y reúne los requisitos<br />

necesarios para ser valorado por el tribunal correspondiente, autorizamos su<br />

presentación al Consejo de Departamento correspondiente.<br />

Y para que así conste y surta los efectos oportunos, firmamos el presente<br />

<strong>in</strong>forme en Santiago de Compostela a 15 de octubre de 2009.<br />

El Director de la Tesis La Directora de la Tesis<br />

Ramón Soto Otero<br />

Pr<strong>of</strong>esor titular<br />

Dpto. Bioquímica y Biología Molecular<br />

El Doctorando<br />

S<strong>of</strong>ía Sánchez Iglesias<br />

Estefanía Méndez Álvarez<br />

Pr<strong>of</strong>esora titular<br />

Dpto. Bioquímica y Biología Molecular


Esta Tesis Doctoral forma parte de los Proyectos de Investigación:<br />

“Estudio de los mecanismos de neurotoxicidad del alum<strong>in</strong>io en procesos degenerativos<br />

por estrés oxidativo relacionados con la enfermedad de Park<strong>in</strong>son” de la Xunta de<br />

Galicia (PGIDIT03PXIB20804PR; 2003-2006).<br />

“Búsqueda de un nuevo fármaco para el tratamiento de la enfermedad de Park<strong>in</strong>son<br />

con una doble acción farmacológica: <strong>in</strong>hibidora MAO-B y neuroprotectora frente al<br />

estrés oxidativo <strong>in</strong>ducido por dopam<strong>in</strong>a” del M<strong>in</strong>isterio de Ciencia y Tecnología con la<br />

contribución del Fondo Europeo de Desarrollo Regional (BFI2003-00493; 2004-2007).<br />

“Búsqueda de un nuevo fármaco para el Park<strong>in</strong>son: Inhibidor MAO-B y protector de los<br />

efectos <strong>in</strong>ducidos por la dopam<strong>in</strong>a sobre la cadena de transporte electrónico<br />

mitocondrial” del M<strong>in</strong>isterio de Ciencia e Innovación (SAF2007-66114; 2007-2010).<br />

La realización de esta Tesis ha sido posible gracias a la concesión de las becas y ayudas<br />

de la Xunta de Galicia y de Roche Research Foundation (Suiza).


Acknowledgements<br />

The work <strong>of</strong> this thesis could not have been accomplished if it wasn’t for the people<br />

below.<br />

First and foremost I wish to express my s<strong>in</strong>cere gratitude and appreciation to<br />

my two excellent directors <strong>of</strong> the thesis, Pr<strong>of</strong>. Ramón Soto-Otero and Pr<strong>of</strong>. Estefanía<br />

Méndez-Álvarez. It has been an honour to work with you and learn from you. Thank<br />

you Ramón for given me the opportunity to work with<strong>in</strong> the Neurochemistry research<br />

group and for provid<strong>in</strong>g me an excit<strong>in</strong>g research project. Your <strong>in</strong>sightful advice,<br />

guidance, and support make my Ph.D. experience productive and stimulat<strong>in</strong>g. Thank<br />

you Fanny for your cont<strong>in</strong>uous encouragements, patience, and valuables feedbacks.<br />

I wish to express special thanks to my colleague and friend Javier Iglesias-<br />

González who shared with me a lot <strong>of</strong> ideas and provided a dynamic and stimulat<strong>in</strong>g<br />

environment. Javi, thank you for your pr<strong>of</strong>essional and personal support that made my<br />

graduate experience more enjoyable. I don’t forget our valuable discussions and our<br />

numerous memorable giggles; it has been a pleasure work<strong>in</strong>g together.<br />

I wish to express my appreciation to all members past or present <strong>of</strong> the<br />

Neurochemistry research group that I have had the pleasure to work with or alongside,<br />

especially Dr. Álvaro Hermida-Ameijeiras for his guidance and assistance <strong>in</strong> the first<br />

years <strong>of</strong> this work.<br />

Grateful acknowledgements are also made to Pr<strong>of</strong>. José Luis Labandeira-García<br />

for constructive criticism and detailed review dur<strong>in</strong>g the preparation <strong>of</strong> the<br />

publications, Pr<strong>of</strong>. Jannette Rodriguez Pallares for excellent advice, Dr. Ana Muñoz-<br />

Patiño and Pablo Rey for immunohistochemistry studies, and Pr<strong>of</strong>. Pilar Bermejo-<br />

Berrera and Pr<strong>of</strong>. María del Carmen Barciela-Alonso for electrothermal atomic<br />

absorption spectrometry experiments.


Now life is not only science, I would therefore use this opportunity to thank my<br />

best friend Rosi for her patience and care dur<strong>in</strong>g good and tough times <strong>in</strong> the Ph.D.<br />

pursuit. Always beside me.<br />

F<strong>in</strong>ally, I would like to dedicate this work to my family: my grandmother<br />

Carmen and my grandfather Jesús always <strong>in</strong> my m<strong>in</strong>d, my brother Jesús for his way <strong>of</strong><br />

be<strong>in</strong>g, and very especially my parents María del Carmen and Alfonso for their unend<strong>in</strong>g<br />

love and support from ever. Thank you.


Abbreviations<br />

AA ascorbic acid<br />

AD Alzheimer’s disease<br />

ADH aldehyde dehydrogenase<br />

BBB blood-bra<strong>in</strong> barrier<br />

BG basal ganglia<br />

BHT butylated hydroxytoluene<br />

BioH4<br />

5,6,7,8-tetrahydrobiopter<strong>in</strong><br />

BSA bov<strong>in</strong>e serum album<strong>in</strong>e<br />

CaM calmodul<strong>in</strong><br />

CAT catalase<br />

CBD corticobasal degeneration<br />

Cdk5 cycl<strong>in</strong>-dependent k<strong>in</strong>ase 5<br />

CMA chaperone mediated autophagy<br />

CNS central nervous system<br />

COMT catechol-O-methyl transferase<br />

COX-2 cyclooxygenase-2<br />

CSF cerebrosp<strong>in</strong>al fluid<br />

CT computarized tomography<br />

CySH cyste<strong>in</strong>e<br />

DA 3-hydroxytyram<strong>in</strong>e hydrochloride (dopam<strong>in</strong>e)<br />

DAergic dopam<strong>in</strong>ergic<br />

DAT dopam<strong>in</strong>e transporter<br />

DES dialysis encephalopathy syndrome<br />

DLB dementia with Lewy bodies<br />

DMV dorsal motor nucleus <strong>of</strong> the vagus<br />

DOPAC dihydroxyphenylacetic acid<br />

DOPAL 3,4-dihydroxyphenylacetaldehyde<br />

eNOS endothelial nitric oxide synthase<br />

EOPD early onset <strong>of</strong> Park<strong>in</strong>son’s disease<br />

ER endoplasmic reticulum<br />

FeBAD fetal basis <strong>of</strong> adult disease<br />

GABA �-am<strong>in</strong>obutyric acid<br />

GPCR G-prote<strong>in</strong> coupled receptor<br />

GPe external globus pallidus<br />

GPi <strong>in</strong>ternal globus pallidus<br />

GPx glutathione peroxidase<br />

GR glutathione reductase<br />

GSH reduced glutathione


Abbreviations (cont<strong>in</strong>uation)<br />

GSSH oxidized glutathione<br />

H2O2<br />

hydrogen peroxide<br />

HVA homovanillic acid<br />

IL <strong>in</strong>terleuk<strong>in</strong><br />

iNOS <strong>in</strong>ducible nitric oxide synthase<br />

IP3 <strong>in</strong>ositol triphosphate<br />

JP juvenile park<strong>in</strong>sonism<br />

KO knock-out<br />

LB Lewy body<br />

L-DOPA 3,4-dihydroxy-L-phenylalan<strong>in</strong>e<br />

LN Lewy neurite<br />

LPS lipopolysaccharide<br />

Maneb manganese ethylenebisadithiocarbamate<br />

MAO monoam<strong>in</strong>e oxidase<br />

MAPK mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase<br />

MDA malonodialdehyde<br />

MEF2 myocyte enhancer factor 2<br />

MFB median forebra<strong>in</strong> bundle<br />

mGLUR metabotropic glutamate receptor<br />

Mit mitochondria<br />

MPP + 1-methyl-4-phenyl pyrid<strong>in</strong>ium ion<br />

MPPP 1-methyl-4-phenyl-4-propionoxy-piperid<strong>in</strong>e<br />

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e<br />

MRI magnetic resonance imag<strong>in</strong>g<br />

MSA multiple system atrophy<br />

mtDNA mitochondrial DNA<br />

MTP mitochondrial transition pore<br />

NBM nucleus basalis <strong>of</strong> Meynert<br />

NINDS National Institute <strong>of</strong> Neurological Disorders and Stroke<br />

NMDAR glutamate N-methyl-D-aspartate receptor<br />

nNOS neuronal nitric oxide synthase<br />

NO ● / NO nitric oxide<br />

oxygen<br />

O2<br />

O2 ●─ superoxide anion<br />

oatp organic anion transport<strong>in</strong>g polypeptide<br />

● OH hydroxyl radical<br />

6-OHDA 6-hydroxydopam<strong>in</strong>e<br />

ONOO ●─ peroxynitrite


Abbreviations (cont<strong>in</strong>uation)<br />

PCC prote<strong>in</strong> carbonyl content<br />

PCD programmed cell death<br />

PD Park<strong>in</strong>son’s disease<br />

PET positron emission tomography<br />

PI phosphatidyl<strong>in</strong>ositol<br />

PIP2<br />

phosphatidyl<strong>in</strong>ositol biphosphate<br />

PI-PLC phosphatidyl<strong>in</strong>ositol-specific phospholipase C<br />

PKC prote<strong>in</strong> k<strong>in</strong>ase C<br />

PQ 1,1’-dimethyl-4,4’-bipyrid<strong>in</strong>ium, paraquat<br />

Prx2 peroxiredox<strong>in</strong> 2<br />

PSP progressive supranuclear palsy<br />

PTC prote<strong>in</strong> thiol content<br />

RNS reactive nitrogen species<br />

ROOH hydroperoxides<br />

ROS reactive oxygen species<br />

SN substantia nigra<br />

SNpc substantia nigra pars compacta<br />

SNpr substantia nigra pars reticularis<br />

SOD superoxide dismutase<br />

SPECT s<strong>in</strong>gle photon emission computarized tomography<br />

STN subthalamic nucleus<br />

t½<br />

half life<br />

TBA thiobarbituric acid<br />

TBARS thiobarbituric acid reactive substances<br />

TEP 1,1,3,3-tetraethoxypropane<br />

TH tyros<strong>in</strong>e hydroxylase, tyros<strong>in</strong>e 3-monooxygenase<br />

TH-ir tyros<strong>in</strong>e hydroxylase immunoreactivity<br />

TNF-� tumour necrosis factor-�<br />

TPN total parenteral nutrition<br />

UPS ubiquit<strong>in</strong>-proteasome system<br />

VTA ventral tegmental area<br />

wt wild type<br />

YOPD young-onset PD


List <strong>of</strong> figures<br />

Introduction<br />

Figure 1 An essay <strong>of</strong> the shak<strong>in</strong>g palsy 1<br />

Figure 2 The Park<strong>in</strong>son’s complex 3<br />

Figure 3 Dopam<strong>in</strong>e synthesis 12<br />

Figure 4 Dopam<strong>in</strong>e catabolism 13<br />

Figure 5 Dopam<strong>in</strong>e pathways 14<br />

Figure 6 Distribution <strong>of</strong> DA receptors <strong>in</strong> normal bra<strong>in</strong> 14<br />

Figure 7 The basal ganglia 15<br />

Figure 8 Direct and <strong>in</strong>direct pathway <strong>in</strong> normal BG circuits 16<br />

Figure 9 SNpc depigmentation 17<br />

Figure 10 Human bra<strong>in</strong> sections immunosta<strong>in</strong>ed for DAT 18<br />

Figure 11 Basal ganglia: normal and park<strong>in</strong>sonian state 19<br />

Figure 12 LB and LN <strong>in</strong> PD patients and localization <strong>of</strong> LB and LN 22<br />

Figure 13 Six stages Braak’s system 24<br />

Figure 14 Immunosections <strong>of</strong> stages 3-6 <strong>of</strong> Braak’s system 24<br />

Figure 15 MPTP metabolism 28<br />

Figure 16 The multiple hit model <strong>of</strong> PD 31<br />

Figure 17 Pathologic mechanisms <strong>in</strong> the etiology <strong>of</strong> PD 32<br />

Figure 18 The ubiquit<strong>in</strong>-proteasome system 34<br />

Figure 19 Generation <strong>of</strong> ROS and RNS <strong>in</strong> SNpc neuron 43<br />

Figure 20 Interaction between microglia and DAergic neurons 47<br />

Figure 21 Soluble <strong>alum<strong>in</strong>ium</strong> ions as a function <strong>of</strong> solution pH 54<br />

Figure 22 Effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and iron on the membrane peroxidation 68<br />

Figure 23 PIP2 hydrolisis altered by <strong>alum<strong>in</strong>ium</strong> 69<br />

Chapter 1<br />

Figure 1 Changes <strong>in</strong> TBARS levels <strong>in</strong> the ipsilateral and contralateral side <strong>of</strong><br />

both striatum and ventral midbra<strong>in</strong> after stereotaxic, unilateral,<br />

<strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA to rats<br />

Figure 2 Changes <strong>in</strong> PCC <strong>in</strong> the ipsilateral and contralateral side <strong>of</strong> both<br />

striatum and ventral midbra<strong>in</strong> after stereotaxic, unilateral,<br />

<strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA to rats<br />

Figure 3 Changes <strong>in</strong> PTC <strong>in</strong> the ipsilateral and contralateral side <strong>of</strong> both<br />

striatum and ventral midbra<strong>in</strong> after stereotaxic, unilateral,<br />

<strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA to rats<br />

Chapter 2<br />

Figure 1 Levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the different areas <strong>of</strong> the rat bra<strong>in</strong> 113<br />

97<br />

98<br />

99


List <strong>of</strong> figures (cont<strong>in</strong>uation)<br />

Chapter 3<br />

Figure 1 Levels <strong>of</strong> TBARS, prote<strong>in</strong> carbonyls, and prote<strong>in</strong> thiols <strong>in</strong> different<br />

bra<strong>in</strong> areas <strong>of</strong> rats i.p. treated with sal<strong>in</strong>e or <strong>alum<strong>in</strong>ium</strong> chloride<br />

for ten days<br />

Figure 2 Enzyme activity <strong>of</strong> SOD, GPx, and CAT <strong>in</strong> different bra<strong>in</strong> areas <strong>of</strong><br />

rats i.p. treated with sal<strong>in</strong>e or <strong>alum<strong>in</strong>ium</strong> chloride for ten days<br />

Figure 3 Microphotographs show<strong>in</strong>g changes <strong>in</strong> the striatal TH-ir one week<br />

post-lesion <strong>in</strong> rats <strong>in</strong>jected <strong>in</strong>traventricularly<br />

Figure 4 Density <strong>of</strong> striatal DAergic term<strong>in</strong>als estimated as optical density,<br />

one week post-surgery <strong>in</strong> the different experimental groups.<br />

Figure 5 Levels <strong>of</strong> TBARS, prote<strong>in</strong> carbonyls, and prote<strong>in</strong> thiols <strong>in</strong> both<br />

ventral midbra<strong>in</strong> and striatum <strong>of</strong> different groups <strong>of</strong> rats<br />

Figure 6 In vitro effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on TBARS formation, prote<strong>in</strong><br />

carbonyl content, and prote<strong>in</strong> thiol content <strong>in</strong>duced by the<br />

autoxidation <strong>of</strong> 6-OHDA <strong>in</strong> mitochondrial preparations from rat<br />

bra<strong>in</strong><br />

138-139<br />

140-141<br />

142<br />

143<br />

144-145<br />

146-147


List <strong>of</strong> tables<br />

Introduction<br />

Table 1 Differential diagnostic <strong>in</strong> park<strong>in</strong>sonian disorders 9<br />

Table 2 UK Park<strong>in</strong>son’s Disease Society Bra<strong>in</strong> Bank’s diagnostic criteria for<br />

the diagnosis <strong>of</strong> probable PD<br />

10<br />

Table 3 National Institute <strong>of</strong> Neurological Disorders (NINDS) diagnostic<br />

criteria for PD<br />

11<br />

Table 4 Gene loci associated with PD 26<br />

Table 5 Lipid composition <strong>of</strong> normal adult human bra<strong>in</strong> 65<br />

Chapter 2<br />

Table 1 Graphite furnace programme for <strong>alum<strong>in</strong>ium</strong> determ<strong>in</strong>ation by<br />

ETAAS<br />

Chapter 3<br />

Table 1 In vitro effects <strong>of</strong> the presence <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the enzyme<br />

activities <strong>of</strong> SOD, GPx, CAT, and MAO<br />

113<br />

137


TABLE OF CONTENTS<br />

INTRODUCTION ....................................................................................... 1<br />

PARKINSON’S DISEASE ...................................................................................................... 1<br />

An overview ............................................................................................................................................ 1<br />

Prevalence and <strong>in</strong>cidence <strong>of</strong> PD .............................................................................................................. 2<br />

Cl<strong>in</strong>ical characteristics <strong>of</strong> PD ................................................................................................................... 3<br />

Rest<strong>in</strong>g tremor ....................................................................................................................................................................... 4<br />

Rigidity ................................................................................................................................................................................... 4<br />

Bradyk<strong>in</strong>esia ........................................................................................................................................................................... 5<br />

Postural <strong>in</strong>stability ................................................................................................................................................................. 5<br />

Progression <strong>of</strong> motor symptoms ............................................................................................................................................ 6<br />

Non-motor symptoms ............................................................................................................................................................ 6<br />

Diagnosis <strong>of</strong> PD ....................................................................................................................................... 7<br />

Neurochemical and neuropathological features <strong>of</strong> PD ......................................................................... 12<br />

Dopam<strong>in</strong>e ............................................................................................................................................................................ 12<br />

The basal ganglia .................................................................................................................................................................. 15<br />

Degeneration <strong>of</strong> all DAergic pathways and other systems ................................................................................................... 20<br />

Lewy bodies, Lewy neurites and pale bodies ....................................................................................................................... 21<br />

The six-stage system: a novel neuropathological concept <strong>of</strong> neurodegeneration ............................................................... 23<br />

Etiology and pathogenesis <strong>of</strong> PD .......................................................................................................... 25<br />

Genetics <strong>of</strong> PD ...................................................................................................................................................................... 25<br />

Age<strong>in</strong>g .................................................................................................................................................................................. 27<br />

Role <strong>of</strong> environmental exposure .......................................................................................................................................... 27<br />

An example <strong>of</strong> environmental tox<strong>in</strong>: MPTP................................................................................................................... 27<br />

Other environmental factors ........................................................................................................................................ 29<br />

Metals ........................................................................................................................................................................... 29<br />

Potential theories ................................................................................................................................................................ 30<br />

The “dual-hit” hypothesis ............................................................................................................................................. 30<br />

The “multiple hit or multihit” hypothesis ...................................................................................................................... 30<br />

The connection between PD and the FeBAD hypothesis .............................................................................................. 31<br />

Park<strong>in</strong>son diseases: a syndrome <strong>of</strong> different disorders ................................................................................................. 32<br />

Misfold<strong>in</strong>g and aggregation <strong>of</strong> prote<strong>in</strong>s ............................................................................................................................... 33<br />

Oxidative <strong>stress</strong> .................................................................................................................................................................... 38<br />

Transition metals: the example <strong>of</strong> iron ......................................................................................................................... 40<br />

DA metabolism as a source <strong>of</strong> ROS ............................................................................................................................... 41<br />

Nitric oxide .................................................................................................................................................................... 42<br />

Contribution <strong>of</strong> <strong>oxidative</strong> and nitrosative <strong>stress</strong> to PD pathogenesis ............................................................................ 43<br />

Excitotoxicity ........................................................................................................................................................................ 45<br />

Cell death pathways ............................................................................................................................................................. 48<br />

Experimental models <strong>of</strong> PD ................................................................................................................... 49<br />

Tox<strong>in</strong>-<strong>in</strong>duced models .......................................................................................................................................................... 49<br />

6-OHDA ......................................................................................................................................................................... 49<br />

MPTP ............................................................................................................................................................................. 50<br />

Rotenone, paraquat and maneb ................................................................................................................................... 50<br />

Inflammation-based models ................................................................................................................................................ 51<br />

Gene-based models ............................................................................................................................................................. 51<br />

ALUMINIUM .................................................................................................................... 53<br />

General features ................................................................................................................................... 53<br />

Alum<strong>in</strong>ium speciation .......................................................................................................................................................... 53<br />

Sources <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> exposure ............................................................................................................ 54<br />

Environmental exposure ...................................................................................................................................................... 54<br />

Dietary exposure .................................................................................................................................................................. 55<br />

Iatrogenic exposure ............................................................................................................................................................. 56<br />

Occupational exposure ........................................................................................................................................................ 56<br />

Alum<strong>in</strong>ium toxicok<strong>in</strong>etics ...................................................................................................................... 57<br />

Absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> ..................................................................................................................................................... 57<br />

Oral absorption .................................................................................................................................................................... 57


Intranasal absorption ........................................................................................................................................................... 58<br />

Dermal absorption ............................................................................................................................................................... 59<br />

Distribution <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the body ................................................................................................................................. 60<br />

Excretion .............................................................................................................................................................................. 61<br />

Elim<strong>in</strong>ation rate ................................................................................................................................................................... 61<br />

Alum<strong>in</strong>ium <strong>in</strong>flux and efflux <strong>in</strong>to the bra<strong>in</strong> ........................................................................................... 62<br />

Putative mechanisms <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> ................................................................................ 63<br />

Alum<strong>in</strong>ium and <strong>oxidative</strong> <strong>stress</strong> ........................................................................................................................................... 64<br />

The bra<strong>in</strong>: a target for <strong>alum<strong>in</strong>ium</strong> ................................................................................................................................. 64<br />

Alum<strong>in</strong>ium catalyses iron-driven biological oxidations ................................................................................................. 65<br />

Alum<strong>in</strong>ium stimulates superoxide-/non-iron-driven biological oxidations ................................................................... 65<br />

Alum<strong>in</strong>ium-superoxide complex theory ........................................................................................................................ 66<br />

Alum<strong>in</strong>ium <strong>in</strong>hibits the antioxidant enzymes and others .............................................................................................. 66<br />

Alum<strong>in</strong>ium as a cell membrane menace .............................................................................................................................. 67<br />

Alum<strong>in</strong>ium affects cell signal<strong>in</strong>g ........................................................................................................................................... 68<br />

AIMS OF THE PRESENT THESIS ............................................................... 75<br />

OBJETIVOS DE LA PRESENTE TESIS ......................................................... 79<br />

CHAPTER 1 Time-course <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong> damage caused<br />

by <strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6-hydroxydopam<strong>in</strong>e <strong>in</strong> a rat<br />

model <strong>of</strong> Park<strong>in</strong>son’s disease ................................................................ 83<br />

ABSTRACT ....................................................................................................................... 85<br />

INTRODUCTION .............................................................................................................. 86<br />

MATERIALS AND METHODS ............................................................................................ 88<br />

Chemicals .............................................................................................................................................. 88<br />

Animal treatment.................................................................................................................................. 88<br />

Bra<strong>in</strong> samples ........................................................................................................................................ 89<br />

Determ<strong>in</strong>ation <strong>of</strong> TBARS ....................................................................................................................... 89<br />

Determ<strong>in</strong>ation <strong>of</strong> prote<strong>in</strong> carbonyl content (PCC) ................................................................................. 89<br />

Determ<strong>in</strong>ation <strong>of</strong> prote<strong>in</strong> thiol content (PTC) ....................................................................................... 90<br />

Statistical analysis ................................................................................................................................. 91<br />

RESULTS .......................................................................................................................... 92<br />

Effects <strong>of</strong> 6-OHDA adm<strong>in</strong>istration on TBARS concentration ................................................................. 92<br />

Effects <strong>of</strong> 6-OHDA adm<strong>in</strong>istration on PCC ............................................................................................. 92<br />

Effects <strong>of</strong> 6-OHDA adm<strong>in</strong>istration on PTC ............................................................................................. 93<br />

DISCUSSION .................................................................................................................... 94<br />

CHAPTER 2 Analysis <strong>of</strong> bra<strong>in</strong> regional distribution <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> <strong>in</strong> rats via oral and <strong>in</strong>traperitoneal adm<strong>in</strong>istration ............. 103<br />

ABSTRACT ..................................................................................................................... 105<br />

INTRODUCTION ............................................................................................................ 106<br />

MATERIALS AND METHODS .......................................................................................... 107<br />

Chemicals ............................................................................................................................................ 107<br />

Animal treatment................................................................................................................................ 107<br />

Bra<strong>in</strong> samples ...................................................................................................................................... 108<br />

Electrothermal atomic absorption spectrometry (ETAAS) .................................................................. 108<br />

Statistical analysis ............................................................................................................................... 109<br />

RESULTS ........................................................................................................................ 110<br />

Alum<strong>in</strong>ium distribution <strong>in</strong> the bra<strong>in</strong> after oral and i.p. adm<strong>in</strong>istration ............................................... 110<br />

DISCUSSION .................................................................................................................. 111


CHAPTER 3 Bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> and selective behaviour <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> <strong>in</strong> specific areas <strong>of</strong> rat bra<strong>in</strong>: potential effects <strong>in</strong> a 6-<br />

OHDA-<strong>in</strong>duced model <strong>of</strong> Park<strong>in</strong>son’s disease ...................................... 117<br />

ABSTRACT ..................................................................................................................... 119<br />

INTRODUCTION ............................................................................................................ 120<br />

MATERIALS AND METHODS .......................................................................................... 122<br />

Chemicals ............................................................................................................................................ 122<br />

Animal treatment................................................................................................................................ 122<br />

Bra<strong>in</strong> samples ...................................................................................................................................... 123<br />

Preparation <strong>of</strong> bra<strong>in</strong> mitochondria ..................................................................................................... 124<br />

Determ<strong>in</strong>ation <strong>of</strong> TBARS, PCC, and PTC .............................................................................................. 124<br />

Measurement <strong>of</strong> SOD activity ............................................................................................................. 125<br />

Measurement <strong>of</strong> GPx activity .............................................................................................................. 125<br />

Measurement <strong>of</strong> CAT activity .............................................................................................................. 126<br />

Determ<strong>in</strong>ation <strong>of</strong> MAO activity ........................................................................................................... 126<br />

Immunohistochemistry ....................................................................................................................... 126<br />

Statistical analysis ............................................................................................................................... 127<br />

RESULTS ........................................................................................................................ 128<br />

In vivo effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on bra<strong>in</strong> lipid peroxidation and prote<strong>in</strong><br />

oxidation ....................................................................................................................................... 128<br />

In vivo effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on the bra<strong>in</strong> activity <strong>of</strong> different antioxidant<br />

enzymes ......................................................................................................................................... 128<br />

Effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on the degeneration <strong>of</strong> DA term<strong>in</strong>als <strong>in</strong> the<br />

striatum ......................................................................................................................................... 129<br />

Effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on bra<strong>in</strong> lipid peroxidation and prote<strong>in</strong> oxidation <strong>in</strong><br />

6-OHDA-lesioned rats and controls ............................................................................................... 130<br />

In vitro effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the lipid peroxidation and prote<strong>in</strong> oxidation <strong>in</strong>duced by<br />

6-OHDA autoxidation <strong>in</strong> bra<strong>in</strong> mitochondrial preparations .......................................................... 131<br />

In vitro effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the enzyme activities <strong>of</strong> GPx, SOD, CAT, and MAO .......................... 131<br />

DISCUSSION .................................................................................................................. 132<br />

SUMMARY .......................................................................................... 151<br />

CONCLUSIONS ..................................................................................... 157<br />

RESUMEN ............................................................................................ 163<br />

CONCLUSIONES ................................................................................... 169<br />

PUBLICATIONS AS A DIRECT RESULT FROM THIS THESIS ............................................. 175<br />

PUBLICATIONS ARISING FROM COLLABORATIVE WORK DURING THIS THESIS ........... 176<br />

REFERENCES ........................................................................................ 179


INTRODUCTION


INTRODUCTION<br />

PARKINSON’S DISEASE<br />

An overview<br />

INTRODUCTION<br />

Park<strong>in</strong>son‟s disease (PD) was first formally described <strong>in</strong> modern times <strong>in</strong> a<br />

famous monograph entitled “An essay on the shak<strong>in</strong>g palsy” published <strong>in</strong> 1817 by an<br />

English physician called James Park<strong>in</strong>son (Park<strong>in</strong>son 1817; Figure 1). In this report, the<br />

disease was <strong>in</strong>itially def<strong>in</strong>ed as shak<strong>in</strong>g palsy (paralysis agitans) and the syndromes<br />

observed were described as “<strong>in</strong>voluntary tremulous motion, with lessened muscular<br />

power, <strong>in</strong> parts not <strong>in</strong> action and even when supported; with a propensity to bend the<br />

trunk forward, and to pass from a walk<strong>in</strong>g to a runn<strong>in</strong>g pace: the senses and <strong>in</strong>tellects<br />

be<strong>in</strong>g un<strong>in</strong>jured”.<br />

Figure 1: An essay <strong>of</strong> the shak<strong>in</strong>g palsy (Park<strong>in</strong>son 1817)<br />

1


INTRODUCTION<br />

2<br />

PD, also called idiopathic PD or primary park<strong>in</strong>sonism, is the most common<br />

movement disorder besides essential tremor and the second most common age-related<br />

neurodegenerative disease after Alzheimer's disease (AD) (Fahn and Przedborski 2000,<br />

Tanner and Aston 2000, Mayeux 2003, Fahn and Sulzer 2004). Moreover, PD is the<br />

ma<strong>in</strong> cause <strong>of</strong> chronic progressive Park<strong>in</strong>sonism account<strong>in</strong>g for ~80% <strong>of</strong> cases.<br />

Park<strong>in</strong>sonism, also known as Park<strong>in</strong>son‟s syndrome, atypical Park<strong>in</strong>son‟s or secondary<br />

Park<strong>in</strong>son‟s, is a term which refers to the neurological syndrome characterised by three<br />

card<strong>in</strong>al motor symptoms: bradyk<strong>in</strong>esia, rigidity and tremor.<br />

Prevalence and <strong>in</strong>cidence <strong>of</strong> PD<br />

More than 4.5 million people worldwide were affected by PD <strong>in</strong> 2007. Due to<br />

<strong>in</strong>creas<strong>in</strong>g life expectancy <strong>of</strong> the general population and multiplication <strong>of</strong> effective<br />

therapies, the number <strong>of</strong> <strong>in</strong>dividuals over 50 years <strong>of</strong> age with PD was expected to<br />

double to around 9 million patients <strong>in</strong> the world‟s 10 most populous nations between<br />

2007 and the year 2030 (Dorsey et al. 2007). At the time <strong>of</strong> writ<strong>in</strong>g, PD is affect<strong>in</strong>g<br />

approximately 6 million people worldwide.<br />

In regards to disease epidemiology, the mean age onset <strong>of</strong> sporadic PD (also<br />

known as idiopathic PD) is 55 years, but is now thought to be <strong>in</strong> the early-to-mid 60s<br />

(Inzelberg et al. 2002). Early onset <strong>of</strong> PD (EOPD) is rare, about 4% <strong>of</strong> patients develop<br />

cl<strong>in</strong>ical signs <strong>of</strong> the disease before 50 years (Van Den Eeden et al. 2003). With<strong>in</strong><br />

EOPD, there appear to be two groups namely: young-onset PD (YOPD), with onset<br />

between 21 and 40 years, and juvenile Park<strong>in</strong>sonism (JP), with onset at


INTRODUCTION<br />

PD is found <strong>in</strong> all ethnic groups, but with geographical differences <strong>in</strong><br />

prevalence. Men seem to be slightly more prone to the disorder (Baldereschi et al. 2000,<br />

Lai et al. 2003, Benito-León et al. 2004). Incidence rates range from 8.6 to 19.0 per<br />

100,000 <strong>in</strong>habitants <strong>in</strong> the USA and Europe when strict diagnostic criteria <strong>of</strong> PD are<br />

applied (Twelves et al. 2003). Direct comparison <strong>of</strong> prevalence and <strong>in</strong>cidence estimates<br />

are difficult and complicated because <strong>of</strong> methodological differences between studies (de<br />

Rijk et al. 1995, de Rijk et al. 1997b, Benito-León et al. 2003). Stricter diagnosis<br />

criteria, record-based studies or studies done <strong>in</strong> cl<strong>in</strong>ical sett<strong>in</strong>gs yielded lower <strong>in</strong>cidence<br />

or prevalence rates than door-to-door surveys or studies with <strong>in</strong> person exam<strong>in</strong>ation<br />

(Schoenberg et al. 1988, Morgante et al. 1992, Tison et al. 1994, de Rijk et al. 1995,<br />

Claveria et al. 2002, Benito-León et al. 2003, Benito-León et al. 2004, de Lau et al.<br />

2004).<br />

Cl<strong>in</strong>ical characteristics <strong>of</strong> PD<br />

PD exhibits great variability <strong>in</strong> cl<strong>in</strong>ical presentation as it presents with a range <strong>of</strong><br />

motor, psychiatric, cognitive, sensory and autonomic symptoms. The three card<strong>in</strong>al<br />

cl<strong>in</strong>ical symptoms <strong>of</strong> PD <strong>in</strong>clude rest tremor, rigidity, and bradyk<strong>in</strong>esia. Often presented<br />

as “precl<strong>in</strong>ical PD”, motor and non-motor features that may precede the card<strong>in</strong>al motor<br />

symptoms by long periods <strong>of</strong> time should be taken more critically <strong>in</strong>to consideration as<br />

they are part <strong>of</strong> the disease process (Figure 2; Langston 2006).<br />

Figure 2: The Park<strong>in</strong>son’s complex (Langston 2006)<br />

3


INTRODUCTION<br />

Rest<strong>in</strong>g tremor<br />

4<br />

Rest<strong>in</strong>g tremor is the most commonly recognized feature <strong>of</strong> PD and the first<br />

motor symptom at disease onset <strong>in</strong> approximately 75% <strong>of</strong> PD patients (Jankovic et al.<br />

1990, Hughes et al. 1993, Schrag et al. 2007). However, 25 % <strong>of</strong> patients with PD never<br />

develop tremor (Hughes et al. 1993). Rest tremor has a frequency <strong>of</strong> 4–6 Hz and<br />

classically resembles pill-roll<strong>in</strong>g (descriptive <strong>of</strong> the rhythmic alternat<strong>in</strong>g motion <strong>of</strong> the<br />

foref<strong>in</strong>ger and thumb). This motor manifestation/symptom is usually a sup<strong>in</strong>ation-<br />

pronation tremor, asymmetric, and most prom<strong>in</strong>ent <strong>in</strong> the distal upper extremity as<br />

rest<strong>in</strong>g foot tremor is much less common than hand tremor as a present<strong>in</strong>g sign. Tremor<br />

at rest is lost dur<strong>in</strong>g sleep and markedly decreased or abolished with voluntary<br />

movement (so typically it does not impair activities <strong>of</strong> daily liv<strong>in</strong>g). It should be noted<br />

that PD tremor can also be seen to have a postural component. Nevertheless, rest tremor<br />

is worsened by excitement, anxiety, apprehension, contralateral motor activity, and is<br />

most easily seen when the patient is asked to ambulate with arms hang<strong>in</strong>g at their sides.<br />

Observation <strong>of</strong> the patient dur<strong>in</strong>g ambulation reveals much about the patient‟s<br />

symptoms, <strong>in</strong>clud<strong>in</strong>g rigidity and bradyk<strong>in</strong>esia.<br />

Rigidity<br />

Rigidity is the raised resistance appreciated dur<strong>in</strong>g the passive movement <strong>of</strong> the<br />

limb about a jo<strong>in</strong>t (<strong>of</strong>ten <strong>of</strong> a “lead pipe” quality). A “ratchety” sensation can be noted,<br />

<strong>in</strong>dicat<strong>in</strong>g the contraction and relaxation <strong>of</strong> the muscles underly<strong>in</strong>g the tremor. It can<br />

have a cogwheel quality even without tremor, but is usually more pronounced <strong>in</strong> the<br />

more tremulous limb. Rigidity is enhanced by contralateral motor activity or mental task<br />

performance. Bradyk<strong>in</strong>esia and rigidity are less common then rest tremor but are still<br />

frequently seen at onset <strong>of</strong> PD.


Bradyk<strong>in</strong>esia<br />

INTRODUCTION<br />

Bradyk<strong>in</strong>esia, the most disabl<strong>in</strong>g symptom <strong>of</strong> PD, is easily observed. It results <strong>in</strong><br />

the slowness <strong>in</strong> movement and as a consequence significantly impairs quality <strong>of</strong> life as<br />

everyday tasks performance is delayed (eat<strong>in</strong>g, dress<strong>in</strong>g, aris<strong>in</strong>g from a chair, gett<strong>in</strong>g <strong>in</strong><br />

and out <strong>of</strong> a car or bed). It <strong>in</strong>itially manifests by difficulties with f<strong>in</strong>e motor tasks<br />

(reduced arm sw<strong>in</strong>g <strong>in</strong> walk<strong>in</strong>g, speed <strong>of</strong> handwrit<strong>in</strong>g, do<strong>in</strong>g up buttons) and <strong>of</strong>ten by<br />

decreased bl<strong>in</strong>k rate. Various tests can be performed to assess limb bradyk<strong>in</strong>esia, such<br />

as fist clos<strong>in</strong>g and open<strong>in</strong>g, f<strong>in</strong>ger and foot tapp<strong>in</strong>g, alternat<strong>in</strong>g forearm pronation and<br />

sup<strong>in</strong>ation (Mart<strong>in</strong>ez-Mart<strong>in</strong> et al. 1994). Additional motor symptoms are also<br />

noticeable as a result <strong>of</strong> hypok<strong>in</strong>esia (reduction <strong>in</strong> movement amplitude) and ak<strong>in</strong>esia<br />

(absence <strong>of</strong> normal unconscious movements) <strong>in</strong> comb<strong>in</strong>ation with rigidity, such as<br />

micrographia (decreased size <strong>of</strong> handwrit<strong>in</strong>g), reduced stride length <strong>in</strong> walk<strong>in</strong>g,<br />

hypophonia (dim<strong>in</strong>ished voice volume), dysarthia (slurred speech), hypomimia (facial<br />

mask<strong>in</strong>g <strong>of</strong> normal facial expression), and dysphagia (problems swallow<strong>in</strong>g), and<br />

sialorrhea (drool<strong>in</strong>g, failure to swallow without th<strong>in</strong>k<strong>in</strong>g about it).<br />

Postural <strong>in</strong>stability<br />

Postural <strong>in</strong>stability or the impairment <strong>of</strong> the right<strong>in</strong>g reflex, sometimes judged a<br />

card<strong>in</strong>al feature <strong>of</strong> PD, is non-specific and is less responsive to treatment compared with<br />

the others card<strong>in</strong>al motor symptoms. Postural <strong>in</strong>stability or gait disturbances refer to the<br />

gradual development <strong>of</strong> poor balance, lead<strong>in</strong>g to a high risk for falls and <strong>in</strong>juries, and<br />

sometimes, conf<strong>in</strong>ement to a wheelchair. It can be test with the retropulsion test (pull<strong>in</strong>g<br />

the patient backward to check for balance recovery). This feature, <strong>in</strong> comb<strong>in</strong>ation with<br />

rigidity and bradyk<strong>in</strong>esia, results <strong>in</strong> important disability to the patient. Gait becomes<br />

slower, with shuffl<strong>in</strong>g, and turn<strong>in</strong>g is en bloc (as opposed to pivot<strong>in</strong>g). Freez<strong>in</strong>g is<br />

characterised by the <strong>in</strong>ability to beg<strong>in</strong> a voluntary movement such as walk<strong>in</strong>g or strik<strong>in</strong>g<br />

gait hesitation on turn<strong>in</strong>g or arriv<strong>in</strong>g at a real or perceived obstacle. Postural <strong>in</strong>stability<br />

and gait abnormality are not typical at onset <strong>of</strong> PD. They are usually absent <strong>in</strong> early<br />

5


INTRODUCTION<br />

disease, especially <strong>in</strong> younger patients, but become a common complication <strong>of</strong><br />

advanced PD.<br />

Progression <strong>of</strong> motor symptoms<br />

6<br />

The motor features <strong>of</strong> tremor and bradyk<strong>in</strong>esia are usually localized to the upper<br />

extremities (Uitti et al. 2005). With<strong>in</strong> one to three years, they extend to the other<br />

ipsilateral limb and affect the contralateral limbs <strong>in</strong> three to eight years (Poewe and<br />

Wenn<strong>in</strong>g 1998). Despite the fact that PD is almost always a bilateral disease, this<br />

asymmetrical pattern rema<strong>in</strong>s so throughout most <strong>of</strong> the course <strong>of</strong> the illness, even <strong>in</strong><br />

advances stages (Hughes et al. 2001). As tremor gravity is rather stable over time,<br />

whereas severity <strong>of</strong> bradyk<strong>in</strong>esia and rigidity evolve similarly, some authors<br />

hypothesized the existence <strong>of</strong> different underly<strong>in</strong>g pathophysiological processes (Louis<br />

et al. 1999).<br />

Non-motor symptoms<br />

Although motor features def<strong>in</strong>e PD, various non-motor symptoms, equally<br />

significant and potentially disabl<strong>in</strong>g, are typically seen. They <strong>in</strong>clude autonomic<br />

dysfunction (<strong>in</strong>clud<strong>in</strong>g orthostatic hypotension, bowel and bladder difficulties,<br />

abdom<strong>in</strong>al bloat<strong>in</strong>g, constipation, ur<strong>in</strong>ary urgency and dysfunction, flush<strong>in</strong>g, excessive<br />

sweat<strong>in</strong>g, temperature dysregulation, and impotence/sexual dysfunction; Jost 2003,<br />

Poewe 2008), sensory symptoms (eg. pa<strong>in</strong>, paresthesiae; Qu<strong>in</strong>n et al. 1986), sleep<br />

disturbances (REM sleep behaviour disorder, periodic limb movements, etc.; Stacy<br />

2002), psychiatric changes (depression, halluc<strong>in</strong>ations, anxiety symptoms), and<br />

cognitive dysfunction (memory deficits, bradyphrenia, executive function difficulty,<br />

dementia; Lev<strong>in</strong> and Katzen 2005, Rippon and Marder 2005, Cav<strong>in</strong>ess et al. 2007).<br />

Depression is common <strong>in</strong> PD, as it develops <strong>in</strong> about 50% <strong>of</strong> <strong>in</strong>dividuals with PD<br />

(McDonald et al. 2003). Dementia is significantly more frequent <strong>in</strong> PD, especially <strong>in</strong><br />

older patients, rang<strong>in</strong>g from 40-80% <strong>of</strong> patients (Cedarbaum and McDowell 1987, Emre<br />

2003, Poewe 2008). Non-motor symptoms, present with considerable variability, may


INTRODUCTION<br />

predate the occurrence <strong>of</strong> motor symptoms and should be recognized and treated as<br />

soon as possible to maximize functionality as well as quality <strong>of</strong> life.<br />

Diagnosis <strong>of</strong> PD<br />

The diagnosis <strong>of</strong> PD is essentially made on cl<strong>in</strong>ical criteria. Whereas these<br />

cl<strong>in</strong>ical criteria lead, at best, to a diagnosis <strong>of</strong> probable PD, post-mortem confirmation is<br />

required to establish a def<strong>in</strong>ite diagnosis <strong>of</strong> PD (Hughes et al. 1992a, Koller 1992).<br />

Historically, the identification <strong>of</strong> Lewy bodies (LB) on autopsy was considered the<br />

criterion standard for diagnosis (Gibb and Lees 1988).<br />

A diagnosis <strong>of</strong> primary park<strong>in</strong>sonism requires at least the presence <strong>of</strong> two <strong>of</strong> the<br />

primary card<strong>in</strong>al motor symptoms (rest<strong>in</strong>g tremor, bradyk<strong>in</strong>esia, rigidity) and exclusion<br />

<strong>of</strong> potential causes <strong>of</strong> secondary park<strong>in</strong>sonism. The follow<strong>in</strong>g features are considered by<br />

most experts as essential and the most important to discrim<strong>in</strong>ate PD from other<br />

diagnoses: a unilateral or asymmetrical onset <strong>of</strong> motor symptoms and a consistent<br />

response <strong>of</strong> the symptoms to an adequate dose <strong>of</strong> a dopam<strong>in</strong>ergic (DAergic) agent such<br />

as levodopa given for a sufficient period. If it is not the case, an alternative diagnosis<br />

should be assumed. The differential diagnosis <strong>of</strong> PD <strong>in</strong>cludes normal age<strong>in</strong>g, essential<br />

tremor, and other park<strong>in</strong>sonian syndromes such as progressive supranuclear palsy<br />

(PSP), multiple system atrophy (MSA) and vascular park<strong>in</strong>sonism, amongst others<br />

(Stoessl and Rivest 1999; Table 1).<br />

The diagnosis <strong>of</strong> PD is difficult especially on early-stages <strong>of</strong> the disease, because<br />

atypical features may be absent or <strong>in</strong>significant and there is no <strong>in</strong>formation on<br />

levodopa-responsiveness. A long-term follow-up <strong>of</strong> patients is needed to revise<br />

diagnoses on the basis <strong>of</strong> <strong>in</strong>formation on disease progression, physical exam<strong>in</strong>ation,<br />

improvement/emergence <strong>of</strong> other symptoms and responsiveness to DAergic treatment.<br />

Post-mortem studies demonstrated misdiagnosis <strong>in</strong> up to 25% <strong>of</strong> patients diagnosed<br />

with PD by general neurologists as their bra<strong>in</strong> reveal no pathological sign <strong>of</strong> the disease<br />

(Rajput et al. 1991, Hughes et al. 1992a). It is worth not<strong>in</strong>g that accuracy <strong>of</strong> PD<br />

7


INTRODUCTION<br />

diagnosis was substantially higher <strong>in</strong> patients diagnosed by experts <strong>in</strong> movement<br />

disorders (Hughes et al. 2002).<br />

8<br />

In order to improve diagnostic accuracy, revised and more str<strong>in</strong>gent diagnostic<br />

criteria were developed by the UK Park<strong>in</strong>son‟s Disease Society Bra<strong>in</strong> Bank (Table 2)<br />

(Hughes et al. 1992b) and the National Institute <strong>of</strong> Neurological Disorders and Stroke<br />

(NINDS) (Table 3) (Gelb et al. 1999). Nevertheless they still rema<strong>in</strong> controversial as<br />

cl<strong>in</strong>icopathological studies suggest that about 10-20% <strong>of</strong> PD cases rema<strong>in</strong> as false<br />

positives (Hughes et al. 2001, Litvan et al. 2003).<br />

The problem is that a reliable and easily valid diagnostic test for PD is not yet<br />

available. When there is doubt about the diagnosis or when the patient‟s history or<br />

cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs are atypical, sophisticated neuroimag<strong>in</strong>g techniques may be useful to<br />

differentiate PD from other diseases (Picc<strong>in</strong>i and Brooks 2006). Conventional bra<strong>in</strong><br />

imag<strong>in</strong>g, such as magnetic resonance imag<strong>in</strong>g (MRI) or computarized tomography<br />

(CT), are helpful when normal pressure hydrocephalus or vascular park<strong>in</strong>sonism are<br />

suspected (Demirkiran et al. 2001). Sophisticated imag<strong>in</strong>g techniques <strong>of</strong> the DA<br />

pathways such as positron emission tomography (PET) or s<strong>in</strong>gle photon emission<br />

computarized tomography (SPECT), can make a dist<strong>in</strong>ction <strong>of</strong> PD from essential<br />

tremor, dystonic tremor, neuroleptic-<strong>in</strong>duced park<strong>in</strong>sonism and psychogenic<br />

park<strong>in</strong>sonism/postsynaptic forms <strong>of</strong> park<strong>in</strong>sonism <strong>in</strong> specialised sett<strong>in</strong>gs (V<strong>in</strong>gerhoets et<br />

al. 1994, Lee et al. 2000, W<strong>in</strong>ogrodzka et al. 2001, Picc<strong>in</strong>i and Brooks 2006). Although<br />

these promis<strong>in</strong>g techniques have become more widely available and easier to use, much<br />

controversy exists (because <strong>of</strong> the lack <strong>of</strong> universally accepted neuropathological<br />

criteria for PD) (Clarke and Gutman 2002, Marek et al. 2002, Litvan et al. 2003).<br />

Usefulness for population epidemiological studies is still limited as sensitivity and<br />

resolution <strong>of</strong> these neuroimag<strong>in</strong>g techniques need to be improved and ref<strong>in</strong>ed.


Table 1: Differential diagnostic <strong>in</strong> park<strong>in</strong>sonian disorders (Alves et al. 2008)<br />

Park<strong>in</strong>son’s disease a<br />

Idioptahic<br />

Familial<br />

Symptomatic park<strong>in</strong>sonism Drug-<strong>in</strong>duced<br />

Neuroleptics, antidepressants, lithium<br />

Antiemetics<br />

Antihypertensive agents, antiarrhythmics<br />

Vascular disease<br />

Intoxication (MPTP, rotenone, others)<br />

Traumatic<br />

Post-<strong>in</strong>fectious<br />

Neoplasm<br />

Normal pressure hydrocephalus<br />

Park<strong>in</strong>sonism due to other<br />

neurodegenerative disorders<br />

a synucle<strong>in</strong>opathy; b tauopathy<br />

Atypical park<strong>in</strong>sonism<br />

Multiple system atrophy (MSA) a<br />

Progressive supranuclear palsy (PSP) b<br />

Corticobasal degeneration (CBD) b<br />

Dementia with Lewy bodies (DLB) a<br />

Alzheimer’s disease b (AD)<br />

Others<br />

INTRODUCTION<br />

9


INTRODUCTION<br />

Table 2: UK Park<strong>in</strong>son’s Disease Society Bra<strong>in</strong> Bank’s diagnostic criteria for the<br />

diagnosis <strong>of</strong> probable PD (Jankovic 2008, Davie 2008)<br />

Step 1: Diagnosis <strong>of</strong> a park<strong>in</strong>sonian syndrome<br />

10<br />

Bradyk<strong>in</strong>esia, and at least one <strong>of</strong> the follow<strong>in</strong>g criteria:<br />

Muscular rigidity<br />

4-6 Hz rest tremor<br />

Postural <strong>in</strong>stability (not caused by primary visual, vestibular, cerebellar<br />

or propioceptive dysfunction)<br />

Step 2: Exclusion <strong>of</strong> other causes <strong>of</strong> park<strong>in</strong>sonism<br />

i History <strong>of</strong> repeated strokes with stepwise progression <strong>of</strong> park<strong>in</strong>sonian features<br />

ii History <strong>of</strong> repeated head <strong>in</strong>jury<br />

iii History <strong>of</strong> def<strong>in</strong>ite encephalitis<br />

iv Oculogyric crises<br />

v Neuroleptic treatment at the onset <strong>of</strong> symptoms<br />

vi More than one affected relative<br />

vii Susta<strong>in</strong>ed remission<br />

viii Strictly unilateral features after 3 years<br />

ix Supranuclear gaze palsy<br />

x Cerebellar signs<br />

xi Early severe autonomic <strong>in</strong>volvement<br />

xii Early severe dementia with disturbances <strong>of</strong> memory, language and praxis<br />

xiii Bab<strong>in</strong>ski’s sign<br />

xiv Presence <strong>of</strong> cerebral tumour or communicat<strong>in</strong>g hydrocephalus on CT scan<br />

xv Negative response to large doses <strong>of</strong> levodopa (if malabsorption excluded)<br />

Step 3: Supportive (prospective) criteria for PD (at least three or more required for<br />

diagnosis <strong>of</strong> def<strong>in</strong>ite PD)<br />

i Unilateral onset<br />

ii Rest tremor present<br />

iii Progressive disorder<br />

iv Persistent asymmetry affect<strong>in</strong>g side <strong>of</strong> onset most<br />

v Excellent response (70–100%) to levodopa<br />

vi Severe levodopa-<strong>in</strong>duced chorea (dysk<strong>in</strong>esia)<br />

vii Levodopa response for 5 years or more<br />

viii Cl<strong>in</strong>ical course <strong>of</strong> 10 years or more


INTRODUCTION<br />

Table 3: National Institute <strong>of</strong> Neurological Disorders (NINDS) diagnostic<br />

criteria for PD (Jankovic 2008)<br />

Group A features (characteristic <strong>of</strong> PD)<br />

Rest<strong>in</strong>g tremor<br />

Bradyk<strong>in</strong>esia<br />

Rigidity<br />

Asymmetric onset<br />

Group B features (suggestive <strong>of</strong> alternative diagnoses)<br />

Features unusual early <strong>in</strong> the cl<strong>in</strong>ical course<br />

Prom<strong>in</strong>ent postural <strong>in</strong>stability <strong>in</strong> the first 3 years after symptom onset<br />

Freez<strong>in</strong>g phenomenon <strong>in</strong> the first 3 years<br />

Halluc<strong>in</strong>ations unrelated to medications <strong>in</strong> the first 3 years<br />

Dementia preced<strong>in</strong>g motor symptoms or <strong>in</strong> the first year<br />

Supranuclear gaze palsy (other than restriction <strong>of</strong> upward gaze) or slow<strong>in</strong>g <strong>of</strong> vertical<br />

saccades<br />

Severe, symptomatic dysautonomia unrelated to medications<br />

Documentation <strong>of</strong> condition known to produce park<strong>in</strong>sonism and plausibly connected<br />

to the patient’s symptoms (such as suitably located focal bra<strong>in</strong> lesions or neuroleptic<br />

use with<strong>in</strong> the past 6 months)<br />

Criteria for def<strong>in</strong>ite PD<br />

All criteria for probable Park<strong>in</strong>son’s are met and<br />

Histopathological confirmation <strong>of</strong> the diagnosis is obta<strong>in</strong>ed at autopsy<br />

Criteria for probable PD<br />

At least three <strong>of</strong> the four features <strong>in</strong> group A are present and<br />

None <strong>of</strong> the features <strong>in</strong> group B is present (note: symptom duration >3 years is<br />

necessary to meet this requirement) and<br />

Substantial and susta<strong>in</strong>ed response to levodopa or a dopam<strong>in</strong>e agonist has been<br />

documented<br />

Criteria for possible PD<br />

At least two <strong>of</strong> the four features <strong>in</strong> group A are present; at least one <strong>of</strong> these is tremor<br />

or bradyk<strong>in</strong>esia and<br />

Either none <strong>of</strong> the features <strong>in</strong> group B is present or symptoms have been present (3<br />

years and none <strong>of</strong> the features <strong>in</strong> group B is present and<br />

Either substantial and susta<strong>in</strong>ed response to levodopa or a dopam<strong>in</strong>e agonist has<br />

been documented or the patient has not had an adequate trial <strong>of</strong> levodopa or a<br />

dopam<strong>in</strong>e agonist<br />

11


INTRODUCTION<br />

Neurochemical and neuropathological features <strong>of</strong> PD<br />

Dopam<strong>in</strong>e<br />

12<br />

Dopam<strong>in</strong>e (DA) plays important roles <strong>in</strong> control movement, motivation and<br />

reward, behaviour and cognition, mood, sleep, attention and learn<strong>in</strong>g. This biogenic<br />

monoam<strong>in</strong>e is synthesized <strong>in</strong> the catecholam<strong>in</strong>ergic neurons from L-tyros<strong>in</strong>e. First,<br />

tyros<strong>in</strong>e hydroxylase (tyros<strong>in</strong>e 3-monooxygenase, TH) converts L-tyros<strong>in</strong>e to 3,4-<br />

dihydroxy-L-phenylalan<strong>in</strong>e (L-DOPA). TH requires 5,6,7,8-tetrahydrobiopter<strong>in</strong> (BioH4)<br />

as a coenzyme (Agid 1991). The second step is catalyzed by the DOPA decarboxylase<br />

(aromatic L-am<strong>in</strong>o acid decarboxylase, AADC), L-DOPA is decarboxylated to DA<br />

(Figure 3). In some neurones, beta-hydroxylase processes DA <strong>in</strong>to noradrenal<strong>in</strong>e, which<br />

is metabolized to adrenal<strong>in</strong>e by phenylethanolam<strong>in</strong>e N-methyltransferase. DA is<br />

degraded by catechol-O-methyl transferase (COMT), aldehyde dehydrogenase (ADH)<br />

and monoam<strong>in</strong>e oxidase (MAO) (Figure 4). MAO-A and -B also degrade other<br />

monoam<strong>in</strong>es <strong>in</strong>clud<strong>in</strong>g seroton<strong>in</strong>, noradrenal<strong>in</strong>e, and adrenal<strong>in</strong>e.<br />

Figure 3: Dopam<strong>in</strong>e synthesis (Méndez-Álvarez and Soto-Otero 2004)<br />

L-tyros<strong>in</strong>e<br />

tyros<strong>in</strong>e<br />

hydroxylase<br />

HO<br />

COO<br />

HO HO<br />

H 2N<br />

HN<br />

N<br />

O<br />

H<br />

N<br />

N<br />

H<br />

NH 3<br />

O 2<br />

CH CH CH3 OH OH<br />

5,6,7,8-tetrahydrobiopter<strong>in</strong><br />

(BioH 4)<br />

NAD<br />

dihydrobiopter<strong>in</strong><br />

reductase<br />

NADH + H<br />

HN<br />

H 2O<br />

NH 3<br />

COO<br />

3,4-dihydroxy-L-phenylalan<strong>in</strong>e<br />

(L-DOPA)<br />

HN<br />

N<br />

O<br />

H<br />

N<br />

N<br />

CH CH CH3 OH OH<br />

qu<strong>in</strong>onoid dihydrobiopter<strong>in</strong><br />

(BioH 2)<br />

CO 2<br />

aromatic L-am<strong>in</strong>o acid<br />

decarboxylase<br />

(pyridoxal phosphate)<br />

HO NH 3<br />

HO<br />

dopam<strong>in</strong>e<br />

(DA)


Figure 4: Dopam<strong>in</strong>e catabolism (Méndez-Álvarez and Soto-Otero 2004)<br />

HO NH 3<br />

HO<br />

dopam<strong>in</strong>e<br />

(DA)<br />

O 2<br />

INTRODUCTION<br />

H2O2 HO<br />

CHO H2O + NAD<br />

monoam<strong>in</strong>e oxidase<br />

HO<br />

3,4-dihydroxyphenylacetaldehyde<br />

(DOPAL)<br />

aldehyde dehydrogenase<br />

NADH + H<br />

CH 3<br />

H 2O<br />

O<br />

HO<br />

NH 4<br />

catechol-O-methyltransferase<br />

COO<br />

homovanillic acid<br />

(HVA)<br />

S-adenosyl-homocyste<strong>in</strong>e<br />

(SAH)<br />

S<br />

CH 2<br />

CH2 CH NH3 COO<br />

CH 2<br />

OH<br />

O<br />

N<br />

N<br />

OH<br />

NH 2<br />

N<br />

N<br />

HO<br />

HO<br />

COO<br />

3,4-dihydroxyphenylacetic acid<br />

(DOPAC)<br />

CH3 S<br />

CH2 CH2 CH NH3 COO<br />

CH 2<br />

OH<br />

O<br />

N<br />

N<br />

OH<br />

NH 2<br />

N<br />

S-adenosyl-methion<strong>in</strong>e<br />

(SAM)<br />

DA is a neurotransmitter widely distributed throughout the whole bra<strong>in</strong>, but<br />

mostly localized <strong>in</strong> the striatum. It is produced by mesencephalic neurons <strong>of</strong> the<br />

substantia nigra (SN) and ventral tegmental area (VTA), and by hypothalamic neurons<br />

<strong>of</strong> the arcuate and periventricular nuclei (Cooper et al. 1996). DAergic neurons located<br />

<strong>in</strong> these areas project their axons to the striatum (nigrostriatal pathway), neocortex<br />

(mesocortical pathway), limbic system (mesolimbic pathway) and hypophysis<br />

(tubero<strong>in</strong>fundibular pathway) (Figure 5). DA receptor family consists <strong>of</strong> five members<br />

divided <strong>in</strong>to two subfamilies: the D1-like family comprises D1 and D5 receptors,<br />

whereas the D2-like family <strong>in</strong>cludes D2, D3 and D4 receptors (Cooper et al. 1996,<br />

Jackson and Westl<strong>in</strong>d-Danielsson 1994). D1 receptors are widely expressed <strong>in</strong> the bra<strong>in</strong>,<br />

whereas D2 receptors are pr<strong>in</strong>cipally seen <strong>in</strong> the striatum and nucleus accumbens<br />

(Figure 6). As we will discuss later, DA plays a central role <strong>in</strong> the pathology <strong>of</strong> PD as<br />

this neurotransmitter is crucial for basal ganglia regulation.<br />

N<br />

13


INTRODUCTION<br />

Figure 5: Dopam<strong>in</strong>e pathways (CNSforum www.cnsforum.com)<br />

Figure 6: Distribution <strong>of</strong> DA receptors <strong>in</strong> normal bra<strong>in</strong> (CNSforum www.cnsforum.com)<br />

14


The basal ganglia<br />

INTRODUCTION<br />

The basal ganglia (BG) constitute ma<strong>in</strong>ly five subcortical nuclei located deep <strong>in</strong><br />

the hemispheres: the substantia nigra with its pars compacta (SNpc) and pars reticularis<br />

(SNpr), the striatum (caudate nucleus and putamen), the <strong>in</strong>ternal and external segments<br />

<strong>of</strong> globus pallidus (GPi and GPe), and the subthalamic nucleus (STN) (Figure 7). The<br />

BG form a complex network <strong>of</strong> anatomically and functionally segregated loops<br />

<strong>in</strong>volved <strong>in</strong> the regulation <strong>of</strong> emotional and cognitive functions and particularly <strong>in</strong> the<br />

control <strong>of</strong> cortically <strong>in</strong>itiated motor activity, which if disturbed leads to some form <strong>of</strong><br />

movement disorder.<br />

Figure 7: The basal ganglia (Society for Neuroscience www.sfn.org)<br />

These parallel loops have been functionally subdivided <strong>in</strong>to motor, oculomotor,<br />

limbic, association and orbit<strong>of</strong>rontal loops (Alexander et al. 1986, Alexander and<br />

Crutcher 1990, Middleton and Strick 2000). The striatum is the primary <strong>in</strong>put structure<br />

<strong>of</strong> BG as it receives excitatory glutamatergic signals from many areas <strong>of</strong> the sensory<br />

motor cortex and thalamus, as well as a dense <strong>in</strong>nervation from midbra<strong>in</strong> DA neurons.<br />

The most abundant striatal neurons are striatonigral and striatopallidal neurons<br />

15


INTRODUCTION<br />

account<strong>in</strong>g each for approximately 49% (Rymar et al. 2004). The firsts exhibit high<br />

expression <strong>of</strong> D1 receptors and send axons to the ma<strong>in</strong> output nuclei <strong>of</strong> BG for<br />

movement control, GPi and SNpr, while the latters conta<strong>in</strong> high expression <strong>of</strong> D2<br />

receptors and <strong>in</strong>nervate directly GPe.<br />

16<br />

In the classical model <strong>of</strong> BG circuitry, the motor loop <strong>in</strong>tegrates two dist<strong>in</strong>ct<br />

routes identified as “direct” and “<strong>in</strong>direct” pathways which proceed from the striatum,<br />

especially from the putamen, and that act <strong>in</strong> oppos<strong>in</strong>g ways to control movement (Alb<strong>in</strong><br />

et al. 1989, Alexander and Crutcher 1990, DeLong 1990). The “direct” pathway<br />

facilitates voluntary movement. Striatonigral neurons project to GABAergic neurons <strong>in</strong><br />

GPi and SNpr, which <strong>in</strong> turn send axons to the motor nuclei <strong>of</strong> the thalamus. As the<br />

neurotransmitter <strong>of</strong> both projections (striatum to GPi/Snpr, and Gpi/SNpr to thalamus)<br />

is �-am<strong>in</strong>obutyric acid (GABA), which is <strong>in</strong>hibitory, the net effect <strong>of</strong> the direct pathway<br />

activity is a dis<strong>in</strong>hibition <strong>of</strong> excitatory thalamocortical projections, result<strong>in</strong>g <strong>in</strong><br />

activation <strong>of</strong> cortical premotor circuits and facilitation <strong>of</strong> movement. On the other hand,<br />

the “<strong>in</strong>direct” pathway orig<strong>in</strong>ates <strong>in</strong> striatopallidal neurons that project to GPe provid<strong>in</strong>g<br />

an <strong>in</strong>hibitory effect. This region <strong>in</strong> turn sends axons to the STN (dis<strong>in</strong>hibition) which<br />

provides outflow to GPi and SNpr (excitation) enhanc<strong>in</strong>g the <strong>in</strong>hibitory effect <strong>of</strong> the BG<br />

output nuclei on thalamocortical neurons, thus reduc<strong>in</strong>g movement (Figure 8).<br />

Figure 8: Direct and <strong>in</strong>direct pathway <strong>in</strong> normal BG circuits, sagittal view <strong>of</strong> a mouse bra<strong>in</strong> (Kreitzer<br />

and Malenka 2008)


The death <strong>of</strong> SNpc DAergic neurons<br />

INTRODUCTION<br />

The ma<strong>in</strong> pathological biochemical hallmark <strong>of</strong> PD is the death <strong>of</strong> DAergic<br />

neurons resid<strong>in</strong>g <strong>in</strong> the ventral midbra<strong>in</strong> nucleus, called the SNpc. The cell bodies <strong>of</strong> the<br />

SNpc neurons project primarily to the putamen and upward to the caudate nucleus<br />

compos<strong>in</strong>g the nigrostriatal pathway. The loss <strong>of</strong> these neurons which conta<strong>in</strong><br />

considerable amounts <strong>of</strong> neuromelan<strong>in</strong> leads to the neuropathological f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> SNpc<br />

depigmentation (Figure 9; Marsden 1983). Consequently the death <strong>of</strong> nigrostriatal<br />

DAergic neurones results <strong>in</strong> a loss <strong>of</strong> the neurotransmitter DA <strong>in</strong> the striatum, more<br />

precisely <strong>in</strong> the dorsolateral putamen where the depletion <strong>of</strong> DA is most pronounced<br />

(Bernheimer et al. 1973). This leads to the ma<strong>in</strong> motor features <strong>of</strong> PD as the striatum<br />

<strong>in</strong>tegrates signals from the motor cortex and regulates neural circuits with<strong>in</strong> the BG to<br />

control movement. Furthermore this agrees well with the correlation between the pattern<br />

<strong>of</strong> SNpc cell loss and the expression levels <strong>of</strong> the DA transporter (DAT) mRNA (Figure<br />

10; Uhl et al. 1994).<br />

Figure 9: SNpc depigmentation, appearance <strong>of</strong> normal (left) and Park<strong>in</strong>sonian (right) human midbra<strong>in</strong><br />

(National Center for Biotechnology Information www.ncbi.nlm.nih.org)<br />

At the onset <strong>of</strong> symptoms, approximately 60% <strong>of</strong> the SNpc DAergic neurones<br />

and 80% <strong>of</strong> DA content <strong>in</strong> putamen have already been lost (Fearnley and Lees 1991,<br />

Deumens et al. 2002). This suggests that neuronal death <strong>in</strong> PD may result from a “dy<strong>in</strong>g<br />

back” process as the striatal DAergic nerve term<strong>in</strong>als seem to be the primary target <strong>of</strong><br />

neurodegeneration before subsequent cell body effects (Dauer and Przedborski 2003).<br />

DA depletion causes a cascade <strong>of</strong> functional changes <strong>in</strong> BG circuitry as it leads to<br />

17


INTRODUCTION<br />

reduced activity <strong>in</strong> the “direct” pathway and <strong>in</strong>creased activity <strong>in</strong> the “<strong>in</strong>direct”<br />

pathway, result<strong>in</strong>g <strong>in</strong> excessive GPi/SNpr <strong>in</strong>hibitory output to the thalamus (Figure 11).<br />

These changes lead to a hypok<strong>in</strong>etic disorder characterized by <strong>in</strong>hibition <strong>of</strong> movement<br />

(Kreitzer and Malenka 2008).<br />

Figure 10: Human bra<strong>in</strong> sections immunosta<strong>in</strong>ed for DAT <strong>of</strong> normal person (A) and PD patient (B)<br />

(Betarbet et al. 2002)<br />

18<br />

Neuroimag<strong>in</strong>g and pathological studies suggest that there is a long latency<br />

between nigral degeneration beg<strong>in</strong> and symptoms onset. The presymptomatic latent<br />

phase was estimated to be approximately 6 years <strong>in</strong> idiopathic PD and longer <strong>in</strong> familial<br />

PD (Fearnley et al. 1991, Morrish et al. 1996, Hilker et al. 2005). This long<br />

asymptomatic period <strong>in</strong>dicates that compensatory mechanisms are able to deal with<br />

progressively lower DA levels <strong>in</strong> order to preserve apparent normal BG function. These<br />

compensatory mechanisms which comprise <strong>in</strong>creased striatal DA turnover and receptor<br />

sensitivity, upregulation <strong>of</strong> striatopallidal enkephal<strong>in</strong> levels, <strong>in</strong>creased subthalamic<br />

excitation <strong>of</strong> GPe, and ma<strong>in</strong>tenance <strong>of</strong> cortical motor area activation (Bezard et al. 1999,<br />

Bezard et al. 2001), might be potentially damag<strong>in</strong>g to nigral neurons through ris<strong>in</strong>g<br />

cellular metabolic demand, <strong>oxidative</strong> <strong>stress</strong>, and excitotoxicity (Rodriguez et al. 1998,<br />

Jenner 2003).<br />

The PD-associated cell loss has a characteristic topology dist<strong>in</strong>ct from the<br />

pattern seen <strong>in</strong> the course <strong>of</strong> normal ag<strong>in</strong>g <strong>of</strong> the human organism as the SN is<br />

characterized by a low level <strong>of</strong> neuronal degeneration (Kubis et al. 1995). Furthermore,<br />

normal ag<strong>in</strong>g-related morphological modifications were found to be most <strong>in</strong>tensive <strong>in</strong>


INTRODUCTION<br />

the dorsomedial part <strong>of</strong> SNpc while <strong>in</strong> PD the ventrolateral and caudal portions <strong>of</strong> SNpc<br />

are particularly affected (Fearnley and Lees 1991).<br />

Figure 11: Classical model <strong>of</strong> the BG <strong>in</strong> the normal state (A) and park<strong>in</strong>sonian state (B) (Obeso et al.<br />

2008)<br />

19


INTRODUCTION<br />

Degeneration <strong>of</strong> all DAergic pathways and other systems<br />

20<br />

Although the nigrostriatal pathway is the most severely affected <strong>in</strong> PD, all<br />

ascend<strong>in</strong>g DAergic pathways <strong>in</strong> the central nervous system (CNS) do degenerate<br />

although to variable degrees (reviewed by Hornykiewicz and Kish 1987). The<br />

mesolimbic DAergic neurons which reside adjacent to the SNpc <strong>in</strong> the VTA and<br />

connect with the ventral striatum are less affected <strong>in</strong> PD: they are decreased between<br />

37-50% <strong>of</strong> that <strong>in</strong> healthy subjects (Price et al. 1978, Javoy-Agid and Agid 1980, Uhl et<br />

al. 1985, Dymecki et al. 1996). As a result, there is significantly less DA depletion <strong>in</strong><br />

the caudate nucleus (Price et al. 1978), the ma<strong>in</strong> site <strong>of</strong> projection for these neurons.<br />

It is important to <strong>stress</strong> that PD not only affects the DAergic nerve cells <strong>of</strong> the<br />

SN but also other areas and neurotransmitter systems: noradrenergic (locus coeruleus<br />

(LC), where cell loss may exceed that seen <strong>in</strong> SNpc; Zarow et al. 2003), chol<strong>in</strong>ergic<br />

(nucleus basalis <strong>of</strong> Meynert, NBM; dorsal motor nucleus <strong>of</strong> vagus, DMV), and<br />

serotonergic (dorsal raphe nuclei). Pathological changes are also observed <strong>in</strong><br />

glutam<strong>in</strong>ergic, tryptam<strong>in</strong>ergic, GABAergic, and adrenergic neurons (Braak and Braak<br />

2000). Besides, cell loss is seen <strong>in</strong> other regions: postganglionic sympathetic neurons<br />

and cortex (especially c<strong>in</strong>gulate and entorh<strong>in</strong>al cortices), olfactory bulb, and autonomic<br />

nervous system (Braak et al. 1995, Braak and Braak 2000, Levy 2009). Interest<strong>in</strong>gly,<br />

the loss <strong>of</strong> non-DAergic neurons, especially <strong>in</strong> the caudal bra<strong>in</strong>stem, may even become<br />

<strong>in</strong>volved before the DAergic neurons (Braak et al. 2006).<br />

Thus, PD symptoms are the consequence <strong>of</strong> progressive degeneration <strong>of</strong> the<br />

DAergic neuronal BG system but also <strong>of</strong> other ascend<strong>in</strong>g subcortical neuronal systems.<br />

Whereas the ma<strong>in</strong> motor manifestations <strong>of</strong> PD are l<strong>in</strong>ked to neurodegeneration <strong>in</strong> the<br />

DAergic systems, the non-DAergic pathways degeneration likely contributes as a major<br />

cause <strong>of</strong> many <strong>of</strong> the non-motor symptoms <strong>of</strong> PD, such as depression, cognitive decl<strong>in</strong>e,<br />

constipation and autonomic dysfunction. As an example, degeneration <strong>of</strong> chol<strong>in</strong>ergic<br />

cortical <strong>in</strong>puts and hippocampal structures are part <strong>of</strong> the cause <strong>of</strong> the high rate <strong>of</strong><br />

dementia that accompanies PD, especially <strong>in</strong> older persons. As the cl<strong>in</strong>ical correlates <strong>of</strong><br />

lesions <strong>of</strong> these non-DAergic neurotransmitters pathways are not as clearly


INTRODUCTION<br />

characterized as are lesions <strong>in</strong> the DAergic systems, the temporal relationship <strong>of</strong><br />

damage to specific neurochemical systems is not well established. Although, for<br />

example, some patients develop depression months or years prior to the onset <strong>of</strong> motor<br />

symptoms, the non-motor symptoms are generally thought to dom<strong>in</strong>ate the more severe<br />

or later stages <strong>of</strong> the disease (Chaudhuri et al. 2006).<br />

Lewy bodies, Lewy neurites and pale bodies<br />

In addition to neuronal loss, another important pathological feature observed <strong>in</strong><br />

PD is the presence <strong>of</strong> fibrillar aggregates, called LB, Lewy neurites (LN) and pale<br />

bodies, <strong>in</strong> the few rema<strong>in</strong><strong>in</strong>g surviv<strong>in</strong>g nigral DAergic neurons (Dauer and Przedborski<br />

2003, Probst et al. 2008).<br />

There are two morphologic types <strong>of</strong> LB: the bra<strong>in</strong>stem classical type and the<br />

cortical type. Bra<strong>in</strong>stem-type LB are <strong>in</strong>traneuronal cytoplasmic <strong>in</strong>clusions, spherical or<br />

elongated, 5-25 μm <strong>in</strong> diameter, and possess<strong>in</strong>g a dense eos<strong>in</strong>ophilic core and a clear<br />

peripheral halo (Figure 12A; Duffy and Tennyson 1965, Roy and Wolman 1969,<br />

Pappolla 1986). Cortical LB are also <strong>in</strong>tracytoplasmic <strong>in</strong>clusions but <strong>of</strong>ten irregular <strong>in</strong><br />

shape and lack<strong>in</strong>g a dist<strong>in</strong>ctive core and conspicuous halo Figure 12B. LN correspond<br />

to abnormal dystrophic neurites that conta<strong>in</strong> filaments similar to those found <strong>in</strong> LB<br />

(Figure 12C; Dickson et al. 1991). Whereas LB are developed <strong>in</strong> the perikarya, LN are<br />

located <strong>in</strong> the neuronal processes (Figure 12D). Pale bodies are rounded well-def<strong>in</strong>ed<br />

areas without halos, less eos<strong>in</strong>ophilic, found <strong>in</strong> melanized cells <strong>of</strong> the SNpc and the<br />

locus coeruleus. They conta<strong>in</strong> vesicular and granular structures and filaments identical<br />

to those seen <strong>in</strong> LB. As pale bodies <strong>of</strong>ten co-occur with one or more LB <strong>in</strong> the same<br />

neurons, they have been proposed to represent a stage <strong>in</strong> the formation <strong>of</strong> LB.<br />

LB are composed <strong>of</strong> more than 76 molecules, <strong>in</strong>clud<strong>in</strong>g numerous prote<strong>in</strong>s, such<br />

as α-synucle<strong>in</strong>, park<strong>in</strong>, ubiquit<strong>in</strong>, and neur<strong>of</strong>ilaments (Wakabayashi et al. 2007).<br />

Whereas the SNpc appears to be the first region to be affected by neuronal loss, LB are<br />

not conf<strong>in</strong>ed to the SNpc but can also be found with<strong>in</strong> many <strong>of</strong> the spared neurons <strong>in</strong><br />

21


INTRODUCTION<br />

other bra<strong>in</strong> areas and <strong>in</strong> the peripheral autonomic nervous system as the disease<br />

progresses (Forno et al. 1996, Wakabayashi and Takahashi 1997, Spillant<strong>in</strong>i et al. 1998,<br />

Braak et al. 2003, Wakabayashi et al. 2007). The extensive distribution <strong>of</strong> LB could<br />

account for a variety <strong>of</strong> motor and non-motor symptoms <strong>of</strong> PD. Interest<strong>in</strong>gly it has been<br />

proposed that LB appear first <strong>in</strong> both the olfactory bulb and lower bra<strong>in</strong> stem, follow<strong>in</strong>g<br />

then a foreseeable progression which contributes to expla<strong>in</strong> the loss <strong>of</strong> olfaction which<br />

might precede motor symptoms.<br />

Figure 12: LB and LN <strong>in</strong> PD patients (A, B: Wakabayashi and Takahashi 2007, C: Braak and Del Tredici<br />

2008) and localization <strong>of</strong> LB and LN (D: Braak et al. 2003)<br />

22<br />

A B<br />

C D<br />

The presence <strong>of</strong> LB is not specific for PD as they occur also <strong>in</strong> AD, dementia<br />

with LB (DLB) and <strong>in</strong> healthy people <strong>of</strong> advanced age at a greater frequency than the<br />

prevalence <strong>of</strong> PD (Gibb and Lees 1988). The role <strong>of</strong> LB <strong>in</strong> neuronal cell death is<br />

controversial and under debate: LB may be toxic by <strong>in</strong>terfer<strong>in</strong>g with normal cellular<br />

processes and/or by sequester<strong>in</strong>g important prote<strong>in</strong>s for cell survival or on the other<br />

hand, they could be cytoprotective as they may sequester and degrade the toxic prote<strong>in</strong>s


INTRODUCTION<br />

(Olanow et al. 2004). Most likely, LB seem to be symptomatic <strong>in</strong> PD pathogenesis, not<br />

causative (Wakabayashi et al. 2007).<br />

The six-stage system: a novel neuropathological concept <strong>of</strong> neurodegeneration<br />

Recently, Braak and colleagues established a stag<strong>in</strong>g procedure based on the<br />

distribution <strong>of</strong> LB and LN (Braak et al. 2003, Braak et al. 2006). Accord<strong>in</strong>g to the<br />

pathological changes observed dur<strong>in</strong>g the cross-sectional study orig<strong>in</strong>ally performed on<br />

autopsy cases, the authors proposed that the formation <strong>of</strong> prote<strong>in</strong>aceous <strong>in</strong>traneuronal<br />

LB and LN follows a topographically predictable sequence <strong>in</strong> six stages with ascend<strong>in</strong>g<br />

progression from medullary and olfactory nuclei to the cortex (Figure 13). In early<br />

stages 1 and 2, patients are pre-symptomatic. LB pathology first appears <strong>in</strong> the dorsal<br />

motor nucleus <strong>of</strong> the vagal nerve and is conf<strong>in</strong>ed to the medulla oblongata, pont<strong>in</strong>e<br />

tegmentum and anterior olfactory structures. As the disease advances, <strong>in</strong> stages 3 and 4,<br />

pathological changes appear <strong>in</strong> the SN and <strong>in</strong> other areas <strong>of</strong> the basal midbra<strong>in</strong> and<br />

forebra<strong>in</strong>. Motor symptoms become cl<strong>in</strong>ically manifest dur<strong>in</strong>g this phase. F<strong>in</strong>ally the<br />

f<strong>in</strong>al stages 5 and 6 are frequently associated with cognitive impairment as the<br />

neocortex becomes <strong>in</strong>volved (Figure 14).<br />

Many groups give strong support to this neuropathological concept which states<br />

that neurodegeneration <strong>in</strong> PD starts <strong>in</strong> non-DAergic areas, notably the enteric nervous<br />

system and then rises via sp<strong>in</strong>al cord and bra<strong>in</strong>stem to nigral and subsequent cortical<br />

neurons (Abbott et al. 2001, Przuntek et al. 2004, Abbotth et al 2005, Ross et al. 2005,<br />

Ross et al. 2006). Nevertheless, it has also been brought <strong>in</strong>to question as some<br />

neuropathological studies showed bra<strong>in</strong>s with important neurodegeneration and α-<br />

synucle<strong>in</strong> pathology <strong>in</strong> the SNpc and higher bra<strong>in</strong> structures but lack<strong>in</strong>g medullary<br />

<strong>in</strong>volvement (Park<strong>in</strong>nen et al. 2003, Jell<strong>in</strong>ger 2004, Park<strong>in</strong>nen et al. 2005, Attems and<br />

Jell<strong>in</strong>ger 2008, Dickson et al. 2008, Kalaitzakis et al. 2008a, 2008b, Park<strong>in</strong>nen et al.<br />

2008).<br />

23


INTRODUCTION<br />

Figure 13: Six stages <strong>of</strong> bra<strong>in</strong> pathology <strong>in</strong> idiopathic PD (Braak et al. 2003)<br />

Figure 14: Stages 3–6 <strong>of</strong> pathological changes associated with sporadic PD <strong>in</strong> hemisphere sections<br />

immunosta<strong>in</strong>ed for �-synucle<strong>in</strong> (Braak et al. 2006)<br />

24


Etiology and pathogenesis <strong>of</strong> PD<br />

INTRODUCTION<br />

The cause <strong>of</strong> most cases <strong>of</strong> PD rema<strong>in</strong>s unclear. By the date several pathogenic<br />

mechanisms based on environmental, genetic and histopathological f<strong>in</strong>d<strong>in</strong>gs have been<br />

implicated <strong>in</strong> this disease. They may be primary activat<strong>in</strong>g events for the disease and<br />

secondary events <strong>in</strong>volved <strong>in</strong> promot<strong>in</strong>g progression <strong>of</strong> PD over time. The contributions<br />

<strong>of</strong> genetic and environmental risk factors and the impact <strong>of</strong> compensatory mechanisms<br />

on PD progression are still unanswered questions. Some forms <strong>of</strong> PD have been<br />

associated to specific environmental causes (Langston et al. 1983, Thrash et al. 2007,<br />

Jang et al. 2008), while a few familial forms <strong>of</strong> PD and related park<strong>in</strong>sonism are related<br />

to apparent genetic causes (Biskup et al. 2008, Gasser 2009).<br />

Genetics <strong>of</strong> PD<br />

In the majority <strong>of</strong> PD cases, there is no apparent genetic l<strong>in</strong>kage and the disease<br />

is referred to as “sporadic” or idiopathic PD. Thus, familial cases only represent a 5-<br />

10% <strong>of</strong> the whole affected population. The disease is <strong>in</strong>herited and def<strong>in</strong>ed by at least<br />

one relative (parent or sibl<strong>in</strong>g) also hav<strong>in</strong>g PD. It is not always clear if this is due to<br />

heritable genetic factors or shared environment. But an <strong>in</strong>herited genetic contribution<br />

was put forward by various studies, mono- and dizygotic tw<strong>in</strong>s and families with PD<br />

history (Tanner 1999, Thacker and Ascherio 2008).<br />

An <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> s<strong>in</strong>gle gene mutations caus<strong>in</strong>g familial PD have been<br />

identified (Table 4). They show both autosomal dom<strong>in</strong>ant and recessive as well as X-<br />

l<strong>in</strong>ked modes <strong>of</strong> <strong>in</strong>heritance (Vila and Przedborski 2004, Wood-Kaczmar et al. 2006).<br />

Many <strong>of</strong> these have also been found <strong>in</strong> apparently sporadic cases (Warner and Schapira<br />

2003) suggest<strong>in</strong>g that they may act as susceptibility factors. Chromosomal regions have<br />

been designated as “PARK” genes. These <strong>in</strong>clude two autosomal dom<strong>in</strong>ant genes: �-<br />

synucle<strong>in</strong> (SNCA) (Polymeropoulos et al. 1997, Krüger et al. 1998) and leuc<strong>in</strong>e-rich<br />

repeat k<strong>in</strong>ase 2 LRRK2 (Paisán-Ruiz et al. 2004, Zimprich et al. 2004), and three<br />

autosomal recessive genes: park<strong>in</strong> (PRKN) (Kitada et al. 1998), PTEN-<strong>in</strong>duced putative<br />

25


INTRODUCTION<br />

k<strong>in</strong>ase 1 (PINK1) (Valente et al. 2004), and DJ-1 (Bonifati et al. 2003). New and crucial<br />

<strong>in</strong>sights <strong>in</strong>to the PD pathogenesis have been supplied by the discovery <strong>of</strong> these genetic<br />

mutations and the improved comprehension <strong>of</strong> dysfunction <strong>of</strong> their abnormally encoded<br />

prote<strong>in</strong>s.<br />

Table 4: Gene loci associated with PD ( * Toulouse and Sullivan 2008, # Schapira 2008)<br />

Locus<br />

(MIM#)<br />

PARK1<br />

(168601)<br />

PARK2<br />

(600116)<br />

PARK3<br />

(602404)<br />

PARK4<br />

(605543)<br />

26<br />

Inheritance<br />

Chromosomal<br />

location<br />

Gene<br />

AD 4q21 SNCA<br />

(mutations)<br />

Onset<br />

Cl<strong>in</strong>ical features<br />

Mid-late Idiopathic PD, low<br />

<strong>in</strong>cidence <strong>of</strong> tremor,<br />

fast progression<br />

AR 6q25.2–q27 Park<strong>in</strong> Early Drug <strong>in</strong>duced<br />

dysk<strong>in</strong>esia, dystonia,<br />

slow progression<br />

AD 2p13 Not known Late Idiopathic PD,<br />

dementia, fast<br />

progression<br />

AD 4q21 SNCA<br />

(duplication /<br />

triplication)<br />

Late Dementia,<br />

autonomic<br />

dysfunction,<br />

postural tremor,<br />

fast progression<br />

Neuropathology a<br />

Nigral degeneration,<br />

with LB<br />

Nigral degeneration,<br />

without LB<br />

Nigral degeneration,<br />

with LB, NFT and<br />

plaques<br />

Nigral degeneration,<br />

with LB, vacuoles <strong>in</strong><br />

neurons<br />

PARK5 AD * 4p14<br />

UCHL1 Mid-late Idiopathic PD * Not reported<br />

(191342)<br />

# 4p15<br />

# Yes<br />

PARK6 AR * 1p36<br />

PINK1 Early Slow progression, Not reported<br />

(605909)<br />

# 1p35<br />

drug-<strong>in</strong>duced<br />

dysk<strong>in</strong>esia<br />

PARK7 AR 1p36 DJ1 Early Slow progression, Not reported<br />

(606324)<br />

psychiatric<br />

symptoms<br />

PARK8 AD * 12q12<br />

LRRK2 Late Idiopathic PD Nigral degeneration,<br />

(607060)<br />

# 12p12<br />

variable features<br />

<strong>in</strong>clud<strong>in</strong>g LB, NFT and<br />

ubiquit<strong>in</strong>ated<br />

<strong>in</strong>clusions<br />

PARK9 b<br />

AR * 1p36<br />

ATP13A2 Juvenile Spasticity,<br />

Striatal atrophy<br />

(606693)<br />

# 1p32<br />

supranuclear gaze<br />

paralysis, dementia<br />

PARK10 AD * 1p<br />

Not known Late Not reported Not reported<br />

(606852)<br />

# 1p32<br />

PARK11<br />

(607688)<br />

AD 2q36–q37 Not known Late Not reported Not reported<br />

PARK12 X-l<strong>in</strong>ked Xq21–q25 Not known Not<br />

Not reported Not reported<br />

(300557)<br />

reported<br />

PARK13<br />

(610297)<br />

AD 2p12 Htra2 Late Idiopathic PD Not reported<br />

(601828) 2q22–q23 NR4a2 Late Idiopathic PD Not reported<br />

(603779) 5q23.1–q23.3 Synphil<strong>in</strong>1 Late Idiopathic PD Not reported<br />

a LB: Lewy bodies, NFT: neur<strong>of</strong>ibrillary tangles, plaques: amyloid plaques.<br />

b PARK9 <strong>in</strong>itially presented as idiopathic PD but is now known as Kufor–Rakeb syndrome.


Age<strong>in</strong>g<br />

INTRODUCTION<br />

Age<strong>in</strong>g rema<strong>in</strong>s an important risk factor <strong>of</strong> PD. It is associated with a decl<strong>in</strong>e <strong>of</strong><br />

pigmented neurons <strong>in</strong> the SNpc (McGeer et al. 1977) and a decl<strong>in</strong>e <strong>in</strong> striatal DA<br />

transporters (Van Dyck et al. 2002) but no difference between the caudate and putamen<br />

as seen <strong>in</strong> PD. Even if the <strong>in</strong>cidence <strong>of</strong> PD is known to <strong>in</strong>crease with age, this disease is<br />

not a simple acceleration <strong>of</strong> age<strong>in</strong>g as the pattern <strong>of</strong> neuronal loss <strong>in</strong> SN <strong>in</strong> PD patients<br />

and <strong>in</strong> the normal ag<strong>in</strong>g population differs substantially (Kish et al. 1992).<br />

Role <strong>of</strong> environmental exposure<br />

Exposure to environmental factors may strongly <strong>in</strong>fluence risk <strong>of</strong> PD.<br />

Environmental factors have also been implicated <strong>in</strong> the pathogenesis <strong>of</strong> PD with vary<strong>in</strong>g<br />

degrees <strong>of</strong> association. These <strong>in</strong>clude environmental tox<strong>in</strong>s, occupation, dietary factors,<br />

drug use and metals amongst others.<br />

An example <strong>of</strong> environmental tox<strong>in</strong>: MPTP<br />

The environmental tox<strong>in</strong> hypothesis considers that PD-related neurodegeneration<br />

is a consequence from exposure to a DAergic neurotox<strong>in</strong>. MPTP (1-methyl-4-phenyl-<br />

1,2,3,6-tetrahydropyrid<strong>in</strong>e) is a prototypic example <strong>of</strong> how an exogenous tox<strong>in</strong> can<br />

mimic the cl<strong>in</strong>ical and pathological features <strong>of</strong> PD. Davis et al. (1979) and Langston et<br />

al. (1983) were the first to conv<strong>in</strong>c<strong>in</strong>gly demonstrate the l<strong>in</strong>k between environmental<br />

tox<strong>in</strong> exposure and the development <strong>of</strong> PD. They observed that, after illicit drug<br />

consumption, a series <strong>of</strong> patients developed physical symptoms consistent with PD, and<br />

acute levodopa-responsive park<strong>in</strong>sonism. In one case, substantial damage to nigral<br />

neurones was observed (Davis et al. 1979). Analysis <strong>of</strong> the drug used revealed a<br />

contam<strong>in</strong>ation with two side products, MPTP and MPPP (1-methyl-4-phenyl-4-<br />

propionoxy-piperid<strong>in</strong>e) <strong>in</strong> the synthesis <strong>of</strong> a meperid<strong>in</strong>e analogue (Langston and Ballard<br />

1983). The causative l<strong>in</strong>k between MPTP and the park<strong>in</strong>sonian syndrome observed <strong>in</strong><br />

27


INTRODUCTION<br />

the drug users was further confirmed by the development <strong>of</strong> symptoms very similar to<br />

PD follow<strong>in</strong>g <strong>in</strong>jection <strong>of</strong> MPTP <strong>in</strong> an animal model (Burns et al. 1983).<br />

28<br />

Studies showed that MPTP readily crosses the blood-bra<strong>in</strong> barrier (BBB) and is<br />

oxidized by MAO-B <strong>in</strong> astrocytes with<strong>in</strong> glia to a pyrid<strong>in</strong>ium derivative, MPP + (1-<br />

methyl-4-phenyl pyrid<strong>in</strong>ium ion) (Ransom et al. 1987). MPP + is then selectively taken<br />

up by the DAergic cells and accumulated <strong>in</strong> nigrostriatal neurons (Chiba et al. 1985).<br />

After enter<strong>in</strong>g the mitochondria by the passive cationic gradient, MPP + <strong>in</strong>hibits the<br />

NADH-dehydrogenase at complex I <strong>in</strong> the respiratory cha<strong>in</strong> prevent<strong>in</strong>g ATP synthesis<br />

and lead<strong>in</strong>g to reactive oxygen species (ROS) production and cell death <strong>in</strong> DAergic<br />

neurons (Chiba et al. 1984, Heikkila et al. 1985, Nicklas et al. 1985, Vyas et al. 1986,<br />

S<strong>in</strong>ger and Ramsay 1990) (Figure 15). Studies showed that pre-treatment <strong>of</strong> animals<br />

with two selective MAO-B <strong>in</strong>hibitors (deprenyl or pargyl<strong>in</strong>e), blocked MPTP toxicity<br />

most likely by block<strong>in</strong>g MPTP oxidation to MPP + (Heikkila et al. 1984, Langston et al.<br />

1984, Markey et al. 1984).<br />

Figure 15: MPTP metabolism (Dauer and Przedborski 2003)


INTRODUCTION<br />

The f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> MPTP toxicity not only established a l<strong>in</strong>k between environmental<br />

exposure and the development <strong>of</strong> PD, but also <strong>in</strong>troduced MPTP as experimental model<br />

for the study <strong>of</strong> PD. Other DAergic neurotox<strong>in</strong>s have been identified, such as the<br />

<strong>in</strong>secticide rotenone and the herbicide paraquat (Brooks et al. 1999, Betarbet et al. 2000,<br />

Dhillon et al. 2008, Cannon et al. 2009). As MPTP, paraquat and rotenone are selective<br />

complex I <strong>in</strong>hibitors and <strong>in</strong>duce DA dim<strong>in</strong>ution <strong>in</strong> animal studies. This will be<br />

discussed later <strong>in</strong> the section “Experimental models <strong>of</strong> PD”.<br />

Other environmental factors<br />

S<strong>in</strong>ce the discovery <strong>of</strong> MPTP-<strong>in</strong>duced park<strong>in</strong>sonism, many epidemiological<br />

studies have been performed to exam<strong>in</strong>e the l<strong>in</strong>k between the risk <strong>of</strong> PD and other<br />

environmental factors. Lifestyle-associated factors can have positive or negative<br />

<strong>in</strong>fluence on the risk <strong>of</strong> develop<strong>in</strong>g PD. Liv<strong>in</strong>g <strong>in</strong> a rural environment (<strong>in</strong> <strong>in</strong>dustrialised<br />

countries), farm<strong>in</strong>g, exposure to pesticide use and wood preservatives, and dr<strong>in</strong>k<strong>in</strong>g<br />

well water (Hertzman et al. 1990, Engel et al. 2001, Priyadarshi et al. 2001, Baldiet al.<br />

2003, Gorell et al. 2004, Dick 2006) seem to confer an <strong>in</strong>creased risk <strong>of</strong> PD but it<br />

rema<strong>in</strong>s debatable (Koller et al. 1990, Gorell et al. 1998). On the contrary, some<br />

environmental factors appear to exhibit a negative correlation with PD. Caffe<strong>in</strong>e <strong>in</strong>take,<br />

cigarette smok<strong>in</strong>g, and high vitam<strong>in</strong> <strong>in</strong>take are <strong>in</strong>versely associated with the risk <strong>of</strong><br />

develop<strong>in</strong>g this disease (Baron 1986, Morens et al. 1995, Ross et al. 2000, Hernan et al.<br />

2002, Lai et al. 2002, Landrigan et al. 2005, de Lau and Breteler 2006).<br />

Metals<br />

Exposure to some specific metals such as <strong>alum<strong>in</strong>ium</strong>, amalgam, copper, iron,<br />

lead, manganese, mercury, z<strong>in</strong>c, and a comb<strong>in</strong>ation <strong>of</strong> metals have also been<br />

hypothesised to be a risk factor <strong>in</strong> PD through the accumulation <strong>of</strong> metals <strong>in</strong> the SN and<br />

<strong>in</strong>creased <strong>oxidative</strong> <strong>stress</strong> (Ngim and Devathasan 1989, Zayed et al. 1990, Seidler et al.<br />

1996, Gorell et al. 1997, Gorell et al. 1999, Rybicki et al. 1999, Kuhn et al. 1998, Lai et<br />

al. 2002). Dur<strong>in</strong>g the past few years, special attention was paid to <strong>alum<strong>in</strong>ium</strong>. As it will<br />

29


INTRODUCTION<br />

be largely discussed later, its ubiquity and extensive use <strong>in</strong> products and processes<br />

coupled with its reported ability to cause neurodegeneration have made <strong>alum<strong>in</strong>ium</strong> a<br />

cause <strong>of</strong> health concern (Exley 1999, Yokel 2000, Zatta et al. 2003, Kawahara 2005).<br />

Potential theories<br />

30<br />

Experimental models <strong>of</strong> PD, epidemiologic studies, neuropathologic<br />

<strong>in</strong>vestigations, and genetic analyses, which implicated both environmental and genetic<br />

factors <strong>in</strong> the pathogenesis <strong>of</strong> PD, provided important <strong>in</strong>sights <strong>in</strong>to the pathogenesis <strong>of</strong><br />

PD (Beal 2001, Betarbet et al. 2002, Dawson and Dawson 2003, Siderowf and Stern<br />

2003). But the exact causative pathogenic pathway(s) for the development <strong>of</strong> PD<br />

rema<strong>in</strong>(s) hard to demonstrate. Several hypotheses aim<strong>in</strong>g to expla<strong>in</strong> the cause and<br />

beg<strong>in</strong>n<strong>in</strong>gs <strong>of</strong> PD have been proposed.<br />

The “dual-hit” hypothesis<br />

The “dual-hit” hypothesis proposed that a hitherto unknown neurotrophic<br />

pathogen <strong>in</strong>duces the pathological process caus<strong>in</strong>g PD and trigger<strong>in</strong>g the sequential<br />

<strong>in</strong>volvement <strong>of</strong> vulnerable regions (Hawkes et al. 2007). This pathogen may enter the<br />

bra<strong>in</strong> via two routes: nasal, with anterograde progression to the amygdala and temporal<br />

lobe; or gastric, by subsequent retrograde and transneuronal transport.<br />

The “multiple hit or multihit” hypothesis<br />

The “multiple hit or multihit” hypothesis po<strong>in</strong>ts to the idea that PD, orig<strong>in</strong>ally<br />

identified as a DA-deficit disorder, is probably a multietiological disease result<strong>in</strong>g <strong>of</strong> the<br />

comb<strong>in</strong>ation <strong>of</strong> multiple <strong>in</strong>terl<strong>in</strong>k<strong>in</strong>g comb<strong>in</strong>ated factors or <strong>in</strong>sults act<strong>in</strong>g together<br />

(Sulzer 2007). As assumed by Lang and colleagues, a disease with various contribut<strong>in</strong>g<br />

etiologic issues could have several diverse ways <strong>of</strong> onset and progression (Lang et al.<br />

2007) and this could expla<strong>in</strong> the <strong>in</strong>ter<strong>in</strong>dividual cl<strong>in</strong>ical and neuropathological<br />

heterogeneity observed <strong>in</strong> the course <strong>of</strong> PD. It is important to note that this supposition


INTRODUCTION<br />

may clarify why many neuropathologic studies did not conform to the six-stage Braak<br />

system and why some patients present obvious non-DAergic features while others have<br />

little difficulty with these over a prolonged disease course.<br />

The connection between PD and the FeBAD hypothesis<br />

Also, Barlow and colleagues recently explored the possibility to l<strong>in</strong>k PD with the<br />

fetal basis <strong>of</strong> adult disease (FeBAD) hypothesis. They proposed that environmental<br />

<strong>stress</strong>ors encountered very early <strong>in</strong> life (<strong>in</strong> utero or dur<strong>in</strong>g the per<strong>in</strong>atal period) may<br />

decrease the number <strong>of</strong> DAergic neurons mak<strong>in</strong>g the nigrostriatal system vulnerable to<br />

subsequent <strong>in</strong>sults or to a failure <strong>of</strong> normal compensatory mechanisms (Figure 16;<br />

Barlow et al. 2007). Indeed, even if PD is considered as an age-related disorder, the<br />

biology <strong>of</strong> this disease may start decades prior to the critical treshold <strong>of</strong> 60% neuronal<br />

loss or cl<strong>in</strong>ical manifestations.<br />

Figure 16: The multiple hit model <strong>of</strong> PD (Barlow et al. 2007)<br />

31


INTRODUCTION<br />

Park<strong>in</strong>son diseases: a syndrome <strong>of</strong> different disorders<br />

32<br />

There is a large body <strong>of</strong> evidence <strong>in</strong>dicat<strong>in</strong>g that impairment <strong>in</strong> prote<strong>in</strong> biology,<br />

mitochondrial dysfunction, neuro<strong>in</strong>flammation, cell death pathways, excitotoxicity, and<br />

<strong>oxidative</strong> <strong>stress</strong>, to cite only some <strong>of</strong> the most salient, are key pathologic mechanisms <strong>in</strong><br />

the etiology <strong>of</strong> PD, all <strong>of</strong> which are tightly l<strong>in</strong>ked (Figure 17; Mattson 2000, Chung et<br />

al. 2001, Vila and Przedborski 2003, Eriksen et al. 2005, Gandhi and Wood 2005,<br />

Abou-Sleiman et al. 2006, Olanow 2007, Tansey et al. 2007). But none <strong>of</strong> these<br />

pathogenic mechanisms alone has been proven to be the exact causative and unify<strong>in</strong>g<br />

cytotoxic pathway lead<strong>in</strong>g to neurodegeneration <strong>in</strong> PD (Sulzer 2007). It is now widely<br />

recognized that PD is not a s<strong>in</strong>gle homogenous disease but to a certa<strong>in</strong> extent a<br />

multifaceted syndrome <strong>of</strong> different neurological disorders, caused by a complex<br />

<strong>in</strong>teraction between genetic, environmental, and other factors lead<strong>in</strong>g to a common f<strong>in</strong>al<br />

pathology (Moore et al. 2005, Kle<strong>in</strong> and Schlossmacher 2007, Schapira 2008, Zhou et<br />

al. 2008). Actually, the term Park<strong>in</strong>son diseases was proposed to reassess this syndrome<br />

<strong>of</strong> multiple “park<strong>in</strong>sonism types” and rem<strong>in</strong>d that multiple etiologies are possible to<br />

expla<strong>in</strong> the patient‟s neurologic syndrome (We<strong>in</strong>er 2008). In the future, PD will be<br />

probably subdivided <strong>in</strong>to different varieties and ethiologies, maybe assign<strong>in</strong>g numbers<br />

to each different “park<strong>in</strong>sonism types”.<br />

Figure 17: Pathologic mechanisms <strong>in</strong> the etiology <strong>of</strong> PD


Misfold<strong>in</strong>g and aggregation <strong>of</strong> prote<strong>in</strong>s<br />

INTRODUCTION<br />

Dysfunction at any stages <strong>of</strong> prote<strong>in</strong> production (transcription and translation,<br />

post-translational modification, traffick<strong>in</strong>g and degradation) can lead to malformed<br />

prote<strong>in</strong>s and aggregation. There is now compell<strong>in</strong>g evidence that prote<strong>in</strong> aggregation<br />

and abnormal process<strong>in</strong>g <strong>of</strong> prote<strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> the pathogenesis <strong>of</strong> PD (Schulz and<br />

Dichgans 1999). Despite the rarity <strong>of</strong> the familial forms <strong>of</strong> PD, the identification <strong>of</strong><br />

s<strong>in</strong>gle genes l<strong>in</strong>ked to this disease has provided decisive <strong>in</strong>sights <strong>in</strong>to probable<br />

mechanisms <strong>of</strong> its pathogenesis. Mutations <strong>in</strong> the genes α-synucle<strong>in</strong>, park<strong>in</strong> or UCH-L1<br />

are thought to impair the prote<strong>in</strong> degradation pathway <strong>in</strong>volv<strong>in</strong>g ubiquit<strong>in</strong>ation and the<br />

proteasome (Figure 18B).<br />

The prote<strong>in</strong> α-synucle<strong>in</strong> is the major constituent <strong>of</strong> the LB. In its native state,<br />

monomeric α-synucle<strong>in</strong> is a soluble unfolded prote<strong>in</strong> that under certa<strong>in</strong> conditions is<br />

prone to misfold and to aggregate form<strong>in</strong>g oligomeric species. These oligomers, termed<br />

prot<strong>of</strong>ibrils, are soluble and can then become amyloid-like fibrils which are <strong>in</strong>soluble.<br />

These latter are the major components <strong>of</strong> LB (Spillant<strong>in</strong>i et al. 1998) and can also form<br />

LN <strong>in</strong> neuronal processes. Mutations on SNCA, the gene encod<strong>in</strong>g α-synucle<strong>in</strong>, cause a<br />

rare autosomant dom<strong>in</strong>ant form <strong>of</strong> familial PD (Polymeropoulos et al. 1997, Kruger et<br />

al. 1998). Genomic rearrangement <strong>in</strong> the form <strong>of</strong> duplication and triplication <strong>of</strong> the wild<br />

type (wt) SNCA gene cause typical and atypical PD, respectively (S<strong>in</strong>gletton et al.<br />

2003, Chartier-Hal<strong>in</strong> et al. 2004, Ibañez et al. 2004, Fuchs et al. 2007) and the presence<br />

<strong>of</strong> <strong>in</strong>creased copy numbers <strong>of</strong> the wt α-synucle<strong>in</strong> gene causes PD (Ibañez et al. 2004).<br />

Moreover, α-synucle<strong>in</strong> aggregates are also found <strong>in</strong> various other neurodegenerative<br />

diseases termed synucle<strong>in</strong>opathies, such as MSA, DLB, and pure autonomic failure<br />

(Trojanowski and Lee 2002).<br />

33


INTRODUCTION<br />

Figure 18: The ubiquit<strong>in</strong>-proteasome system (A) and possible sites where different forms <strong>of</strong> PD might<br />

<strong>in</strong>terfere with the UPS (B) (Olanow and McNaught 2006)<br />

34<br />

The discovery <strong>of</strong> ubiquit<strong>in</strong> as a major constituent <strong>of</strong> LB (Kuzuhara et al. 1988)<br />

was the first evidence that suggest the <strong>in</strong>volvement <strong>of</strong> the ubiquit<strong>in</strong>-proteasome system<br />

(UPS) dysfunction <strong>in</strong> the pathogenesis <strong>of</strong> PD. This was later supported by the<br />

identification <strong>of</strong> park<strong>in</strong> mutations associated with young onset autosomal recessive PD<br />

(Kitada at al. 1988). The UPS is the major mechanism used to degrade abnormal<br />

prote<strong>in</strong>s, or prote<strong>in</strong>s at the ends <strong>of</strong> their life cycles. Misfolded or unwanted prote<strong>in</strong>s<br />

targeted for degradation are covalently modified via polyubiquit<strong>in</strong>ation on lys<strong>in</strong>e<br />

residues and directed to the proteasome. Three enzymes are required: ubiquit<strong>in</strong>-<br />

activat<strong>in</strong>g enzymes (E1), ubiquit<strong>in</strong>-conjugat<strong>in</strong>g enzymes (E2), and ubiquit<strong>in</strong> ligases


INTRODUCTION<br />

(E3) (Figure 18A). Loss-<strong>of</strong>-function mutations <strong>in</strong> park<strong>in</strong>, an E3 ubiquit<strong>in</strong> ligase, abolish<br />

its activity lead<strong>in</strong>g to proteasomal dysfunction and subsequent accumulation <strong>of</strong><br />

aggregated prote<strong>in</strong>s (Cookson 2005, Yang et al. 2009). Park<strong>in</strong> was also shown to<br />

<strong>in</strong>teract with PINK1 (PARK6 gene) and DJ-1 (PARK7 gene) (Shiba et al. 2009, Um et<br />

al. 2009). These three PD-related prote<strong>in</strong>s physically <strong>in</strong>teract and form a functional E3<br />

ligase complex to regulate UPS-mediated prote<strong>in</strong> degradation (Xiong et al. 2009). The<br />

role <strong>of</strong> the UPS <strong>in</strong> neurodegeneration was also enhanced with the identification <strong>of</strong><br />

mutation I93M <strong>in</strong> UCH-L1 (Leroy et al. 1998) <strong>in</strong> autosomal recessive PD. The UCH-L1<br />

prote<strong>in</strong> is a de-ubiquit<strong>in</strong>at<strong>in</strong>g enzyme, it cleaves ubiquit<strong>in</strong> from the ubiquit<strong>in</strong>-prote<strong>in</strong><br />

adduct enhabl<strong>in</strong>g the prote<strong>in</strong> to enter the proteasome. UCH-L1 mutations may prejudice<br />

proteasomal degradation and also lower the availability <strong>of</strong> ubiquit<strong>in</strong> monomers required<br />

for the removal <strong>of</strong> additional misfolded prote<strong>in</strong>s. Some studies demonstrated another<br />

mutation with<strong>in</strong> this gene (S18Y) that decreases risk for PD, but this rema<strong>in</strong>s<br />

controversial (Maraganore et al. 2004, Healy et al. 2006). In brief, when a component <strong>of</strong><br />

the UPS required for degrad<strong>in</strong>g prote<strong>in</strong>s is altered or the capacity <strong>of</strong> UPS has been<br />

exceeded as an outcome <strong>of</strong> the excessive production <strong>of</strong> misfolded prote<strong>in</strong>s, or a<br />

comb<strong>in</strong>ation <strong>of</strong> both, proteolytic <strong>stress</strong> happens (Figure 18B, Olanow 2007). This leads<br />

to the accumulation and aggregation <strong>of</strong> prote<strong>in</strong>s with subsequent damage <strong>in</strong> a wide<br />

range <strong>of</strong> cellular functions and apoptosis.<br />

35


INTRODUCTION<br />

Mitochondrial dysfunction<br />

36<br />

Many data support now a role for aberrant mitochondrial form and function <strong>in</strong><br />

the pathogenesis <strong>of</strong> PD (Schapira 2008). Mitochondria are essential for the generation<br />

<strong>of</strong> cellular energy through <strong>oxidative</strong> phosphorylation. They are also the major cellular<br />

source <strong>of</strong> free radicals and are implicated <strong>in</strong> the regulation and <strong>in</strong>itiation <strong>of</strong> cell death<br />

pathways and <strong>in</strong> calcium homeostasis. Mitochondria dysfunction can lead to <strong>in</strong>sufficient<br />

ATP production hence impair<strong>in</strong>g all ATP-dependent cellular processes and generate and<br />

accumulate ROS, render<strong>in</strong>g then cells more vulnerable to <strong>oxidative</strong> <strong>stress</strong> and other<br />

<strong>in</strong>terconnected processes, <strong>in</strong>clud<strong>in</strong>g excitotoxicity. Orig<strong>in</strong>ally, MPTP toxicity and<br />

reduction <strong>of</strong> complex I activity <strong>in</strong> the SNpc <strong>of</strong> PD patients provided evidence for the<br />

participation <strong>of</strong> mitochondrial pathways <strong>in</strong> PD (Schapira et al. 1992, Mann et al. 1994).<br />

Moreover, demonstration <strong>of</strong> the <strong>in</strong>volvement <strong>of</strong> PD-associated genes products <strong>in</strong><br />

mitochondrial function re<strong>in</strong>forced the connection between PD and mitochondrial<br />

biology (Dodson and Guo 2007). Mutations <strong>of</strong> these PD-associated genes will likely<br />

disrupt mitochondrial function and affect the cellular response to <strong>oxidative</strong> <strong>stress</strong>.<br />

PINK1, a mitochondrial ser<strong>in</strong>e-threon<strong>in</strong>e k<strong>in</strong>ase that shares homology with<br />

calmodul<strong>in</strong> (CaM)-dependent prote<strong>in</strong> k<strong>in</strong>ase I, localizes pr<strong>in</strong>cipally with<strong>in</strong><br />

mitochondria, <strong>in</strong> particular at the outer mitochondrial membrane (Zhou et al. 2008)<br />

while others suggested an <strong>in</strong>ner mitochondrial membrane localization (Silvestri et al.<br />

2005, Gandhi et al. 2006) or a cytoplasmic pool (Weih<strong>of</strong>en et al. 2007, Haque et al.<br />

2008). PINK1 seems to provide protection aga<strong>in</strong>st <strong>oxidative</strong> <strong>stress</strong> (Valente et al. 2004,<br />

Yang et al. 2006). Its overexpression defends cell from mitochondrially-<strong>in</strong>duced<br />

apoptosis caused by staurospor<strong>in</strong>e, and from mitochondrial depolarization and apoptosis<br />

generated by the proteasomal <strong>in</strong>hibitor MG132 (Wood-Kaczmar et al. 2008). PINK1 is<br />

thought to <strong>in</strong>teract with HTRA2 (Plun-Favreau et al. 2007), a mitochondrial ser<strong>in</strong>e<br />

protease, that is released from the mitochondrial <strong>in</strong>termembrane space <strong>in</strong>to the cytosol,<br />

where it <strong>in</strong>duces apoptotic cell death <strong>in</strong> addition to the permeabilization <strong>of</strong> the<br />

mitochondrial membrane lead<strong>in</strong>g to cytochrome c release (Suzuki et al. 2001, Hegde et<br />

al. 2002, Suzuki et al. 2004). Furthermore, recent studies suggest that PINK1 could act


INTRODUCTION<br />

<strong>in</strong> connection with Park<strong>in</strong>, maybe controll<strong>in</strong>g the balance between mitochondrial fission<br />

and fusion (Deng et al. 2008), and also with α-synucle<strong>in</strong> (Marongui et al. 2009). Park<strong>in</strong><br />

is located partially to the outer mitochondrial membrane (Darios et al. 2003) and also <strong>in</strong><br />

the mitochondrial matrix. Park<strong>in</strong> protects aga<strong>in</strong>st <strong>oxidative</strong> <strong>stress</strong> and has a<br />

hypothesized role <strong>in</strong> mitochondrial gene transcription and biogenesis <strong>in</strong> proliferat<strong>in</strong>g<br />

cells, but the precise mechanism is unknown (Jiang et al. 2004). A recent study<br />

demonstrated a primary function for Park<strong>in</strong> <strong>in</strong> the regulation <strong>of</strong> mitochondrial turnover.<br />

Actually, Park<strong>in</strong> was shown to be specifically recruited to damaged or uncoupled<br />

mitochondria with low potential membrane to promote their clearance through the<br />

autophagosome (Narendra et al. 2008). Another PD and mitochondrial function related<br />

prote<strong>in</strong> is DJ-1, which is ma<strong>in</strong>ly expressed <strong>in</strong> the cytosol, <strong>in</strong> the nucleus and <strong>in</strong> the<br />

mitochondria (a pool located <strong>in</strong> the mitochondrial <strong>in</strong>termembrane space and <strong>in</strong> the<br />

matrix). DJ-1 is thought to be neuroprotective (Abou-Sleiman et al. 2003, Zhang et al.<br />

2005, Abeliovich and Fl<strong>in</strong>t Beal 2006, Zhou et al. 2006, Andres-Mateos et al. 2007,<br />

Schapira 2008) as it was recently reported to translocate to the mitochondria under<br />

conditions <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> (Junn et al. 2008). DJ-1 is then relocalized <strong>in</strong>to the<br />

nucleus, where it is proposed to b<strong>in</strong>d multiple RNAs and regulate p53‟s transcriptional<br />

activity.<br />

37


INTRODUCTION<br />

Oxidative <strong>stress</strong><br />

38<br />

Oxygen is necessary for life, but paradoxically, it is also toxic as a by-product <strong>of</strong><br />

its metabolism produces ROS (Reaction 1). ROS are def<strong>in</strong>ed as molecular entities that<br />

react with cellular components, result<strong>in</strong>g <strong>in</strong> detrimental effects on their function as they<br />

are highly toxic to cells. ROS <strong>in</strong>clude both molecular species, such as hydrogen<br />

peroxide (H2O2), and free radicals (a term used to designate any chemical species<br />

conta<strong>in</strong><strong>in</strong>g highly reactive unpaired electrons), such as superoxide anion (O2 ●─ ), and<br />

hydroxyl radical ( ● OH). The latter is the most potentially dangerous <strong>of</strong> ROS, short-lived<br />

but highly reactive, which causes enormous damage to biological molecules. In addition<br />

to ROS, reactive nitrogen species (RNS) are also generated notably nitric oxide (NO ● ,<br />

NO) and peroxynitrite (ONOO ●─ ).<br />

Reaction 1: Metabolism <strong>of</strong> O2 and production <strong>of</strong> ROS<br />

O2 + e ─ ●─ ─ +<br />

→ O2 + e + 2H → H2O2 + e ─ → ● OH + OH ─ + e ─ + 2H + → 2H2O<br />

ROS can <strong>in</strong>teract with nearby critical cellular components such as membrane<br />

lipids, prote<strong>in</strong>s, and DNA and oxidize them, lead<strong>in</strong>g to a wide range <strong>of</strong> damag<strong>in</strong>g<br />

effects. In the case <strong>of</strong> prote<strong>in</strong>s, ROS may directly oxidize am<strong>in</strong>o acids lead<strong>in</strong>g to loss <strong>of</strong><br />

functions <strong>of</strong> prote<strong>in</strong>s and disruption <strong>of</strong> the active sites <strong>of</strong> enzymes. Exposure <strong>of</strong><br />

membranes <strong>of</strong> fatty acids to ROS may result <strong>in</strong> the formation <strong>of</strong> alkoxyl (RO ● ), peroxyl<br />

(ROO ● ), and lipid epoxides and hydroperoxides (ROOH). The latter can additionally be<br />

further oxidized close by unsaturated fatty acids <strong>in</strong> a cha<strong>in</strong> reaction event stimulated by<br />

ROO ● and RO ● , lead<strong>in</strong>g to disruption <strong>of</strong> both plasma and mitochondrial membranes.<br />

Oxidation <strong>of</strong> nucleic acids may provoke strand breakage, nucleic acid-prote<strong>in</strong><br />

crossl<strong>in</strong>k<strong>in</strong>g, and nucleic base modifications which can have an effect on DNA<br />

transcription, translation and replication. With<strong>in</strong> neurons ROS may also <strong>in</strong>terfere with<br />

signal transduction and gene expression affect<strong>in</strong>g cell survival, thus <strong>in</strong>duc<strong>in</strong>g cell death.


INTRODUCTION<br />

Oxidative damage happens <strong>in</strong> all our tissues all the time. There is a basal level <strong>of</strong><br />

<strong>oxidative</strong> damage to DNA, lipids and prote<strong>in</strong>s (Halliwell and Gutteridge 2006) and<br />

under normal conditions free radicals will be quickly detoxified by the body‟s defence<br />

systems. <strong>Mechanisms</strong> that resist aga<strong>in</strong>st <strong>oxidative</strong> damage comprise antioxidant<br />

scavengers such as glutathione (GSH), ascorbic acid (AA), alfa-tocopherol, carotenoids,<br />

flavonoids, polyphenols and antioxidant enzymes. These latter, SOD, GPx, CAT, are<br />

known to be responsible for the detoxification <strong>of</strong> ROS: SOD catalys<strong>in</strong>g the dismutation<br />

<strong>of</strong> two molecules <strong>of</strong> O2 ●� to give H2O2 and O2, and GPx and CAT participat<strong>in</strong>g <strong>in</strong> the<br />

removal <strong>of</strong> H2O2 (Reactions 2 and 3). Nevertheless, under certa<strong>in</strong> circumstances, greater<br />

amounts <strong>of</strong> ROS and RNS are produced, which f<strong>in</strong>ish up by overcom<strong>in</strong>g the cellular<br />

defence mechanisms. Failures <strong>in</strong> the systems that repair and replace oxidized<br />

biomolecules contribute to a situation <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong>, def<strong>in</strong>ed as “an imbalance<br />

between oxidants and antioxidants, <strong>in</strong> favour <strong>of</strong> the oxidants, lead<strong>in</strong>g to a disruption <strong>of</strong><br />

redox signal<strong>in</strong>g and control and/or molecular damage” (Sies and Jones 2007).<br />

Reaction 2: Dismutation <strong>of</strong> O2 by SOD<br />

●─ +<br />

2 O2 + 2H H2O2 + O2<br />

Reaction 3: Removal <strong>of</strong> H2O2 by GPx<br />

2 GSH + H2O2<br />

SOD<br />

GPx<br />

GSSG + 2H2O<br />

In the past decades, <strong>oxidative</strong> <strong>stress</strong> was the first common pathogenic factor to<br />

be considered as contribut<strong>in</strong>g to the degeneration <strong>of</strong> DAergic neurons <strong>in</strong> PD (Jenner<br />

1998, Lang and Lozano 1998, Schapira 1999). Increased SOD, iron, lipid peroxidation<br />

markers and nitrated prote<strong>in</strong>s levels, and decreased GSH levels <strong>in</strong> SNpc <strong>of</strong> PD patients<br />

suggested that <strong>oxidative</strong> <strong>stress</strong> may play a significant function <strong>in</strong> PD neurodegeneration<br />

(Saggu et al. 1989, S<strong>of</strong>ic et al. 1991, S<strong>of</strong>ic et al. 1992, Ilic et al. 1999, Agil et al. 2006).<br />

39


INTRODUCTION<br />

Transition metals: the example <strong>of</strong> iron<br />

40<br />

Iron is a redox-active metal able to generate O2 ●─ from its <strong>in</strong>teraction with<br />

molecular oxygen by auto-oxidat<strong>in</strong>g (Reaction 4). The reverse reaction is also possible.<br />

As a result <strong>of</strong> the Fenton reaction (Reaction 5), Fe 2+ may also be oxidized <strong>in</strong> the<br />

presence <strong>of</strong> H2O2 and generate ● OH and Fe 3+ which provokes lipid oxidation through its<br />

reaction with hydroperoxides normally present <strong>in</strong> the biological systems. In biological<br />

environment, other reactions as the Haber-Weiss reaction also occurs and requires the<br />

catalytic contribution <strong>of</strong> redox metal ions (Reaction 7).<br />

Reaction 4 Fe 2+ + O2 → Fe 3+ + O2 ●─<br />

●─ +<br />

2 O2 + 4H → 2H2O2<br />

Reaction 5 Fe 2+ + H2O2 → Fe 3+ + ● OH + OH ─ (Fenton reaction)<br />

Reaction 6 Fe 3+ + O2 ●─ → Fe 2+ + O2<br />

Reaction 7 O2 ●─ + H2O2 → O2 + ● OH + OH ─ (Haber Weiss reaction)<br />

In PD, iron content <strong>of</strong> the SNpc is elevated with an <strong>in</strong>crease <strong>of</strong> the Fe 3+ /Fe 2+<br />

ratio from 2:1 to almost 1:2 (Riederer et al. 1988, 1989, S<strong>of</strong>ic et al. 1988, Dexter et al.<br />

1993). These levels <strong>of</strong> iron <strong>in</strong>crease the conversion <strong>of</strong> H2O2 to ● OH via the Fenton<br />

reaction and promote a greater turnover <strong>in</strong> the Haber-Weiss reaction, lead<strong>in</strong>g to an<br />

amplification <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> (Riederer and Youdim 1993). Alternatively, <strong>oxidative</strong><br />

<strong>stress</strong> may <strong>in</strong>crease the levels <strong>of</strong> free iron (Halliwell and Gutteridge 2003) which may<br />

<strong>in</strong>teract with α-synucle<strong>in</strong> promot<strong>in</strong>g its aggregation (Schipper et al. 1998, Hochstrasser<br />

et al. 2004).


DA metabolism as a source <strong>of</strong> ROS<br />

INTRODUCTION<br />

The selective neurodegeneration <strong>of</strong> SNpc DAergic <strong>in</strong> PD seems to suggest that<br />

these neurons are more vulnerable to <strong>oxidative</strong> <strong>stress</strong>, but the reason beh<strong>in</strong>d this is not<br />

completely understood. One potential expla<strong>in</strong>ation was based, at least <strong>in</strong> part, on DA<br />

metabolism either by autoxidation or catalyzed by MAO. Actually, this neurotransmitter<br />

can react with molecular oxygen generat<strong>in</strong>g peroxides, active qu<strong>in</strong>ones, � OH and other<br />

ROS that, along with those created from the respiratory cha<strong>in</strong> failure, may lead to both<br />

modifications <strong>of</strong> prote<strong>in</strong>s and depletion <strong>of</strong> GSH generat<strong>in</strong>g a highly <strong>oxidative</strong><br />

<strong>in</strong>tracellular environment.<br />

The MAO catalyzed oxidation <strong>of</strong> DA to 3,4-dihydroxyphenylacetaldehyde<br />

(DOPAL) leads to H2O2 formation, which is normally cleared by GSH. As GSH levels<br />

are decreased <strong>in</strong> SN <strong>of</strong> PD patients (Sian et al. 1994) H2O2 may be converted <strong>in</strong>to � OH<br />

which may trigger lipid peroxidation caus<strong>in</strong>g the death <strong>of</strong> DAergic neurons.<br />

Furthermore, DA autoxidation results <strong>in</strong> the formation <strong>of</strong> the semiqu<strong>in</strong>one radical which<br />

can be directly toxic (Stokes et al. 1999, Danielson and Andersen 2008) or which can<br />

lead to the formation <strong>of</strong> ROS (Olanow 1990). O2 ●─ is either metabolized <strong>in</strong>to H2O2 or<br />

reacts with NO, generat<strong>in</strong>g the strongly reactive ONOO ●─ . After a complex process <strong>of</strong><br />

polymerization, this autoxidation pathway leads f<strong>in</strong>ally to the generation <strong>of</strong> the dark-<br />

coloured, <strong>in</strong>soluble pigment called neuromelan<strong>in</strong> (Graham 1978). This compound was<br />

implicated <strong>in</strong> the vulnerability and susceptibility <strong>of</strong> DAergic neurons to<br />

neurodegeneration (Abou-Sleiman et al. 2006) but its precise mechanism rema<strong>in</strong>s<br />

uncerta<strong>in</strong>. Several hypotheses tried to expla<strong>in</strong> its contribution to the DAergic neurons<br />

death, through a macromolecule crowd<strong>in</strong>g effect or as an <strong>in</strong>traneuronal toxic reservoir<br />

by b<strong>in</strong>d<strong>in</strong>g transition metals like iron or neurotoxic coumpounds like MPP + (Chung et<br />

al. 2001).<br />

41


INTRODUCTION<br />

Nitric oxide<br />

42<br />

There is evidence that not only ROS but also the metabolism <strong>of</strong> NO, a free<br />

radical, may play a part <strong>in</strong> <strong>oxidative</strong> damage <strong>in</strong> PD (Gerlach et al. 1999, Torreilles et al.<br />

1999, Boje 2004). NO is synthesized from L-arg<strong>in</strong><strong>in</strong>e by three is<strong>of</strong>orms <strong>of</strong> nitric oxide<br />

synthase (NOS): <strong>in</strong>ducible (iNOS), endothelial (eNOS), and neuronal NOS (nNOS),<br />

us<strong>in</strong>g NADPH and molecular oxygen (Kavya et al. 2006). NO has long been recognized<br />

as a signal<strong>in</strong>g molecule for vasodilatation and neurotransmission but it has many<br />

important functions <strong>in</strong> other physiologic systems, such as <strong>in</strong> the immune, respiratory,<br />

neuromuscular and nervous systems. Moreover, NO also participates <strong>in</strong> pathogenic<br />

pathways. It can react with other ROS to generate the highly toxic RNS (Reynolds et al.<br />

2007, Szabo et al. 2007). As depicted <strong>in</strong> Figure 19 NO can react with O2 ●─ to form the<br />

more reactive ONOO ●─ . Peroxynitrite is known to promote cellular damages by means<br />

<strong>of</strong> lipid peroxidation, DNA fragmentation, prote<strong>in</strong> nitration, and activation <strong>of</strong> caspase<br />

dependent and/or <strong>in</strong>dependent cell death pathways (Beckman and Koppenol 1996, Hong<br />

et al. 2004, Szabo et al. 2007). Additionnally, when reacted with H + or CO2, ONOO ●─<br />

can further convert to nitrogen dioxide (NO2) and ● OH, two highly toxic <strong>in</strong>termediates.<br />

Prote<strong>in</strong> modifications by NO and/or ONOO ●─ such as S-nitrosylation and nitration may<br />

affect cell survival. Prote<strong>in</strong> nitration by NO or ONOO ●─ usually <strong>in</strong>serts a nitro (-NO2)<br />

group onto one <strong>of</strong> the two carbons <strong>of</strong> the aromatic r<strong>in</strong>g <strong>of</strong> tyros<strong>in</strong>e residues to form<br />

nitrotyros<strong>in</strong>e (Gow et al. 2004). On the other hand S-nitrosylation, which also happens<br />

under both physiologic and pathogenic conditions, regulates gene transcription,<br />

vesicular traffick<strong>in</strong>g, receptor mediated signal transduction, and apoptosis (Chung<br />

2007). Many enzymes, receptors and neuroprotective prote<strong>in</strong>s may be modified by NO<br />

through their reactive cyste<strong>in</strong>e (CySH) thiols to form the correspond<strong>in</strong>g nitrosothiols<br />

(Stamler et al. 1992, Ahern et al. 2002, Hess et al. 2005, Chung 2007).


Contribution <strong>of</strong> <strong>oxidative</strong> and nitrosative <strong>stress</strong> to PD pathogenesis<br />

INTRODUCTION<br />

As we have previously seen, genes l<strong>in</strong>ked to familial PD are important <strong>in</strong><br />

mitochondrial function or <strong>in</strong> the handl<strong>in</strong>g <strong>of</strong> misfolded prote<strong>in</strong>s (Abou-Sleiman et al.<br />

2006, Savitt et al. 2006, Sulzer 2007). Besides, <strong>oxidative</strong> and nitrosative <strong>stress</strong> had a<br />

significant effect on the normal function <strong>of</strong> familial PD-related gene products <strong>in</strong> the<br />

process <strong>of</strong> neurodegeneration.<br />

Figure 19: Generation <strong>of</strong> ROS and RNS <strong>in</strong> SNpc neuron (Tsang and Chung 2009)<br />

Oxidative <strong>stress</strong> is known to promote prote<strong>in</strong> misfold<strong>in</strong>g and aggregation. For<br />

example, α-synucle<strong>in</strong> can undergo <strong>oxidative</strong> modifications such as the addition <strong>of</strong> a DA<br />

adduct on α-synucle<strong>in</strong> (Conway et al. 2001). This modification stabilizes the toxic α-<br />

synucle<strong>in</strong> prot<strong>of</strong>ibrils and makes it resistant to chaperone mediated autophagy (CMA)<br />

lead<strong>in</strong>g to a complete blockade <strong>of</strong> other prote<strong>in</strong>s degradation via this pathwaw<br />

(Mart<strong>in</strong>ez-Vicente et al. 2008). As well, α-synucle<strong>in</strong> prot<strong>of</strong>ibrils can permeabilize<br />

synaptic vesicles (Volles et al. 2001, Mazzulli et al. 2006, Mosharov et al. 2006) lead<strong>in</strong>g<br />

to an <strong>in</strong>crease <strong>of</strong> more α-synucle<strong>in</strong> prot<strong>of</strong>ibrils. Nitrosative modifications <strong>of</strong> α-synucle<strong>in</strong><br />

43


INTRODUCTION<br />

have also been demonstrated <strong>in</strong> all tyros<strong>in</strong>e residues (Takahashi et al. 2002). Nitrated α-<br />

synucle<strong>in</strong> is more prone to aggregation (Giasson et al. 2000, Zhang et al. 2000), more<br />

resistant to proteolysis and more immunogenic expla<strong>in</strong><strong>in</strong>g why <strong>in</strong>flammatory responses<br />

are frequent <strong>in</strong> PD patients (Goedert 2001, Benner et al. 2008). We have previously also<br />

commented that PINK-1 and DJ-1 are known to possess protective function aga<strong>in</strong>st<br />

<strong>oxidative</strong> <strong>stress</strong> (Savitt et al. 2006, Thomas and Beal 2007).<br />

44<br />

Oxidative and nitrosative <strong>stress</strong> can also impair cellular systems that protect<br />

aga<strong>in</strong>st misfolded or aggregated prote<strong>in</strong>s. As an example, park<strong>in</strong> can be S-nitrosylated<br />

on a critical CySH residue with<strong>in</strong> its catalytic RING doma<strong>in</strong>s impair<strong>in</strong>g its E3 ligase<br />

activity and neuroprotective functions (Chung et al. 2004, Yao et al. 2004).<br />

Additionally, DA can covalently modify park<strong>in</strong> lead<strong>in</strong>g to park<strong>in</strong> aggregation and<br />

weaken<strong>in</strong>g its ligase activity (LaVoie et al. 2005). S-nitrosylated and DA-modified<br />

park<strong>in</strong> were observed <strong>in</strong> the SNpc <strong>of</strong> PD patients. Moreover, normal UPS function can<br />

also be compromised by the tendency <strong>of</strong> oxidized prote<strong>in</strong>s to be more resistant to<br />

proteasomal degradation probably by means <strong>of</strong> the formation <strong>of</strong> aggregates (Friguet and<br />

Szweda 1997, Davies 2001). Prote<strong>in</strong> aggregates may also lead to the UPS impairment<br />

by block<strong>in</strong>g the access <strong>of</strong> the proteasome to other prote<strong>in</strong>s (Grune et al. 2004).<br />

Despite be<strong>in</strong>g the major site <strong>of</strong> ROS formation, the respiratory cha<strong>in</strong> itself is<br />

targeted by <strong>oxidative</strong> <strong>stress</strong>. Complex I and various enzymes <strong>in</strong> the Krebs cycle can be<br />

<strong>in</strong>actived by oxidation (Cadenas and Davies 2000, Cecar<strong>in</strong>i et al. 2007) contribut<strong>in</strong>g to<br />

the reduction <strong>of</strong> the ATP biosynthesis. Moreover, mitochondrial DNA (mtDNA) that is<br />

transitorily connected to the <strong>in</strong>ner mitochondrial membrane is particularly vulnerable to<br />

<strong>oxidative</strong> damage (Goetz and Gerlach 2004). Consequently ROS-<strong>in</strong>duced mtDNA<br />

<strong>in</strong>jury may play a part <strong>in</strong> mitochondrial dysfunction (Stewart and Heales 2003).


Excitotoxicity<br />

INTRODUCTION<br />

Glutamate is the major excitatory neurotransmitter <strong>in</strong> the CNS, but it can be<br />

toxic to cells. Excitotoxicity is a pathological process that may occur as a consequence<br />

<strong>of</strong> an excessive stimulation <strong>of</strong> the glutamate N-methyl-D-aspartate receptor (NMDAR)<br />

and other receptors associated with glutamatergic signall<strong>in</strong>g, such as metabotropic<br />

glutamate receptors (mGLURs), calcium channels and other G-prote<strong>in</strong> coupled<br />

receptors (GPCR), and the subsequent massive <strong>in</strong>flux <strong>of</strong> extracellular calcium. This<br />

toxic and pathological <strong>in</strong>crease <strong>in</strong> cytoplasmic calcium activates a number <strong>of</strong> calcium-<br />

dependent enzymes <strong>in</strong>volved <strong>in</strong> the catabolism <strong>of</strong> prote<strong>in</strong>s, phospholipids and nucleic<br />

acids, and <strong>in</strong> the synthesis <strong>of</strong> NO lead<strong>in</strong>g <strong>in</strong> turn to mitochondrial damage, formation <strong>of</strong><br />

oxidiz<strong>in</strong>g species, and downstream activation <strong>of</strong> cell death pathways.<br />

There is some evidence implicat<strong>in</strong>g excitotoxicity as one contribut<strong>in</strong>g<br />

mechanism to the pathogenesis <strong>in</strong> PD. As the SN receives rich glutamatergic <strong>in</strong>puts<br />

from neocortex and the STN, the demise <strong>of</strong> nigrostriatal DA <strong>in</strong> PD leads to dis<strong>in</strong>hibition<br />

<strong>of</strong> striatal neurons, and consequently to disruption <strong>of</strong> the neurotransmitter balance <strong>in</strong><br />

striatum result<strong>in</strong>g <strong>in</strong> glutamatergic overactivity, whereas under physiological conditions<br />

there is equilibrium between the activation <strong>of</strong> striatal neurons through NMDAR and<br />

<strong>in</strong>hibition by the D2 receptors. It was hypothesized that weak excitotoxicity may happen<br />

secondary to a mitochondrial defect with decreased ATP formation lead<strong>in</strong>g to an ATP<br />

dependent magnesium-blockade <strong>of</strong> the NMDAR or to dis<strong>in</strong>hibition <strong>of</strong> glutamatergic<br />

STN neurons result<strong>in</strong>g from DA depletion (Beal 1998, Rodriguez et al. 1998).<br />

Furthermore, NMDAR antagonists were shown to provide protection aga<strong>in</strong>st MPP + -<br />

<strong>in</strong>duced <strong>neurotoxicity</strong> and obta<strong>in</strong> antipark<strong>in</strong>sonian like activity <strong>in</strong> animal models<br />

(Turski et al. 1991, Uitti et al. 1996, Schmidt and Kretschmer 1997) whereas<br />

compounds that enhance NMDAR function worsens park<strong>in</strong>sonian symptoms (Giuffra et<br />

al. 1993). In addition, NO has been associated with NMDAR excitotoxicity. Dur<strong>in</strong>g<br />

over-activation <strong>of</strong> the NDMAR, nNOS is recruited to the glutamate receptor by a<br />

postsynaptic density prote<strong>in</strong> called PSD-95 and synthesizes then NO which can react<br />

with other ROS to form the highly toxic ONOO ●─ (Sattler et al. 1999, Aarts et al. 2002).<br />

45


INTRODUCTION<br />

46<br />

Another pathway has been l<strong>in</strong>ked to excitotoxicity. In PD there is evidence for<br />

abnormal activation <strong>of</strong> cycl<strong>in</strong>-dependent k<strong>in</strong>ase 5 (Cdk5), a ser<strong>in</strong>e/threon<strong>in</strong>e k<strong>in</strong>ase<br />

which needs activat<strong>in</strong>g partners, p35 and p39 (Cheung et al. 2004, Cheung 2006). Over-<br />

activation <strong>of</strong> NMDAR was shown to provoke cleavage <strong>of</strong> p35 to p25, a prote<strong>in</strong> that<br />

cause a more robust and prolonged activation <strong>of</strong> Cdk5. Excessive Cdk5 activity has<br />

been l<strong>in</strong>ked to PD pathogenesis (O‟Hare et al. 2005, Smith et al. 2006, Wang et al.<br />

2007, Qu et al. 2007) and is known to contribute to neuronal death by phosphorylat<strong>in</strong>g<br />

the transcription factor myocyte enhancer factor 2 (MEF2) and the anti<strong>oxidative</strong> <strong>stress</strong><br />

enzyme peroxiredox<strong>in</strong> 2 (Prx2), lead<strong>in</strong>g to attenuation <strong>of</strong> their normal prosurvival<br />

functions. Actually, Prx2 breaks down H2O2 to H2O and O2 protect<strong>in</strong>g the cells aga<strong>in</strong>st<br />

<strong>oxidative</strong> <strong>stress</strong> (Abou-Sleiman et al. 2006), whereas MEF2 is an important<br />

transcription factor <strong>of</strong> prosurvival genes (Potth<strong>of</strong>f and Olson 2007).<br />

Neuro<strong>in</strong>flammation and glial cells<br />

It is well known that the bra<strong>in</strong> can <strong>in</strong>itiate <strong>in</strong>jury responses, such as<br />

neuro<strong>in</strong>flammation, as a way to clean up <strong>in</strong>jured bra<strong>in</strong> tissues. The ma<strong>in</strong> cellular<br />

responders are microglia, specialized macrophages capable <strong>of</strong> produc<strong>in</strong>g cytok<strong>in</strong>es and<br />

other protective factors to regulate the <strong>in</strong>jury response. Although neuro<strong>in</strong>flammation<br />

may have <strong>in</strong>itial protective effects, it has been hypothesized to be a potential contributor<br />

to PD pathogenesis (Hartmann et al. 2003). Its exact role is unclear: it may act as an<br />

<strong>in</strong>itial event <strong>of</strong> PD pathogenesis or be a downstream result <strong>of</strong> another trigger<strong>in</strong>g<br />

pathogenic factor.<br />

Immunohistochemical studies have demonstrated the presence <strong>of</strong> activated<br />

microglia, <strong>in</strong>creased expression <strong>of</strong> iNOS, cytok<strong>in</strong>es like tumour necrosis factor-α (TNF-<br />

α) and <strong>in</strong>terleuk<strong>in</strong> (IL)-1β, and pro-<strong>in</strong>flammatory signall<strong>in</strong>g cascades such as<br />

cyclooxygenase-2 (COX-2) and NF-κB <strong>in</strong> striatum, SN and cerebrosp<strong>in</strong>al fluid (CSF) <strong>of</strong><br />

PD patients (Boka et al. 1994, Mogi et al. 1994, Blum-Degen et al. 1995, Hunot et al.<br />

1996, Hirsh et al. 1998, Muller et al. 1998, Hunot et al. 1999, Knott et al. 2000, Nagatsu<br />

et al. 2000, Nagatsu 2002). Animal models <strong>of</strong> PD us<strong>in</strong>g rotenone, MPTP, and 6-OHDA<br />

showed levels <strong>of</strong> microglial activation similar to what is found <strong>in</strong> PD (Czlonkowska et


INTRODUCTION<br />

al. 1996, Cicchetti et al. 2002, Sherer et al. 2003). In post-mortem exam<strong>in</strong>ation <strong>of</strong> bra<strong>in</strong>s<br />

from humans exposed to MPTP, activated microglia was present up to 16 years after<br />

exposure <strong>in</strong>dicat<strong>in</strong>g a long-last<strong>in</strong>g and ongo<strong>in</strong>g <strong>in</strong>flammatory response (Langston et al.<br />

1999). Indeed, the <strong>in</strong>flammatory cytok<strong>in</strong>es seem to <strong>in</strong>tensify and perpetuate the<br />

neuro<strong>in</strong>flammation (McGeer et al. 2001, Orr et al. 2002, McGeer and McGeer 2004,<br />

Bartels and Leenders 2007). Furthermore, neuromelan<strong>in</strong>, which is released by dy<strong>in</strong>g<br />

DAergic neurons, was shown to activate microglia <strong>in</strong> vitro (Wilms et al. 2003). As large<br />

amounts <strong>of</strong> superoxide radicals are produced by activated microglia, chronic<br />

neuro<strong>in</strong>flammation may then promote the degeneration <strong>of</strong> DAergic neurons once<br />

activated, probably through <strong>in</strong>creased <strong>oxidative</strong> <strong>stress</strong> (Figure 20; Whitton 2007). This<br />

may lead to the creation <strong>of</strong> a vicious cycle that further <strong>in</strong>creases DAergic toxicity <strong>in</strong> the<br />

SNpc.<br />

Figure 20: Interaction between microglia and DAergic neurons (Whitton 2007)<br />

47


INTRODUCTION<br />

Cell death pathways<br />

48<br />

There is substantial <strong>in</strong>dication that cell death <strong>in</strong> PD occurs by way <strong>of</strong> a signal-<br />

mediated apoptotic process (Hirsch et al. 1999, Mattson et al. 2000). Apoptosis is a<br />

mechanism <strong>of</strong> programmed cell death (PCD) carried out by caspases dur<strong>in</strong>g which a cell<br />

goes through various morphological changes <strong>in</strong>clud<strong>in</strong>g membrane blebb<strong>in</strong>g, changes to<br />

the cell membrane such as loss <strong>of</strong> membrane asymmetry and attachment, cell shr<strong>in</strong>kage,<br />

nuclear condensation, and DNA fragmentation. A normal function<strong>in</strong>g <strong>of</strong> apoptosis<br />

avoids trigger<strong>in</strong>g harmful responses, such as <strong>in</strong>flammation. A great number <strong>of</strong> apoptotic<br />

pathways are activated <strong>in</strong> response to PD-<strong>in</strong>duced dysfunction, such as JNK signal<strong>in</strong>g,<br />

<strong>in</strong>duction <strong>of</strong> Bax, p53 activation, cell cycle re-entry, bcl-2 family signall<strong>in</strong>g, and<br />

caspase activation (Hirsch et al. 1999, Tatton et al. 2003, Nair et al. 2006, Levy et al.<br />

2009). As an example, mutations <strong>in</strong> LRRK2 are l<strong>in</strong>ked to activation <strong>of</strong> the <strong>in</strong>tr<strong>in</strong>sic<br />

apoptotic pathway, with cytochrome c released <strong>in</strong>to the cytosol, activation <strong>of</strong> caspase 3<br />

and nuclear condensation (Iaccar<strong>in</strong>o et al. 2007).


Experimental models <strong>of</strong> PD<br />

INTRODUCTION<br />

Animal models are <strong>in</strong>valuable tools to understand the pathophysiology and<br />

motor deficits occurr<strong>in</strong>g <strong>in</strong> PD disease. Furthermore, they are also fundamental to create<br />

new neuroprotective strategies and therapeutic <strong>in</strong>terventions to improve symptomatic<br />

management. S<strong>in</strong>ce PD does not develop spontaneously <strong>in</strong> animals, various models<br />

have been developed <strong>in</strong> dist<strong>in</strong>ct species <strong>in</strong> order to mimic the characteristic functional<br />

changes observed <strong>in</strong> PD. These <strong>in</strong>clude tox<strong>in</strong>-based models, gene-based models and<br />

<strong>in</strong>flammation-based models.<br />

Tox<strong>in</strong>-<strong>in</strong>duced models<br />

6-OHDA, the first animal tox<strong>in</strong>-based model <strong>of</strong> PD associated with loss <strong>of</strong><br />

DAergic neurons <strong>in</strong> the SNpc was <strong>in</strong>troduced more than 40 years ago (Ungerstedt<br />

1968). S<strong>in</strong>ce then many different neurotox<strong>in</strong>s, such as MPTP, paraquat and rotenone<br />

have been used to <strong>in</strong>duce DAergic neurodegeneration <strong>in</strong> animal models.<br />

6-OHDA<br />

The discovery <strong>of</strong> 6-OHDA toxicity toward catecholam<strong>in</strong>ergic neurons <strong>in</strong>itiated<br />

the epoch <strong>of</strong> tox<strong>in</strong>-based models <strong>of</strong> PD (Ungerstedt 1968, Ungerstedt and Arbuthnott<br />

1970). As 6-OHDA does not cross the BBB it must be adm<strong>in</strong>istered directly <strong>in</strong> the bra<strong>in</strong><br />

by local stereotaxic <strong>in</strong>jection <strong>in</strong>to the SN, median forebra<strong>in</strong> bundle (MFB), or striatum,<br />

with the contralateral side serv<strong>in</strong>g as control, or by peripheral adm<strong>in</strong>istration <strong>in</strong> neonatal<br />

rats (Perese et al. 1989, Przedborski et al. 1995, Rodriguez-Pallares et al. 2007,<br />

Sánchez-Iglesias et al. 2007a). 6-OHDA <strong>in</strong>jection <strong>in</strong>to the striatum leads to a more<br />

progressive and slower degeneration <strong>of</strong> nigrostriatal neurons, which lasts for 1-3 weeks<br />

(Sauer and Oertel 1994, Przedborski et al. 1995, Flem<strong>in</strong>g et al. 2005), while <strong>in</strong>jections<br />

<strong>in</strong>to SN or the nigrostriatal tract result <strong>in</strong> striatal DA depletion 2 to 3 days later (Faull<br />

and Laverty 1969). The quantity <strong>of</strong> neurotox<strong>in</strong> used, the site <strong>of</strong> <strong>in</strong>jection, and the<br />

different sensitivity between animal species determ<strong>in</strong>es the extent <strong>of</strong> the lesion.<br />

49


INTRODUCTION<br />

Although the 6-OHDA model does not replicate many features <strong>of</strong> PD, such as<br />

extranigral pathology or LB-like <strong>in</strong>clusions (Dauer and Przedbroski 2003, Lane and<br />

Dunnett 2008), it is still extensively used. This model is particularly useful to<br />

quantitatively assay the anti-PD properties <strong>of</strong> compounds for pharmacological<br />

screen<strong>in</strong>g. Other 6-OHDA models, like bilateral <strong>in</strong>trastriatal (Roedter et al. 2001) or<br />

<strong>in</strong>traventricular adm<strong>in</strong>istration <strong>of</strong> 6-OHDA (Rodriguez et al. 2001, Rodríguez-Díaz et<br />

al. 2001, Rey et al. 2007, Sánchez-Iglesias et al. 2009), were successfully developed<br />

with methods meant to cause a bilateral and more slowly aris<strong>in</strong>g PD.<br />

MPTP<br />

50<br />

MPTP is one <strong>of</strong> the most common tox<strong>in</strong>s used to mimic the hallmarks <strong>of</strong> PD. Its<br />

metabolite MPP + is a potent complex I <strong>in</strong>hibitor <strong>in</strong> DAergic neurons and an excellent<br />

substrate for DAT, a fact that expla<strong>in</strong>s its selectivity towards DAergic neurons. Acute,<br />

subacute and chronic MPTP protocols are generally used with some variations <strong>in</strong> mice<br />

(Lau et al. 1990, Rozas et al. 1998, Petroske et al 2001, Muñoz et al. 2006, Joglar et al.<br />

2009) as rats are not susceptible to MPTP. Loss <strong>of</strong> DAergic neurons, bradyk<strong>in</strong>esia,<br />

rigidity, and posture abnormalities developed <strong>in</strong> systemic MPTP treatment (Sedelis et<br />

al. 2000). As well, small granular <strong>in</strong>clusions conta<strong>in</strong><strong>in</strong>g �-synucle<strong>in</strong> were seen <strong>in</strong> SN<br />

DAergic neurons, so as an extra-nigral pathology (Wallace et al. 1984, Hallman et al.<br />

1985, Meredith et al. 2002, 2004). Recently, a technically challeng<strong>in</strong>g <strong>in</strong>traventricular<br />

MPP + chronic rat model has also been developed (Yazdani et al. 2006)<br />

Rotenone, paraquat and maneb<br />

Rotenone, a natural cytotoxic coumpound widely used as pesticide, is highly<br />

lipophilic and can easily cross cell membranes and the BBB. Chronic exposure <strong>of</strong><br />

rotenone potently and uniformly <strong>in</strong>hibits mitochondrial complex I b<strong>in</strong>d<strong>in</strong>g at the same<br />

site as MPP + throughout the rat bra<strong>in</strong>. The herbicide 1,1‟-dimethyl-4,4‟-bipyrid<strong>in</strong>ium or<br />

paraquat (PQ) can also crosses the BBB and shares structural similarity to MPP + but has<br />

no selectivity for DAT. PQ is reduced by complex I lead<strong>in</strong>g to formation <strong>of</strong> a PQ radical<br />

capable <strong>of</strong> disrupt<strong>in</strong>g mitochondrial function. Treatments with rotenone and paraquat


INTRODUCTION<br />

<strong>in</strong>duce selective DAergic neuron degeneration and have been used to model sporadic<br />

Park<strong>in</strong>son's disease (Brooks et al. 1999, Peng et al. 2004, Hsuan et al. 2006, Inden et al.<br />

2007). Animal models us<strong>in</strong>g paraquat generally also co-adm<strong>in</strong>ister maneb (manganese<br />

ethylenebisadithiocarbamate) to enhance toxicity. Nevertheless, general toxicity <strong>of</strong> PQ<br />

and rotenone make their use difficult. As MPTP they produce nigrostriatal degeneration<br />

but their effects are more widespread. A recent study suggested that rotenone and<br />

paraquat do not <strong>in</strong>duce neuro<strong>in</strong>flammation and microglial activation directly but rather<br />

<strong>in</strong>directly as a result <strong>of</strong> DAergic neuron damage or through factors released by neurons<br />

or astrocytes (Kl<strong>in</strong>tworth et al. 2009).<br />

Inflammation-based models<br />

Neuro<strong>in</strong>flammation is present <strong>in</strong> PD and is believed to contribute to PD<br />

pathogenesis. Therefore, <strong>in</strong>flammation-based models have been developed.<br />

Lipopolysaccharide (LPS) is a bacterial coat prote<strong>in</strong> and has been used to model<br />

neuro<strong>in</strong>flammation <strong>in</strong> PD as it is a potent activator <strong>of</strong> microglial cells and <strong>in</strong>ducer <strong>of</strong><br />

<strong>in</strong>flammation (Whitton 2007). Dist<strong>in</strong>ct protocols have been used by the date: acute<br />

<strong>in</strong>tracerebral (Castano et al. 1998, Herrera et al. 2000, Kim et al. 2000, Iravani et al.<br />

2005), chronic <strong>in</strong>tracerebral (Gao et al. 2002), acute systemic (Qu<strong>in</strong> et al. 2007), and<br />

<strong>in</strong>trauter<strong>in</strong>e (L<strong>in</strong>g et al. 2002, 2004, 2006) adm<strong>in</strong>istration <strong>of</strong> LPS. LPS causes DAergic<br />

cell death and decreases locomotor activity <strong>in</strong> rodents (Iravani et al. 2005).<br />

Gene-based models<br />

More recently, the identification <strong>of</strong> genetic mutations <strong>of</strong> PD has enabled the<br />

creation <strong>of</strong> etiologic-specific PD animal models. These <strong>in</strong>clude genetically modified<br />

mice with null mutations <strong>of</strong> park<strong>in</strong>, DJ-1 and PINK1 genes (knock-out mice), an extra<br />

gene copy <strong>of</strong> �-synucle<strong>in</strong> and LRRK2, or po<strong>in</strong>t mutations <strong>of</strong> genes located <strong>in</strong> different<br />

PARK loci (Goldberg et al. 2003, Itier et al. 2003, Palac<strong>in</strong>o et al. 2004, Von Coelln et<br />

al. 2004, Smith et al. 2006, Chesselet 2007, Dodson and Guo 2007, Kitada et al. 2007,<br />

Sang et al. 2007, Yamaguchi et al. 2007, Yang et al. 2007, Zhu et al. 2007). Additional<br />

51


INTRODUCTION<br />

mouse models, such as Pitx3-aphakia mouse or Engrailed double knock-out mouse,<br />

were developed on the basis <strong>of</strong> genes crucial for development and survival <strong>of</strong> DAergic<br />

neurons (Nunes et al. 2003, Sgado et al. 2006, D<strong>in</strong>g et al. 2007). Recently, tissue-<br />

specific knock-out mouse models target<strong>in</strong>g the expression <strong>of</strong> genes <strong>of</strong> <strong>in</strong>terest <strong>in</strong> a<br />

region- or neuron-specific manner were created (Gelman et al. 2003, Ekstrand et al.<br />

2004, L<strong>in</strong>deberg et al. 2004, Backet et al. 2005, Zhuang et al. 2005, Backman et al.<br />

2006, Borgkvist et al. 2006, Turiault et al. 2007).<br />

52<br />

As there is no experimental PD model to date that mimics exactly the<br />

pathogenesis and progression happen<strong>in</strong>g <strong>in</strong> PD, one priority at this time is to develop an<br />

experimental model <strong>of</strong> PD that reproduces the cl<strong>in</strong>ical and pathological features <strong>of</strong> PD,<br />

such as progressive loss <strong>of</strong> DAergic neurons <strong>in</strong> the striatum and SN, LB-like <strong>in</strong>clusion<br />

<strong>in</strong> the bra<strong>in</strong>, and L-DOPA-responsive movement disorder.


ALUMINIUM<br />

General features<br />

INTRODUCTION<br />

The human organism is constantly and <strong>in</strong>evitably exposed to <strong>alum<strong>in</strong>ium</strong>, a<br />

ubiquitous metal which is the third most abundant element <strong>in</strong> the Earth‟s crust (after<br />

oxygen and silicon), represent<strong>in</strong>g 8.3% <strong>of</strong> total components (Becaria et al. 2002). Its<br />

atomic number is 13 and its electronic configuration is [Ne]3s 2 3p 1 . Alum<strong>in</strong>ium has two<br />

isotopes, Al 27 which has a natural abundance <strong>of</strong> 99.9% and Al 26 with a half-life (t1/2) <strong>of</strong><br />

7.2 � 10 5 years. In nature, <strong>alum<strong>in</strong>ium</strong> does not occur <strong>in</strong> the elemental state but is found<br />

<strong>in</strong> comb<strong>in</strong>ation with oxygen, fluor<strong>in</strong>e, silicon, sulphur and other species (Brusewitz<br />

1984, Wagner 1999). The physical, chemical and biological properties <strong>of</strong> the <strong>alum<strong>in</strong>ium</strong><br />

complexes will determ<strong>in</strong>e the toxicok<strong>in</strong>etics <strong>of</strong> this metal (Harris et al. 1997).<br />

Alum<strong>in</strong>ium speciation<br />

Alum<strong>in</strong>ium forms a wide range <strong>of</strong> hydroxyl complexes <strong>in</strong> water solution,<br />

evolv<strong>in</strong>g from Al 3+ towards [Al(OH)4] - with<strong>in</strong> the 3-8 pH range (Reaction 8; Figure 21).<br />

Reaction 8:<br />

[Al(H2O)6] 3+ � [Al(H2O)5(OH)] 2+ � [Al(H2O)4(OH)2] + � Al(OH)3 � [Al(OH)4] -<br />

Actually, <strong>in</strong> aqueous solution at pH < 5.0, the prevalent mononuclear Al species is the<br />

octahedral hexahydrate [Al(H2O)6] 3+ (generally abbreviated as Al 3+ ). In less acidic<br />

solutions with pH values greater than 5.0, [Al(H2O)6] 3+ undergoes hydrolysis that yield<br />

different species such as [Al(H2O)5(OH)] 2+ (abbreviated as [Al(OH)] 2+ ) and<br />

[Al(H2O)4(OH)2] + (abbreviated as [Al(OH)2] + ). But not only mononuclear <strong>alum<strong>in</strong>ium</strong><br />

species exist <strong>in</strong> aqueous solution, as it is <strong>in</strong>cl<strong>in</strong>ed to polymerize form<strong>in</strong>g the unstable<br />

dimer [Al2(OH)2(H2O)8] 4+ and the more stable polymers [Al6(OH)12] 6+ , [Al10(OH)22] 8+<br />

53


INTRODUCTION<br />

and [Al13(OH)30] 9+ . The solid Al(OH)3 is the predom<strong>in</strong>ant species <strong>in</strong> the neutral pH<br />

range, whereas the soluble tetrahedral alum<strong>in</strong>ate [Al(OH)4] - predom<strong>in</strong>ates above pH 8.<br />

Figure 21: Mole fraction <strong>of</strong> soluble <strong>alum<strong>in</strong>ium</strong> ions as a function <strong>of</strong> solution pH <strong>in</strong> aqueous solution<br />

(Priest 2004)<br />

Sources <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> exposure<br />

Environmental exposure<br />

54<br />

Alum<strong>in</strong>ium and its compounds are widely distributed <strong>in</strong> the environment<br />

although most naturally occurr<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> is bound and not readily bioavailable. As<br />

example, this metal is present <strong>in</strong> a variety <strong>of</strong> m<strong>in</strong>erals, such as silicates (feldspars and<br />

micas), complexed with fluor<strong>in</strong>e and sodium as cryolite, and is chiefly m<strong>in</strong>ed as<br />

bauxite, a m<strong>in</strong>eral conta<strong>in</strong><strong>in</strong>g 40-60% <strong>alum<strong>in</strong>ium</strong> oxide (alum<strong>in</strong>a) (Ganrot 1986).<br />

Alum<strong>in</strong>ium is a major constituent <strong>of</strong> atmospheric particulates, primarily found as<br />

alum<strong>in</strong>o-silicates, orig<strong>in</strong>at<strong>in</strong>g from natural soil erosion, m<strong>in</strong><strong>in</strong>g or agricultural activities,<br />

volcanic eruptions, or coal combustion. Atmospheric <strong>alum<strong>in</strong>ium</strong> concentrations were<br />

reported to range generally from 5 to 180 µg/m 3 (Sorenson et al. 1974) whereas<br />

concentrations <strong>in</strong> <strong>in</strong>dustrial areas are <strong>of</strong>ten <strong>in</strong> the milligram per cubic meter range.


INTRODUCTION<br />

Vary<strong>in</strong>g amounts <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> are present naturally <strong>in</strong> groundwater and surface<br />

water, <strong>in</strong>clud<strong>in</strong>g those used as sources <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g water. Acidification <strong>of</strong> lakes and<br />

streams by acid ra<strong>in</strong> mobilize <strong>alum<strong>in</strong>ium</strong> from the soil to the aquatic environment<br />

<strong>in</strong>creas<strong>in</strong>g the amount <strong>of</strong> this metal (Cronan and Schoefield 1979, Harris et al. 1996).<br />

Alum<strong>in</strong>ium concentrations <strong>in</strong> natural water normally are small but may vary <strong>in</strong> the<br />

urban areas (Constant<strong>in</strong>i and Giordano 1991) depend<strong>in</strong>g if <strong>alum<strong>in</strong>ium</strong> flocculents (most<br />

commonly alum or <strong>alum<strong>in</strong>ium</strong> sulphate) are used dur<strong>in</strong>g the treatment process for<br />

purification purposes for clarify<strong>in</strong>g turbid dr<strong>in</strong>k<strong>in</strong>g water (Mart<strong>in</strong> 1986, Lévesque et al.<br />

2000).<br />

Dietary exposure<br />

Alum<strong>in</strong>ium is found <strong>in</strong> the tissues <strong>of</strong> many plants and animals. The<br />

concentration <strong>in</strong> foods varies widely, depend<strong>in</strong>g upon the product, the type <strong>of</strong><br />

process<strong>in</strong>g, and the geographical orig<strong>in</strong> (means range from


INTRODUCTION<br />

Iatrogenic exposure<br />

56<br />

In short, the major route <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> exposure for an adult is food<br />

(approximately 95%), dr<strong>in</strong>k<strong>in</strong>g water only contributes


INTRODUCTION<br />

and antiperspirants conta<strong>in</strong><strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> chlorohydrate (Flarend et al. 2001) represent<br />

other possible sources <strong>of</strong> exposure.<br />

Alum<strong>in</strong>ium toxicok<strong>in</strong>etics<br />

Absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

Alum<strong>in</strong>ium may be absorbed by several routes: oral, <strong>in</strong>tranasal, transdermal, and<br />

parenteral pathways. The major sites <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> absorption are the gastro<strong>in</strong>test<strong>in</strong>al<br />

tract (Ittel 1993), the sk<strong>in</strong> (Exley 1998, 2004), and the olfactory and oral epithelia<br />

(Roberts 1986).<br />

Oral absorption<br />

The gastro<strong>in</strong>test<strong>in</strong>al tract is one <strong>of</strong> the ma<strong>in</strong> sites <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> absorption (Ittel<br />

1993). The proportion <strong>of</strong> absorbed <strong>alum<strong>in</strong>ium</strong> follow<strong>in</strong>g oral <strong>in</strong>take is very low rang<strong>in</strong>g<br />

from 0.06 to 1.5% (Moore et al. 2000, Flaten et al. 2001, Yokel et al. 2001a). The<br />

amount <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> absorbed across the gastro<strong>in</strong>test<strong>in</strong>al tract depends on many<br />

factors, <strong>in</strong>clud<strong>in</strong>g pH, <strong>alum<strong>in</strong>ium</strong> speciation and dietary agents (Partridge et al. 1989,<br />

Deng et al. 1998). Moreover, the <strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> was shown to<br />

<strong>in</strong>crease <strong>in</strong> various pathological conditions, such as AD (Moore et al. 2000). As an<br />

example, a low pH will enhance the solubility <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> species then <strong>in</strong>creas<strong>in</strong>g<br />

<strong>alum<strong>in</strong>ium</strong> absorption. Small organic acids also present <strong>in</strong> the diet <strong>of</strong> man, <strong>in</strong>clud<strong>in</strong>g<br />

citrate, lactate, and ascorbic, gluconic, malic, oxalic, and tartaric acids, are able to<br />

prevent its precipitation dur<strong>in</strong>g transit as they complex with the metal, <strong>in</strong>creas<strong>in</strong>g its<br />

absorption from the gastro<strong>in</strong>test<strong>in</strong>al tract (Deng et al. 2000, Ventur<strong>in</strong>i-Soriano and<br />

Berthon 2001, Whitehead et al. 1997), and to aument tissue retention <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong><br />

rats orally dosed with <strong>alum<strong>in</strong>ium</strong> (Dom<strong>in</strong>go et al. 1991, 1994). On the other hand<br />

phosphorus, silicone and other dietary factors such as phytate and polyphenols seem to<br />

decrease absorption (Yokel and O‟Callaghan 1998, Powell and Thompson 1993, Powell<br />

57


INTRODUCTION<br />

et al. 1993), probably through formation <strong>of</strong> <strong>in</strong>soluble complexes with <strong>alum<strong>in</strong>ium</strong> ion <strong>in</strong><br />

the gut (Schaefer et al. 1988). Three mechanisms, reviewed by Greger and Sutherland<br />

(1997), were proposed to expla<strong>in</strong> the <strong>in</strong>crease <strong>in</strong> <strong>alum<strong>in</strong>ium</strong> absorption provoked by<br />

citrate: enhanced <strong>alum<strong>in</strong>ium</strong> solubility <strong>in</strong> the gastro<strong>in</strong>test<strong>in</strong>al tract, transport <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> citrate <strong>in</strong>to mucosal cells, and open<strong>in</strong>g <strong>of</strong> epithelial tight junctions that are<br />

present between mucosal cells (Taylor et al. 1998).<br />

58<br />

Alum<strong>in</strong>ium absorption does not seem to happen <strong>in</strong> the stomach where most<br />

<strong>alum<strong>in</strong>ium</strong> is converted to soluble monomolecular species at low pH (Froment et al.<br />

1989). At near-neutral pH <strong>alum<strong>in</strong>ium</strong> precipitation occurs <strong>in</strong> the <strong>in</strong>test<strong>in</strong>e.<br />

Consequently, the small portion <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> accessible for transport is the part that<br />

has been complexed with organic molecules <strong>in</strong> the stomach, allow<strong>in</strong>g it to rema<strong>in</strong><br />

soluble at higher pH <strong>of</strong> the small <strong>in</strong>test<strong>in</strong>e (Reiber et al. 1995). The primary site <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> absorption is the proximal <strong>in</strong>test<strong>in</strong>e (Greger and Sutherland 1997). The<br />

precise mechanism <strong>of</strong> gastro<strong>in</strong>test<strong>in</strong>al absorption is not yet fully known. It has been<br />

suggested that <strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> occurs paracellularly along<br />

enterocytes and through tight junctions by passives processes (Exley et al. 1996) and<br />

transcellularly through enterocytes <strong>in</strong>volv<strong>in</strong>g passive facilitated and active transport<br />

processes, such as calcium uptake and sodium transport processes, and a role for<br />

transferr<strong>in</strong> (Greger 1993, Greger and Sutherland 1997). Interest<strong>in</strong>gly, it was suggested<br />

that each <strong>alum<strong>in</strong>ium</strong> species likely has its own absorption mechanism (Van der Voet<br />

1992).<br />

Intranasal absorption<br />

Inhalation exposure to <strong>alum<strong>in</strong>ium</strong> occurs from cosmetic (aerosols),<br />

environmental and occupational sources (fumes, dusts, flakes). Inhaled <strong>alum<strong>in</strong>ium</strong> was<br />

suggested to accumulate <strong>in</strong> the bra<strong>in</strong> through absorption via the olfactory system<br />

(Roberts 1986, Exley et al. 1996) or through systemic absorption via the lung epithelia<br />

(Gitelman et al. 1995) and through the gastro<strong>in</strong>test<strong>in</strong>al tract as particulates are<br />

swallowed (Roll<strong>in</strong> et al. 1993). Pulmonary absorption seems to be more efficient than<br />

gastro<strong>in</strong>test<strong>in</strong>al absorption. Actually, Jones and Benett (1986) estimated that


INTRODUCTION<br />

approximately 3% <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> is absorbed <strong>in</strong>to the blood from the lung. Although<br />

there is still controversy regard<strong>in</strong>g the ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to enter the bra<strong>in</strong> from nasal<br />

cavity, it has been suggested that <strong>alum<strong>in</strong>ium</strong> may be able <strong>of</strong> directly enter<strong>in</strong>g the bra<strong>in</strong><br />

from the nose through olfactory neurons. These latter, which are the only part <strong>of</strong> the<br />

CNS with direct contact to external milieu, are located <strong>in</strong> the ro<strong>of</strong> <strong>of</strong> the nasal cavity<br />

and project to the olfactory bulb. These neurons synapse with complex pathways <strong>in</strong> the<br />

olfactory bulb which subsequently project to other cerebral areas, such as the olfactory<br />

cortex, cortex, and hippocampus. A few studies tried to demonstrate that <strong>alum<strong>in</strong>ium</strong><br />

distribution <strong>in</strong> the bra<strong>in</strong> occurs through olfactory nerve uptake, axonal and trans-<br />

synaptic transport. Absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> from the olfactory pathway has been<br />

studied <strong>in</strong> rabbits exposed to <strong>alum<strong>in</strong>ium</strong> lactate application <strong>in</strong> the upper nasal cavity for<br />

one month. This resulted <strong>in</strong> <strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> the olfactory bulb, pyriform<br />

cortex, hippocampus and cerebral cortex (Perl and Good 1987) although this prolonged<br />

exposure may probably have led to mechanical disruption <strong>of</strong> the olfactory epithelia<br />

(Lewis et al. 1994). Rats exposed to <strong>alum<strong>in</strong>ium</strong> acetylacetonate had <strong>alum<strong>in</strong>ium</strong> deposits<br />

<strong>in</strong> the olfactory bulb, ponsmedulla and hippocampus (Zatta et al. 1993). One nose-only<br />

exposure study showed that <strong>alum<strong>in</strong>ium</strong> was also distributed to the bra<strong>in</strong> stem <strong>of</strong> rats<br />

us<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> chlorohydrate (Div<strong>in</strong>e et al. 1999).<br />

Dermal absorption<br />

Alum<strong>in</strong>ium chloride was shown to be absorbed through the sk<strong>in</strong> when applied to<br />

the sk<strong>in</strong> <strong>of</strong> mice, and to accumulate <strong>in</strong> both serum and bra<strong>in</strong>, especially <strong>in</strong> the<br />

hippocampus (Anane et al. 1995). Nevertheless, systemic absorption <strong>of</strong> the metal may<br />

have been enhanced by mice shav<strong>in</strong>g prior to its application. As <strong>alum<strong>in</strong>ium</strong><br />

chlorhydrate is the active <strong>in</strong>gredient extensivey used <strong>in</strong> antiperspirants, the sk<strong>in</strong> was<br />

predicted to be another route <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> entry <strong>in</strong>to the systemic circulation (Exley<br />

2004b). Alum<strong>in</strong>ium chlorhydrate is thought to precipitate <strong>in</strong>side the eccr<strong>in</strong>e sweat<br />

glands and to form <strong>in</strong>soluble <strong>alum<strong>in</strong>ium</strong> hydroxyde, which then physically blocks the<br />

sweat duct (Quartrale 1988, Teagraden et al. 1982) but its efficacy <strong>in</strong> reduc<strong>in</strong>g<br />

perspiration may also be due to chemical <strong>in</strong>hibition <strong>of</strong> the sweat gland (Strassburger and<br />

59


INTRODUCTION<br />

Coble 1987). Transdermal absorption <strong>of</strong> only 0.012% has been reported after a one-time<br />

underarm application <strong>of</strong> 26 Al chlorhydrate (Flarend et al. 2001) while a case report<br />

showed that transdermal uptake <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> may also be important (Guillard et al.<br />

2004).<br />

Distribution <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the body<br />

60<br />

Once absorbed <strong>in</strong>to the bloodstream, <strong>alum<strong>in</strong>ium</strong> circulates bound to various<br />

plasma prote<strong>in</strong>s: 93% is bound to transferr<strong>in</strong>, 6% to citrate and the rema<strong>in</strong><strong>in</strong>g to<br />

hydroxide and phosphate (Harris et al. 2003). The metal is distributed unequally to all<br />

tissues with<strong>in</strong> the body throughout normal and <strong>alum<strong>in</strong>ium</strong>-<strong>in</strong>toxicated <strong>in</strong>dividuals<br />

(Alfrey et al. 1980, Di Paolo et al. 1997), and <strong>alum<strong>in</strong>ium</strong>-treated experimental animals<br />

(Greger and Sutherland 1997). The highest levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> mammalian tissues<br />

are found <strong>in</strong> the skeleton and lungs, approximately 50% and 25% <strong>of</strong> the 30 to 50 mg<br />

<strong>alum<strong>in</strong>ium</strong> body burden <strong>in</strong> the healthy human subject (Alfrey 1984, Ganrot 1986,<br />

ATSDR 1999). Alum<strong>in</strong>ium also accumulates <strong>in</strong> human bra<strong>in</strong>, sk<strong>in</strong>, lower<br />

gastro<strong>in</strong>test<strong>in</strong>al tract, lymph nodes, adrenals, and parathyroid glands (Tipton and Cook<br />

1963, Hamilton et al. 1973, Cann et al. 1979, Alfrey 1980).<br />

Alum<strong>in</strong>ium accumulation <strong>in</strong> different target organs varies with the <strong>alum<strong>in</strong>ium</strong><br />

salt adm<strong>in</strong>istered, species studied and route used, dose and duration <strong>of</strong> exposure (D<strong>in</strong>g<br />

and Zhu 1997, Yokel and McNamara 1988), but also with age, kidney function, disease<br />

status, and dietary compounds (Greger 1993). The human bra<strong>in</strong> conta<strong>in</strong>s lower levels <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> when compared to other organs (Walker et al. 1994, Andrási et al. 2005,<br />

Yokel and McNamara 2001). In the case <strong>of</strong> dialysis encephalopathy, this concentration<br />

may aument drastically (Alfrey et al. 1976).


Excretion<br />

INTRODUCTION<br />

As <strong>in</strong>soluble <strong>alum<strong>in</strong>ium</strong> hydroxyl coumpounds are formed at neutral pH most <strong>of</strong><br />

the dietary <strong>alum<strong>in</strong>ium</strong> is excreted <strong>in</strong> the faeces without ever be<strong>in</strong>g absorbed. If renal<br />

functions are not compromised approximately 95% <strong>of</strong> the absorbed <strong>alum<strong>in</strong>ium</strong> is<br />

quickly excreted <strong>in</strong> the ur<strong>in</strong>e by kidneys, presumably as <strong>alum<strong>in</strong>ium</strong> citrate. Biliary<br />

system accounts for less than 2% <strong>of</strong> total <strong>alum<strong>in</strong>ium</strong> elim<strong>in</strong>ation (Kovalchik et al. 1978,<br />

Priest et al. 1995, Yokel et al. 1996). Decreased renal functionality <strong>in</strong>creases the risk <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> accumulation and toxicity (Greger and Sutherland 2007). Indeed, dialysis<br />

encephalopathy syndrome (DES) was developed by renal-impaired people who received<br />

<strong>alum<strong>in</strong>ium</strong> <strong>in</strong> dialysis fluids or parenterally (Alfrey et al. 1976).<br />

Elim<strong>in</strong>ation rate<br />

Alum<strong>in</strong>ium accumulation is not only due to impaired renal functions or exposure<br />

to high quantities <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> but also occurs physiologically with ag<strong>in</strong>g (McDermott<br />

et al. 1979). Alum<strong>in</strong>ium contents <strong>of</strong> bra<strong>in</strong>, serum, lungs, blood, liver, kidneys, and bone<br />

have been demonstrated to <strong>in</strong>crease with age (Markesbery et al. 1984, Zapatero et al.<br />

1995, Greger and Sutherland 1997, Shimizu et al. 1994, U. S. Public Health Service<br />

1992, Stitch 1957, Tipton and Shafer 1964, Roider and Drasch 1999, Markesbery et al.<br />

1981) and younger <strong>in</strong>dividuals absorbe less <strong>alum<strong>in</strong>ium</strong> than older people. Actually, it<br />

has been estimated that <strong>alum<strong>in</strong>ium</strong> deposits <strong>in</strong> the bra<strong>in</strong> at a rate <strong>of</strong> 6 μg per year <strong>of</strong> life<br />

(Edwardson 1991). This <strong>in</strong>creas<strong>in</strong>g body burden with age <strong>in</strong> the bra<strong>in</strong> may be produced<br />

by a slow, or no, elim<strong>in</strong>ation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> coupled to a cont<strong>in</strong>ued exposure to the metal<br />

and a decreased ability to remove the metal from the bra<strong>in</strong> with age. Different<br />

<strong>alum<strong>in</strong>ium</strong> half-lives (t½) have been reported suggest<strong>in</strong>g that there is more than one<br />

compartment <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> storage from which the metal is slowly elim<strong>in</strong>ated (Wilhelm<br />

et al. 1990, Ljunggren et al. 1991, Priest et al. 1995). The t½ <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> elim<strong>in</strong>ation<br />

positively correlates with the duration <strong>of</strong> the exposure as longer t½ were observed when<br />

the duration <strong>of</strong> sampl<strong>in</strong>g after exposure was <strong>in</strong>creased. Bone stores about 58% <strong>of</strong> the<br />

human <strong>alum<strong>in</strong>ium</strong> body burden and its <strong>alum<strong>in</strong>ium</strong> clearance is more rapid than from<br />

bra<strong>in</strong>, which is logical regard<strong>in</strong>g to bone turnover and lack <strong>of</strong> neuron turnover.<br />

61


INTRODUCTION<br />

Alum<strong>in</strong>ium <strong>in</strong>flux and efflux <strong>in</strong>to the bra<strong>in</strong><br />

62<br />

The bra<strong>in</strong> has lower <strong>alum<strong>in</strong>ium</strong> concentrations (about 1%) than many other<br />

tissues (Yokel and McNamara 2001), but it is an important target organ for <strong>alum<strong>in</strong>ium</strong>-<br />

toxicity. Even as the BBB is highly selective to a great variety <strong>of</strong> substances, <strong>in</strong>clud<strong>in</strong>g<br />

metals, <strong>alum<strong>in</strong>ium</strong> is able to cross it and enter the bra<strong>in</strong> from blood (Yokel 2002b) and<br />

to accumulate <strong>in</strong> nerve and glial cells. Although the mechanism(s) responsible for<br />

<strong>alum<strong>in</strong>ium</strong> transport at the BBB has not been clarified yet, it has been reported that<br />

<strong>alum<strong>in</strong>ium</strong> can penetrate <strong>in</strong>to the bra<strong>in</strong> as a complex with transferr<strong>in</strong> by a receptor-<br />

mediated endocytosis (Roskams and Connor 1990) and also bound to citrate via a<br />

specific transporter, be<strong>in</strong>g the system Xc � (L-glutamate/L-CySH exchanger) the most<br />

recently accepted candidate (Nagasawa et al. 2005). There is also evidence for<br />

transporter-mediated efflux from the bra<strong>in</strong>, the organic anion transport<strong>in</strong>g polypeptide<br />

(oatp) family was suggested to be a candidate (Yokel 2006).<br />

The existence <strong>of</strong> a long apparent half-life <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> bra<strong>in</strong> tissue has been<br />

used to expla<strong>in</strong> its easy accumulation <strong>in</strong>to the bra<strong>in</strong> follow<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration<br />

(Yokel et al. 2001b, Baydar et al. 2003, Sánchez-Iglesias et al. 2007b). The elim<strong>in</strong>ation<br />

half-life <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> from human bra<strong>in</strong> is calculated to be seven years (Yokel and<br />

McNamara 2001). This assumption and the long life <strong>of</strong> neurons could be <strong>in</strong>volved <strong>in</strong> the<br />

elevated levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> found <strong>in</strong> the bra<strong>in</strong> <strong>of</strong> some patients suffer<strong>in</strong>g PD (Hirsh et<br />

al. 1991, Good et al. 1992, Yasui et al. 1992) and AD (Crapper et al. 1973, Perl and<br />

Brody 1980), a statement that, on the other hand, will not be understoo as the pr<strong>in</strong>cipal<br />

cause <strong>of</strong> those disorders.<br />

S<strong>in</strong>ce <strong>alum<strong>in</strong>ium</strong> and its compounds are widely distributed <strong>in</strong> the environment<br />

(food, dr<strong>in</strong>k<strong>in</strong>g water, airborne contam<strong>in</strong>ants) and extensively used <strong>in</strong> a variety <strong>of</strong><br />

products and processes (antiperspirants, antacids, <strong>in</strong>travenous solutions), it has aroused<br />

considerable health concern, due to both its common exposure and its particularly<br />

reported ability to cause neurodegeneration (Exley 1999, Yokel 2000, Zatta et al. 2003,<br />

Kawahara 2005). As we have previously seen, the daily reported mean dietary <strong>in</strong>take <strong>of</strong>


INTRODUCTION<br />

3.5 mg may be <strong>in</strong>creased by the frequent use <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>-conta<strong>in</strong><strong>in</strong>g antiperspirants<br />

and non-prescription drugs (Weburg and Berstad 1986, Flarend et al. 2001), as well as<br />

by occupational exposure to this metal (Meyer-Baron et al. 2007).<br />

Putative mechanisms <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong><br />

No biological function has yet been attributed to <strong>alum<strong>in</strong>ium</strong>, for which reason it<br />

is considered a nonessential metal (Yokel 2002a). However, <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong><br />

was first outl<strong>in</strong>ed by Dölken <strong>in</strong> 1897. S<strong>in</strong>ce then, <strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> the bra<strong>in</strong><br />

has been repetitively l<strong>in</strong>ked to various neurodegenerative diseases (Yokel 2000, Zatta et<br />

al. 2003, Kawahara 2005). As a matter <strong>of</strong> fact, this non-redox active metal has been<br />

demonstrated to be a toxicant that is implicated <strong>in</strong> dialysis encephalopathy (Alfrey et al.<br />

1976), osteomalacia (Park<strong>in</strong>son et al. 1979), non-iron responsible anemia (Elliot et al.<br />

1978), and also l<strong>in</strong>ked to many other diseases <strong>in</strong>clud<strong>in</strong>g AD (Exley 1999, Flaten 2001,<br />

Gupta et al. 2005), amyotrophic lateral sclerosis (Kurland 1988), and PD (Dexter et al.<br />

1989, Yasui et al. 1992, Good et al. 1992). Alum<strong>in</strong>ium was shown to be<br />

overaccumulated <strong>in</strong> the bra<strong>in</strong> <strong>of</strong> post-mortem patients compared to healthy <strong>in</strong>dividuals<br />

(Perl et al. 1982, Yasui et al. 1992, Ward and Mason 1987)<br />

Many reviews have been published on the toxic effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>.<br />

Nevertheless, and despite all hitherto reported data concern<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong>,<br />

no s<strong>in</strong>gle unify<strong>in</strong>g mechanism responsible for its <strong>neurotoxicity</strong> has been identified.<br />

Therefore, several <strong>in</strong>terl<strong>in</strong>ked hypotheses have been proposed, highlight<strong>in</strong>g dist<strong>in</strong>ct<br />

events as a basis for the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> toxic bra<strong>in</strong> damage.<br />

63


INTRODUCTION<br />

Alum<strong>in</strong>ium and <strong>oxidative</strong> <strong>stress</strong><br />

64<br />

The model <strong>in</strong>volv<strong>in</strong>g aggravation <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> is among the most<br />

recognized hypothesis <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> but the precise molecular mechanism<br />

by which it causes <strong>oxidative</strong> damage <strong>in</strong>to the bra<strong>in</strong> rema<strong>in</strong>s uncerta<strong>in</strong>. Actually, a large<br />

number <strong>of</strong> studies confirmed the existence <strong>of</strong> a state <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> most <strong>of</strong> the<br />

neurodegenerative disorders <strong>in</strong> which <strong>alum<strong>in</strong>ium</strong> is present <strong>in</strong> relative high quantities.<br />

Numerous publications have detailed an <strong>in</strong>crease <strong>in</strong> the formation <strong>of</strong> ROS after<br />

<strong>alum<strong>in</strong>ium</strong> exposure both <strong>in</strong> vivo and <strong>in</strong> vitro (Katyal et al. 1997, Flora et al. 2003,<br />

Ogasawara et al. 2003, Nehru and Anand 2005). However, the reported results as a<br />

whole appear controversial, to such an extent that both pro-oxidant (Zatta et al. 2002,<br />

Exley 2004a) and antioxidant (Oteiza et al. 1993a, Abukadar et al. 2004a) properties<br />

have been attributed to this metal.<br />

The bra<strong>in</strong>: a target for <strong>alum<strong>in</strong>ium</strong><br />

The bra<strong>in</strong> is a ma<strong>in</strong> target for <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> as it is highly susceptible<br />

to <strong>oxidative</strong> <strong>in</strong>sult for several reasons: (a) a high oxygen turnover as the bra<strong>in</strong> consumes<br />

a proportionally larger amount <strong>of</strong> oxygen than other organs, around 20% <strong>of</strong> the body‟s<br />

oxygen (Halliwell 1992), (b) a low mitotic rate, (c) low concentrations/activities <strong>of</strong><br />

bra<strong>in</strong> antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and<br />

glutathione peroxidase (GPx), (d) (Halliwell and Gutteridge 1985) a large amount <strong>of</strong><br />

highly oxidizable polyunsaturated fatty acids <strong>in</strong> neuronal cell membranes (Table 5), and<br />

(e) a high bra<strong>in</strong> content <strong>of</strong> iron (Youdim 1988).<br />

Several hypotheses have been given to expla<strong>in</strong> the possible l<strong>in</strong>k between<br />

<strong>alum<strong>in</strong>ium</strong> and the promotion <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> (Exley 2004a). Actually, even though<br />

<strong>alum<strong>in</strong>ium</strong> is not a transition metal, and consequently does not undergo redox reactions,<br />

it can cause <strong>oxidative</strong> <strong>stress</strong> both <strong>in</strong> vivo and <strong>in</strong> vitro through multiple mechanisms. As<br />

examples, it has been shown to stimulate <strong>in</strong> vitro iron-<strong>in</strong>duced and non-iron-<strong>in</strong>duced<br />

lipid peroxidation (Gutteridge et al. 1985, Verstraeten and Oteiza 2000, Meglio and


INTRODUCTION<br />

Oteiza 1999), non-iron-mediated oxidation <strong>of</strong> NADH (Meglio and Oteiza 1999, Kong et<br />

al. 1992), and non-iron-mediated formation <strong>of</strong> the � OH (Méndez-Álvarez et al. 2002).<br />

Table 5: Lipid composition <strong>of</strong> normal adult human bra<strong>in</strong> (dry weight)<br />

(Zatta et al. 2002)<br />

Gray matter (%) White matter (%)<br />

Cholesterol 22 27.5<br />

Total phospholipids 69.5 45.9<br />

Phosphatidylser<strong>in</strong>e 8.7 7.9<br />

Galactocerebroside 5.4 19.8<br />

Galactocerebroside sulphate 1.7 5.4<br />

Alum<strong>in</strong>ium catalyses iron-driven biological oxidations<br />

Alum<strong>in</strong>ium was also shown to potentiate the capacity <strong>of</strong> pro-oxidants transition<br />

metals, such as iron and copper which are present <strong>in</strong> most cell compartments, to<br />

produce <strong>oxidative</strong> <strong>stress</strong> (Bondy and Kirste<strong>in</strong> 1996, Bondy et al. 1998). It was<br />

hypothesized that colloidal <strong>alum<strong>in</strong>ium</strong> may complex these pro-oxidant metals and<br />

permit them to participate <strong>in</strong> Fenton reaction for an extended time (Yang et al. 1999,<br />

Campbell et al. 2001).<br />

Alum<strong>in</strong>ium stimulates superoxide-/non-iron-driven biological oxidations<br />

We have seen that O2 ●─ is the ROS with the lowest oxidant capacity but it can<br />

undergo a one-electron transfer to generate H2O2 which can <strong>in</strong> turn through the Fenton<br />

reaction and <strong>in</strong> the presence <strong>of</strong> reduced metal ions, be converted to ● OH, <strong>in</strong>creas<strong>in</strong>g its<br />

redox potential. Various studies proposed that <strong>alum<strong>in</strong>ium</strong> could enhance the O2 ●─ -<br />

mediated oxidation <strong>in</strong> different systems that generate this ROS: the photochemical<br />

decomposition <strong>of</strong> rose Bengal (Kong et al. 1992, Meglio and Oteiza 1999), the<br />

autoxidation <strong>of</strong> 6-OHDA (Méndez-Álvarez et al. 2002), the vanadium-mediated<br />

oxidation <strong>of</strong> NADH (Adler et al. 1995), and the xanth<strong>in</strong>e/xanth<strong>in</strong>e oxidase system<br />

65


INTRODUCTION<br />

(Kong et al. 2002). In the same way, trivalent cations chemically and physically related<br />

to <strong>alum<strong>in</strong>ium</strong> (lanthanum, gallium and scandium) were shown to <strong>in</strong>crease O2 ●─<br />

<strong>oxidative</strong> capacity (Meglio and Oteiza 1999).<br />

Alum<strong>in</strong>ium-superoxide complex theory<br />

66<br />

It was hypothesized that the formation <strong>of</strong> a complex between Al 3+ and O2 ●─ may<br />

expla<strong>in</strong> the pro-oxidant activity <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and also the catalytic activity connect<strong>in</strong>g<br />

both superoxide-driven and iron-driven biological oxidations. Alum<strong>in</strong>ium is a strong<br />

Lewis acid which may react with the superoxide anion and form an <strong>alum<strong>in</strong>ium</strong><br />

superoxide anion, which is a more potent oxidant than the superoxide anion on its own<br />

(Kong et al. 1992, Exley 2004a).<br />

Al 3+ + O2 ●─ ↔ AlO2 ●2+<br />

As an example, the iron-supported oxidation <strong>of</strong> DA to melan<strong>in</strong> was shown to be<br />

facilitated by <strong>alum<strong>in</strong>ium</strong> (Di and Bi 2003). The subsequent b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> melan<strong>in</strong> with<br />

<strong>alum<strong>in</strong>ium</strong> leads to an <strong>in</strong>creased melan<strong>in</strong>-<strong>in</strong>duced lipid oxidation <strong>in</strong> a process mediated<br />

by an Al–O2 ●─ complex (Meglio and Oteiza 1999, Verstraeten et al. 2008).<br />

Alum<strong>in</strong>ium <strong>in</strong>hibits the antioxidant enzymes and others<br />

Additionally, <strong>alum<strong>in</strong>ium</strong> also appears to affect the activities <strong>of</strong> several<br />

antioxidant enzymes <strong>in</strong> different parts <strong>of</strong> the bra<strong>in</strong> and cause <strong>oxidative</strong> damage (Nehru<br />

and Anand 2005, Julka and Gill 1996a, Atienzar et al. 1998, Moumen et al. 2001,<br />

Gómez et al. 2005, Sánchez-Iglesias et al. 2009). The decrease <strong>of</strong> the activity <strong>of</strong><br />

anti<strong>oxidative</strong> enzymes may facilitate the propagation <strong>of</strong> lipid peroxidation. In addition,<br />

the ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to affect the functionality <strong>of</strong> mitochondria has also been<br />

documented (Niu et al. 2005).


Alum<strong>in</strong>ium as a cell membrane menace<br />

INTRODUCTION<br />

Numerous studies performed both <strong>in</strong> vitro and <strong>in</strong> vivo considered that the<br />

pr<strong>in</strong>cipal consequences <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the cerebral functions are mediated through<br />

damage to cell membranes. Metals without redox capacity as <strong>alum<strong>in</strong>ium</strong> were suggested<br />

to make fatty acids more available to the action <strong>of</strong> free radicals and therefore ease the<br />

spread <strong>of</strong> lipid peroxidation (Oteiza et al. 1993a, Ohyashiki et al. 1998).<br />

Actually, <strong>alum<strong>in</strong>ium</strong> b<strong>in</strong>ds to membrane components and modifies both<br />

membrane biophysical properties and dynamics. B<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> is enhanced by<br />

the presence <strong>of</strong> polar head groups with negative charge and happens via formation <strong>of</strong><br />

both cis and trans complexes (Oteiza 1994, Verstraeten 2000). This metal was shown to<br />

b<strong>in</strong>d through electrostatic <strong>in</strong>teractions preferentially to the phosphatidylser<strong>in</strong>e,<br />

phosphatidic acid, and poliphospho<strong>in</strong>ositides found <strong>in</strong> biological membranes because <strong>of</strong><br />

their overall negative charge due to their carboxylate or phosphate moieties. Trans-<br />

<strong>in</strong>teractions or <strong>in</strong>tervesicle <strong>in</strong>teractions are not specifically implicated <strong>in</strong> lipid oxidation<br />

as they result <strong>in</strong> membrane aggregation and fusion (Verstaeten and Oteiza 1995).<br />

Actually, superficial charges are neutralized by <strong>alum<strong>in</strong>ium</strong> which causes the<br />

<strong>in</strong>tercross<strong>in</strong>g and dehydration <strong>of</strong> neighbor<strong>in</strong>g phosphatidylser<strong>in</strong>e molecules. On the<br />

other hand, cis-<strong>in</strong>teractions with<strong>in</strong> the same vesicle lead to the lateral reorganization <strong>of</strong><br />

these phospholipids (lipid cluster<strong>in</strong>g) and formation <strong>of</strong> dist<strong>in</strong>ct microdoma<strong>in</strong>s enriched<br />

<strong>in</strong> acidic phospholipids with lower membrane fluidity (Verstraeten and Oteiza 1995,<br />

Verstraeten et al. 1997a, 1998). The local accumulation <strong>of</strong> poly-unsaturated fatty acids<br />

caused by <strong>alum<strong>in</strong>ium</strong> makes the phospholipids higly susceptible to ROS, lead<strong>in</strong>g to the<br />

propagation <strong>of</strong> lipid peroxidation.<br />

Alum<strong>in</strong>ium was also shown to modify the biophysical properties <strong>of</strong> membranes<br />

conta<strong>in</strong><strong>in</strong>g galactocerebrosides or polyphospho<strong>in</strong>ositides (Verstraeten et al. 1998, 2003,<br />

Verstraeten and Oteiza 2002), myel<strong>in</strong> and synaptosomal membranes, which may result<br />

<strong>in</strong> <strong>in</strong>jurious effects for neurotransmission (Ohba et al. 1994, Julka and Gill 1996b,<br />

Verstraeten et al. 1997b, Silva et al. 2002, Pandya et al. 2004).<br />

67


INTRODUCTION<br />

68<br />

As mentioned before, <strong>alum<strong>in</strong>ium</strong> is able to stimulate iron-<strong>in</strong>duced oxidations. In<br />

the peroxidation process both metals are thought to act synergistically: while the<br />

<strong>alum<strong>in</strong>ium</strong> b<strong>in</strong>d<strong>in</strong>g to neuronal membranes is attended to facilitate its attack by iron-<br />

mediated <strong>oxidative</strong> damage, the subsequent oxidation <strong>of</strong> the membrane will<br />

consecutively <strong>in</strong>crease its b<strong>in</strong>d<strong>in</strong>g to <strong>alum<strong>in</strong>ium</strong>, hence exacerbat<strong>in</strong>g peroxidation<br />

(Figure 22).<br />

Figure 22: Effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and iron on the membrane peroxidation (Zatta et al. 2002,<br />

Oteiza et al. 2004)<br />

Lipid peroxidation is particularly active <strong>in</strong> the bra<strong>in</strong> where it <strong>in</strong>duces: a) changes<br />

<strong>in</strong> the structure <strong>of</strong> biological membranes result<strong>in</strong>g <strong>in</strong> the loss <strong>of</strong> membrane fluidity, b)<br />

changes <strong>of</strong> the structural order <strong>of</strong> membrane lipids (Palmeira and Oliveira 1992), c)<br />

variations <strong>in</strong> membrane potential, d) an <strong>in</strong>crease <strong>in</strong> membrane permeability to ions<br />

(Marshansky et al. 1983), e) modifications <strong>in</strong> the activity <strong>of</strong> membrane-bound enzymes<br />

(Pereira et al. 1996), and f) alterations <strong>in</strong> receptor functions.<br />

Alum<strong>in</strong>ium affects cell signal<strong>in</strong>g<br />

Another mechanism that has been suggested to be <strong>in</strong>volved <strong>in</strong> <strong>alum<strong>in</strong>ium</strong><br />

toxicity is the alteration <strong>of</strong> specific cell signal<strong>in</strong>g cascades. Alum<strong>in</strong>ium <strong>in</strong>terferes with<br />

phospho<strong>in</strong>ositide signal transduction pathway (Nostrandt et al. 1996, Qu<strong>in</strong>tal-Tun et al.<br />

2007). This metabolic pathway mediated by the enzyme phosphatidyl<strong>in</strong>ositol-specific<br />

phospholipase C (PI-PLC) renders <strong>in</strong>ositol triphosphate (IP3) and diacylglycerol, two<br />

important <strong>in</strong>tracellular second messengers. IP3 is <strong>in</strong> charge <strong>of</strong> the <strong>in</strong>tracellular


INTRODUCTION<br />

mobilization <strong>of</strong> Ca 2+ with the consequent activation <strong>of</strong> multiple signals, whereas<br />

diacylglycerol activates enzymes such as prote<strong>in</strong> k<strong>in</strong>ase C (PKC). Alum<strong>in</strong>ium leads to a<br />

decrease <strong>in</strong> the hydrolysis <strong>of</strong> phosphatidyl<strong>in</strong>ositol biphosphate (PIP2) both <strong>in</strong> vivo and <strong>in</strong><br />

vitro (McDonald and Mamrack 1988, Shafer et al. 1993, McDonald and Mamrack 1995,<br />

Shafer and Mundy 1995, Nostrandt et al. 1996). As we have seen before, <strong>alum<strong>in</strong>ium</strong><br />

preferential b<strong>in</strong>d<strong>in</strong>g to negative charges <strong>of</strong> polyphospho<strong>in</strong>ositides causes partial<br />

neutralization <strong>of</strong> negative charge, cluster<strong>in</strong>g, and <strong>in</strong>creased local concentration <strong>of</strong> these<br />

lipids. All these together result <strong>in</strong> a limited accessibility <strong>of</strong> PI-PLC to its substrates and<br />

the subsequent decreased <strong>in</strong> the enzyme activity (Figure 23) (Verstraeten and Oteiza<br />

2002, Verstraeten et al. 2003). Signal<strong>in</strong>g cascades <strong>in</strong>volv<strong>in</strong>g either b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> regulatory<br />

prote<strong>in</strong>s to polyphospho<strong>in</strong>ositides <strong>in</strong> the membranes or <strong>in</strong>volv<strong>in</strong>g phosphatidyl<strong>in</strong>ositol<br />

(PI)-derived second messengers may be negatively altered by <strong>alum<strong>in</strong>ium</strong>.<br />

Figure 23: PIP2 hydrolysis altered by <strong>alum<strong>in</strong>ium</strong> (Oteiza et al. 2004)<br />

Inflammation generally accompanies neurodegenerative diseases. One <strong>of</strong> the<br />

<strong>in</strong>itial events <strong>in</strong> the cascade lead<strong>in</strong>g to <strong>in</strong>flammatory responses is the activation <strong>of</strong><br />

transcription factors. The cytok<strong>in</strong>e TNF-α activates transcription factor NF-κB which<br />

consecutively accelerates the transcription <strong>of</strong> specific genes <strong>in</strong>volved <strong>in</strong> <strong>in</strong>flammation,<br />

such as other cytok<strong>in</strong>es, iNOS, and complement factors by translocat<strong>in</strong>g to the nucleus<br />

and b<strong>in</strong>d<strong>in</strong>g to their promoter regions. Alum<strong>in</strong>ium was reported to cause an<br />

<strong>in</strong>flammatory response <strong>in</strong> the bra<strong>in</strong> both <strong>in</strong> vivo and <strong>in</strong> vitro (Yokel and O‟Callaghan<br />

1998, Ghribi et al. 2001a, Platt et al. 2001, Campbell et al. 2002, Becaria et al. 2003,<br />

Johnson and Sharma 2003). The metal activates NF-κB and TNF-α expression lead<strong>in</strong>g<br />

to cell death and proliferation <strong>of</strong> reactive glial cells ris<strong>in</strong>g tissue damage (Campbell et<br />

al. 2002, 2004).<br />

69


INTRODUCTION<br />

70<br />

The signal transduction pathway <strong>of</strong> mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase (MAPK)<br />

plays also an important role <strong>in</strong> the apoptosis <strong>in</strong> neurons or astrocytes. Alum<strong>in</strong>ium was<br />

demonstrated to activate <strong>in</strong> cultured cortical neurons one <strong>of</strong> the important members <strong>in</strong><br />

MAPK family, the <strong>stress</strong>-activated prote<strong>in</strong> k<strong>in</strong>ase c-jun N-term<strong>in</strong>al k<strong>in</strong>ase (SAPK/JNK)<br />

(Fu et al. 2003), whose phosphorylation and dephosphorylation are considered as the<br />

molecular key <strong>in</strong> <strong>stress</strong> signal transduction. SAPK/KNK activates its downstream<br />

transcription factor c-jun, which is the important component <strong>of</strong> AP-1. This latter<br />

modulates the expression <strong>of</strong> target genes and participates <strong>in</strong> the regulation <strong>of</strong> cell<br />

differentiation and apoptosis.<br />

Neuronal accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> affects mitochondria <strong>in</strong>tegrity and<br />

functionality (reviewed by Kumar and Gill 2009). The metal enters <strong>in</strong>to the neuron<br />

upon cell depolarization and <strong>in</strong>hibits Na + /Ca 2+ exchange thus <strong>in</strong>duc<strong>in</strong>g an extreme<br />

accumulation <strong>of</strong> mitochondrial Ca 2+ . This triggers the open<strong>in</strong>g <strong>of</strong> the mitochondrial<br />

transition pore (MTP) and the consequent release <strong>of</strong> cytochrome c lead<strong>in</strong>g f<strong>in</strong>ally to<br />

activation <strong>of</strong> the caspase family proteases. Studies that used <strong>in</strong>tracisternal <strong>in</strong>jection <strong>of</strong><br />

the <strong>alum<strong>in</strong>ium</strong>-maltolate complex have shown that <strong>alum<strong>in</strong>ium</strong> targets mitochondria.<br />

Alum<strong>in</strong>ium-maltolate is a lipophilic complex stable at physiological pH and proposed to<br />

be formed <strong>in</strong> the gastro<strong>in</strong>test<strong>in</strong>al tract. This neurotoxic complex produces cytoskeletal<br />

alterations (Klatzo et al. 1965, Savory et al. 1996, 1998) lead<strong>in</strong>g to tangle formation and<br />

cell apoptosis (Johnson et al. 2005). Alum<strong>in</strong>ium-maltolate <strong>in</strong>duces cytochrome c<br />

translocation, <strong>in</strong>creased expression <strong>of</strong> the proapoptotic prote<strong>in</strong> Bax, and decreased<br />

expression <strong>of</strong> the antiapoptotic prote<strong>in</strong> Bcl-2, f<strong>in</strong>ally lead<strong>in</strong>g to cell apoptosis (Ghribi et<br />

al. 2001a, 2002).<br />

In addition, <strong>alum<strong>in</strong>ium</strong> also affects the endoplasmic reticulum (ER), the major<br />

storage location for calcium, which also conta<strong>in</strong>s members <strong>of</strong> the Bcl-2 family, such as<br />

Bcl-2 and Bcl-XL. The <strong>stress</strong> <strong>in</strong>duced by <strong>alum<strong>in</strong>ium</strong>-maltolate activates caspase 12<br />

lead<strong>in</strong>g to a specific type <strong>of</strong> ER-mediated cell death by apoptosis (Ghribi et al. 2001b,<br />

2001c, 2002).


Alum<strong>in</strong>ium impairs neurotransmission<br />

INTRODUCTION<br />

Alum<strong>in</strong>ium has a negative impact on the ma<strong>in</strong> steps <strong>of</strong> the neurotransmission<br />

event which takes place at the synapse, such as synthesis and storage <strong>of</strong><br />

neurotransmitters, triggered release from the presynaptic term<strong>in</strong>al, <strong>in</strong>teraction with<br />

receptors on the postsynaptic cell, and <strong>in</strong>activation <strong>of</strong> neurotransmitters (Gonçalves and<br />

Silva 2007). The metal may alter the physical properties <strong>of</strong> synaptic membranes which<br />

could <strong>in</strong>fluence the release and/or uptake <strong>of</strong> neurotransmitters, or directly <strong>in</strong>hibit the<br />

enzymes <strong>in</strong> charge <strong>of</strong> the synthesis, utilization and degradation <strong>of</strong> these molecules.<br />

There are evidences demonstrat<strong>in</strong>g that this metal disturbs some crucial events <strong>of</strong> DA<br />

neurotransmission. The DA metabolism appears to be altered <strong>in</strong> animal models <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong>: DA levels are reduced by 40% <strong>in</strong> the striatum (Ravi et al. 2000) and the<br />

concentration <strong>of</strong> DA metabolites such as dihydroxyphenylacetic acid (DOPAC) and<br />

homovanillic acid (HVA) are lower <strong>in</strong> the hypothalamus <strong>of</strong> treated animals (Tsunoda<br />

and Sharma 1999). Besides, the ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to affect the expression <strong>of</strong> DA<br />

receptors D1 and D2 (Kim et al. 2007) and to <strong>in</strong>hibit DA-β-hydroxylase, the enzyme <strong>in</strong><br />

charge <strong>of</strong> convert<strong>in</strong>g DA <strong>in</strong>to noradrenal<strong>in</strong>e (Milanese et al. 2001), has also been<br />

documented. Alum<strong>in</strong>ium <strong>in</strong>terferes also with glutamatergic, chol<strong>in</strong>ergic, and<br />

GABAergic metabolisms. Actually, <strong>alum<strong>in</strong>ium</strong> exposure <strong>in</strong> rats leads to decreased<br />

acetylchol<strong>in</strong>e synthesis and degradation, reduction <strong>of</strong> muscar<strong>in</strong>ic acetylchol<strong>in</strong>e receptors<br />

(Julka et al. 1995), <strong>in</strong>creased contents <strong>of</strong> glutam<strong>in</strong>e and glutamate, and decreased<br />

GABA level (El-Rahman 2003, Nayak and Chatterjee 2003). Alterations <strong>of</strong> calcium<br />

metabolism may also be <strong>of</strong> importance for <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> as calcium has a<br />

crucial role <strong>in</strong> neurotransmitter release. As an example, <strong>alum<strong>in</strong>ium</strong> <strong>in</strong>hibits GABA<br />

synaptosomal release and uptake as a consequence <strong>of</strong> the <strong>in</strong>hibition <strong>of</strong> Ca 2+ /CaM-<br />

dependent calc<strong>in</strong>eur<strong>in</strong> activity (Cordeiro et al. 2003).<br />

71


AIMS


AIMS OF THE PRESENT THESIS<br />

The ma<strong>in</strong> objectives <strong>of</strong> this thesis were distributed <strong>in</strong> three chapters as follows:<br />

Chapter 1<br />

AIMS<br />

The first pr<strong>in</strong>cipal aim is to determ<strong>in</strong>e the k<strong>in</strong>etics <strong>of</strong> the <strong>oxidative</strong> damage <strong>in</strong>duced <strong>in</strong> a<br />

6-OHDA model <strong>of</strong> PD and quantify the result<strong>in</strong>g <strong>oxidative</strong> effects <strong>in</strong> order to set up the<br />

accurate post-<strong>in</strong>jection time when study<strong>in</strong>g the <strong>oxidative</strong> effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>. To<br />

achieve this aim we have stablished the follow<strong>in</strong>g specific objectives:<br />

1) To analyse the time-course <strong>of</strong> the <strong>oxidative</strong> damage caused by unilateral and<br />

<strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6-OHDA (6 μg <strong>in</strong> 5 μl <strong>of</strong> sterile sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g<br />

0.2% ascorbic acid) <strong>in</strong> both the ipsilateral and contralateral sides <strong>of</strong> both striatum<br />

and ventral midbra<strong>in</strong> <strong>of</strong> the rat.<br />

2) To quantify the changes observed <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> lipid peroxidation (TBARS) and<br />

<strong>oxidative</strong> status <strong>of</strong> prote<strong>in</strong>s (PCC and PTC) <strong>in</strong> the time-course <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong><br />

damage <strong>in</strong>duced by 6-OHDA <strong>in</strong>jection <strong>in</strong> the experimental model <strong>of</strong> PD mentioned<br />

above.<br />

Chapter 2<br />

The second ma<strong>in</strong> objective is to elaborate a dosage procedure that ensures a significant<br />

accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong>to the bra<strong>in</strong> and to establish its exact distribution <strong>in</strong><br />

different areas <strong>of</strong> the rat bra<strong>in</strong>. In this case, the specific objective is:<br />

3) To evaluate the precise regional accumulation <strong>of</strong> the absorbed <strong>alum<strong>in</strong>ium</strong> <strong>in</strong><br />

cerebellum, ventral midbra<strong>in</strong>, cortex, hippocampus and striatum <strong>of</strong> rats follow<strong>in</strong>g<br />

the use <strong>of</strong> two different adm<strong>in</strong>istration routes, oral and <strong>in</strong>traperitoneal.<br />

75


AIMS<br />

Chapter 3<br />

The third major aim <strong>of</strong> this thesis is to clarify the capacity <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to modify the<br />

oxidant level <strong>of</strong> certa<strong>in</strong> bra<strong>in</strong> regions and to augment the striatal DAergic<br />

neurodegeneration <strong>in</strong> a 6-OHDA model <strong>of</strong> PD. The specific objectives to reach this aim<br />

are:<br />

4) To <strong>in</strong>vestigate the <strong>in</strong> vivo effects <strong>in</strong>duced by <strong>alum<strong>in</strong>ium</strong> on <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong><br />

76<br />

<strong>stress</strong> by quantification <strong>of</strong> lipid peroxidation (TBARS) and the oxidant status <strong>of</strong><br />

prote<strong>in</strong>s (PCC, PTC), <strong>in</strong> the cerebellum, ventral midbra<strong>in</strong>, cortex, hippocampus, and<br />

striatum <strong>of</strong> rats.<br />

5) To assess the <strong>in</strong> vivo effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the activity <strong>of</strong> certa<strong>in</strong> antioxidant<br />

enzymes, such as SOD, GPx and CAT, <strong>in</strong> the cerebellum, ventral midbra<strong>in</strong>, cortex,<br />

hippocampus, and striatum <strong>of</strong> rats.<br />

6) To measure the <strong>in</strong> vitro effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the activity <strong>of</strong> some antioxidant<br />

enzymes (SOD, GPx, CAT) and the monoam<strong>in</strong>e oxidase activity (MAO-A and<br />

MAO-B).<br />

7) To study the ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to potentiate the capacity <strong>of</strong> 6-OHDA<br />

adm<strong>in</strong>istered <strong>in</strong> the third ventricle <strong>in</strong> an experimental model <strong>of</strong> PD to cause<br />

<strong>oxidative</strong> <strong>stress</strong> (lipid peroxidation and prote<strong>in</strong> oxidation) <strong>in</strong> ventral midbra<strong>in</strong> and<br />

striatum and to <strong>in</strong>duce neurodegeneration <strong>in</strong> striatal DAergic term<strong>in</strong>als.


OBJETIVOS


OBJETIVOS DE LA PRESENTE TESIS<br />

OBJETIVOS<br />

Los objetivos pr<strong>in</strong>cipales de esta tesis fueron distribuidos en tres capítulos de la<br />

siguiente manera:<br />

Capítulo 1<br />

El primer objetivo pr<strong>in</strong>cipal es determ<strong>in</strong>ar la c<strong>in</strong>ética de las lesiones oxidativas<br />

producidas en un modelo experimental de Park<strong>in</strong>son con 6-OHDA y cuantificar los<br />

efectos oxidativos resultantes. Este estudio nos permitirá establecer el tiempo exacto<br />

después de la <strong>in</strong>yección con 6-OHDA en el que estudiar los efectos oxidativos del<br />

alum<strong>in</strong>io. Los objetivos concretos son:<br />

1) Analizar el curso temporal del daño oxidativo causado por la adm<strong>in</strong>istración<br />

unilateral e <strong>in</strong>trastriatal de 6-OHDA (6 µg en 5 µl de sal<strong>in</strong>o estéril con 0.2% ácido<br />

ascórbico) en los lados ipsilaterales y contralaterales del estriado y mesencéfalo<br />

ventral de la rata.<br />

2) Cuantificar los cambios observados en los níveles de peroxidación lipídica<br />

(TBARS) y del estado oxidativo de las proteínas (contenidos de grupos carbonilo y<br />

tiol en proteínas) durante el curso temporal del daño oxidativo cerebral <strong>in</strong>ducido<br />

por la <strong>in</strong>yección de 6-OHDA en el modelo experimental de la enfermedad de<br />

Park<strong>in</strong>son mencionado anteriormente.<br />

Capítulo 2<br />

El segundo objetivo pr<strong>in</strong>cipal consiste en elaborar un régimen de dosis en el que se<br />

garantice una acumulación significativa de alum<strong>in</strong>io en el cerebro y establecer la<br />

distribución exacta del metal en las regiones cerebrales de las ratas. En este caso, el<br />

objetivo concreto es:<br />

79


OBJETIVOS<br />

3) Evaluar de forma precisa la acumulación regional del alum<strong>in</strong>io absorbido en el<br />

80<br />

cerebelo, mesencéfalo ventral, corteza, hipocampo y estriado de las ratas después<br />

de la utilización de dos vías dist<strong>in</strong>tas de adm<strong>in</strong>istración, oral e <strong>in</strong>traperitoneal.<br />

Capítulo 3<br />

El tercer objetivo pr<strong>in</strong>cipal de esta tesis consiste en esclarecer la capacidad del alum<strong>in</strong>io<br />

para alterar el estado oxidativo de ciertas regions cerebrales y para aumentar la<br />

neurodegeneración dopam<strong>in</strong>érgica estriatal en un modelo experimental de Park<strong>in</strong>son<br />

con 6-OHDA, siendo los objetivos concretos:<br />

4) Investigar los efectos <strong>in</strong> vivo <strong>in</strong>ducidos por el alum<strong>in</strong>io en los índices de estrés<br />

oxidativo, mediante la cuantificación de la peroxidación lipídica (TBARS) y el<br />

estado oxidativo de las proteínas (contenidos en grupos carbonilo y tiol en<br />

proteínas), en cerebelo, mesencéfalo ventral, corteza, hipocampo y estriado de rata.<br />

5) Evaluar los efectos <strong>in</strong> vivo del alum<strong>in</strong>io sobre la actividad de determ<strong>in</strong>ados enzimas<br />

antioxidantes, tales como la superóxido dismutasa, la glutatión peroxidasa y la<br />

catalasa, en cerebelo, mesencéfalo ventral, corteza, hipocampo y estriado de rata.<br />

6) Cuantificar los posibles efectos <strong>in</strong> vitro del alum<strong>in</strong>io sobre la actividad de los<br />

enzimas antioxidantes estudiados (superóxido dismutasa, glutatión peroxidasa y<br />

catalasa) y sobre la actividad de las monoam<strong>in</strong>o oxidasas A y B.<br />

7) Estudiar la capacidad del alum<strong>in</strong>io para aumentar la capacidad de la 6-OHDA<br />

adm<strong>in</strong>istrada en el tercer ventrículo en un modelo experimental de la enfermedad de<br />

Park<strong>in</strong>son para causar estrés oxidativo (peroxidación lipídica y oxidación protéica)<br />

en el mesencéfalo ventral y estriado y para <strong>in</strong>ducir neurodegeneración en las<br />

term<strong>in</strong>ales dopam<strong>in</strong>érgicas estriatales.


CHAPTER 1


CHAPTER 1 Time-course <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong> damage<br />

caused by <strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6-hydroxydopam<strong>in</strong>e <strong>in</strong><br />

a rat model <strong>of</strong> Park<strong>in</strong>son’s disease<br />

S<strong>of</strong>ía Sánchez-Iglesias,* Pablo Rey,† Estefanía Méndez-Álvarez,* José<br />

Luis Labandeira-García† and Ramón Soto-Otero*<br />

*Laboratory <strong>of</strong> Neurochemistry, Department <strong>of</strong> Biochemistry and Molecular Biology, Faculty <strong>of</strong> Medic<strong>in</strong>e,<br />

University <strong>of</strong> Santiago de Compostela, Santiago de Compostela, Spa<strong>in</strong><br />

†Laboratory <strong>of</strong> Neuroanatomy and Experimental Neurology, Department <strong>of</strong> Morphological Sciences,<br />

Faculty <strong>of</strong> Medic<strong>in</strong>e, University <strong>of</strong> Santiago de Compostela, Santiago de Compostela, Spa<strong>in</strong><br />

Neurochem. Res. (2007) 32, 99–105.<br />

83


ABSTRACT<br />

CHAPTER 1<br />

The unilateral and <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA is commonly used to<br />

provide a partial lesion model <strong>of</strong> PD <strong>in</strong> the <strong>in</strong>vestigation <strong>of</strong> the molecular mechanisms<br />

<strong>in</strong>volved <strong>in</strong> its pathogenesis and to assess new neuroprotective treatments. Its capacity<br />

to <strong>in</strong>duce neurodegeneration has been related to its ability to undergo autoxidation <strong>in</strong> the<br />

presence <strong>of</strong> oxygen and consequently to generate <strong>oxidative</strong> <strong>stress</strong>. The aim <strong>of</strong> the<br />

present study was to <strong>in</strong>vestigate the time course <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong> damage <strong>in</strong>duced by<br />

6-OHDA (6 μg <strong>in</strong> 5 μl <strong>of</strong> sterile sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g 0.2% ascorbic acid) <strong>in</strong>jection <strong>in</strong> the<br />

right striatum <strong>of</strong> male Sprague-Dawley rat. The results <strong>of</strong> this study show that the<br />

<strong>in</strong>dices <strong>of</strong> both lipid peroxidation (TBARS) and prote<strong>in</strong> oxidation (PCC and PTC)<br />

<strong>in</strong>crease simultaneously <strong>in</strong> the ipsilateral striatum and ventral midbra<strong>in</strong>, reach<strong>in</strong>g a peak<br />

value at 48-h post-<strong>in</strong>jection for both TBARS and PCC, and at 24 h for PTC. A lower but<br />

significant <strong>in</strong>crease was also observed <strong>in</strong> the contralateral side (striatum and ventral<br />

midbra<strong>in</strong>). The <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> returned to values close to those found <strong>in</strong><br />

controls at 7-day post<strong>in</strong>jection. These data show that the <strong>oxidative</strong> <strong>stress</strong> is a possible<br />

trigger<strong>in</strong>g factor for the neurodegenerative process and the retrograde<br />

neurodegeneration observed after the first week post-<strong>in</strong>jection seems to be a<br />

consequence <strong>of</strong> the cell damage caused dur<strong>in</strong>g the first days post-<strong>in</strong>jection. F<strong>in</strong>ally, the<br />

optimal time to assess bra<strong>in</strong> <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> (TBARS, PCC and PTC) <strong>in</strong> this<br />

model is 48-h post-<strong>in</strong>jection.<br />

Keywords: Park<strong>in</strong>son‟s disease, 6-hydroxydopam<strong>in</strong>e, <strong>oxidative</strong> damage, lipid<br />

peroxidation, prote<strong>in</strong> oxidation.<br />

85


CHAPTER 1<br />

INTRODUCTION<br />

86<br />

6-OHDA (2,4,5-trihydroxyphenylethylam<strong>in</strong>e; 6-OHDA) is a selective<br />

catecholam<strong>in</strong>ergic neurotox<strong>in</strong> widely used to produce DAergic lesions <strong>in</strong> the<br />

nigrostriatal system (Dauer and Przedborski 2003). The ma<strong>in</strong> use <strong>of</strong> these lesions is to<br />

create experimental models <strong>of</strong> PD that provide <strong>in</strong>sight <strong>in</strong>to the molecular mechanisms<br />

<strong>in</strong>volved <strong>in</strong> the development <strong>of</strong> PD <strong>in</strong> order to test new strategies for DAergic<br />

neuroprotection, and to experiment with transplantation approaches (Aebischer et al.<br />

1991, He et al. 2001, Soto-Otero et al. 2002, Muñoz et al. 2004, López-Real et al.<br />

2005). The structural similarity <strong>of</strong> 6-OHDA with both DA and noradrenal<strong>in</strong>e makes it<br />

an appropriate ligand for the plasma membrane transporter systems <strong>of</strong> DA (DAT) and<br />

noradrenal<strong>in</strong>e (Luthman et al. 1989). This feature, together with the <strong>in</strong>ability shown by<br />

6-OHDA to cross the BBB (Garver et al. 1975), makes the protocol chosen for a<br />

specific DAergic lesion <strong>in</strong> the nigrostriatal system extremely important. The ma<strong>in</strong><br />

protocol used consists <strong>of</strong> the stereotaxic <strong>in</strong>tracerebral <strong>in</strong>jection <strong>of</strong> the tox<strong>in</strong> <strong>in</strong>to a<br />

specific area <strong>of</strong> the nigrostriatal systems, which <strong>in</strong>cludes the stria tum, the medial<br />

forebra<strong>in</strong> bundle or the SN (Javoy et al. 1976). The <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA is<br />

generally performed unilaterally, us<strong>in</strong>g the contralateral side as a control (Ungerstedt<br />

1971). It has been shown that the <strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6-OHDA causes a rapid<br />

degeneration <strong>of</strong> nigrostriatal term<strong>in</strong>als as early as 24 h, and the loss <strong>of</strong> tyros<strong>in</strong>e<br />

hydroxylase immunoreactivity (TH-ir) <strong>in</strong>creases for up to 5 days follow<strong>in</strong>g the lesion<br />

(Ichitani et al. 1991).<br />

Presumably, the <strong>neurotoxicity</strong> <strong>of</strong> 6-OHDA is attributed to its ability to generate<br />

ROS, and it is a well-known fact that under physiologyical conditions this compound is<br />

rapidly oxidized by molecular oxygen to give H2O2, � OH and the correspond<strong>in</strong>g p-<br />

qu<strong>in</strong>one. Although, the Fenton reaction could be <strong>in</strong>volved <strong>in</strong> the formation <strong>of</strong> the<br />

hazardous � OH dur<strong>in</strong>g the autoxidation <strong>of</strong> 6-OHDA, this is done without the<br />

<strong>in</strong>volvement <strong>of</strong> the ferrous ion or any other transitionmetal ion (Marti et al. 1997). At<br />

this po<strong>in</strong>t, it seems <strong>in</strong>terest<strong>in</strong>g to highlight the reported ability <strong>of</strong> ascorbate to enhance<br />

the production <strong>of</strong> ROS by 6-OHDA (Soto-Otero et al. 2000, Méndez-Álvarez et al.


CHAPTER 1<br />

2001), particularly due to the fact that 6-OHDA is always adm<strong>in</strong>istered <strong>in</strong> a sal<strong>in</strong>e<br />

solution conta<strong>in</strong><strong>in</strong>g about 2% <strong>of</strong> ascorbate. In these cases, the presence <strong>of</strong> ascorbate sets<br />

a redox-cycl<strong>in</strong>g, which regenerates 6-OHDA from its p-qu<strong>in</strong>one lead<strong>in</strong>g to a cont<strong>in</strong>uous<br />

production <strong>of</strong> ROS. Moreover, the presence <strong>of</strong> the enzyme dehydroascorbate reductase<br />

<strong>in</strong> the bra<strong>in</strong> may contribute to susta<strong>in</strong><strong>in</strong>g this redox-cycl<strong>in</strong>g. Although, this is the<br />

molecular mechanism generally accepted to expla<strong>in</strong> the ability <strong>of</strong> 6-OHDA to produce<br />

<strong>oxidative</strong> <strong>stress</strong> and consequently responsible for its <strong>neurotoxicity</strong>, it has been also<br />

reported that 6-OHDA can act directly by <strong>in</strong>hibit<strong>in</strong>g the mitochondrial respiratory cha<strong>in</strong><br />

at the level <strong>of</strong> complex I (Gl<strong>in</strong>ka and Youdim 1995, Gl<strong>in</strong>ka et al. 1996, Gl<strong>in</strong>ka et al.<br />

1998). Assum<strong>in</strong>g the reported capacity <strong>of</strong> complex I <strong>in</strong>hibitors to <strong>in</strong>crease the leakage <strong>of</strong><br />

superoxide anions from the electron transport cha<strong>in</strong> (Brand et al. 2004), this latter<br />

mechanism could also contribute to <strong>in</strong>crease the ability <strong>of</strong> 6-OHDA to produce ROS<br />

and consequently to generate <strong>oxidative</strong> <strong>stress</strong>. Recent reports refer to the potential<br />

contribution <strong>of</strong> ER <strong>stress</strong> to the cell death <strong>in</strong>duced by 6-OHDA (Yamamuro et al. 2006).<br />

Despite the widespread use <strong>of</strong> the <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA to obta<strong>in</strong> an<br />

experimental model <strong>of</strong> park<strong>in</strong>sonism and an awareness <strong>of</strong> the morphological changes<br />

follow<strong>in</strong>g its adm<strong>in</strong>istration (Jonsson 1983, Jeon et al. 1995), no data has been reported<br />

on the k<strong>in</strong>etics <strong>of</strong> the <strong>oxidative</strong> damage it <strong>in</strong>duces <strong>in</strong> the nigrostriatal system. However,<br />

this <strong>in</strong>formation is crucial when this model is exploited to assess the anti-park<strong>in</strong>soniam<br />

properties <strong>of</strong> new drugs (Jiang et al. 1993) or the benefit <strong>of</strong> transplantation or gene<br />

therapy to repair the damaged pathways (He et al. 2001, Björklund et al. 2002). In the<br />

light <strong>of</strong> this, the aim <strong>of</strong> the present study was to <strong>in</strong>vestigate the time-course <strong>of</strong> the<br />

<strong>oxidative</strong> damage caused by unilateral and <strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6-OHDA <strong>in</strong> the<br />

ipsilateral and contralateral side <strong>of</strong> both striatum and ventral midbra<strong>in</strong>, and also <strong>in</strong>cludes<br />

a quantification <strong>of</strong> the changes observed <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> lipid peroxidation (TBARS)<br />

and <strong>oxidative</strong> status <strong>of</strong> prote<strong>in</strong>s (PCC and PTC).<br />

87


CHAPTER 1<br />

MATERIALS AND METHODS<br />

Chemicals<br />

88<br />

6-OHDA hydrochloride, ascorbic acid, thiobarbituric acid (TBA), butylated<br />

hydroxytoluene crystall<strong>in</strong>e (BHT), 2,4-d<strong>in</strong>itrophenylhydraz<strong>in</strong>e hydrochloride,<br />

desferrioxam<strong>in</strong>e, 1,1,3,3-tetramethoypropane, 5,5‟-dithiobis-(2-nitrobenzoic acid),<br />

sodium dodecylsulfate, EDTA, and bov<strong>in</strong>e serum album<strong>in</strong> (BSA) were purchased from<br />

Sigma Chemical Co. (St. Louis, MO, USA). Guanid<strong>in</strong>e hydrochloride was from Aldrich<br />

Chemical Co. (Milwaukee, WI, USA). The water used for the preparations <strong>of</strong> solutions<br />

was <strong>of</strong> 18.2 MΩ (Milli-RiOs/Q-A10 grade, Millipore Corp., Bedford, MA, USA). All<br />

rema<strong>in</strong><strong>in</strong>g chemicals used were <strong>of</strong> analytical grade and were purchased from Fluka<br />

Chemie AG (Buchs, Switzerland).<br />

Animal treatment<br />

A total <strong>of</strong> 32 male Sprague-Dawley rats, each weigh<strong>in</strong>g about 200 g, were used.<br />

All the experiments were carried out <strong>in</strong> accordance with the „„Pr<strong>in</strong>ciples <strong>of</strong> laboratory<br />

animal care‟‟ (NIH publication No. 86–23, revised 1985) and approved by the<br />

correspond<strong>in</strong>g committee at the University <strong>of</strong> Santiago de Compostela. Rats were<br />

stereotaxically <strong>in</strong>jected <strong>in</strong> the right striatum with 6 μg <strong>of</strong> 6-OHDA <strong>in</strong> 5 μl <strong>of</strong> sterile<br />

sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g 0.2% ascorbic acid. Stereotaxic coord<strong>in</strong>ates were 1.0 mm anterior to<br />

bregma, 2.7 mm right <strong>of</strong> midl<strong>in</strong>e, 5.5 mm ventral to the dura, and tooth bar at -3.3. The<br />

solution was <strong>in</strong>jected with a 5 μl Hamilton syr<strong>in</strong>ge couple to a monitorized <strong>in</strong>jector<br />

(Stoelt<strong>in</strong>g, Wood Dale, IL, USA) and the cannula was left <strong>in</strong> situ for 5 m<strong>in</strong> after<br />

<strong>in</strong>jection. All surgery was performed under equithes<strong>in</strong> anesthesia (3 ml/kg i.p.). Groups<br />

<strong>of</strong> four rats were decapitated at the follow<strong>in</strong>g times after <strong>in</strong>jection: 5 m<strong>in</strong>, 1 h, 12 h, 24<br />

h, 48 h, 3 days, and 7 days. A group <strong>of</strong> four rats (control) was sacrificed immediately<br />

after the adm<strong>in</strong>istration <strong>of</strong> the sal<strong>in</strong>e.


Bra<strong>in</strong> samples<br />

CHAPTER 1<br />

After decapitation, the bra<strong>in</strong> was removed, the striatum and ventral midbra<strong>in</strong><br />

dissected, and the result<strong>in</strong>g samples frozen on dry ice. Each sample was immediately<br />

sonicated (250 Digital sonifer, Branson Ultrasonic Co., Danbury, CT, USA) with four<br />

volumes (w/v) a Na2PO4/KH2PO4 buffer (pH 7.4) isotonized with KCl and conta<strong>in</strong><strong>in</strong>g<br />

200 μM BHT and 200 μM desferrioxam<strong>in</strong>e. These compounds were used to prevent<br />

amplification <strong>of</strong> lipid peroxidation dur<strong>in</strong>g the progression <strong>of</strong> the analysis.<br />

Determ<strong>in</strong>ation <strong>of</strong> TBARS<br />

The TBARS determ<strong>in</strong>ation was performed spectrophotometrically us<strong>in</strong>g a<br />

previously published method (Soto-Otero et al. 2002). Briefly, an aliquot <strong>of</strong> the sample<br />

(200 μl) was treated with SDS (8%, w/v) followed by acetic acid (20%) and the mixture<br />

vortexed for 1 m<strong>in</strong>. Then, TBA (0.8%) was added and the result<strong>in</strong>g mixture <strong>in</strong>cubated at<br />

95°C for 60 m<strong>in</strong>. After cool<strong>in</strong>g to room temperature, 3 ml <strong>of</strong> n-butanol were added and<br />

the mixture shaken vigorously. After centrifugation at 4,000 rpm for 5 m<strong>in</strong>, the<br />

absorbance <strong>of</strong> the supernatant (organic layer) was measured at 532 nm us<strong>in</strong>g an UV-<br />

VIS spectrophotometer, model Lambda 35 (Perk<strong>in</strong>-Elmer Inc., Norwalk, CT, USA). For<br />

calibration, a standard curve (5–150 nM) was generated us<strong>in</strong>g the malonodialdehyde<br />

(MDA) derived by the acid hydrolysis (SO4H2; 1.5%, v/v) <strong>of</strong> 1,1,3,3-tetraethoxypropane<br />

(TEP) and the TBARS results expressed as nmol MDA/mg prote<strong>in</strong>. The prote<strong>in</strong><br />

concentration <strong>of</strong> the sample was determ<strong>in</strong>ed accord<strong>in</strong>g to the method <strong>of</strong> Markwell et al.<br />

(1978), us<strong>in</strong>g BSA as the standard.<br />

Determ<strong>in</strong>ation <strong>of</strong> prote<strong>in</strong> carbonyl content (PCC)<br />

The PCC was assessed spectrophotometrically accord<strong>in</strong>g to a procedure<br />

previously published (Hermida-Ameijeiras et al. 2004). Briefly, an aliquot <strong>of</strong> the sample<br />

was submitted to precipitation <strong>of</strong> nucleic acids with 1% streptomyc<strong>in</strong> sulfate (1:9, v/v)<br />

89


CHAPTER 1<br />

followed by centrifugation at 13,000 rpm. The pellet was then discarded and the<br />

supernatant treated with trichloroacetic acid (1 M) followed consecutively by sonication<br />

and centrifugation <strong>in</strong> a microcentrifuge (model E, Beckman Instruments, Palo Alto, CA,<br />

USA) at 13,000 rpm for 5 m<strong>in</strong>. The result<strong>in</strong>g pellet was reconstituted <strong>in</strong> NaOH (0.5 M)<br />

with vigorous vortex<strong>in</strong>g for 3 m<strong>in</strong>. Then, 10 mM 2,4-d<strong>in</strong>itrophenylhydraz<strong>in</strong>e <strong>in</strong> 2 M<br />

chloric acid was added and the mixture <strong>in</strong>cubated at room temperature for 1 h, <strong>in</strong><br />

darkness, and with cont<strong>in</strong>uous agitation. After the addition <strong>of</strong> trichloroacetic acid (1 M),<br />

the result<strong>in</strong>g mixture was centrifuged at 13,000 rpm for 5 m<strong>in</strong>. The result<strong>in</strong>g pellet was<br />

washed twice with ethyl acetate : ethanol (1:1, v/v). Then, the washed pellet was<br />

reconstituted with 6 M guanid<strong>in</strong>e <strong>in</strong> a 20 mM KH2PO4 buffer (pH 2.3) and the<br />

absorbance <strong>of</strong> the solution measured at 370 nm. The PCC was calculated from the<br />

absorbance data us<strong>in</strong>g as absorption coefficient for d<strong>in</strong>itrophenylhydrazone ε = 22,000<br />

M –1 cm –1 and express<strong>in</strong>g this parameter as nmol carbonyls/mg prote<strong>in</strong>. Because <strong>of</strong> the<br />

numerous wash<strong>in</strong>g steps, prote<strong>in</strong> content <strong>in</strong> the f<strong>in</strong>al pellet was estimated on an HCl<br />

blank pellet processed simultaneously us<strong>in</strong>g a BSA standard curve <strong>in</strong> 6 M guanid<strong>in</strong>e,<br />

and read<strong>in</strong>g the absorbance at 280 nm.<br />

Determ<strong>in</strong>ation <strong>of</strong> prote<strong>in</strong> thiol content (PTC)<br />

90<br />

The PTC <strong>of</strong> prote<strong>in</strong>s was estimated spectrophotometrically us<strong>in</strong>g a modification<br />

<strong>in</strong>troduced to a standard assay (Hermida-Ameijeiras et al. 2004). Briefly, an aliquot <strong>of</strong><br />

the sample (200 μl) was treated with trichloroacetic acid (0.5 M) for prote<strong>in</strong><br />

precipitation. After vortex<strong>in</strong>g and centrifugation at 13,000 rpm for 5 m<strong>in</strong>, the result<strong>in</strong>g<br />

pellet was reconstituted <strong>in</strong> an 80 mM Na3PO4 and 2 mM EDTA buffer (pH 8.0)<br />

conta<strong>in</strong><strong>in</strong>g 70 mM sodium dodecylsulfate. Then, 100 μM 5,5‟-dithiobis-(2-nitrobenzoic<br />

acid) <strong>in</strong> a buffer 100 mM Na3PO4 (pH 8.0) were added and the mixture <strong>in</strong>cubated at<br />

room temperature for 20 m<strong>in</strong> with cont<strong>in</strong>uous mix<strong>in</strong>g. After centrifugation at 13,000<br />

rpm for 5 m<strong>in</strong>, the absorbance <strong>of</strong> the result<strong>in</strong>g solution was measured at 412 nm and the<br />

PTC calculated from this data us<strong>in</strong>g as absorption coefficient for 2-nitro-5-<br />

mercaptobenzoic acid ε = 13,600 M –1 cm –1 and express<strong>in</strong>g the correspond<strong>in</strong>g parameter<br />

as nmol thiols/mg prote<strong>in</strong>.


Statistical analysis<br />

CHAPTER 1<br />

Results were expressed as the mean ± SD from five animals. Statistical<br />

differences were tested us<strong>in</strong>g one-way ANOVA followed by LSD for multiple<br />

comparisons (p < 0.05). All statistical analyses were performed us<strong>in</strong>g Sigmastat 3.0<br />

from Jandel Scientific (San Diego, CA, USA).<br />

91


CHAPTER 1<br />

RESULTS<br />

Effects <strong>of</strong> 6-OHDA adm<strong>in</strong>istration on TBARS concentration<br />

92<br />

As shown <strong>in</strong> Fig. 1, the <strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6 μg <strong>of</strong> 6-OHDA <strong>in</strong> the<br />

right striatum caused a significant and progressive <strong>in</strong>crease <strong>of</strong> TBARS concentration <strong>in</strong><br />

both right striatum (F(7,24) = 51.73, p < 0.001) and right ventral midbra<strong>in</strong> (F(7,24) =<br />

72.81, p < 0.001), obta<strong>in</strong><strong>in</strong>g a peak-effect 48 h after the <strong>in</strong>jection. Although, the<br />

<strong>in</strong>crease <strong>in</strong> the right striatum was significant at 5 m<strong>in</strong> versus 1 h for ventral midbra<strong>in</strong>,<br />

the augmentation observed after 48 h was higher <strong>in</strong> the right ventral midbra<strong>in</strong> (+83%)<br />

than <strong>in</strong> the right striatum (+26%). At 7-day post-<strong>in</strong>jection, the values returned to those<br />

<strong>of</strong> the controls. A significant and progressive <strong>in</strong>crease <strong>in</strong> the TBARS concentration was<br />

also observed <strong>in</strong> the contralateral side, affect<strong>in</strong>g aga<strong>in</strong> to both left striatum (F(7,24) =<br />

10.39, p < 0.001) and left ventral midbra<strong>in</strong> (F(7,24) = 6.30, p < 0.001). The peak-effect<br />

was also observed at 48 h, but the <strong>in</strong>crease was lower (+23% <strong>in</strong> the left striatum and<br />

+26% <strong>in</strong> the left ventral midbra<strong>in</strong>). At 7-day post-<strong>in</strong>jection the values returned to the<br />

concentrations found <strong>in</strong> the correspond<strong>in</strong>g controls.<br />

Effects <strong>of</strong> 6-OHDA adm<strong>in</strong>istration on PCC<br />

The PCC also exhibited a significant and progressive time course <strong>in</strong>crease (Fig.<br />

2), which affected both right striatum (F(7,24) = 57.55, p < 0.001) and right ventral<br />

midbra<strong>in</strong> (F(7,24) = 54.76, p < 0.001). In this case, the <strong>in</strong>crease observed <strong>in</strong> PCC was<br />

not significant till 1-h post-<strong>in</strong>jection. However, the peak-effect was observed once aga<strong>in</strong><br />

48 h after <strong>in</strong>jection, and higher <strong>in</strong> the right ventral midbra<strong>in</strong> (+42%) than <strong>in</strong> the right<br />

striatum (+38%). A significant and progressive <strong>in</strong>crease <strong>in</strong> PCC was also observed <strong>in</strong><br />

the contralateral side, affect<strong>in</strong>g to both left striatum (F(7,24) = 5.95, p < 0.001) and left<br />

ventral midbra<strong>in</strong> (F(7,24) = 3.48, p < 0.05). However, <strong>in</strong> this case, although the peak-<br />

effect was also observed at 48-h post-<strong>in</strong>jection, the <strong>in</strong>crease found was lower (+12% <strong>in</strong>


CHAPTER 1<br />

the left striatum and +11% <strong>in</strong> the left ventral midbra<strong>in</strong>). The correspond<strong>in</strong>g<br />

concentrations achieved values close to those found <strong>in</strong> the controls at 7-day post-<br />

<strong>in</strong>jection.<br />

Effects <strong>of</strong> 6-OHDA adm<strong>in</strong>istration on PTC<br />

Figure 3 shows the time-course <strong>of</strong> the changes observed for PTC <strong>in</strong> prote<strong>in</strong>s<br />

follow<strong>in</strong>g 6-OHDA adm<strong>in</strong>istration. As can be seen, a significant and progressive<br />

reduction <strong>in</strong> PTC was found <strong>in</strong> both right striatum (F(7,24) = 5.06, p < 0.05) and right<br />

ventral midbra<strong>in</strong> (F(7,24) = 25.87, p < 0.001). The maximal decrease for both right<br />

striatum (–7%) and right ventral midbra<strong>in</strong> (–20%) was found at 24 h. Although the<br />

peak-effect did not happen at the same time for both TBARS concentration and PCC,<br />

the value obta<strong>in</strong>ed for PTC at 24 h was not significantly different when compared with<br />

that observed 48-h post-<strong>in</strong>jection. The PTC <strong>in</strong> the contralateral side only exhibited a<br />

significant reduction <strong>in</strong> the left ventral midbra<strong>in</strong> (F(7,24) = 5.06, p < 0.05), because the<br />

changes observed <strong>in</strong> the left striatum did not reach statistical significance (F(7,24) =<br />

0.87, p > 0.05). Once aga<strong>in</strong>, the m<strong>in</strong>imum value found <strong>in</strong> the left striatum for PTC was<br />

observed 24-h post-<strong>in</strong>jection and the decrease was <strong>of</strong> –8%, a value lower than that<br />

found <strong>in</strong> the ipsilateral side. No significant differences were found when the value<br />

obta<strong>in</strong>ed at 24 h was compared with that obta<strong>in</strong>ed at 48 h.<br />

93


CHAPTER 1<br />

DISCUSSION<br />

94<br />

As shown by the data here reported, the <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA causes<br />

a cont<strong>in</strong>uous <strong>in</strong>crease <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> the ipsilateral side (striatum<br />

and ventral midbra<strong>in</strong>), which expands over 48 h for both lipid peroxidation and PCC,<br />

and over 24 h for PTC. This quick evolution <strong>of</strong> the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> agrees<br />

with both morphological observations show<strong>in</strong>g that DAergic neurons start to die with<strong>in</strong><br />

the first 24 h (Jonsson 1983, Ichitani et al. 1991, Jeon et al. 1995) and that rapid<br />

autoxidation <strong>of</strong> 6-OHDA takes place under physiological conditions (Soto-Otero et al.<br />

2000, Méndez-Álvarez et al. 2001, Méndez-Álvarez et al. 2002). Once peak-values are<br />

reached, each <strong>of</strong> the <strong>in</strong>dices beg<strong>in</strong>s a slow decl<strong>in</strong>e to values very close to those found <strong>in</strong><br />

controls after 7-day post-<strong>in</strong>jection. Tak<strong>in</strong>g <strong>in</strong>to account the fact that the degeneration <strong>of</strong><br />

the nigrostriatal system can last for 1–2 weeks (Sauer and Oertel 1994, Przedborski et<br />

al. 1995), our data appears to show that the here reported <strong>oxidative</strong> damage is the cause<br />

<strong>of</strong> the DAergic lesion and not a consequence <strong>of</strong> this process, but this is still open to<br />

question (Andersen 2004). Furthermore, the fact that the neurodegenerative process<br />

cont<strong>in</strong>ues when the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> returned to the <strong>in</strong>itial values (control<br />

values) appears to prove that the <strong>oxidative</strong> <strong>stress</strong> generated by 6-OHDA autoxidation<br />

causes irreversible damage <strong>in</strong> DAergic neurons and endangers their survival. Similar<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> early <strong>oxidative</strong> <strong>stress</strong> have been observed after MPTP application<br />

(Przedborski et al. 2004) as well as after chronic treatment <strong>of</strong> rats with rotenone<br />

(Giasson et al. 2000). However, the fact that <strong>in</strong> our study the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong><br />

<strong>in</strong>crease simultaneously <strong>in</strong> both striatum and ventral midbra<strong>in</strong> seems to discard previous<br />

suggestions <strong>in</strong>volv<strong>in</strong>g a chemical axotomic action <strong>of</strong> 6-OHDA <strong>in</strong> the delay and gradual<br />

degeneration <strong>of</strong> DAergic neurons found <strong>in</strong> this model <strong>of</strong> DAergic neurodegeneration<br />

(Sauer and Oertel 1994). At this po<strong>in</strong>t, it is <strong>in</strong>terest<strong>in</strong>g to note that the maximum<br />

<strong>in</strong>crease <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> is higher <strong>in</strong> the ventral midbra<strong>in</strong> than <strong>in</strong> the<br />

striatum and occurs simultaneously. Assum<strong>in</strong>g the accepted <strong>in</strong>volvement <strong>of</strong> <strong>oxidative</strong><br />

<strong>stress</strong> <strong>in</strong> apoptosis (Giasson et al. 2000), the apoptotic-like features observed 1–3 weeks<br />

after lesion (Marti et al. 1997), and the ability shown by caspase <strong>in</strong>hibitors to protect


CHAPTER 1<br />

aga<strong>in</strong>st degeneration (Trojanowski and Lee 2003), our results corroborate the<br />

<strong>in</strong>volvement <strong>of</strong> the <strong>oxidative</strong> <strong>stress</strong> caused by 6-OHDA autoxidation as a trigger<strong>in</strong>g<br />

factor <strong>in</strong> the development <strong>of</strong> neurodegeneration. In view <strong>of</strong> both the recently reported<br />

ability <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> to act as a primary event for α-synucle<strong>in</strong> polimerization and<br />

the <strong>in</strong>volvement <strong>of</strong> these aggregates <strong>in</strong> neurodegenerative processes (Cutillas et al.<br />

1999, Krantic et al. 2005), the fibrillization <strong>of</strong> α-synucle<strong>in</strong> could also be responsible for<br />

the slow rate <strong>of</strong> neurodegeneration observed after unilateral, <strong>in</strong>trastriatal adm<strong>in</strong>istration<br />

<strong>of</strong> 6-OHDA. Evidently, both our results and the suggested hypothesis do not discard the<br />

suggested <strong>in</strong>volvement <strong>of</strong> microglia <strong>in</strong> the correspond<strong>in</strong>g neuronal death (Rodrigues et<br />

al. 2001, Przedborski and Goldman 2004), because the formation <strong>of</strong> certa<strong>in</strong> uncharged<br />

ROS dur<strong>in</strong>g the 6-OHDA autoxidation, with a relatively non short half-life, makes these<br />

substances highly diffusible through biological membranes and suitable for cellular<br />

signal<strong>in</strong>g (Vroegop et al. 1995, Kamsler and Segal 2004).<br />

It is also important to emphasize that the unilateral <strong>in</strong>jection <strong>of</strong> 6-OHDA also<br />

caused a significant <strong>in</strong>crease <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>of</strong> the contralateral side,<br />

affect<strong>in</strong>g both the striatum and the ventral midbra<strong>in</strong>. Our results show that the<br />

magnitude <strong>of</strong> these <strong>in</strong>creases was lower than that found <strong>in</strong> the ipsilateral side, which<br />

agree with the reported <strong>in</strong>ability <strong>of</strong> <strong>in</strong>trastriatal and unilateral <strong>in</strong>jections <strong>of</strong> 6-OHDA to<br />

cause loss <strong>of</strong> cell bodies <strong>in</strong> the contralateral side (Lee et al. 1996). However, these data<br />

clearly preclude the use <strong>of</strong> the contralateral side as a control to assess neurochemical<br />

changes <strong>in</strong>duced by 6-OHDA <strong>in</strong> this experimental model <strong>of</strong> PD. This may be expla<strong>in</strong>ed<br />

by the above-mentioned ability <strong>of</strong> certa<strong>in</strong> ROS generated by 6-OHDA autoxidation to<br />

diffuse through biological membranes.<br />

In summary, our data confirm that <strong>in</strong>trastriatal and unilateral <strong>in</strong>jections <strong>of</strong> 6-<br />

OHDA cause <strong>oxidative</strong> <strong>stress</strong> (lipid peroxidation and prote<strong>in</strong> oxidation), which<br />

<strong>in</strong>creases dur<strong>in</strong>g the first 2-day post-<strong>in</strong>jection and returns to approximate control levels<br />

at the 17-day post-<strong>in</strong>jection. This appears to be the trigger<strong>in</strong>g factor for the<br />

neurodegenerative process, and the retrograde neurodegeneration follow<strong>in</strong>g the first<br />

week post-<strong>in</strong>jection seems to be a consequence <strong>of</strong> the cell damage caused with<strong>in</strong> the<br />

first days post-<strong>in</strong>jection. F<strong>in</strong>ally, when this model is used to assess new neuroprotective<br />

95


CHAPTER 1<br />

strategies or to study the <strong>oxidative</strong> potential <strong>of</strong> a specific factor, the measurement <strong>of</strong><br />

bra<strong>in</strong> <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> (TBARS and the content <strong>of</strong> oxidized groups <strong>in</strong> prote<strong>in</strong>s)<br />

should be performed at 48-h post-<strong>in</strong>jection, which is when maximum values are<br />

obta<strong>in</strong>ed.<br />

Acknowledgments<br />

This study was supported by Grant BFI2003-00493 from the M<strong>in</strong>isterio de Ciencia y<br />

Tecnología with the contribution <strong>of</strong> the European Regional Development Found<br />

(Madrid, Spa<strong>in</strong>) and Grant PGIDIT03PXIB20804PR from the Xunta de Galicia<br />

(Santiago de Compostela, Spa<strong>in</strong>). The authors are <strong>in</strong>debted to Dr. J. L. Otero-Cepeda<br />

for statistical analysis <strong>of</strong> the results.<br />

96


CHAPTER 1<br />

Fig. 1 Changes <strong>in</strong> TBARS levels <strong>in</strong> the ipsilateral and contralateral side <strong>of</strong> both striatum<br />

(St) and ventral midbra<strong>in</strong> (VM) after stereotaxic, unilateral (right), <strong>in</strong>trastriatal <strong>in</strong>jection<br />

<strong>of</strong> 6-OHDA (6 �g <strong>in</strong> 5 �l <strong>of</strong> sterile sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g 0.2% ascorbic acid) to rats. Each<br />

po<strong>in</strong>t represents the mean ± SD from five animals (n = 5). Asterisks denote values<br />

significantly different from the correspond<strong>in</strong>g control (LSD test; p < 0.05).<br />

97


CHAPTER 1<br />

Fig. 2 Changes <strong>in</strong> PCC <strong>in</strong> the ipsilateral and contralateral side <strong>of</strong> both striatum (St) and<br />

ventral midbra<strong>in</strong> (VM) after stereotaxic, unilateral (right), <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-<br />

OHDA (6 �g <strong>in</strong> 5 �l <strong>of</strong> sterile sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g 0.2% ascorbic acid) to rats. Each po<strong>in</strong>t<br />

represents the mean ± SD from five animals (n = 5). Asterisks denote values<br />

significantly different from the correspond<strong>in</strong>g control (LSD test; p < 0.05).<br />

98


CHAPTER 1<br />

Fig. 3 Changes <strong>in</strong> PTC <strong>in</strong> the ipsilateral and contralateral side <strong>of</strong> both striatum (St) and<br />

ventral midbra<strong>in</strong> (VM) after stereotaxic, unilateral (right), <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-<br />

OHDA (6 �g <strong>in</strong> 5 �l <strong>of</strong> sterile sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g 0.2% ascorbic acid) to rats. Each po<strong>in</strong>t<br />

represents the mean ± SD from five animals (n = 5). Asterisks denote values<br />

significantly different from the correspond<strong>in</strong>g control (LSD test; p < 0.05).<br />

99


CHAPTER 2


CHAPTER 2 Analysis <strong>of</strong> bra<strong>in</strong> regional distribution <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> <strong>in</strong> rats via oral and <strong>in</strong>traperitoneal adm<strong>in</strong>istration<br />

S<strong>of</strong>ía Sánchez-Iglesias,* Ramón Soto-Otero,* Javier Iglesias-González,*<br />

M. Carmen Barciela-Alonso,† Pilar Bermejo-Barrera† and Estefanía<br />

Méndez-Álvarez*<br />

*Laboratory <strong>of</strong> Neurochemistry, Department <strong>of</strong> Biochemistry and Molecular Biology, Faculty <strong>of</strong> Medic<strong>in</strong>e,<br />

University <strong>of</strong> Santiago de Compostela, Santiago de Compostela, Spa<strong>in</strong><br />

†Department <strong>of</strong> Analytical Chemistry, Nutrition and Bromatology, Faculty <strong>of</strong> Chemistry, University <strong>of</strong><br />

Santiago de Compostela, Santiago de Compostela, Spa<strong>in</strong><br />

J. Trace Elem. Med. Biol. (2007) 21, S1, 31–34.<br />

103


ABSTRACT<br />

CHAPTER 2<br />

In the present work, accumulation and distribution <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the rat bra<strong>in</strong><br />

follow<strong>in</strong>g both <strong>in</strong>traperitoneal and oral adm<strong>in</strong>istration were studied. Male Sprague-<br />

Dawley rats received a daily i.p. <strong>in</strong>jection <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride (10 mg Al 3+ /kg/day)<br />

for one week or oral and progressively <strong>in</strong>creas<strong>in</strong>g adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride<br />

and citric acid up to 100 and 356 mg/kg/day, respectively. Electrothermal atomic<br />

absorption spectrometry was used to determ<strong>in</strong>e <strong>alum<strong>in</strong>ium</strong> concentration <strong>in</strong> different<br />

bra<strong>in</strong> areas (cerebellum, ventral midbra<strong>in</strong>, cortex, hippocampus, and striatum). The<br />

results we obta<strong>in</strong>ed provided us <strong>in</strong>sights about the most efficiency way for <strong>alum<strong>in</strong>ium</strong><br />

adm<strong>in</strong>istration <strong>in</strong> neurochemical studies focused to <strong>in</strong>vestigate the ability <strong>of</strong> this metal<br />

to <strong>in</strong>duce bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> and consequently to cause neurodegeneration. Most <strong>of</strong><br />

the bra<strong>in</strong> areas showed accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>, but a greater and more significant<br />

<strong>in</strong>crease was noted <strong>in</strong> the group receiv<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> via <strong>in</strong>traperitoneal adm<strong>in</strong>istration.<br />

Alum<strong>in</strong>ium distribution was also dependent on the adm<strong>in</strong>istration route. Accord<strong>in</strong>g to<br />

the here reported results, the <strong>in</strong>traperitoneal adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> was most<br />

effective <strong>in</strong> improv<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> the different areas <strong>of</strong> the rat bra<strong>in</strong>.<br />

Our data suggest that <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> may be mediated by its particular<br />

distribution <strong>in</strong> specific bra<strong>in</strong> areas.<br />

Keywords: Alum<strong>in</strong>ium, bra<strong>in</strong> distribution, <strong>in</strong>traperitoneal, oral, rat.<br />

105


CHAPTER 2<br />

INTRODUCTION<br />

106<br />

Alum<strong>in</strong>ium is one <strong>of</strong> the most abundant metals <strong>in</strong> the earth‟s crust and all around<br />

present <strong>in</strong> our domestic environment. Although, it is considered a non-essential element<br />

for liv<strong>in</strong>g organisms, the medical <strong>in</strong>terest <strong>in</strong> this metal comes from the reported<br />

<strong>neurotoxicity</strong> <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> (Yokel 2000). The bioavailabilility <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>, its ability<br />

to cross the BBB, and the relatively slow rate <strong>of</strong> elim<strong>in</strong>ation from the bra<strong>in</strong>, contribute<br />

to guarantee the accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong>to the bra<strong>in</strong> (Priest 2004), which<br />

represents an enhanced neurotoxicological risk. Thus, <strong>alum<strong>in</strong>ium</strong> has been implicated <strong>in</strong><br />

ag<strong>in</strong>g-related changes (Deloncle et al. 2001) and several neurodegenerative diseases<br />

(Kawahara 2005). Although, it is generally accepted that the <strong>neurotoxicity</strong> <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

is caused by its ability to <strong>in</strong>crease <strong>oxidative</strong> damage <strong>in</strong> the bra<strong>in</strong> (Moumen et al. 2001),<br />

the molecular mechanisms by which it causes neuronal damage are not fully understood<br />

(Zatta et al. 2002). Evidently, the non-redox nature <strong>of</strong> this metal, so as the extensive<br />

range <strong>of</strong> values reported <strong>in</strong> the literature concern<strong>in</strong>g its accumulation <strong>in</strong> the bra<strong>in</strong>,<br />

contribute greatly to this uncerta<strong>in</strong> situation. The purpose <strong>of</strong> this study was to elucidate<br />

the precise localization <strong>of</strong> the absorbed <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the bra<strong>in</strong> follow<strong>in</strong>g the use <strong>of</strong> two<br />

different adm<strong>in</strong>istration routes, oral and <strong>in</strong>traperitoneal, <strong>in</strong> order to clarify its<br />

distribution <strong>in</strong> the bra<strong>in</strong> and <strong>in</strong> this way contribute to understand all the factors <strong>in</strong>volved<br />

<strong>in</strong> its <strong>neurotoxicity</strong>.


MATERIALS AND METHODS<br />

Chemicals<br />

CHAPTER 2<br />

Nitric acid 69% Hiperpur� from Panreac SA (Barcelona, Spa<strong>in</strong>) was used to<br />

perform microwave digestions. H2O2 30% Suprapur� and a dogfish muscle DORM-2<br />

certified reference material were purchased from Merck (Darmstadt, FRG) and from the<br />

National Research Council (Otawa, Canada), respectively. Argon N50 (99.999% purity)<br />

was used as a sheath gas for the atomizer and to purge <strong>in</strong>ternally. Alum<strong>in</strong>ium chloride<br />

hexahydrate was purchased from Sigma Chemical Co. (St. Louis, MO, USA). The water<br />

used for the preparations <strong>of</strong> solutions was <strong>of</strong> 18.2 M� (Milli-RiOs/Q-A10 grade,<br />

Millipore Corp., Bedford, MA, USA). All rema<strong>in</strong><strong>in</strong>g chemicals used were <strong>of</strong> analytical<br />

grade and were purchased from Fluka Chemie AG (Buchs, Switzerland).<br />

Animal treatment<br />

Forty male Sprague-Dawley rats (200-250 g) were used <strong>in</strong> this study. All<br />

experiments were performed <strong>in</strong> accordance with the NIH publication “Pr<strong>in</strong>ciples <strong>of</strong><br />

laboratory animal care” and approved by the Ethics Committee <strong>of</strong> the University <strong>of</strong><br />

Santiago de Compostela. Animals were randomly divided <strong>in</strong>to four experimental group:<br />

the first group was daily i.p. <strong>in</strong>jected with <strong>alum<strong>in</strong>ium</strong> chloride (Sigma Chemical Co.) <strong>in</strong><br />

sal<strong>in</strong>e (0.9% NaCl) at a dose <strong>of</strong> 10 mg <strong>alum<strong>in</strong>ium</strong>/kg/day (pH 4) for one week. The<br />

second group was i.p. <strong>in</strong>jected with sal<strong>in</strong>e over the same period. The third group was<br />

given orally 25 mg <strong>alum<strong>in</strong>ium</strong>/kg/day and 89 mg citric acid/kg/day <strong>in</strong> sal<strong>in</strong>e for one<br />

week. After this period, <strong>alum<strong>in</strong>ium</strong> and citric acid doses were <strong>in</strong>creased to 50<br />

mg/kg/day and 178 mg/kg/day, respectively, for one more week. F<strong>in</strong>ally, doses were<br />

adjusted to 100 mg <strong>alum<strong>in</strong>ium</strong>/kg/day and 356 mg citric acid/kg/day for two additional<br />

weeks. Citric acid was added to enhance the gastro<strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

(Gómez et al. 1999). The fourth group was given sal<strong>in</strong>e orally dur<strong>in</strong>g the entire<br />

107


CHAPTER 2<br />

experimental period <strong>of</strong> four weeks. Alum<strong>in</strong>ium dosage was adjusted accord<strong>in</strong>g to the<br />

animal‟s body weight just before experiment. All rats received a standard diet (A04,<br />

Panlab, Barcelona, Spa<strong>in</strong>) and the correspond<strong>in</strong>g dr<strong>in</strong>k<strong>in</strong>g (sal<strong>in</strong>e or <strong>alum<strong>in</strong>ium</strong><br />

salt+citric acid) ad libitum. Body weight and fluid <strong>in</strong>take were measured three times a<br />

week to adjust the doses <strong>in</strong> order to achieve a constant <strong>alum<strong>in</strong>ium</strong> and citric acid <strong>in</strong>take.<br />

Bra<strong>in</strong> samples<br />

108<br />

After treatment, animals were sacrificed by decapitation and bra<strong>in</strong>s quickly<br />

excised. Regional bra<strong>in</strong> segments [cerebellum (CE), ventral midbra<strong>in</strong> (VM), cortex<br />

(CO), hippocampus (H), striatum (ST)] were rapidly dissected out on ice plate,<br />

accord<strong>in</strong>g to Pax<strong>in</strong>os and Watson (2007). Weighed bra<strong>in</strong> regions were stored at –40°C<br />

until trace element analysis.<br />

Electrothermal atomic absorption spectrometry (ETAAS)<br />

The samples were homogenised and digested with nitric acid (HNO3) and H2O2,<br />

us<strong>in</strong>g microwave energy. A portion <strong>of</strong> 500 mg <strong>of</strong> sample was weighed <strong>in</strong>to a digestion<br />

vessel and 2 mL <strong>of</strong> HNO3 were added. Afterwards, vessels were <strong>in</strong>troduced <strong>in</strong>to the<br />

microwave oven at 100 W dur<strong>in</strong>g 12 m<strong>in</strong>. Then, 1 mL <strong>of</strong> H2O2 was added <strong>in</strong>to digestion<br />

vessel and <strong>in</strong>troduced <strong>in</strong>to the microwave oven dur<strong>in</strong>g 10 m<strong>in</strong> at 300 W. Subsequently,<br />

the sample was adjusted to its f<strong>in</strong>al volume (5 mL) by addition <strong>of</strong> ultrapure water. A<br />

portion <strong>of</strong> 20 µL <strong>of</strong> the digested sample was <strong>in</strong>troduced <strong>in</strong>to the graphite furnace tube<br />

for its analysis by ETAAS. Measurements were performed us<strong>in</strong>g an atomic absorption<br />

spectrometer Model 1100 B (Perk<strong>in</strong>-Elmer, Norwalk, CT, USA), equipped with an<br />

HGA-700 graphite furnace atomizer and AS-70 autosampler. A hollow cathode lamp<br />

operat<strong>in</strong>g at 25 mA, which provided a 309 nm l<strong>in</strong>e with a spectral bandwidth <strong>of</strong> 0.7 nm,<br />

was used. Deuterium background correction and pyrolytic graphite coated tubes with<br />

L´vov platforms were employed. All measurements made dur<strong>in</strong>g this study used<br />

<strong>in</strong>tegrated absorbance with an <strong>in</strong>tegration time <strong>of</strong> 5 s. The m<strong>in</strong>eralization and


CHAPTER 2<br />

atomization used were 1,500 and 2,800 ºC respectively (Table 1). The volume <strong>in</strong>jected<br />

was 20 µL. Each sample was digested by triplicate and measured by duplicate.<br />

Alum<strong>in</strong>ium concentrations <strong>in</strong> samples were calculated us<strong>in</strong>g a standard addition method<br />

<strong>in</strong> an analytical range <strong>of</strong> 0-20 µg/L. The limit <strong>of</strong> detection was 0.12 µg/g. The accuracy<br />

<strong>of</strong> the method was <strong>in</strong>vestigated us<strong>in</strong>g the Reference Material DORM-2 with a<br />

certificated <strong>alum<strong>in</strong>ium</strong> concentration <strong>of</strong> 10.9±1.7 µg/g, be<strong>in</strong>g the <strong>alum<strong>in</strong>ium</strong><br />

concentration obta<strong>in</strong>ed 11.4±2.2 µg/g. Reagents for <strong>alum<strong>in</strong>ium</strong> determ<strong>in</strong>ation were <strong>of</strong><br />

the highest available purity <strong>in</strong> order to avoid any risk <strong>of</strong> sample contam<strong>in</strong>ation. All<br />

glassware was washed and kept <strong>in</strong> 10% (v/v) HNO3 for at least 48 hours and then r<strong>in</strong>sed<br />

with ultrapure water (Milli-RiOs/Q-A10).<br />

Statistical analysis<br />

Results were expressed as the mean ± SD. Statistical differences were tested us<strong>in</strong>g<br />

one-way ANOVA followed by Bonferroni‟s test for multiple comparisons. The<br />

accepted level <strong>of</strong> statistical significance was p < 0.05. All statistical procedures were<br />

carried out us<strong>in</strong>g the Statgraphics Plus 5.0 statistical package (Manugistics, Rockville,<br />

MD, USA).<br />

109


CHAPTER 2<br />

RESULTS<br />

Alum<strong>in</strong>ium distribution <strong>in</strong> the bra<strong>in</strong> after oral and i.p.<br />

adm<strong>in</strong>istration<br />

110<br />

As can be seen <strong>in</strong> Fig. 1, <strong>alum<strong>in</strong>ium</strong> content <strong>in</strong> bra<strong>in</strong> tissue was significantly<br />

<strong>in</strong>creased <strong>in</strong> both <strong>alum<strong>in</strong>ium</strong>-exposed groups (i.p. and oral) when compared to the<br />

correspond<strong>in</strong>g control, except <strong>in</strong> VM <strong>of</strong> the i.p. <strong>alum<strong>in</strong>ium</strong>-treated group.<br />

All bra<strong>in</strong> regions <strong>of</strong> oral <strong>alum<strong>in</strong>ium</strong>-treated animals showed significant <strong>in</strong>creased<br />

levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> relation to their controls: +69% CE, +200% VM, +116% CO,<br />

+66% H, +143% ST, with highest levels <strong>in</strong> the ventral midbra<strong>in</strong>>striatum>cortex,<br />

cerebellum and hippocampus. In orally-treated control animals, all areas showed a<br />

similar accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>.<br />

In i.p. <strong>alum<strong>in</strong>ium</strong>-treated animals, <strong>alum<strong>in</strong>ium</strong> content was significantly <strong>in</strong>creased<br />

compared to the respective i.p. controls (+727% CE, +667% CO, +877% H and +294%<br />

ST). Notwithstand<strong>in</strong>g, the level <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> VM was significantly reduced<br />

compared to that <strong>of</strong> the control group (–83%). Alum<strong>in</strong>ium <strong>in</strong> i.p. metal-treated animals<br />

seemed to accumulate preferentially <strong>in</strong> the follow<strong>in</strong>g cerebral areas:<br />

hippocampus>cortex>striatum>cerebellum>ventral midbra<strong>in</strong>.<br />

When compar<strong>in</strong>g the two different methods <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration, we<br />

noted a greater and significant <strong>in</strong>crease <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the i.p. <strong>alum<strong>in</strong>ium</strong>-treated<br />

groups compared to the orally-treated group: +77% H, +73% CO, +51% CE and +39%<br />

ST. In turn, <strong>alum<strong>in</strong>ium</strong> concentration <strong>in</strong> VM was significantly reduced (–1963%).


DISCUSSION<br />

CHAPTER 2<br />

Alum<strong>in</strong>ium enters the bra<strong>in</strong> through the BBB. Previous studies suggest that there<br />

are carrier-mediated mechanisms that allow uptake <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong>to the bra<strong>in</strong> and<br />

efflux <strong>in</strong>to blood (Yokel 2002b). It was also proposed that <strong>alum<strong>in</strong>ium</strong> distribution<br />

depends on the animal species <strong>in</strong> question and the chemical form <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

adm<strong>in</strong>istered (Baydar et al. 2003). The aim <strong>of</strong> the present work was to evaluate the bra<strong>in</strong><br />

regional accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> rats follow<strong>in</strong>g the adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

chloride through two dist<strong>in</strong>ct adm<strong>in</strong>istration routes: <strong>in</strong>traperitoneal and oral.<br />

Oral adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride for four weeks resulted <strong>in</strong> a<br />

significant <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> <strong>alum<strong>in</strong>ium</strong> concentration <strong>in</strong> all the <strong>in</strong>vestigated bra<strong>in</strong> areas.<br />

These results agree with previous studies report<strong>in</strong>g an <strong>in</strong>crease <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

concentration <strong>in</strong> both whole bra<strong>in</strong> (Sah<strong>in</strong> et al. 1994) and specific areas <strong>of</strong> the bra<strong>in</strong><br />

(Gupta and Shukla 1995, Roig et al. 2006), which contribute to expla<strong>in</strong> the impairment<br />

<strong>in</strong> motor coord<strong>in</strong>ation observed by some authors (Sah<strong>in</strong> et al. 1995). However, it has<br />

also been reported no significant accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the whole bra<strong>in</strong> (Gómez<br />

et al. 1999, Colom<strong>in</strong>a et al. 2002) and even a paradoxical reduction <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

concentration <strong>in</strong> the whole bra<strong>in</strong> <strong>of</strong> mice chronically treated with a diet conta<strong>in</strong><strong>in</strong>g<br />

<strong>alum<strong>in</strong>ium</strong> (Golub et al. 2000). This wide variety <strong>of</strong> results could be related with the<br />

<strong>alum<strong>in</strong>ium</strong> salt used and/or the extent <strong>of</strong> bra<strong>in</strong> area selected.<br />

Our results show that i.p <strong>alum<strong>in</strong>ium</strong> chloride exposure for one week also caused<br />

a significant and greater <strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> cerebellum, cortex, hippocampus<br />

and striatum, a f<strong>in</strong>d<strong>in</strong>g that is consistent with previous literature concern<strong>in</strong>g particular<br />

bra<strong>in</strong> areas (Julka and Gill 1996a, Nayak and Chatterjee 2003, Abubakar et al. 2004b,<br />

Sakamoto et al. 2004). However, most <strong>of</strong> these publications used extensive cerebral<br />

regions. It has been also reported a no significant <strong>alum<strong>in</strong>ium</strong> accumulation follow<strong>in</strong>g<br />

i.p. adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride (Moumen et al. 2001). The observation that<br />

i.p. adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> predom<strong>in</strong>antly accumulates <strong>in</strong> the hippocampus is <strong>in</strong><br />

accordance with a previous work (Julka and Gill 1996a). Our present study make the<br />

<strong>in</strong>terest<strong>in</strong>g po<strong>in</strong>t that, while oral adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride resulted <strong>in</strong> a<br />

111


CHAPTER 2<br />

significant <strong>in</strong>crease <strong>of</strong> the metal concentration <strong>in</strong> the ventral midbra<strong>in</strong>, i.p.<br />

adm<strong>in</strong>istration led to a decrease <strong>in</strong> <strong>alum<strong>in</strong>ium</strong> concentration <strong>in</strong> this cerebral region. In<br />

our op<strong>in</strong>ion, this curious observation could be related to the specific composition <strong>of</strong> this<br />

area and the reported ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to change the permeability <strong>of</strong> plasma<br />

membranes <strong>in</strong> function <strong>of</strong> their particular composition (Silva et al. 2002).<br />

112<br />

Our results clearly show that <strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> the bra<strong>in</strong> not only<br />

varied with the adm<strong>in</strong>istration route used but also <strong>in</strong> its distribution <strong>in</strong> the dist<strong>in</strong>ct bra<strong>in</strong><br />

areas. Evidently, both the presence <strong>of</strong> citric acid <strong>in</strong> the oral dose <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and the<br />

difference <strong>in</strong> the time <strong>of</strong> treatment also could contribute to the reported differences.<br />

However, <strong>in</strong> view <strong>of</strong> the reported variance <strong>in</strong> <strong>alum<strong>in</strong>ium</strong> distribution <strong>in</strong> different<br />

cerebral regions follow<strong>in</strong>g both treatments, it can be argued that the effects <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> cannot be generalized to the whole bra<strong>in</strong> and a study <strong>of</strong> the k<strong>in</strong>etics <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> distribution <strong>in</strong> specific cerebral areas is necessary to understand the<br />

<strong>neurotoxicity</strong> <strong>of</strong> this metal and its contribution to a particular neurological disorder.<br />

Acknowledgments<br />

This study was supported by the Xunta de Galicia (Santiago, Spa<strong>in</strong>; Grant<br />

PGIDIT03PXIB20804PR).


Table 1. Graphite furnace programme for <strong>alum<strong>in</strong>ium</strong> determ<strong>in</strong>ation by ETAAS<br />

Step<br />

Temperature<br />

(ºC)<br />

Ramp<br />

(s)<br />

Hold<br />

(s)<br />

Ar flow<br />

(mL m<strong>in</strong> -1 )<br />

Dry 150 15 20 300<br />

Pyrolisis 1500 15 20 300<br />

Atomization 2800 0 5 50 (read)<br />

Clean<strong>in</strong>g 2200 1 5 300<br />

CHAPTER 2<br />

Fig. 1 Levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the different areas <strong>of</strong> the rat bra<strong>in</strong>. Data are expressed as<br />

mean ± SD. Asterisks denote values significantly different (one-way ANOVA followed<br />

by a Bonferroni‟s test) for treatment versus control group (*, p < 0.01, **, p < 0.001)<br />

and for the oral-treated group versus <strong>in</strong>traperitoneally-treated group (***, p < 0.001).<br />

�g Al 3+ / g<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Control<br />

Al-treated<br />

**<br />

***<br />

*<br />

*<br />

***<br />

**<br />

**<br />

i.p. oral i.p. oral i.p. oral i.p. oral i.p. oral<br />

CE VM CO H ST<br />

**<br />

***<br />

** ***<br />

*<br />

**<br />

***<br />

**<br />

113


CHAPTER 3


CHAPTER 3 Bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> and selective<br />

behaviour <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> specific areas <strong>of</strong> rat bra<strong>in</strong>: potential<br />

effects <strong>in</strong> a 6-OHDA-<strong>in</strong>duced model <strong>of</strong> Park<strong>in</strong>son’s disease<br />

S<strong>of</strong>ía Sánchez-Iglesias,* Estefanía Méndez-Álvarez,* , § Javier Iglesias-<br />

González,* Ana Muñoz-Patiño,† , § Inés Sánchez-Sellero,‡ José Luís<br />

Labandeira-García,† , § and Ramón Soto-Otero,* , §<br />

*Laboratory <strong>of</strong> Neurochemistry, Department <strong>of</strong> Biochemistry and Molecular Biology, Faculty <strong>of</strong> Medic<strong>in</strong>e,<br />

University <strong>of</strong> Santiago de Compostela, Santiago de Compostela, Spa<strong>in</strong><br />

†Laboratory <strong>of</strong> Neuroanatomy and Experimental Neurology, Department <strong>of</strong> Morphological Sciences,<br />

Faculty <strong>of</strong> Medic<strong>in</strong>e, University <strong>of</strong> Santiago de Compostela, Santiago de Compostela, Spa<strong>in</strong><br />

‡Department <strong>of</strong> Pathological Anatomy and Forensic Sciences, Faculty <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e, University<br />

<strong>of</strong> Santiago de Compostela, Lugo, Spa<strong>in</strong><br />

§Network<strong>in</strong>g Research Center on Neurodegenerative Diseases (CIBERNED), Spa<strong>in</strong><br />

J. Neurochem. (2009) 109, 879–888.<br />

117


ABSTRACT<br />

CHAPTER 3<br />

The ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to affect the oxidant status <strong>of</strong> specific areas <strong>of</strong> the bra<strong>in</strong><br />

(cerebellum, ventral midbra<strong>in</strong>, cortex, hippocampus, striatum) was <strong>in</strong>vestigated <strong>in</strong> male<br />

Sprague-Dawley rats <strong>in</strong>traperitoneally treated with <strong>alum<strong>in</strong>ium</strong> chloride (10 mg<br />

Al 3+ /kg/day) for ten days. The potential <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to act as an etiological factor <strong>in</strong><br />

PD was assessed by study<strong>in</strong>g its ability to <strong>in</strong>crease <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> ventral midbra<strong>in</strong><br />

and striatum and the striatal DAergic neurodegeneration <strong>in</strong>duced by 6-OHDA<br />

adm<strong>in</strong>istered <strong>in</strong>traventricularly <strong>in</strong> an experimental model <strong>of</strong> PD. The results showed that<br />

<strong>alum<strong>in</strong>ium</strong> caused an <strong>in</strong>crease <strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> (TBARS, PCC, and PTC) for most <strong>of</strong><br />

the bra<strong>in</strong> regions studied, which was accompanied by a decrease <strong>in</strong> the activity <strong>of</strong> some<br />

antioxidant enzymes (SOD, CAT, GPx). However, studies <strong>in</strong> vitro confirmed the<br />

<strong>in</strong>ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to affect the activity <strong>of</strong> those enzymes. The reported effects<br />

exhibited a regional-selective behaviour for all the cerebral structures studied.<br />

Alum<strong>in</strong>ium also enhanced the ability <strong>of</strong> 6-OHDA to cause <strong>oxidative</strong> <strong>stress</strong> and<br />

neurodegeneration <strong>in</strong> the DAergic system, which confirms its potential as a risk factor<br />

<strong>in</strong> the development <strong>of</strong> PD.<br />

Keywords: 6-hydroxydopam<strong>in</strong>e, <strong>alum<strong>in</strong>ium</strong>, antioxidant enzymes, lipid peroxidation,<br />

Park<strong>in</strong>son‟s disease, prote<strong>in</strong> oxidation.<br />

119


CHAPTER 3<br />

INTRODUCTION<br />

120<br />

The human organism is constantly and <strong>in</strong>evitably exposed to <strong>alum<strong>in</strong>ium</strong>, a<br />

ubiquitous metal which is the third most abundant element <strong>in</strong> the Earth‟s crust,<br />

represent<strong>in</strong>g 8% <strong>of</strong> total components (Mart<strong>in</strong> 1997). Although, no biological function<br />

has yet been attributed to it (Yokel 2002a), <strong>alum<strong>in</strong>ium</strong> is a toxicant implicated <strong>in</strong><br />

dialysis encephalopathy (Alfrey et al. 1976), osteomalacia (Park<strong>in</strong>son et al. 1979), non-<br />

iron responsible anemia (Elliot et al. 1978), and also l<strong>in</strong>ked to many other diseases<br />

<strong>in</strong>clud<strong>in</strong>g AD (Exley 1999, Gupta et al. 2005), PD (Yasui et al. 1992), and amyotrophic<br />

lateral sclerosis (Kurland 1988).<br />

Its ubiquity and extensive use <strong>in</strong> products and processes coupled with its ability<br />

to cause neurodegeneration have made <strong>alum<strong>in</strong>ium</strong> a cause <strong>of</strong> health concern (Exley<br />

1999, Yokel 2000, Zatta et al. 2003). The daily reported mean dietary <strong>in</strong>take <strong>of</strong> 3.5 mg<br />

may be <strong>in</strong>creased by the frequent use <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>-conta<strong>in</strong><strong>in</strong>g antiperspirants and non-<br />

prescription drugs (Weburg and Berstad 1986, Flarend et al. 2001), as well as by<br />

occupational exposure (Meyer-Baron et al. 2007). Alum<strong>in</strong>ium entry <strong>in</strong>to the bra<strong>in</strong><br />

occurs ma<strong>in</strong>ly through the BBB. Although the mechanism(s) responsible for <strong>alum<strong>in</strong>ium</strong><br />

transport at the BBB rema<strong>in</strong>s unclear, it has been reported that <strong>alum<strong>in</strong>ium</strong> can penetrate<br />

<strong>in</strong>to the bra<strong>in</strong> as a complex with transferr<strong>in</strong> by a receptor-mediated endocytosis<br />

(Roskams and Connor 1990) and bound to citrate via a specific transporter, the system<br />

Xc � (L-glutamate/L-CySH exchanger) is the most recently accepted candidate<br />

(Nagasawa et al. 2005). The apparently long half-life <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> bra<strong>in</strong> tissue has<br />

been used to expla<strong>in</strong> its easy accumulation <strong>in</strong> the bra<strong>in</strong> (Yokel et al. 2001b, Sánchez-<br />

Iglesias et al. 2007b), which together with the long life <strong>of</strong> neurons could be related to<br />

the elevated levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> found <strong>in</strong> the bra<strong>in</strong> <strong>of</strong> some patients suffer<strong>in</strong>g PD<br />

(Yasui et al. 1992) and AD (Perl and Brody 1980). However this fact should not be<br />

<strong>in</strong>terpreted as the primary cause <strong>of</strong> those disorders.<br />

Nevertheless, and despite all hitherto reported data concern<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong><br />

<strong>neurotoxicity</strong>, the precise molecular mechanisms responsible for its <strong>neurotoxicity</strong><br />

rema<strong>in</strong> largely unknown. Even though it is not a transition metal, and consequently does


CHAPTER 3<br />

not undergo redox reactions, numerous publications have detailed an <strong>in</strong>crease <strong>in</strong> the<br />

formation <strong>of</strong> ROS after <strong>alum<strong>in</strong>ium</strong> exposure (Nehru and Anand 2005). Most <strong>of</strong> the<br />

studies performed both <strong>in</strong> vitro and <strong>in</strong> vivo have attributed its <strong>neurotoxicity</strong> to the lipid<br />

peroxidation caused by the <strong>in</strong>teraction between ROS and cell membranes (Gutteridge et<br />

al. 1985, Zatta et al. 2002), thus consider<strong>in</strong>g the latter as the ma<strong>in</strong> targets <strong>of</strong> the oxidant-<br />

mediated damage. Furthermore, <strong>alum<strong>in</strong>ium</strong> appears to affect the bra<strong>in</strong> activities <strong>of</strong><br />

several antioxidant enzymes (Julka and Gill 1996a). In addition, its ability to affect the<br />

expression <strong>of</strong> DA receptors D1 and D2 (Kim et al. 2007) as well as the functionality <strong>of</strong><br />

mitochondria (Niu et al. 2005) has also been documented. However, the controversy<br />

surround<strong>in</strong>g these f<strong>in</strong>d<strong>in</strong>gs is such that both pro-oxidant (Zatta et al. 2002, Exley 2004a)<br />

and antioxidant (Oteiza et al. 1993a, Abubakar et al. 2004a) properties have been<br />

attributed to this metal. The usefulness <strong>of</strong> the studies to clarify the accepted<br />

<strong>in</strong>volvement <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the pathogenesis <strong>of</strong> some neurodegenerative process has<br />

also been brought <strong>in</strong>to question (Savory and Ghribi 2007).<br />

Consequently, the aim <strong>of</strong> this present study was to <strong>in</strong>vestigate the <strong>in</strong> vivo effects<br />

<strong>in</strong>duced by <strong>alum<strong>in</strong>ium</strong> on <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> the cerebellum, ventral<br />

midbra<strong>in</strong>, cortex, hippocampus, and striatum <strong>of</strong> rat bra<strong>in</strong>. We quantified the levels <strong>of</strong><br />

lipid peroxidation (thiobarbituric acid reactive substances, TBARS) and the oxidant<br />

status <strong>of</strong> prote<strong>in</strong>s (PCC, PTC), as well as an <strong>in</strong> vivo assessment <strong>of</strong> the effects <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> on the activity <strong>of</strong> certa<strong>in</strong> antioxidant defence enzymes, which <strong>in</strong>cluded SOD,<br />

GPx, and CAT. To shed some light on the molecular mechanisms <strong>in</strong>volved, the effects<br />

<strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the <strong>in</strong> vitro activity <strong>of</strong> antioxidant enzymes have also been<br />

<strong>in</strong>vestigated. F<strong>in</strong>ally, tak<strong>in</strong>g <strong>in</strong>to account the high levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> found <strong>in</strong> the SN<br />

<strong>of</strong> some patients suffer<strong>in</strong>g PD (Yasui et al. 1992), we <strong>in</strong>vestigated its ability to modify<br />

the capacity <strong>of</strong> 6-OHDA adm<strong>in</strong>istered <strong>in</strong>traventricularly <strong>in</strong> an experimental model <strong>of</strong><br />

PD (Soto-Otero et al. 2002, Sánchez-Iglesias et al. 2007a) to cause <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong><br />

ventral midbra<strong>in</strong> and striatum and to <strong>in</strong>duce neurodegeneration <strong>in</strong> striatal DAergic<br />

term<strong>in</strong>als.<br />

121


CHAPTER 3<br />

MATERIALS AND METHODS<br />

Chemicals<br />

122<br />

Alum<strong>in</strong>ium chloride hexahydrate, BSA, CAT, cytochrome c, desipram<strong>in</strong>e<br />

hydrochoride, 3,3‟-diam<strong>in</strong>obenzid<strong>in</strong>e, 2,4-d<strong>in</strong>itrophenylhydraz<strong>in</strong>e hydrochloride, 5,5‟-<br />

dithiobis-(2-nitrobenzoic acid), EDTA, GPx, GR, H2O2, ketam<strong>in</strong>e/xylaz<strong>in</strong>e, mouse<br />

monoclonal antibody to TH, TBA, xanth<strong>in</strong>e, and xanth<strong>in</strong>e oxidase were purchased from<br />

Sigma Chemical Co. (St. Louis, MO, USA). Avid<strong>in</strong>-biot<strong>in</strong>-peroxidase complex and<br />

biot<strong>in</strong>ylated secondary antibody were purchased from Vector (Burl<strong>in</strong>game, CA, USA).<br />

The water used for the preparations <strong>of</strong> solutions was Milli-RiOs/Q-A10 grade,<br />

(Millipore Corp., Bedford, MA, USA). All rema<strong>in</strong><strong>in</strong>g chemicals used were <strong>of</strong> analytical<br />

grade and were purchased from Fluka Chemie AG (Buchs, Switzerland).<br />

Animal treatment<br />

Adult male Sprague-Dawley rats (200-250 g) were used to perform the <strong>in</strong> vivo<br />

studies. All animals were housed <strong>in</strong>dividually <strong>in</strong> polypropylene cages to reduce<br />

extraneous trace element contam<strong>in</strong>ation <strong>in</strong> a room equipped with 12 h light/dark<br />

automatic light cycles, ma<strong>in</strong>ta<strong>in</strong>ed at 22�1°C with a relative humidity <strong>of</strong> 65%. All<br />

experiments were carried out <strong>in</strong> accordance with the “Pr<strong>in</strong>ciples <strong>of</strong> laboratory animal<br />

care” (NIH publication No. 86-23, revised 1996) and approved by the correspond<strong>in</strong>g<br />

committee at the University <strong>of</strong> Santiago de Compostela. Alum<strong>in</strong>ium dosage was<br />

adjusted accord<strong>in</strong>g to animal‟s body weight just before each experiment. All rats were<br />

allowed a standard ma<strong>in</strong>tenance diet (A04, Panlab S.L., Barcelona, Spa<strong>in</strong>) and water ad<br />

libitum. Animals were randomly assigned to two experimental groups. The first group<br />

was subdivided <strong>in</strong>to two subgroups, each consist<strong>in</strong>g <strong>of</strong> ten animals: rats <strong>in</strong> subgroup A<br />

were daily i.p. <strong>in</strong>jected with <strong>alum<strong>in</strong>ium</strong> chloride <strong>in</strong> sal<strong>in</strong>e (NaCl 0.9%) at a dose <strong>of</strong> 10<br />

mg Al 3+ /kg for 10 days; rats <strong>in</strong> subgroup B were <strong>in</strong>jected with the same volume <strong>of</strong>


CHAPTER 3<br />

sal<strong>in</strong>e over the same period. The second group was subdivided <strong>in</strong>to four subgroups <strong>of</strong><br />

11 animals each: rats <strong>in</strong> subgroup C were used as normal (i.e. non-lesioned) controls,<br />

and received the correspond<strong>in</strong>g <strong>in</strong>jections <strong>of</strong> vehicle for 10 days; rats <strong>in</strong> subgroup D<br />

were i.p. <strong>in</strong>jected with <strong>alum<strong>in</strong>ium</strong> chloride at a dose <strong>of</strong> 10 mg Al 3+ /kg/day for 10<br />

consecutive days; rats <strong>in</strong> subgroup E received i.p. <strong>in</strong>jections <strong>of</strong> sal<strong>in</strong>e for 10 days and<br />

were lesioned on the 8th day (two hours after i.p. <strong>in</strong>jection) with 200 µg 6-OHDA <strong>in</strong> 3<br />

µl sterile sal<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g 0.2% ascorbic acid <strong>in</strong>jected <strong>in</strong> the third ventricle; rats <strong>in</strong><br />

subgroup F were i.p. <strong>in</strong>jected with <strong>alum<strong>in</strong>ium</strong> chloride (10 mg Al 3+ /kg/day) for 10 days<br />

and were lesioned with 6-OHDA <strong>in</strong> the same way as subgroup E. Injection solutions<br />

conta<strong>in</strong><strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> were prepared by dissolv<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> chloride <strong>in</strong> sal<strong>in</strong>e,<br />

adjust<strong>in</strong>g to pH 4.6 with sodium hydroxide, and wait<strong>in</strong>g the equilibration time necessary<br />

to obta<strong>in</strong> a clear solution. In all cases the volume <strong>in</strong>jected was 0.5 ml.<br />

Stereotaxic coord<strong>in</strong>ates for <strong>in</strong>traventricular <strong>in</strong>jection <strong>of</strong> 6-OHDA were 0.8 mm<br />

posterior to bregma, midl<strong>in</strong>e, 6.5 mm ventral to the dura, and tooth bar at 0. The<br />

solution was <strong>in</strong>jected with a 10 µl Hamilton syr<strong>in</strong>ge coupled to a motorized <strong>in</strong>jector<br />

(Stoelt<strong>in</strong>g, Wood Dale, IL, USA), at 0.5 µl/m<strong>in</strong>, and the cannula was left <strong>in</strong> situ for 5<br />

m<strong>in</strong> after <strong>in</strong>jection. All surgery was performed under ketam<strong>in</strong>e/xylaz<strong>in</strong>e anesthesia, and<br />

30 m<strong>in</strong> prior to <strong>in</strong>jection <strong>of</strong> 6-OHDA, rats received desipram<strong>in</strong>e (25 mg/kg i.p.) to<br />

prevent uptake <strong>of</strong> 6-OHDA by noradrenergic term<strong>in</strong>als. The accuracy <strong>of</strong> the lesions and<br />

cannula placement were confirmed by post-mortem analysis with cresyl violet sta<strong>in</strong><strong>in</strong>g.<br />

Bra<strong>in</strong> samples<br />

At the end <strong>of</strong> the experimental period animals <strong>of</strong> subgroups A and B were<br />

stunned with carbon dioxide and sacrificed by decapitation. Bra<strong>in</strong>s were quickly<br />

removed and r<strong>in</strong>sed with ice-cold sal<strong>in</strong>e. Regional bra<strong>in</strong> segments (cerebellum, ventral<br />

midbra<strong>in</strong>, cortex, hippocampus, striatum) accord<strong>in</strong>g to Pax<strong>in</strong>os and Watson (2007) were<br />

immediately dissected out on an ice plate. For biochemical assays, weighed bra<strong>in</strong><br />

samples were <strong>in</strong>dividually homogenized <strong>in</strong> a Na2PO4/KH2PO4 buffer (pH 7.4)<br />

isotonized with KCl (1:6 w/v for cerebellum, 1:2 for cortex; 1:30 for ventral midbra<strong>in</strong>;<br />

123


CHAPTER 3<br />

1:15 for hippocampus and 1:10 for striatum) <strong>in</strong> a Dounce tissue gr<strong>in</strong>der (Kontes,<br />

V<strong>in</strong>eland, NJ, USA). The homogenates were then centrifuged at 14,000 g for 20<br />

m<strong>in</strong>utes at 4°C. The supernatants were aliquoted and stored at –80°C to determ<strong>in</strong>e<br />

prote<strong>in</strong> content and the activity <strong>of</strong> GPx, SOD, and CAT. The result<strong>in</strong>g pellets were<br />

resuspended with cold Na2PO4/KH2PO4 buffer (pH 7.4) isotonized with KCl and<br />

conta<strong>in</strong><strong>in</strong>g 20 �M BHT and 20 �M desferrioxam<strong>in</strong>e. These compounds were used to<br />

prevent amplification <strong>of</strong> lipid peroxidation dur<strong>in</strong>g the progression <strong>of</strong> the analysis. Then,<br />

homogenates were immediately sonicated for 5 seconds (250 Digital Sonifer, Branson<br />

Ultrasonic Co., Danbury, CT, USA). These samples were used for the quantification <strong>of</strong><br />

TBARS, PCC, PTC, and prote<strong>in</strong> concentration.<br />

124<br />

Forty-eight hours after lesion with 6-OHDA, five rats <strong>of</strong> subgroups C, D, E, and<br />

F were killed accord<strong>in</strong>g to the above cited procedure <strong>in</strong> order to perform biochemical<br />

studies because it has been previously reported that the peak for <strong>oxidative</strong> <strong>stress</strong> is<br />

reached at this time (Sánchez-Iglesias et al. 2007a). In these rats, the levels <strong>of</strong> the<br />

<strong>oxidative</strong> <strong>stress</strong> caused by 6-OHDA were estimated by quantification <strong>of</strong> both lipid<br />

peroxidation and prote<strong>in</strong> oxidation <strong>in</strong> ventral midbra<strong>in</strong> and striatum.<br />

Preparation <strong>of</strong> bra<strong>in</strong> mitochondria<br />

Bra<strong>in</strong> mitochondria from Sprague-Dawley rats weigh<strong>in</strong>g 200-250 g were<br />

obta<strong>in</strong>ed by differential centrifugation accord<strong>in</strong>g to a previously published method<br />

(Méndez-Álvarez et al. 1997) and prote<strong>in</strong> concentration determ<strong>in</strong>ed accord<strong>in</strong>g to<br />

Markwell et al. (1978), us<strong>in</strong>g BSA as the standard.<br />

Determ<strong>in</strong>ation <strong>of</strong> TBARS, PCC, and PTC<br />

The TBARS, PCC, and PTC determ<strong>in</strong>ations for <strong>in</strong> vitro and <strong>in</strong> vivo experiments<br />

were performed spectrophotometrically as previously described <strong>in</strong> Hermida-Ameijeiras<br />

et al. (2004) and Sánchez-Iglesias et al. (2007a), respectively. 2,4-<br />

D<strong>in</strong>itrophenylhydraz<strong>in</strong>e hydrochloride and 5,5‟-dithiobis-(2-nitrobenzoic acid) were


CHAPTER 3<br />

used as chemical dosimeters for PCC and PTC determ<strong>in</strong>ations, respectively. For <strong>in</strong> vitro<br />

experiments, AlCl3 was pre<strong>in</strong>cubated with bra<strong>in</strong> mitochondria at a f<strong>in</strong>al Al 3+<br />

concentration <strong>of</strong> 5 �M.<br />

Measurement <strong>of</strong> SOD activity<br />

SOD activity was spectrophotometrically determ<strong>in</strong>ed by the method reported by<br />

McCord and Fridovich (1969). The assay was performed at 25°C <strong>in</strong> 2.8 ml <strong>of</strong> 50 mM<br />

potassium phosphate buffer (pH 7.8) conta<strong>in</strong><strong>in</strong>g 0.1 mM EDTA, 0.05 mM xanth<strong>in</strong>e and<br />

0.01 mM cytochrome c. Then, 100 �l xanth<strong>in</strong>e oxidase (0.02 U) were added <strong>in</strong> order to<br />

produce a rate <strong>of</strong> reduction <strong>of</strong> cytochrome c <strong>of</strong> 0.025 absorbance unit per m<strong>in</strong>ute,<br />

followed by 100 �l <strong>of</strong> bra<strong>in</strong> sample. Increase <strong>in</strong> absorption was monitored at 550 nm for<br />

5 m<strong>in</strong>utes. SOD activity was expressed <strong>in</strong> U/mg prote<strong>in</strong>. To evaluate the potential <strong>in</strong><br />

vitro effect <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on SOD, different concentrations <strong>of</strong> Al 3+ (10, 50, 100 �M)<br />

were added, followed by 100 �l <strong>of</strong> SOD (1 U) <strong>in</strong>stead <strong>of</strong> bra<strong>in</strong> sample.<br />

Measurement <strong>of</strong> GPx activity<br />

GPx activity was spectrophotometrically measured by a modified version <strong>of</strong> the<br />

method reported by Flohe and Gunzler (1984). Briefly, the reaction mixture consisted <strong>of</strong><br />

500 �l phosphate buffer (60 mM, 0.6 mM EDTA, 1 mM NaN3, pH 7.0), 100 �l GR (0.5<br />

U), and 100 �l GSH (1 mM). Bra<strong>in</strong> sample (100 �l) was added to the reaction mixture<br />

and pre<strong>in</strong>cubated at 37°C for 10 m<strong>in</strong>. Then, 100 �l NADPH (150 μM <strong>in</strong> 0.1% NaHCO3)<br />

were added to reaction mixture and the hydroperoxide-<strong>in</strong>dependent consumption <strong>of</strong><br />

NADPH monitored for 3 m<strong>in</strong>. The reaction was started by add<strong>in</strong>g 100 �l H2O2 (150<br />

μM) and the decrease <strong>in</strong> absorption at 340 nm monitored for 5 m<strong>in</strong>. Molar ext<strong>in</strong>ction<br />

coefficient <strong>of</strong> 6.22·10 3 M -1 ·cm -1 <strong>of</strong> NADPH at 340 nm was used to calculate GPx<br />

activity which was expressed <strong>in</strong> mU/mg prote<strong>in</strong>. When assess<strong>in</strong>g the <strong>in</strong> vitro effect <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> on GPx activity, different concentrations <strong>of</strong> Al 3+ (10, 50, 100 �M) were<br />

125


CHAPTER 3<br />

<strong>in</strong>itially <strong>in</strong>corporated to the reaction mixture, followed by 100 �l <strong>of</strong> GPx (0.2 U) <strong>in</strong>stead<br />

<strong>of</strong> bra<strong>in</strong> sample.<br />

Measurement <strong>of</strong> CAT activity<br />

126<br />

CAT activity was polarographically measured follow<strong>in</strong>g the formation <strong>of</strong> O2<br />

us<strong>in</strong>g a Clark-type oxygen electrode, accord<strong>in</strong>g to a slight modification to a previous<br />

published method (Méndez-Álvarez et al. 1998). Briefly, 100 �l bra<strong>in</strong> sample were<br />

<strong>in</strong>cubated <strong>in</strong> the electrode chamber and the reaction started with the addition <strong>of</strong> 20 �l <strong>of</strong><br />

a 500 �M solution <strong>of</strong> H2O2. CAT activity was expressed as U/mg prote<strong>in</strong>. For <strong>in</strong> vitro<br />

studies, 100 �l <strong>of</strong> CAT (20 U) were first added to the reaction mixture, followed by<br />

different concentrations <strong>of</strong> Al 3+ (10, 50, 100 �M) <strong>in</strong> order to estimate the effect <strong>of</strong> the<br />

metal on CAT activity.<br />

Determ<strong>in</strong>ation <strong>of</strong> MAO activity<br />

MAO activity was spectrophotometrically measured <strong>in</strong> mitochondria<br />

preparations as previously described (Soto-Otero et al. 2001), us<strong>in</strong>g kynuram<strong>in</strong>e as a<br />

non-selective substrate and (-)-deprenyl and clorgyl<strong>in</strong>e as irreversible <strong>in</strong>hibitors for<br />

MAO-A and MAO-B estimation, respectively. Different concentrations <strong>of</strong> Al 3+ (10, 50,<br />

100 �M) were <strong>in</strong>corporated to the <strong>in</strong>cubation <strong>in</strong> order to assess the effect <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

on both MAO-A and MAO-B activity.<br />

Immunohistochemistry<br />

The rema<strong>in</strong><strong>in</strong>g six rats <strong>of</strong> subgroups C, D, E, and F were processed for<br />

immunohistochemistry. Animals were killed by a chloral hydrate overdose one week<br />

post-lesion and then processed for TH immunohistochemistry accord<strong>in</strong>g to a previously<br />

published methodology (Rey et al. 2007).


Statistical analysis<br />

CHAPTER 3<br />

Data were expressed as the mean ± SD. Statistical differences were tested us<strong>in</strong>g one-<br />

way ANOVA followed by Bonferroni‟s test for multiple comparisons and by post hoc<br />

Student-Newman-Keuls test for immunohistochemistry studies. The statistical<br />

significance was set at p < 0.05. Normality <strong>of</strong> populations and homogeneity <strong>of</strong> variances<br />

were verified before each ANOVA. All statistical procedures were carried out us<strong>in</strong>g the<br />

Statgraphics Plus 5.0 statistical package (Manugistics, Rockville, MD, USA).<br />

127


CHAPTER 3<br />

RESULTS<br />

In vivo effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on bra<strong>in</strong> lipid<br />

peroxidation and prote<strong>in</strong> oxidation<br />

128<br />

Lipid peroxidation was assessed by the determ<strong>in</strong>ation <strong>of</strong> TBARS concentration,<br />

and prote<strong>in</strong> oxidation was estimated by both PCC and PTC. As shown <strong>in</strong> Fig. 1A,<br />

animals exposed to <strong>alum<strong>in</strong>ium</strong> (10 mg Al 3+ /kg/day for 10 days) exhibited a significant<br />

<strong>in</strong>crease <strong>in</strong> lipid peroxidation <strong>in</strong> the regions <strong>of</strong> cerebellum (+159%), ventral midbra<strong>in</strong><br />

(+54%), cortex (+20%) and striatum (+33%), while there were no significant changes <strong>in</strong><br />

hippocampus. TBARS levels <strong>in</strong> the striatum were particularly high when compared with<br />

those found <strong>in</strong> other cerebral regions and <strong>in</strong> both <strong>alum<strong>in</strong>ium</strong>-treated and control rats.<br />

Follow<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> treatment, both PCC (Fig. 1B) and PTC (Fig. 1C) were<br />

significantly elevated as compared to controls <strong>in</strong> cerebellum (+26%, +19%,<br />

respectively), ventral midbra<strong>in</strong> (+135%, +15%, respectively) and striatum (+26%,<br />

+16%, respectively), while there was a significant decrease <strong>in</strong> the cortex region (–12%,<br />

–16%, respectively) and <strong>in</strong> the hippocampus (–20%, –26%, respectively). When<br />

compared to other areas <strong>of</strong> non treated animals, PCC and PTC control levels were<br />

significantly higher <strong>in</strong> cerebral cortex and lower <strong>in</strong> the ventral midbra<strong>in</strong> (Figs. 1B and<br />

1C).<br />

In vivo effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on the bra<strong>in</strong> activity <strong>of</strong><br />

different antioxidant enzymes<br />

The effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration (10 mg Al 3+ /kg/day for 10 days) on the<br />

activity <strong>of</strong> different antioxidant enzymes (SOD, GPx, CAT) were also studied <strong>in</strong> several<br />

bra<strong>in</strong> regions, and the results showed that the i.p. adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

<strong>in</strong>fluenced SOD activity (Fig. 2A). Thus, there was a significant decrease <strong>in</strong> cerebellum<br />

(–26%) and cortex (–21%) <strong>of</strong> the <strong>alum<strong>in</strong>ium</strong>-treated group, while a significant <strong>in</strong>crease


CHAPTER 3<br />

was noted <strong>in</strong> hippocampus (+22%). No significant changes were detected <strong>in</strong> ventral<br />

midbra<strong>in</strong> and striatum as compared with the controls. As depicted <strong>in</strong> Fig. 2B, exposure<br />

to <strong>alum<strong>in</strong>ium</strong> caused depletion <strong>in</strong> the activity <strong>of</strong> GPx <strong>in</strong> cerebellum (–26%), ventral<br />

midbra<strong>in</strong> (–28%), cortex (–28%), and striatum (–11%). By contrast, GPx activity<br />

<strong>in</strong>creased <strong>in</strong> the hippocampus (+40%). Exposure <strong>of</strong> rats to <strong>alum<strong>in</strong>ium</strong> decreased the<br />

levels <strong>of</strong> CAT activity (Fig. 2C) <strong>in</strong> the cerebellum (–41%), ventral midbra<strong>in</strong> (–29%),<br />

and striatum (–25%) compared to respective controls. CAT activity was not<br />

significantly modified <strong>in</strong> the cortex, but showed a significant <strong>in</strong>crease <strong>in</strong> the<br />

hippocampus (+35%).<br />

Effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on the degeneration <strong>of</strong> DA<br />

term<strong>in</strong>als <strong>in</strong> the striatum<br />

In control rats, i.e. rats not lesioned with 6-OHDA (subgroup C) and rats treated<br />

with <strong>alum<strong>in</strong>ium</strong> alone (subgroup D), the DAergic neurons <strong>in</strong> the pars compacta <strong>of</strong> the<br />

SN were <strong>in</strong>tensely immunoreactive to TH, and a dense and evenly distributed TH<br />

immunoreactivity (TH-ir) was observed throughout the striatum, which <strong>in</strong>dicated the<br />

presence <strong>of</strong> a dense network <strong>of</strong> nigrostriatal DAergic term<strong>in</strong>als (Fig. 3A-B). No<br />

significant changes <strong>in</strong> the density <strong>of</strong> DA striatal term<strong>in</strong>als were observed <strong>in</strong> control rats<br />

(i.e. not <strong>in</strong>jected with 6-OHDA; subgroups C and D; Fig. 4). TH-ir term<strong>in</strong>al density was<br />

higher <strong>in</strong> the control groups (subgroups C and D; Fig. 3A-B) than <strong>in</strong> rats that were<br />

<strong>in</strong>traventricularly <strong>in</strong>jected with 6-OHDA (subgroups E and F; Fig. 3C-D). We observed<br />

a significant decrease <strong>in</strong> TH-ir term<strong>in</strong>al density (–27%) <strong>in</strong> rats <strong>in</strong>traventricularly<br />

<strong>in</strong>jected with 6-OHDA when compared to control rats (subgroup-C rats). In rats i.p.<br />

treated with <strong>alum<strong>in</strong>ium</strong> and subjected to <strong>in</strong>traventricular <strong>in</strong>jection <strong>of</strong> 6-OHDA<br />

(subgroup F), the reduction <strong>in</strong> the density <strong>of</strong> DA striatal term<strong>in</strong>als with respect to the<br />

control rats (subgroup D) and rats <strong>in</strong>jected with 6-OHDA (subgroup E) was statistically<br />

significant (–48% and –28%, respectively; Fig. 4).<br />

129


CHAPTER 3<br />

Effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration on bra<strong>in</strong> lipid peroxidation and<br />

prote<strong>in</strong> oxidation <strong>in</strong> 6-OHDA-lesioned rats and controls<br />

130<br />

Once aga<strong>in</strong>, the concentration <strong>of</strong> TBARS was used as an <strong>in</strong>dex <strong>of</strong> lipid<br />

peroxidation <strong>in</strong> striatum and ventral midbra<strong>in</strong> (Fig. 5A). Both regions <strong>of</strong> animals i.p.<br />

<strong>in</strong>jected with <strong>alum<strong>in</strong>ium</strong> alone (subgroup D) showed a statistical difference <strong>in</strong> TBARS<br />

production compared to non-lesioned (subgroup C) control rats (+40% <strong>in</strong> ventral<br />

midbra<strong>in</strong> and +16% <strong>in</strong> striatum). Intraventricular <strong>in</strong>jection <strong>of</strong> 6-OHDA resulted <strong>in</strong> a<br />

significant <strong>in</strong>crease <strong>in</strong> TBARS concentration <strong>in</strong> both striatum and ventral midbra<strong>in</strong><br />

when compared to control rats (+29% and +76%, respectively) and to animals treated<br />

with <strong>alum<strong>in</strong>ium</strong> (+12% and +26%, respectively)). Ventral midbra<strong>in</strong> and striatum<br />

TBARS levels <strong>in</strong> rats i.p. treated with <strong>alum<strong>in</strong>ium</strong> and <strong>in</strong>traventricularly <strong>in</strong>jected with 6-<br />

OHDA were +107% and +40% (respectively) <strong>in</strong>creased <strong>in</strong> respect to control animals.<br />

When compared to rats only treated with <strong>alum<strong>in</strong>ium</strong> (i.e. without 6-OHDA; subgroup<br />

D), the TBARS levels <strong>of</strong> subgroup-F rats were markedly <strong>in</strong>creased <strong>in</strong> both regions<br />

(+47% <strong>in</strong> ventral midbra<strong>in</strong> and +21% <strong>in</strong> striatum) and there were also significant<br />

differences when compared with subgroup E, rats only lesioned with 6-OHDA (+17%<br />

<strong>in</strong> ventral midbra<strong>in</strong> and +8% <strong>in</strong> striatum). Prote<strong>in</strong> oxidation was assessed by the<br />

determ<strong>in</strong>ation <strong>of</strong> PCC and PTC <strong>in</strong> the samples <strong>of</strong> striatum and ventral midbra<strong>in</strong>. No<br />

significant changes were noticed <strong>in</strong> the PTC (Fig. 5C) except for rats lesioned with 6-<br />

OHDA when compared with animals treated only with <strong>alum<strong>in</strong>ium</strong> (–11%). By contrast,<br />

as shown <strong>in</strong> Fig. 5B, <strong>in</strong>traventricular <strong>in</strong>jection <strong>of</strong> 6-OHDA <strong>in</strong>duced a significant<br />

<strong>in</strong>crease <strong>in</strong> the PCC <strong>in</strong> striatum and ventral midbra<strong>in</strong> (+33% and +22%, respectively) as<br />

compared with control rats. Treatment with <strong>alum<strong>in</strong>ium</strong> (subgroups D) revealed a<br />

significant difference <strong>in</strong> ventral midbra<strong>in</strong> and striatum as compared to control rats<br />

(+11% and +18%, respectively). On the other hand, <strong>in</strong> subgroup F (animals treated with<br />

<strong>alum<strong>in</strong>ium</strong> and lesioned with 6-OHDA) the PCC was reduced <strong>in</strong> both regions (–16% <strong>in</strong><br />

ventral midbra<strong>in</strong> and striatum) as compared to the rats lesioned with 6-OHDA.


CHAPTER 3<br />

In vitro effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the lipid peroxidation and prote<strong>in</strong><br />

oxidation <strong>in</strong>duced by 6-OHDA autoxidation <strong>in</strong> bra<strong>in</strong> mitochondrial<br />

preparations<br />

As depicted <strong>in</strong> Fig. 6A, the <strong>in</strong>cubation <strong>of</strong> 6-OHDA (10 �M) with bra<strong>in</strong><br />

mitochondria at 37°C for 20 m<strong>in</strong> <strong>in</strong>duced a significant production <strong>of</strong> TBARS when<br />

compared to the mitochondria (Mit) and Mit+Al controls (+91% and +116%,<br />

respectively). Significant changes <strong>in</strong> TBARS production (+100%, +127%) were<br />

observed when the autoxidation <strong>of</strong> 6-OHDA occurred <strong>in</strong> the presence <strong>of</strong> Al 3+ (5 �M) as<br />

compared to the Mit and Mit+Al controls, respectively. However, the presence <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> did not significantly affect the level <strong>of</strong> TBARS found after the <strong>in</strong>cubation <strong>of</strong><br />

6-OHDA <strong>in</strong> mitochondrial preparations when compared to the Mit+6-OHDA control.<br />

The <strong>in</strong>cubation <strong>of</strong> 6-OHDA (10 �M) with bra<strong>in</strong> mitochondria at 37°C for 20 m<strong>in</strong><br />

<strong>in</strong>duced a significant <strong>in</strong>crease <strong>in</strong> the PCC (+7%; Fig. 6B) as compared to the Mit<br />

control. However, the results obta<strong>in</strong>ed <strong>in</strong> the presence <strong>of</strong> Al 3+ (5 �M) were not<br />

significantly different from control values. As can be seen <strong>in</strong> Fig. 6C, the PTC exhibited<br />

a significant reduction (–9%) <strong>in</strong> the <strong>in</strong>cubation <strong>of</strong> 6-OHDA (10 �M) with bra<strong>in</strong><br />

mitochondria at 37°C for 20 m<strong>in</strong> when compared with that obta<strong>in</strong>ed <strong>in</strong> the control with<br />

mitochondria alone and Mit+Al 3 . The presence <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> had no significant effect<br />

on the PTC found with mitochondrial <strong>in</strong>cubations when compared to controls.<br />

In vitro effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the enzyme activities <strong>of</strong> GPx, SOD,<br />

CAT, and MAO<br />

The results regard<strong>in</strong>g the effect <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the <strong>in</strong> vitro activities <strong>of</strong> GPx,<br />

CAT, SOD, MAO-A and MAO-B enzymes are displayed <strong>in</strong> Table 1. In all cases, no<br />

significant differences were detected between assays performed <strong>in</strong> the presence and <strong>in</strong><br />

the absence <strong>of</strong> Al 3+ (10, 50, 100 �M)<br />

131


CHAPTER 3<br />

DISCUSSION<br />

132<br />

Alum<strong>in</strong>ium is a non-redox metal whose accumulation <strong>in</strong> the bra<strong>in</strong> has been<br />

l<strong>in</strong>ked to various neurodegenerative diseases (Yokel 2000, Zatta et al. 2003). Several<br />

hypotheses have been given to expla<strong>in</strong> its reported ability to promote biological<br />

oxidations (Exley 2004a). Thus, it has been shown to facilitate iron-<strong>in</strong>duced lipid<br />

peroxidation (Gutteridge et al. 1985); non-iron-<strong>in</strong>duced lipid peroxidation (Verstraeten<br />

and Oteiza 2000); non-iron-mediated oxidation <strong>of</strong> NADH (Kong et al. 1992); and non-<br />

iron-mediated formation <strong>of</strong> � OH (Méndez-Álvarez et al. 2002). Additionally, it also<br />

appears to <strong>in</strong>hibit several antioxidant enzymes <strong>in</strong> different parts <strong>of</strong> the bra<strong>in</strong> (Nehru and<br />

Anand 2005).<br />

In the present study <strong>alum<strong>in</strong>ium</strong> was adm<strong>in</strong>istered at a dosage regimen to<br />

guarantee its accumulation <strong>in</strong> different areas <strong>of</strong> rat bra<strong>in</strong> (Sánchez-Iglesias et al. 2007b).<br />

Alum<strong>in</strong>ium-treated animals rema<strong>in</strong>ed healthy and showed no signs <strong>of</strong> toxicity dur<strong>in</strong>g<br />

the treatment. However, certa<strong>in</strong> t<strong>in</strong>y, white <strong>in</strong>clusions were observed float<strong>in</strong>g <strong>in</strong> the<br />

abdom<strong>in</strong>al cavity, probably caused by a partial precipitation <strong>of</strong> the <strong>alum<strong>in</strong>ium</strong> and<br />

previously reported (Abubakar et al. 2004a).<br />

Previous studies have shown results rang<strong>in</strong>g from no significant changes <strong>in</strong><br />

TBARS levels (Oteiza et al. 1993b), to an <strong>in</strong>crease <strong>in</strong> TBARS levels (Sharma and<br />

Mishra 2006), and a significant decrease <strong>in</strong> TBARS levels (Abubakar et al. 2004b). Our<br />

data clearly demonstrate that <strong>alum<strong>in</strong>ium</strong> exposure caused a significant <strong>in</strong>crease <strong>in</strong> the<br />

levels <strong>of</strong> TBARS <strong>in</strong> most <strong>of</strong> the bra<strong>in</strong> areas studied, but particularly so <strong>in</strong> the<br />

cerebellum. Although, some authors have reported a decrease (Esparza et al. 2003) or<br />

no changes (Deloncle et al. 1999) <strong>in</strong> the levels <strong>of</strong> TBARS, our results are <strong>in</strong> total<br />

(Esparza et al. 2005, Nehru and Anand 2005, Dua and Gill 2001, Jyoti et al. 2007) or<br />

partial agreement (Julka and Gill 1996a) with most previously published data.<br />

Curiously, we found no significant changes <strong>in</strong> the levels <strong>of</strong> TBARS <strong>in</strong> the hippocampus<br />

follow<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration. In our op<strong>in</strong>ion, the apparent contradictory results<br />

found <strong>in</strong> the literature are due to the use <strong>of</strong> different chemical forms for <strong>alum<strong>in</strong>ium</strong><br />

exposure (Esparza et al. 2003, Julka and Gill 1996a) and/or to the use <strong>of</strong> different


CHAPTER 3<br />

adm<strong>in</strong>istration routes (Deloncle et al. 1999, Jyoti and Sharma 2006) as we have<br />

demonstrated recently (Sánchez-Iglesias et al. 2007b).<br />

Another <strong>in</strong>dex to assess <strong>oxidative</strong> <strong>stress</strong> is the oxidant status <strong>of</strong> prote<strong>in</strong>s. We<br />

found that the effects caused by <strong>alum<strong>in</strong>ium</strong> on both PCC and PTC were not<br />

homogenous for all areas studied. Indeed, our data showed that <strong>alum<strong>in</strong>ium</strong> provoked an<br />

<strong>in</strong>crease <strong>in</strong> both PCC and PTC <strong>in</strong> the cerebellum, ventral midbra<strong>in</strong>, and striatum,<br />

whereas a decrease was found <strong>in</strong> the cortex and hippocampus. The most noteworthy<br />

effect <strong>of</strong> these results is the lack <strong>of</strong> correlation between the <strong>in</strong>crease observed <strong>in</strong> the<br />

PCC, ostensibly a consequence <strong>of</strong> a situation <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong>, and the apparently<br />

contradictory <strong>in</strong>crease <strong>in</strong> PTC. The <strong>in</strong>crease <strong>in</strong> the PTC may be a consequence <strong>of</strong><br />

<strong>in</strong>creased GSH production (Khanna and Nehru 2007) and its subsequent capacity to<br />

reduce disulfide groups <strong>in</strong> prote<strong>in</strong>s. Our results contrast with previous f<strong>in</strong>d<strong>in</strong>gs that<br />

<strong>alum<strong>in</strong>ium</strong> exposure affects neither PCC (Oteiza et al. 1993b) nor PTC (Oteiza et al.<br />

1993b) <strong>in</strong> whole bra<strong>in</strong>. Others report a significant <strong>in</strong>crease <strong>of</strong> PCC <strong>in</strong> both hippocampus<br />

(Jyoti and Sharma 2006) and cortex (Jyoti et al. 2007) and a significant loss <strong>of</strong> PTC <strong>in</strong><br />

whole bra<strong>in</strong> (Dua and Gill 2001). Once aga<strong>in</strong>, this variability <strong>in</strong> relation to previous data<br />

appears to corroborate the importance <strong>of</strong> the chemical speciation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and the<br />

route <strong>of</strong> adm<strong>in</strong>istration. Interest<strong>in</strong>gly, the <strong>alum<strong>in</strong>ium</strong> salt used not only affects the<br />

accumulation <strong>of</strong> this metal <strong>in</strong> different cells but also modulates its toxic effects<br />

(Lévesque et al. 2000). Despite these f<strong>in</strong>d<strong>in</strong>gs and tak<strong>in</strong>g <strong>in</strong>to account the complexity <strong>of</strong><br />

the <strong>alum<strong>in</strong>ium</strong> speciation chemistry (Bharathi et al. 2008), it is very difficult to ga<strong>in</strong><br />

<strong>in</strong>sight <strong>in</strong>to the relation between the particular chemical speciation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the<br />

bra<strong>in</strong> and its biological effects. Nevertheless, our results clearly show that <strong>alum<strong>in</strong>ium</strong><br />

can create a situation <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> most bra<strong>in</strong> areas. This is ma<strong>in</strong>ly a<br />

consequence <strong>of</strong> the fact that <strong>alum<strong>in</strong>ium</strong> is a strong Lewis acid which allows it to react<br />

with the superoxide anion and form a metal-superoxide complex (AlO2 ●2+ ), which is a<br />

more potent oxidant than the superoxide anion and putatively has a high catalytic<br />

potential, as suggested by Kong et al. (1992) and later discussed by Exley (2004a).<br />

These changes were accompanied by significant variations <strong>in</strong> the activity <strong>of</strong><br />

SOD, GPx, and CAT. Our results <strong>in</strong>dicate that all the neural tissues exam<strong>in</strong>ed, except<br />

133


CHAPTER 3<br />

hippocampus, showed similar behaviour patterns and emphasize a significant decrease<br />

<strong>in</strong> the enzyme activity <strong>of</strong> most antioxidant systems, and agree with previous studies<br />

(Julka and Gill 1996a, Dua and Gill 2001, Abubakar et al. 2004a, Nehru and Anand<br />

2005, Jyoti et al. 2007). Our <strong>in</strong> vitro experiments show no significant modification <strong>in</strong><br />

the enzyme activity <strong>of</strong> either <strong>of</strong> SOD, GPx, and CAT, which we <strong>in</strong>terpret as a<br />

decl<strong>in</strong>ation <strong>of</strong> the gene expression <strong>of</strong> antioxidant enzymes (González-Muñoz et al.<br />

2008).This reduction <strong>in</strong> antioxidant enzyme activity helps to expla<strong>in</strong> the bra<strong>in</strong> <strong>oxidative</strong><br />

<strong>stress</strong> observed follow<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration. Furthermore, the reduction <strong>in</strong> GPx<br />

activity also expla<strong>in</strong>s the <strong>in</strong>crease <strong>in</strong> the ratio GSH/GSSG previously reported by other<br />

authors (Esparza et al. 2003, Khanna and Nehru 2007), which helps expla<strong>in</strong> the <strong>in</strong>crease<br />

<strong>in</strong> the PTC found after <strong>alum<strong>in</strong>ium</strong> exposure. The <strong>in</strong>ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to affect both<br />

MAO-A and MAO-B activity discards their <strong>in</strong>volvement <strong>in</strong> the <strong>alum<strong>in</strong>ium</strong>-<strong>in</strong>duced<br />

bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong>. Data show<strong>in</strong>g a partial disagreement with our f<strong>in</strong>d<strong>in</strong>gs have also<br />

been reported (Esparza et al. 2005), but is possibly due to the regimen <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

adm<strong>in</strong>istration. A putative explanation for the <strong>in</strong>crease <strong>in</strong> the activity <strong>of</strong> SOD, GPx, and<br />

CAT <strong>in</strong> the hippocampus (Sánchez-Iglesias et al. 2007b), may be the existence <strong>of</strong> a<br />

compensatory mechanism due to the ability <strong>of</strong> cells to <strong>in</strong>crease the expression <strong>of</strong><br />

antioxidant enzymes when exposed to high levels <strong>of</strong> toxicants (Gechev et al. 2002), an<br />

effect which could overcome the ability <strong>of</strong> moderate levels <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to <strong>in</strong>hibit gen<br />

expression <strong>of</strong> antioxidant enzymes. Another <strong>in</strong>terpretation could be the conf<strong>in</strong>ement <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> <strong>in</strong> granulovacuoles <strong>of</strong> neur<strong>of</strong>ibrillar tangles due to its high capacity to<br />

<strong>in</strong>teract with tau prote<strong>in</strong>s <strong>in</strong> hippocampal cells (Walton 2006), thus reduc<strong>in</strong>g the<br />

presence <strong>of</strong> free <strong>alum<strong>in</strong>ium</strong> and consequently its disposition to affect the activity <strong>of</strong><br />

antioxidant enzymes and generate <strong>oxidative</strong> <strong>stress</strong>. Although, our f<strong>in</strong>d<strong>in</strong>gs contrast with<br />

those <strong>of</strong> Julka and Gill (1996a), similar results were also found by Esparza et al. (2003).<br />

134<br />

We used an animal model <strong>of</strong> PD <strong>in</strong>duced by 6-OHDA adm<strong>in</strong>istration <strong>in</strong> the third<br />

ventricle to assess the ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to affect both the <strong>in</strong>dex <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong><br />

the nigrostriatal system and the extent <strong>of</strong> lesions <strong>of</strong> the DA system <strong>in</strong> the striatum. Our<br />

results showed that <strong>alum<strong>in</strong>ium</strong> causes an enhancement <strong>in</strong> 6-OHDA-<strong>in</strong>duced lipid<br />

peroxidation and prote<strong>in</strong> oxidation (except for PTC <strong>in</strong> ventral midbra<strong>in</strong>). The<br />

adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> alone (i.e. without 6-OHDA) also caused a significant


CHAPTER 3<br />

difference <strong>in</strong> the levels <strong>of</strong> both lipid peroxidation and prote<strong>in</strong> oxidation for PCC.<br />

Although, these results are <strong>in</strong> partial agreement with the results obta<strong>in</strong>ed with non-<br />

lesioned rats, they do not agree with the <strong>in</strong> vitro results obta<strong>in</strong>ed us<strong>in</strong>g bra<strong>in</strong><br />

mitochondria preparations, <strong>in</strong> which we found no significant effect due to the presence<br />

<strong>of</strong> <strong>alum<strong>in</strong>ium</strong>. Evidently, these f<strong>in</strong>d<strong>in</strong>gs corroborate the importance <strong>of</strong> the <strong>in</strong> vivo<br />

studies <strong>in</strong> this k<strong>in</strong>d <strong>of</strong> <strong>in</strong>vestigation, which appears to be a consequence <strong>of</strong> the tight<br />

relationship exist<strong>in</strong>g among the different molecular mechanisms coexist<strong>in</strong>g with<strong>in</strong> the<br />

bra<strong>in</strong>. Our immunochemical study showed that <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration alone caused<br />

no significant change <strong>in</strong> TH-ir striatal term<strong>in</strong>als. In contrast, lesion with 6-OHDA<br />

caused a loss <strong>of</strong> TH-ir striatal term<strong>in</strong>als, which was significantly <strong>in</strong>creased with the<br />

adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>. Obviously, these data show the ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to<br />

<strong>in</strong>crease the capacity <strong>of</strong> 6-OHDA to cause nigrostriatal neurodegeneration. Evidently,<br />

the importance <strong>of</strong> these data is <strong>in</strong>creased by the ability <strong>of</strong> neuromelan<strong>in</strong> to b<strong>in</strong>d<br />

<strong>alum<strong>in</strong>ium</strong> which may be the cause <strong>of</strong> the high concentration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> found <strong>in</strong> the<br />

bra<strong>in</strong> <strong>of</strong> certa<strong>in</strong> patients suffer<strong>in</strong>g PD (Yasui et al. 1992). Furthermore, our results also<br />

help us understand the reported ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to potentiate etiological agents and<br />

accelerate the progression <strong>of</strong> a disease (Exley and Esiri 2006). In conclusion, <strong>alum<strong>in</strong>ium</strong><br />

acts ma<strong>in</strong>ly as a pro-oxidant probably by reduc<strong>in</strong>g the activity <strong>of</strong> defence antioxidant<br />

enzymes. In addition, the <strong>in</strong>crease <strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> together with enhanced 6-OHDA-<br />

<strong>in</strong>duced neurodegeneration, suggest the participation <strong>of</strong> free radical-<strong>in</strong>duced <strong>oxidative</strong><br />

cell <strong>in</strong>jury <strong>in</strong> mediat<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong>. Interest<strong>in</strong>gly, we demonstrated that<br />

<strong>alum<strong>in</strong>ium</strong> neither enhanced lipid peroxidation nor decreased antioxidant enzyme<br />

activities <strong>in</strong> the hippocampus. Given that <strong>alum<strong>in</strong>ium</strong> content was markedly <strong>in</strong>creased <strong>in</strong><br />

the hippocampus (Sánchez-Iglesias et al. 2007b), this dual effect could be related to the<br />

biphasic behaviour <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> previously reported by Abubakar et al. (2004a). In our<br />

op<strong>in</strong>ion, the high concentration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the hippocampus may possibly <strong>in</strong>duce<br />

an <strong>in</strong>crease <strong>in</strong> defence enzyme levels, which could cause the steady state <strong>of</strong> TBARS<br />

levels after <strong>alum<strong>in</strong>ium</strong> exposure. However, <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g cerebral areas, antioxidant<br />

enzymes have a lower activity, which is <strong>in</strong>terpreted as a consequence <strong>of</strong> the postulated<br />

oxidant potential <strong>of</strong> AlO2 ●2+ (Kong et al. 1992, Exley 2004a) and consequently the<br />

factor responsible for the <strong>oxidative</strong> impairment found <strong>in</strong> those bra<strong>in</strong> areas. F<strong>in</strong>ally, we<br />

135


CHAPTER 3<br />

assume that the dist<strong>in</strong>ct cerebral areas exhibit different sensitivities to <strong>alum<strong>in</strong>ium</strong>, which<br />

can be partly expla<strong>in</strong>ed by the differences <strong>in</strong> the bra<strong>in</strong> barrier mechanisms. In fact, our<br />

data lean towards the concept <strong>of</strong> the blood-bra<strong>in</strong> regional barrier <strong>in</strong>troduced by Zheng et<br />

al. (2003). Evidently, the hypothesis that it would be more accurate to talk about a<br />

blood-hippocampal barrier and a blood-striatum barrier, for example, needs to be<br />

corroborated and characterised by future research.<br />

Acknowledgments<br />

This study was supported by grants PGIDIT03PXIB20804PR (to R.S.-O.) and<br />

PGIDIT07CSA005208PR (to J.L.L.-G.) from XUGA (Santiago de Compostela, Spa<strong>in</strong>),<br />

and grants SAF2007-66114 (to R.S.-O.) and BFU2006-07414 (to J.L.L.-G.) from<br />

M<strong>in</strong>isterio de Ciencia e Innovación (Madrid, Spa<strong>in</strong>).<br />

136


CHAPTER 3<br />

Table 1. In vitro effects <strong>of</strong> the presence <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the enzyme activities <strong>of</strong> SOD,<br />

GPx, CAT, and MAO<br />

Al 3+ (�M) SOD (U) GPx (U) CAT (U)<br />

MAO<br />

(nmol 4-HQ/mg prote<strong>in</strong>/m<strong>in</strong>)<br />

MAO-A MAO-B<br />

control 10.8 � 0.86 1.96 � 0.194 24.7 � 1.77 1.15 � 0.077 2.19 � 0.057<br />

10 11.2 � 0.78 2.14 � 0.131 22.8 � 0.42 1.14 � 0.054 2.15 � 0.064<br />

50 11.3 � 0.41 2.25 � 0.115 23.4 � 1.43 1.13 � 0.083 2.17 � 0.089<br />

100 11.0 � 0.92 2.17 � 0.257 24.0 � 2.75 1.14 � 0.095 2.16 � 0.052<br />

SOD, GPx, and CAT activities were determ<strong>in</strong>ed us<strong>in</strong>g commercial enzymes, while<br />

MAO activity (MAO-A and MAO-B) was determ<strong>in</strong>ed us<strong>in</strong>g mitochondrial preparation<br />

obta<strong>in</strong>ed from rat bra<strong>in</strong>. All the <strong>in</strong>cubations were performed at 37ºC. Abbreviations:<br />

SOD, superoxide dismutase; GPx, glutathione peroxidase; CAT, catalase; MAO,<br />

monoam<strong>in</strong>e oxidase; 4-HQ, 4-hydroxyqu<strong>in</strong>ol<strong>in</strong>e. Data are expressed as means � SD<br />

from four determ<strong>in</strong>ations (n = 4). Significance <strong>of</strong> differences among groups was<br />

assessed by a one-way ANOVA followed by a Bonferroni‟s test. No significant<br />

differences were obta<strong>in</strong>ed for p < 0.05.<br />

137


CHAPTER 3<br />

Fig. 1 Levels <strong>of</strong> TBARS (A), prote<strong>in</strong> carbonyls (B), and prote<strong>in</strong> thiols (C) <strong>in</strong> different<br />

bra<strong>in</strong> areas <strong>of</strong> rats i.p. treated with sal<strong>in</strong>e (control) or <strong>alum<strong>in</strong>ium</strong> chloride (10 mg<br />

Al 3+ /kg/day) for ten days. Abbreviation: Al, <strong>alum<strong>in</strong>ium</strong>. Data are expressed as means ±<br />

SD from five rats (n = 5). Significance <strong>of</strong> differences among groups was assessed by a<br />

one-way ANOVA followed by a Bonferroni‟s test. Asterisks denote values significantly<br />

different from the correspond<strong>in</strong>g control (*, p < 0.05; **, p < 0.01; ***, p < 0.001).<br />

138


CHAPTER 3<br />

139


CHAPTER 3<br />

Fig. 2 Enzyme activity <strong>of</strong>: SOD (A), GPx (B), and CAT (C) <strong>in</strong> different bra<strong>in</strong> areas <strong>of</strong><br />

rats i.p. treated with sal<strong>in</strong>e (control) or <strong>alum<strong>in</strong>ium</strong> chloride (10 mg Al 3+ /kg/day) for ten<br />

days. Abbreviation: Al, <strong>alum<strong>in</strong>ium</strong>. Data are expressed as means ± SD from five rats (n<br />

= 5). Significance <strong>of</strong> differences among groups was assessed by a one-way ANOVA<br />

followed by a Bonferroni‟s test. Asterisks denote values significantly different from the<br />

correspond<strong>in</strong>g control (*, p < 0.05; **, p < 0.01; ***, p < 0.001).<br />

140


CHAPTER 3<br />

141


CHAPTER 3<br />

Fig. 3 Microphotographs show<strong>in</strong>g changes <strong>in</strong> the striatal TH-ir one week post-lesion <strong>in</strong><br />

rats <strong>in</strong>jected <strong>in</strong>traventricularly with vehicle (i.e. controls; A), i.p. treated with<br />

<strong>alum<strong>in</strong>ium</strong> (10 mg Al 3+ /kg/day) for ten days (B), lesioned <strong>in</strong>traventricularly on the 8th<br />

day with 200 µg 6-OHDA (C), or i.p. treated with <strong>alum<strong>in</strong>ium</strong> for 10 days and lesioned<br />

on the 8th day with 6-OHDA (D). Scale bar = 1 mm.<br />

142


CHAPTER 3<br />

Fig. 4 Density <strong>of</strong> striatal DAergic term<strong>in</strong>als estimated as optical density, one week post-<br />

surgery <strong>in</strong> the different experimental groups. Abbreviation: TH-ir, tyros<strong>in</strong>e hydroxylase<br />

immunoreactivity. Optical densities are expressed as percentages <strong>of</strong> the values obta<strong>in</strong>ed<br />

<strong>in</strong> the control groups. Data are expressed as means ± SD obta<strong>in</strong>ed from six animals (n =<br />

6). Means that differ significantly are <strong>in</strong>dicated by a different letter (p < 0.05, one-way<br />

ANOVA and post-hoc Student-Newman-Keuls test).<br />

143


CHAPTER 3<br />

Fig. 5 Levels <strong>of</strong> TBARS (A), prote<strong>in</strong> carbonyls (B), and prote<strong>in</strong> thiols (C) <strong>in</strong> both<br />

ventral midbra<strong>in</strong> and striatum <strong>of</strong> different groups <strong>of</strong> rats: control, i.p. treated with sal<strong>in</strong>e<br />

for 10 days and <strong>in</strong>jected <strong>in</strong>traventricularly with sal<strong>in</strong>e; control+Al, i.p. treated with<br />

<strong>alum<strong>in</strong>ium</strong> for 10 days and <strong>in</strong>jected <strong>in</strong>traventricularly with sal<strong>in</strong>e; 6-OHDA, i.p. treated<br />

with sal<strong>in</strong>e for 10 days and lesioned with 6-OHDA on the 8th day; and f<strong>in</strong>ally 6-<br />

OHDA+Al, i.p. treated with <strong>alum<strong>in</strong>ium</strong> for 10 days and lesioned on the 8th day with 6-<br />

OHDA. Doses used: <strong>alum<strong>in</strong>ium</strong> (10 mg Al 3+ /kg/day), 6-OHDA (200 µg). Abbreviation:<br />

Al, <strong>alum<strong>in</strong>ium</strong>. Rats were sacrificed two days after lesion<strong>in</strong>g. Data are expressed as<br />

means ± SD from five rats (n = 5). Significance <strong>of</strong> differences among groups was<br />

assessed by a one-way ANOVA followed by a Bonferroni‟s test. Asterisks, pads and<br />

section sign denote values significantly different from the correspond<strong>in</strong>g controls:<br />

control, control+Al, 6-OHDA respectively (*, # , § , p < 0.05; **, # # , §§ , p < 0.01; *** p <<br />

0.001).<br />

144


CHAPTER 3<br />

145


CHAPTER 3<br />

Fig. 6 In vitro effects <strong>of</strong> Al 3+ (5 �M) on TBARS formation (A), prote<strong>in</strong> carbonyl<br />

content (B), and prote<strong>in</strong> thiol content (C) <strong>in</strong>duced by the autoxidation <strong>of</strong> 6-OHDA (10<br />

�M) <strong>in</strong> mitochondrial preparations (1 mg prote<strong>in</strong>/ml) from rat bra<strong>in</strong>. Mitochondria<br />

<strong>in</strong>cubations were performed <strong>in</strong> phosphate buffer (pH 7.4, KCl isotonic) at 37°C for 20<br />

m<strong>in</strong>. Abbreviation: Al, <strong>alum<strong>in</strong>ium</strong>. Data are expressed as means � SD from five<br />

<strong>in</strong>dependent experiments. Significance <strong>of</strong> differences among groups was assessed by a<br />

one-way ANOVA followed by a Bonferroni‟s test. Asterisks, pads and section sign<br />

denote values significantly different from the correspond<strong>in</strong>g controls: Mit, Mit+Al, and<br />

Mit+6-OHDA, respectively (*, # , p < 0.05; ***, # # # , p < 0.001).<br />

146


CHAPTER 3<br />

147


SUMMARY


SUMMARY<br />

SUMMARY<br />

Alum<strong>in</strong>ium has become an important health concern due to both the frequent<br />

exposure to this metal and the suggested ability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to cause<br />

neurodegeneration. Pathological conditions such as PD have been associated with the<br />

accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> bra<strong>in</strong>. Although, <strong>alum<strong>in</strong>ium</strong> is not a redox metal, it has<br />

been reported to be able to enhance bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong>. However, the molecular<br />

mechanism <strong>of</strong> its <strong>neurotoxicity</strong> rema<strong>in</strong>s not well understood. Consequently, we resolved<br />

to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the mechanisms <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong> <strong>in</strong> <strong>oxidative</strong> <strong>stress</strong>-<br />

<strong>in</strong>duced degenerative processes <strong>in</strong> relation with PD.<br />

Before start<strong>in</strong>g the whole procedures with <strong>alum<strong>in</strong>ium</strong>, it was crucial to establish<br />

the k<strong>in</strong>etics <strong>of</strong> the <strong>oxidative</strong> damage <strong>in</strong>duced <strong>in</strong> a 6-OHDA model <strong>of</strong> PD and also to<br />

quantify the changes observed <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> lipid peroxidation and oxidant status <strong>of</strong><br />

prote<strong>in</strong>s <strong>in</strong> striatum and ventral midbra<strong>in</strong>. These results would thereafter enable us to<br />

decide at which exact post-<strong>in</strong>jection time should be performed the measurement <strong>of</strong><br />

<strong>in</strong>dices <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> when assess<strong>in</strong>g the <strong>oxidative</strong> effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>. To<br />

accomplish the first part <strong>of</strong> this thesis, we chose the unilateral and <strong>in</strong>trastriatal <strong>in</strong>jection<br />

<strong>of</strong> 6-OHDA to lesion the DAergic nigrostriatal pathway system <strong>in</strong> male Sprague-<br />

Dawley rats. This procedure has been extensively used to exam<strong>in</strong>e the degeneration <strong>of</strong><br />

the DAergic neurons characteristics <strong>of</strong> PD. When compared to others 6-OHDA models<br />

with <strong>in</strong>jections <strong>in</strong>to the SN or the nigrostriatal tract, this method mimics more closely<br />

the progression <strong>of</strong> PD as it leads to a slower retrograde degeneration <strong>of</strong> the nigrostriatal<br />

system over a period <strong>of</strong> several weeks (Sauer and Oertel 1994, Przedborski et al. 1995,<br />

Lee et al. 1996, Shimohama et al. 2003). In fact, this allowed us to use different groups<br />

<strong>of</strong> rats sacrificed at dist<strong>in</strong>ct post-<strong>in</strong>jection times (from 5 m<strong>in</strong> to 7 days). Our results<br />

clearly <strong>in</strong>dicated that unilateral and <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-OHDA results <strong>in</strong><br />

<strong>in</strong>creased levels <strong>of</strong> lipid peroxidation and prote<strong>in</strong> oxidation <strong>in</strong> the ventral midbra<strong>in</strong> and<br />

<strong>in</strong> the striatum. We observed for both areas an aument dur<strong>in</strong>g the first 2 days post-<br />

<strong>in</strong>jection and values returned to near control levels at the 7 day post-<strong>in</strong>jection. Peak<br />

151


SUMMARY<br />

values were atta<strong>in</strong>ed at 48 hours post-<strong>in</strong>jection for both TBARS and PCC, and at 24<br />

hours for PTC. Interest<strong>in</strong>gly, lower but significant <strong>in</strong>creases <strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> levels<br />

were also seen <strong>in</strong> the contralateral side (ventral midbra<strong>in</strong> and striatum) exclud<strong>in</strong>g this<br />

zone as a control to determ<strong>in</strong>e neurochemical alterations caused by 6-OHDA <strong>in</strong> this<br />

experimental model <strong>of</strong> PD. At last and accord<strong>in</strong>g to the obta<strong>in</strong>ed results, we decided to<br />

establish the optimal time <strong>of</strong> 48 hours post-<strong>in</strong>jection for quantification <strong>of</strong> bra<strong>in</strong><br />

<strong>oxidative</strong> <strong>stress</strong> <strong>in</strong>dices when assess<strong>in</strong>g the <strong>oxidative</strong> potential <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> this<br />

experimental model <strong>of</strong> PD.<br />

152<br />

The second part <strong>of</strong> this thesis consisted <strong>in</strong> develop<strong>in</strong>g a dosage regimen <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> to rats which would guarantee a significant accumulation <strong>of</strong> this metal <strong>in</strong><br />

bra<strong>in</strong> areas and also to determ<strong>in</strong>e its precise distribution <strong>in</strong> the bra<strong>in</strong>. As it was<br />

previously suggested that <strong>alum<strong>in</strong>ium</strong> distribution depends on the animal species <strong>in</strong><br />

question and the chemical form <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istered, we opted for two dist<strong>in</strong>ct<br />

adm<strong>in</strong>istration routes: oral and <strong>in</strong>traperitoneal. Sprague-Dawley rats were either daily<br />

i.p. <strong>in</strong>jected with <strong>alum<strong>in</strong>ium</strong> chloride (10 mg Al 3+ /kg/day) for 1 week, or given orally<br />

progressive <strong>in</strong>creas<strong>in</strong>g doses <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride (25, 50, 100 mg Al 3+ /kg/day)<br />

supplemented with citrate (89, 178, 356 mg/kg/day) dur<strong>in</strong>g 4 weeks. Our results showed<br />

that both adm<strong>in</strong>istration routes led to <strong>alum<strong>in</strong>ium</strong> accumulation. A greater and more<br />

significant <strong>in</strong>crease was noted <strong>in</strong> the group receiv<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong> via <strong>in</strong>traperitoneal<br />

adm<strong>in</strong>istration for most bra<strong>in</strong> areas except <strong>in</strong> ventral midbra<strong>in</strong>. Distribution also varied<br />

with the adm<strong>in</strong>istration route used. In accordance to these results we resolved to use the<br />

<strong>in</strong>traperitoneal adm<strong>in</strong>istration route to clarify the bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> provoked by<br />

<strong>alum<strong>in</strong>ium</strong>.<br />

F<strong>in</strong>ally the third phase <strong>of</strong> this thesis was dedicated to determ<strong>in</strong>e the ability <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> to alter the oxidant status <strong>of</strong> specific bra<strong>in</strong> areas, such as cerebellum, ventral<br />

midbra<strong>in</strong>, cortex, hippocampus, and striatum. Male Sprague-Dawley rats were<br />

<strong>in</strong>traperitoneally adm<strong>in</strong>istered with <strong>alum<strong>in</strong>ium</strong> chloride (10 mg Al 3+ /kg/day) <strong>in</strong> sal<strong>in</strong>e<br />

for 10 days. As we demonstrated before, this dosage procedure was sufficient to <strong>in</strong>sure<br />

<strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> bra<strong>in</strong> areas. Animals were sacrificed 48 hours after lesion to<br />

perform lipid peroxidation and prote<strong>in</strong> oxidation studies because the peak for <strong>oxidative</strong>


SUMMARY<br />

<strong>stress</strong> is reached at this time as we previously reported <strong>in</strong> the first phase <strong>of</strong> this thesis.<br />

Our results showed that, except for hippocampus, the metal triggered an <strong>in</strong>crease <strong>in</strong><br />

<strong>oxidative</strong> <strong>stress</strong> levels (determ<strong>in</strong>ed as TBARS, PCC, and PTC) for most <strong>of</strong> the bra<strong>in</strong><br />

regions studied, which was accompanied by decreased activities <strong>of</strong> the antioxidant<br />

enzymes (SOD, CAT, and GPx). However, studies <strong>in</strong> vitro confirmed the <strong>in</strong>ability <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> to affect the activity <strong>of</strong> those enzymes and also <strong>of</strong> MAO-A and MAO-B. The<br />

reported effects exhibited a regional-selective behaviour for all the cerebral structures<br />

studied. Worthy <strong>of</strong> note is the case <strong>of</strong> the hippocampus, as <strong>alum<strong>in</strong>ium</strong> exposure resulted<br />

<strong>in</strong> <strong>in</strong>creased antioxidant enzymes activities, no significant alterations <strong>of</strong> lipid<br />

peroxidation and decreased prote<strong>in</strong> oxidations. These results might be expla<strong>in</strong>ed by the<br />

high <strong>alum<strong>in</strong>ium</strong> accumulation and the promotion <strong>of</strong> compensatory mechanism(s) <strong>in</strong> this<br />

bra<strong>in</strong> area.<br />

Lastly, and to shed some light on the potential <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to act as an<br />

etiological factor <strong>in</strong> PD, we studied the ability <strong>of</strong> this metal to <strong>in</strong>crease the striatal<br />

DAergic neurodegeneration and various <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> ventral midbra<strong>in</strong><br />

and striatum <strong>of</strong> rats <strong>in</strong>jected <strong>in</strong>traventricularly with 6-OHDA. This animal model was<br />

known to <strong>in</strong>duce a more slowly ensu<strong>in</strong>g park<strong>in</strong>sonian syndrome exhibit<strong>in</strong>g similar<br />

topographic depletion <strong>of</strong> DAergic neurons to that observed <strong>in</strong> PD (Rodriguez et al.<br />

2001, Rodríguez-Díaz et al. 2001) and to avoid the focal lesion around the cannula tip<br />

produced when 6-OHDA is directly <strong>in</strong>jected <strong>in</strong> the bra<strong>in</strong> tissues. We followed the same<br />

dosage procedure as previously mentioned (daily <strong>in</strong>traperitoneal <strong>in</strong>jection <strong>of</strong> 10 mg mg<br />

Al 3+ /kg/day <strong>in</strong> sal<strong>in</strong>e for ten days) except that rats were lesioned on the 8 th day with 6-<br />

OHDA <strong>in</strong>jected <strong>in</strong> the third ventricle. Animals were killed 1 week post-lesion for<br />

immunohistochemistry studies as it was reported that progressive degeneration <strong>of</strong><br />

mesencephalic DAergic cells produced by <strong>in</strong>traventricular <strong>in</strong>jection <strong>of</strong> 6-OHDA<br />

reached the def<strong>in</strong>itive lesion pattern at the end <strong>of</strong> the first week post<strong>in</strong>jection (Rodriguez<br />

et al. 2001). Our results <strong>in</strong>dicated that <strong>alum<strong>in</strong>ium</strong> enhanced the ability <strong>of</strong> 6-OHDA to<br />

cause lipid peroxidation and prote<strong>in</strong> oxidation (except for PTC <strong>in</strong> ventral midbra<strong>in</strong>). In<br />

addition, the metal was able to <strong>in</strong>crease the capacity <strong>of</strong> 6-OHDA to cause<br />

153


SUMMARY<br />

neurodegeneration <strong>in</strong> the DAergic system as the loss <strong>of</strong> TH-ir striatal term<strong>in</strong>als was<br />

significantly <strong>in</strong>creased.<br />

Note: It is also important to note that all experiments carried out dur<strong>in</strong>g this thesis<br />

were <strong>in</strong> accordance with the “Pr<strong>in</strong>ciples <strong>of</strong> laboratory animal care” (NIH<br />

publication No. 86-23, revised 1996) and approved by the correspond<strong>in</strong>g Ethics<br />

Committee at the University <strong>of</strong> Santiago de Compostela. Furthermore, all efforts<br />

were made to reduce the number <strong>of</strong> animals used and to m<strong>in</strong>imize animal<br />

suffer<strong>in</strong>g.<br />

154


CONCLUSIONS


CONCLUSIONS<br />

The results obta<strong>in</strong>ed <strong>in</strong> the present thesis led us to the follow<strong>in</strong>g conclusions:<br />

Chapter 1<br />

CONCLUSIONS<br />

1) Intrastriatal and unilateral <strong>in</strong>jections <strong>of</strong> 6-OHDA cause a cont<strong>in</strong>uous and<br />

simultaneous <strong>in</strong>crease <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> the ipsilateral side,<br />

reach<strong>in</strong>g a peak value at the 48 hours post-<strong>in</strong>jection for both TBARS and PCC, and<br />

at 24 hours for PTC, and return<strong>in</strong>g slowly to approximate control levels after 7-day<br />

post-<strong>in</strong>jection <strong>in</strong> the case <strong>of</strong> TBARS, PCC and PTC.<br />

2) The contralateral side should not be used as a control to assess neurochemical<br />

changes <strong>in</strong>duced by 6-OHDA <strong>in</strong> this experimental model <strong>of</strong> PD as the unilateral<br />

<strong>in</strong>jection <strong>of</strong> 6-OHDA causes a significant <strong>in</strong>crease <strong>in</strong> the <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong>,<br />

affect<strong>in</strong>g both the striatum and the ventral midbra<strong>in</strong>, although lower than that found<br />

<strong>in</strong> the ipsilateral side.<br />

3) The measurement <strong>of</strong> the bra<strong>in</strong> <strong>in</strong>dices <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> (TBARS and the content<br />

<strong>of</strong> oxidized groups <strong>in</strong> prote<strong>in</strong>s) should be performed at 48-h follow<strong>in</strong>g the<br />

<strong>in</strong>tracerebral adm<strong>in</strong>istration <strong>of</strong> 6-OHDA (peak-values time) when this model is<br />

used to assess new neuroprotective strategies or to study the <strong>oxidative</strong> potential <strong>of</strong> a<br />

specific etiological factor.<br />

Chapter 2<br />

4) Oral adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chloride to rats for 4 weeks results <strong>in</strong> a<br />

significant <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> <strong>alum<strong>in</strong>ium</strong> concentration <strong>in</strong> all the <strong>in</strong>vestigated bra<strong>in</strong><br />

areas (cerebellum, ventral midbra<strong>in</strong>, cortex, hippocampus and striatum).<br />

157


CONCLUSIONS<br />

5) Intraperitoneal <strong>alum<strong>in</strong>ium</strong> chloride exposure to rats for one week causes a<br />

158<br />

significant and greater <strong>alum<strong>in</strong>ium</strong> accumulation <strong>in</strong> cerebellum, cortex,<br />

hippocampus and striatum, whereas a decrease <strong>in</strong> <strong>alum<strong>in</strong>ium</strong> concentration is<br />

reported <strong>in</strong> ventral midbra<strong>in</strong>.<br />

6) Alum<strong>in</strong>ium adm<strong>in</strong>istered i.p. predom<strong>in</strong>antly accumulates <strong>in</strong> the hippocampus,<br />

whereas <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istered orally pr<strong>in</strong>cipally accumulates <strong>in</strong> the ventral<br />

midbra<strong>in</strong>.<br />

7) Alum<strong>in</strong>ium accumulation <strong>in</strong> the bra<strong>in</strong> and its distribution <strong>in</strong> the different areas <strong>of</strong><br />

the bra<strong>in</strong> varie with the adm<strong>in</strong>istration route used.<br />

Chapter 3<br />

8) Alum<strong>in</strong>ium i.p. exposure to rats can create a situation <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> most <strong>of</strong><br />

the bra<strong>in</strong> areas studied.<br />

9) Alum<strong>in</strong>ium causes a significant <strong>in</strong>crease <strong>in</strong> the levels <strong>of</strong> TBARS <strong>in</strong> ventral<br />

midbra<strong>in</strong>, cortex and striatum, but particularly so <strong>in</strong> the cerebellum, while no<br />

significant changes is noted <strong>in</strong> the hippocampus.<br />

10) Alum<strong>in</strong>ium provokes a significant <strong>in</strong>crease <strong>in</strong> both PCC and PTC <strong>in</strong> the cerebellum,<br />

ventral midbra<strong>in</strong>, and striatum, whereas a decrease is reported <strong>in</strong> the cortex and<br />

hippocampus. The molecular mechanism <strong>in</strong>volved <strong>in</strong> the lack <strong>of</strong> a direct correlation<br />

between the <strong>in</strong>crease observed <strong>in</strong> the PCC, and the “apparently” contradictory<br />

<strong>in</strong>crease <strong>in</strong> PTC has not been found out.<br />

11) All the bra<strong>in</strong> regional areas exam<strong>in</strong>ed show similar behaviour patterns as<br />

<strong>alum<strong>in</strong>ium</strong> leads to a decrease <strong>of</strong> the enzyme activity <strong>of</strong> SOD, GPx, and CAT,<br />

except <strong>in</strong> hippocampus where antioxidant enzymes activities <strong>in</strong>crease.<br />

12) Alum<strong>in</strong>ium does not significantly alter the enzyme activities <strong>of</strong> either <strong>of</strong> SOD,<br />

GPx, and CAT <strong>in</strong> vitro.


13) Alum<strong>in</strong>ium does affect neither MAO-A nor MAO-B activity <strong>in</strong> vitro.<br />

CONCLUSIONS<br />

14) In this experimental model <strong>of</strong> PD <strong>alum<strong>in</strong>ium</strong> causes an enhancement <strong>in</strong> 6-OHDA-<br />

<strong>in</strong>duced lipid peroxidation and prote<strong>in</strong> oxidation <strong>in</strong> vivo, except for PTC <strong>in</strong> ventral<br />

midbra<strong>in</strong>.<br />

15) The adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> to control rats that were given <strong>in</strong>traventricularly<br />

sal<strong>in</strong>e <strong>in</strong>stead <strong>of</strong> 6-OHDA also causes a significant difference <strong>in</strong> the levels <strong>of</strong> both<br />

lipid peroxidation and prote<strong>in</strong> oxidation for PCC.<br />

16) Immunohistochemical studies show that <strong>alum<strong>in</strong>ium</strong> adm<strong>in</strong>istration alone causes no<br />

significant change <strong>in</strong> TH-ir striatal term<strong>in</strong>als. In contrast, lesion with 6-OHDA<br />

causes a loss <strong>of</strong> TH-ir striatal term<strong>in</strong>als, which is significantly <strong>in</strong>creased with the<br />

adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>.<br />

Accord<strong>in</strong>g to the previously mentioned conclusions, we establish that the results<br />

here reported confirm the potential <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> as a risk factor <strong>in</strong> the development <strong>of</strong><br />

PD. This metal acts ma<strong>in</strong>ly as a pro-oxidant and is able to reduce the activities <strong>of</strong><br />

antioxidant enzymes. Its toxicity <strong>in</strong> the different bra<strong>in</strong> areas studied (cerebellum, ventral<br />

midbra<strong>in</strong>, cortex, and striatum) is probably mediated by the contribution <strong>of</strong> AlO2 ●2+ and<br />

other free radical-<strong>in</strong>duced <strong>oxidative</strong> cell damage. Interest<strong>in</strong>gly, the results observed <strong>in</strong><br />

the hippocampus (high <strong>alum<strong>in</strong>ium</strong> content and not <strong>in</strong>creased oxidant status) may be<br />

caused by specific compensatory mechanism(s) <strong>of</strong> the blood-hippocampal barrier but<br />

this idea still needs to be corroborated and characterized by future research.<br />

159


RESUMEN


RESUMEN<br />

RESUMEN<br />

Desde el punto de vista sanitario, el <strong>in</strong>terés social que despierta el alum<strong>in</strong>io es<br />

cada vez mayor. Esto se debe a que la sociedad actual sufre una alta exposición a este<br />

metal y a que diversos estudios llevaron a considerar al alum<strong>in</strong>io como una sustancia<br />

capaz de causar neurodegeneración. Condiciones patológicas como la enfermedad de<br />

Park<strong>in</strong>son han sido frecuentemente relacionadas con la acumulación de alum<strong>in</strong>io en el<br />

cerebro. Además, aunque el alum<strong>in</strong>io sea un metal <strong>in</strong>activo desde el punto de vista<br />

redox, varios estudios han puesto de manifiesto que en determ<strong>in</strong>adas circunstancias este<br />

metal potencia el estrés oxidativo cerebral. S<strong>in</strong> embargo, el mecanismo molecular de su<br />

neurotoxicidad por el momento no es bien conocido. Por este motivo, decidimos<br />

pr<strong>of</strong>undizar en el conocimiento de los mecanismos de la neurotoxicidad del alum<strong>in</strong>io en<br />

procesos degenerativos <strong>in</strong>ducidos por estrés oxidativo relacionados con la enfermedad<br />

de Park<strong>in</strong>son.<br />

Para abordar esta <strong>in</strong>vestigación, resultaba impresc<strong>in</strong>dible un conocimiento<br />

previo de la c<strong>in</strong>ética del daño oxidativo <strong>in</strong>ducido por la 6-OHDA en un modelo<br />

experimental de Park<strong>in</strong>son, así como cuantificar los cambios observados en los índices<br />

de peroxidación lipídica y estado oxidativo de las proteínas en estriado y mesencéfalo<br />

ventral. Estos resultados nos permitirían conocer el momento exacto tras la<br />

adm<strong>in</strong>istración <strong>in</strong>tracerebral de 6-OHDA en el que efectuar la medida de estrés<br />

oxidativo cerebral para el estudio de los efectos oxidativos del alum<strong>in</strong>io. Para este<br />

estudio, elegimos la <strong>in</strong>yección unilateral e <strong>in</strong>straestriatal de 6-OHDA para lesionar la<br />

vía dopam<strong>in</strong>érgica nigroestriatal en ratas macho Sprague-Dawley. Este procedimiento<br />

ha sido frecuentemente utilizado para estudiar la degeneración de las neuronas<br />

dopam<strong>in</strong>érgicas características de la enfermedad de Park<strong>in</strong>son. Si lo comparamos a<br />

otros modelos, con <strong>in</strong>yecciones de 6-OHDA en sustancia negra o tracto nigroestriatal,<br />

este método se aproxima más a la progresión de la enfermedad de Park<strong>in</strong>son, puesto que<br />

conlleva una degeneración retrógrada del sistema nigroestriado más lenta, con un<br />

período de varias semanas (Sauer and Oertel 1994, Przedborski et al. 1995, Lee et al.<br />

163


RESUMEN<br />

1996, Shimohama et al. 2003). De hecho, esto nos permitió hacer un seguimiento de<br />

c<strong>in</strong>ética con dist<strong>in</strong>tos grupos de ratas que abarcó un período de 7 días. Nuestros<br />

resultados <strong>in</strong>dicaron claramente que la <strong>in</strong>yección unilateral e <strong>in</strong>traestriatal de 6-OHDA<br />

produce elevados niveles de peroxidación lipídica y de oxidación protéica en el<br />

mesencéfalo ventral y en el estriado. Para ambas regiones observamos un aumento<br />

durante los 2 primeros días después de la <strong>in</strong>yección y un retorno de los valores a niveles<br />

aproximados de control a los 7 días de la <strong>in</strong>yección. Los valores más altos fueron<br />

alcanzados a las 48 horas de la <strong>in</strong>yección para TBARS y para el contenido de grupos<br />

carbonilo en proteínas, y a las 24 horas para el contenido de grupos tiol en proteínas.<br />

Resultó <strong>in</strong>teresante observar que en el lado contralateral (mesencéfalo ventral y<br />

estriado) se produce también un aumento significativo, aunque en menor cuantía, de los<br />

niveles de estrés oxidativo, hecho que desaconseja el uso de esa zona como control para<br />

determ<strong>in</strong>ar alteraciones neuroquímicas producidas por la 6-OHDA en este modelo<br />

experimental de Park<strong>in</strong>son. F<strong>in</strong>almente, y de acuerdo con los resultados obtenidos<br />

decidimos establecer el tiempo óptimo en 48 horas después de la <strong>in</strong>yección para<br />

cuantificar los niveles de estrés oxidativo cerebral en los ensayos sobre la capacidad<br />

oxidativa del alum<strong>in</strong>io en este modelo experimental de Park<strong>in</strong>son.<br />

164<br />

La segunda parte de esta tesis consistió en desarrollar un régimen de<br />

dosificación del alum<strong>in</strong>io en ratas, que garantizase una acumulación significativa de este<br />

metal en el cerebro, y con ello un conocimiento preciso de la distribución del alum<strong>in</strong>io<br />

en las regiones cerebrales. Puesto que previamente había sido demostrado que la<br />

distribución del alum<strong>in</strong>io depende de la especie animal en cuestión y de la fórmula<br />

química del alum<strong>in</strong>io adm<strong>in</strong>istrado, optamos por utilizar dos vías dist<strong>in</strong>tas de<br />

adm<strong>in</strong>istración: oral e <strong>in</strong>traperitoneal. Se usaron ratas Sprague-Dawley que fueron<br />

<strong>in</strong>yectadas diariamente por vía <strong>in</strong>traperitoneal con cloruro de alum<strong>in</strong>io (10 mg<br />

Al 3+ /kg/día) durante una semana, o bien recibieron por vía oral una dosis progresiva de<br />

cloruro de alum<strong>in</strong>io (25, 50, 100 mg Al 3+ /kg/día) y citrato (89, 178, 356 mg/kg/día)<br />

durante 4 semanas. Nuestros resultados <strong>in</strong>dicaron que ambas vías de adm<strong>in</strong>istración<br />

produjeron una acumulación de alum<strong>in</strong>io en cerebro. La acumulación fue mayor y más<br />

significativa para el grupo que recibía el alum<strong>in</strong>io por vía <strong>in</strong>traperitoneal en todas las


RESUMEN<br />

zonas cerebrales excepto en el mesencéfalo ventral. La distribución también varió según<br />

el modo de adm<strong>in</strong>istración. De acuerdo con estos resultados decidimos utilizar la vía de<br />

adm<strong>in</strong>istración <strong>in</strong>traperitoneal para estudiar el estrés oxidativo cerebral producido por el<br />

alum<strong>in</strong>io.<br />

F<strong>in</strong>almente dedicamos la tercera fase de esta tesis a determ<strong>in</strong>ar la capacidad del<br />

alum<strong>in</strong>io para alterar el estado oxidativo en áreas cerebrales específicas, tales como<br />

cerebelo, mesencéfalo ventral, corteza, hipocampo y estriado. Ratas macho Sprague-<br />

Dawley fueron <strong>in</strong>yectadas <strong>in</strong>traperitonealmente con cloruro de alum<strong>in</strong>io (10 mg<br />

Al 3+ /kg/día) en sal<strong>in</strong>o durante 10 días. Como demostramos previamente, esta<br />

dosificación era suficiente para asegurar una acumulación del alum<strong>in</strong>io en las regiones<br />

cerebrales estudiadas. Para realizar estudios de peroxidación lipídica y de oxidación<br />

protéica, los animales fueron sacrificados a las 48 horas después de la adm<strong>in</strong>istración<br />

<strong>in</strong>traventricular de 6-OHDA porque, como comentamos anteriormente, el valor álgido<br />

de estrés oxidativo ocurre en ese momento. Nuestros resultados <strong>in</strong>dicaron que, excepto<br />

para el hipocampo, el metal produjo un aumento en los niveles de estrés oxidativo<br />

(formación de TBARS y contenido de grupos carbonilo y tiol en proteínas) para la<br />

mayoría de las zonas cerebrales estudiadas, acompañado de un descenso en las<br />

actividades de las enzimas antioxidantes (superóxido dismutasa, catalasa y glutatión<br />

peroxidasa). S<strong>in</strong> embargo, estudios <strong>in</strong> vitro confirmaron la <strong>in</strong>capacidad del alum<strong>in</strong>io<br />

para alterar la actividad de esos enzimas, así como también para afectar a la actividad de<br />

las monoam<strong>in</strong>o oxidasas A y B. Los efectos observados presentan un comportamiento<br />

selectivo y regional para todas las estructuras estudiadas. Cabe destacar el caso del<br />

hipocampo, ya que la exposición al alum<strong>in</strong>io produjo un aumento de las actividades de<br />

las enzimas antioxidantes, una dism<strong>in</strong>ución de las oxidaciones protéicas y no alteró de<br />

manera significativa la peroxidación lipídica. Estos resultados pueden ser explicados<br />

por la alta acumulación de alum<strong>in</strong>io y el fomento de uno o varios mecanismos<br />

compensatorios en esa zona cerebral.<br />

165


RESUMEN<br />

166<br />

Por último y con el f<strong>in</strong> de esclarecer el papel del alum<strong>in</strong>io como un posible<br />

factor etiológico de la enfermedad de Park<strong>in</strong>son, hemos estudiado la capacidad de ese<br />

metal para aumentar la neurodegeneración dopam<strong>in</strong>érgica estriatal y los índices de<br />

estrés oxidativo en el mesencéfalo ventral y el estriado de ratas <strong>in</strong>yectadas<br />

<strong>in</strong>traventricularmente con 6-OHDA. Este modelo animal es conocido por <strong>in</strong>ducir un<br />

síndrome park<strong>in</strong>soniano más lento, mostrando una depleción de neuronas<br />

dopam<strong>in</strong>érgicas topográficamente similar (Rodriguez et al. 2001, Rodríguez-Díaz et al.<br />

2001), y evitando la lesión focal alrededor de la punta de la cánula, producida cuando la<br />

6-OHDA es <strong>in</strong>troducida directamente en los tejidos cerebrales. Para la dosificación<br />

seguimos el procedimiento mencionado anteriormente (<strong>in</strong>yección i.p. diaria de 10 mg<br />

Al 3+ /kg/día durante 10 días), excepto que las ratas fueron lesionadas el octavo día con 6-<br />

OHDA <strong>in</strong>yectada en el tercer ventrículo. Para realizar los estudios<br />

<strong>in</strong>munohistoquímicos, los animales fueron sacrificados una semana después de la<br />

lesión, porque la degeneración progresiva de las células dopam<strong>in</strong>érgicas mesencefálicas<br />

producida por <strong>in</strong>yección <strong>in</strong>traventricular de 6-OHDA llega a un nivel def<strong>in</strong>itivo de<br />

lesión una semana después de la <strong>in</strong>yección (Rodriguez et al. 2001). Nuestros resultados<br />

<strong>in</strong>dicaron que el alum<strong>in</strong>io aumenta la capacidad de la 6-OHDA para causar<br />

peroxidación lipídica y oxidación protéica (excepto para el contenido de grupos tiol en<br />

proteínas en el mesencéfalo ventral). Además, el metal aumentó la capacidad de la 6-<br />

OHDA para producir la neurodegeneración del sistema dopam<strong>in</strong>érgico, ya que la<br />

pérdida de term<strong>in</strong>ales estriatales <strong>in</strong>munoreactivas para la tiros<strong>in</strong>a hidroxilasa aumentó<br />

de manera significativa.<br />

Nota: Cabe destacar que todos los experimentos realizados a lo largo de esta tesis<br />

fueron conformes a la publicación del NIH, nº 86-23, revisada en 1996,<br />

“Pr<strong>in</strong>ciples <strong>of</strong> laboratory animal care”, y aprobados por el correspondiente<br />

Comité de Ética de la Universidad de Santiago de Compostela. Además, todos<br />

los esfuerzos fueron realizados para reducir la cantidad de animales utilizados y<br />

para m<strong>in</strong>imizar el sufrimiento de los mismos.


CONCLUSIONES


CONCLUSIONES<br />

CONCLUSIONES<br />

Los resultados obtenidos a lo largo de esta tesis permitieron establecer las siguientes<br />

conclusiones:<br />

Capítulo 1<br />

1) Las <strong>in</strong>yecciones <strong>in</strong>traestriatales y unilaterales de 6-OHDA provocan un aumento<br />

cont<strong>in</strong>uo y simultáneo de los índices de estrés oxidativo en el lado ipsilateral,<br />

alcanzando un valor máximo 48 horas después de la <strong>in</strong>yección para TBARS y para<br />

el contenido de grupos carbonilo en proteínas, y a las 24 horas para el contenido de<br />

grupos tiol en proteínas. Los valores de TBARS, así como el contenido de grupos<br />

carbonilo y tiol en proteínas vuelven lentamente a los valores control después de 7<br />

días tras la adm<strong>in</strong>istración de 6-OHDA.<br />

2) En este modelo experimental de Park<strong>in</strong>son, el lado contralateral no debe ser<br />

utilizado como control para evaluar los cambios neuroquímicos <strong>in</strong>ducidos por 6-<br />

OHDA, dado que la <strong>in</strong>yección unilateral de 6-OHDA provoca un aumento<br />

significativo en los índices de estrés oxidativo, aunque en menor cuantía que los<br />

índices observados en el lado ipsilateral, afectando tanto el estriado como el<br />

mesencéfalo ventral.<br />

3) Cuando este modelo experimental es utilizado para evaluar nuevas estrategias<br />

neuroprotectoras o para estudiar el potencial oxidativo de un posible factor<br />

etiológico, la cuantificación de niveles cerebrales de estrés oxidativo (TBARS y<br />

contenido de grupos oxidados en proteínas) debe llevarse a cabo 48 horas después<br />

de la adm<strong>in</strong>istración <strong>in</strong>tracerebral de 6-OHDA, que es el tiempo en el que se<br />

alcanzan los valores máximos.<br />

169


CONCLUSIONES<br />

Capítulo 2<br />

4) La adm<strong>in</strong>istración oral de cloruro de alum<strong>in</strong>io a ratas durante 4 semanas provoca un<br />

170<br />

aumento significativo en la concentración cerebral de alum<strong>in</strong>io en todas las zonas<br />

estudiadas (cerebelo, mesencéfalo ventral, corteza, hipocampo y estriado).<br />

5) La adm<strong>in</strong>istración <strong>in</strong>traperitoneal de cloruro de alum<strong>in</strong>io a ratas durante una<br />

semana da lugar a una destacada e importante acumulación de alum<strong>in</strong>io en<br />

cerebelo, corteza, hipocampo y estriado, mientras que en mesencéfalo ventral se<br />

observa una dism<strong>in</strong>ución en la concentración de alum<strong>in</strong>io.<br />

6) El alum<strong>in</strong>io adm<strong>in</strong>istrado vía <strong>in</strong>traperitoneal se acumula de manera predom<strong>in</strong>ante<br />

en el hipocampo, mientras que el alum<strong>in</strong>io adm<strong>in</strong>istrado oralmente se acumula<br />

pr<strong>in</strong>cipalmente en el mesencéfalo ventral.<br />

7) Tanto la concentración de alum<strong>in</strong>io en cerebro como su distribución en las dist<strong>in</strong>tas<br />

áreas cerebrales varía dependiendo de la vía de adm<strong>in</strong>istración usada para el<br />

alum<strong>in</strong>io.<br />

Capítulo 3<br />

8) La adm<strong>in</strong>istración <strong>in</strong>traperitoneal de alum<strong>in</strong>io a ratas lleva a una situación de estrés<br />

oxidativo en la mayoría de las zonas cerebrales estudiadas.<br />

9) El alum<strong>in</strong>io provoca un aumento destacado de los niveles de TBARS en<br />

mesencéfalo ventral, corteza y estriado, y sobre todo en cerebelo, mientras que no<br />

se hallan cambios significativos en hipocampo.<br />

10) El alum<strong>in</strong>io ocasiona un aumento significativo en el contenido de grupos carbonilo<br />

y tiol en proteínas en cerebelo, mesencéfalo ventral y estriado, mientras que en<br />

corteza e hipocampo se observa una dism<strong>in</strong>ución. No se ha podido establecer el<br />

mecanismo molecular responsable de la falta de correlación directa entre el


CONCLUSIONES<br />

aumento de grupos carbonilo observado en proteínas y el “aparentemente”<br />

contradictorio aumento en el contenido de grupos tiol.<br />

11) Todas las regiones cerebrales exam<strong>in</strong>adas muestran patrones similares, puesto que<br />

el alum<strong>in</strong>io <strong>in</strong>duce una dism<strong>in</strong>ución de la actividad enzimática de la superóxido<br />

dismutasa, la glutatión peroxidasa y la catalasa, excepto en el hipocampo en el que<br />

la actividad de estos enzimas antioxidantes aumenta.<br />

12) In vitro, el alum<strong>in</strong>io no modifica de manera significativa las actividades<br />

enzimáticas de la superóxido dismutasa, glutatión peroxidasa y catalasa.<br />

13) In vitro, el alum<strong>in</strong>io no afecta a las actividades enzimáticas de la monoam<strong>in</strong>o<br />

oxidasa A (MAO-A) ni de la monoam<strong>in</strong>o oxidasa B (MAO-B).<br />

14) In vivo, el alum<strong>in</strong>io provoca un aumento de la peroxidación lipídica y de la<br />

oxidación protéica <strong>in</strong>ducidas por 6-OHDA en el modelo experimental de Park<strong>in</strong>son<br />

utilizado, excepto para el contenido de grupos tiol en mesencéfalo ventral.<br />

15) La adm<strong>in</strong>istración de alum<strong>in</strong>io a ratas control a las que se adm<strong>in</strong>istró<br />

<strong>in</strong>traventricularmente sal<strong>in</strong>o en lugar de 6-OHDA también provocó una variación<br />

significativa, tanto en el índice de peroxidación lipídica como en el estado<br />

oxidativo de proteínas en lo que respecta a contenido de grupos carbonilo.<br />

16) Los estudios <strong>in</strong>munohistoquímicos demuestran que la adm<strong>in</strong>istración de alum<strong>in</strong>io<br />

solo no provoca cambio significativo de <strong>in</strong>munoreactividad para tiros<strong>in</strong>a<br />

hidroxilasa en las term<strong>in</strong>ales estriatales. S<strong>in</strong> embargo, la lesión con 6-OHDA causa<br />

una pérdida de <strong>in</strong>munoreactividad de tiros<strong>in</strong>a hidroxilasa en las term<strong>in</strong>ales<br />

estriatales, que aumenta de manera significativa con la adm<strong>in</strong>istración de alum<strong>in</strong>io.<br />

171


CONCLUSIONES<br />

172<br />

En base a las conclusiones que se acaban de enumerar, establecemos, que los<br />

resultados expuestos confirman el potencial del alum<strong>in</strong>io como factor de riesgo en el<br />

desarrollo de la enfermedad de Park<strong>in</strong>son. Este metal actúa pr<strong>in</strong>cipalmente como un<br />

pro-oxidante y es capaz de dism<strong>in</strong>uir las actividades de los enzimas antioxidantes. Su<br />

toxicidad observada en las diferentes áreas cerebrales estudiadas (cerebelo, mesencéfalo<br />

ventral, corteza y estriado) probablemente se halla mediada por la contribución del<br />

anión superóxido de alum<strong>in</strong>io AlO2 ●2+ y por daños oxidativos a células <strong>in</strong>ducidos por<br />

otros radicales libres. Cabe destacar que los resultados observados en el hipocampo<br />

(alto contenido en alum<strong>in</strong>io y estado oxidante no aumentado) pueden ser causados por<br />

uno o varios mecanismos compensatorios de la barrera hemato-hipocampal, pero esta<br />

idea necesita ser corroborada y caracterizada por <strong>in</strong>vestigaciones futuras.


APPENDIX


Publications as a direct result from this thesis<br />

APPENDIX<br />

Sánchez-Iglesias S., Méndez-Álvarez E., Iglesias-González J., Muñoz-Patiño A.,<br />

Sánchez-Sellero I., Labandeira-García J. L. and Soto-Otero R. (2009) Bra<strong>in</strong> <strong>oxidative</strong><br />

<strong>stress</strong> and selective behaviour <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> specific areas <strong>of</strong> rat bra<strong>in</strong>: potencial<br />

effects <strong>in</strong> a 6-OHDA-<strong>in</strong>duced model <strong>of</strong> Park<strong>in</strong>son‟s disease. J. Neurochem. 109, 879–<br />

888. PMID: 19425176.<br />

Sánchez-Iglesias S., Soto-Otero R., Iglesias-Gónzalez J., Barciela-Alonso M. C.,<br />

Bermejo-Barrera P. and Méndez-Álvarez E. (2007) Analysis <strong>of</strong> bra<strong>in</strong> regional<br />

distribution <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> rats via oral and <strong>in</strong>traperitoneal adm<strong>in</strong>istration. J. Trace<br />

Elem. Med. Biol. 21 Suppl. 1, 31–34. PMID: 18039493.<br />

Sánchez-Iglesias S., Rey P., Méndez-Álvarez E., Labandeira-García J. L. and Soto-<br />

Otero, R. (2007) Time course <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong> damage caused by <strong>in</strong>trastriatal<br />

adm<strong>in</strong>istration <strong>of</strong> 6-hydroxydopam<strong>in</strong>e <strong>in</strong> a rat model <strong>of</strong> Park<strong>in</strong>son‟s disease.<br />

Neurochem. Res. 32, 99–105. PMID: 17160721.<br />

175


APPENDIX<br />

Publications aris<strong>in</strong>g from collaborative work dur<strong>in</strong>g this thesis<br />

Soto-Otero R., Méndez-Álvarez E., Sánchez-Iglesia S., Zubko F. I., Voskressensky L.<br />

G., Varlamov A. V., De Candia M. and Altomare, C. (2008) Inhibition <strong>of</strong> 6-<br />

hydroxydopam<strong>in</strong>e-<strong>in</strong>duced <strong>oxidative</strong> damage by 4,5-dihydro-3H-2-benzazep<strong>in</strong>e N-<br />

oxides. Biochem. Pharmacol. 75, 1526–37. PMID: 18275937.<br />

Rey P., López-Real A., Sánchez-Iglesias S., Muñoz A., Soto-Otero R. and Labandeira-<br />

García J. L. (2007) Angiotens<strong>in</strong> type-1-receptor antagonists reduce 6-hydroxydopam<strong>in</strong>e<br />

toxicity for dopam<strong>in</strong>ergic neurons. Neurobiol. Ag<strong>in</strong>g 28, 555–567. PMID: 16621167.<br />

Soto-Otero R., Sanmartín-Suárez C., Sánchez-Iglesias S., Hermida-Ameijeiras A.,<br />

Sánchez-Sellero I. and Méndez-Álvarez E. (2006) Study on the ability <strong>of</strong> 1,2,3,4-<br />

tetrahydropapaverol<strong>in</strong>e to cause <strong>oxidative</strong> <strong>stress</strong>: mechanisms and potential implications<br />

<strong>in</strong> relation to Park<strong>in</strong>son‟s disease. J. Biochem. Mol. Toxicol. 20, 209–220. PMID:<br />

17009235.<br />

Hermida-Ameijeiras A., Méndez-Álvarez E., Sánchez-Iglesias S., Sanmartín-Suárez C.<br />

and Soto-Otero R. (2004) Autoxidation and MAO-mediated metabolism <strong>of</strong> dopam<strong>in</strong>e as<br />

a potential cause <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong>: role <strong>of</strong> ferrous and ferric ions. Neurochem. Int. 45,<br />

103–116. PMID: 15082228.<br />

176


REFERENCES


REFERENCES<br />

REFERENCES<br />

Aarts M., Liu Y., Liu L., Besshoh S., Arund<strong>in</strong>e M., Gurd J. W., Wang Y. T., Salter M. W. and<br />

Tymianski M. (2002) Treatment <strong>of</strong> ischemic bra<strong>in</strong> damage by perturb<strong>in</strong>g NMDA receptor–<br />

PSD-95 prote<strong>in</strong> <strong>in</strong>teractions. Science 298, 846–850.<br />

Abbott R. D., Petrovitch H., White L. R., Masaki K. H., Tanner C. M., Curb J. D., Grand<strong>in</strong>etti A.,<br />

Blanchette P. L., Popper J. S. and Ross G. W. (2001) Frequency <strong>of</strong> bowel movements and<br />

the future risk <strong>of</strong> Park<strong>in</strong>son’s disease. Neurology 57, 456–462.<br />

Abeliovich A. and Fl<strong>in</strong>t Beal M. (2006) Park<strong>in</strong>sonism genes: culprits and clues. J. Neurochem.<br />

99, 1062–1072.<br />

Abou-Sleiman P. M., Healy D. G., Qu<strong>in</strong>n N., Lees A. J. and Wood N. W. (2003) The role <strong>of</strong><br />

pathogenic DJ-1 mutations <strong>in</strong> Park<strong>in</strong>son’s disease. Ann. Neurol. 54, 283–286.<br />

Abou-Sleiman P. M., Muqit M. M. and Wood N. W. (2006) Expand<strong>in</strong>g <strong>in</strong>sights <strong>of</strong> mitochondrial<br />

dysfunction <strong>in</strong> Park<strong>in</strong>son's disease. Nat. Rev. Neurosci. 7, 207–219.<br />

Abubakar M. G., Taylor A. and Ferns G. A. (2004a) The effects <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and selenium<br />

supplementation on bra<strong>in</strong> and liver antioxidant status <strong>in</strong> the rat. Afr. J. Biotech. 3, 88–93.<br />

Abubakar M. G., Taylor A. and Ferns G. A. (2004b) Regional accumulation <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the<br />

rat bra<strong>in</strong> is affected by dietary vitam<strong>in</strong> E. J. Trace Elem. Med. Biol. 18, 53–59.<br />

Adler A. J., Caruso C. and Berlyne G. M. (1995) The effect <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on the vanadium-<br />

mediated oxidation <strong>of</strong> NADH. Nephron 69, 34–40.<br />

Aebischer P., Tresco P. A., Sagen J. and W<strong>in</strong>n S. R. (1991) Transplantation <strong>of</strong> microencapsulated<br />

bov<strong>in</strong>e chromaff<strong>in</strong> cells reduces lesion-<strong>in</strong>duced rotational asymmetry <strong>in</strong> rats. Bra<strong>in</strong> Res.<br />

560, 43–49.<br />

Agid Y. (1991) Park<strong>in</strong>son’s disease: pathophysiology. Lancet 337, 1321–1324.<br />

179


REFERENCES<br />

Agil A., Duran R., Barrero F., Morales B., Arauzo M., Alba F., Miranda M. T., Prieto I., Ramirez<br />

180<br />

M. and Vives F. (2006) Plasma lipid peroxidation <strong>in</strong> sporadic Park<strong>in</strong>son's disease. Role <strong>of</strong><br />

the L-dopa. J. Neurol. Sci. 240, 31–36.<br />

Ahern G. P., Klyachko V. A. and Jackson M. B. (2002) cGMP and S-nitrosylation: two routes for<br />

modulation <strong>of</strong> neuronal excitability by NO. Trends Neurosci. 25, 510–517.<br />

Alb<strong>in</strong> R. L., Young A. B. and Penney J. B. (1989) The functional anatomy <strong>of</strong> basal ganglia<br />

disorders. Trends Neurosci. 12, 366–375.<br />

Alexander G. E., DeLong M. R. and Strick P. L. (1986) Parallel organization <strong>of</strong> functionally<br />

segregated circuits l<strong>in</strong>k<strong>in</strong>g basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.<br />

Alexander G. E. and Crutcher M. D. (1990) Functional architecture <strong>of</strong> basal ganglia circuits:<br />

neural substrates <strong>of</strong> parallel process<strong>in</strong>g. Trends Neurosci. 13, 266 –271.<br />

Alfrey A. C. (1980) Alum<strong>in</strong>um metabolism <strong>in</strong> uremia. Neurotoxicol. 1, 43–53.<br />

Alfrey A. C. (1983) Alum<strong>in</strong>um. Adv. Cl<strong>in</strong>. Chem. 23, 69–91.<br />

Alfrey A. C. (1984) Alum<strong>in</strong>um toxicity. Bull. N. Y. Acad. Med. 60, 210–212.<br />

Alfrey A. C., LeGendre G. R. and Kaehny W. D. (1976) The dialysis encephalopathy syndrome.<br />

Possible alum<strong>in</strong>um <strong>in</strong>toxication. N. Engl. J. Med. 294, 184–188.<br />

Alfrey A. C., Hegg A. and Craswell P. (1980) Metabolism and toxicity <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> renal<br />

failure. Am. J. Cl<strong>in</strong>. Nutr. 33, 1509–1516.<br />

Alves G., Forsaa E. B., Pedersen K. F., Dreetz Gjerstad M. and Larsen J. P. (2008) Epidemiology<br />

<strong>of</strong> Park<strong>in</strong>son's disease. J. Neurol. 255, 18–32.<br />

Anane R., Bon<strong>in</strong>i M., Grafeille J. M. and Creppy E. E. (1995) Bioaccumulation <strong>of</strong> water soluble<br />

<strong>alum<strong>in</strong>ium</strong> chloride <strong>in</strong> the hippocampus after transdermal uptake <strong>in</strong> mice. Arch. Toxicol.<br />

69, 568–571.


REFERENCES<br />

Andersen J. K. (2004) Oxidative <strong>stress</strong> <strong>in</strong> neurodegeneration: cause or consequence? Nat. Med.<br />

10, S18–S25.<br />

Andrási E., Páli N., Molnár Z. and Kösel S. (2005) Bra<strong>in</strong> alum<strong>in</strong>um, magnesium and phosphorus<br />

contents <strong>of</strong> control and Alzheimer-diseased patients. J. Alzheimers Dis. 7, 273-24.<br />

Andres-Mateos E., Perier C., Zhang L., Blanchard-Fillion B., Greco T. M., Thomas B., Ko H. S.,<br />

Sasaki M., Ischiropoulos H., Przedborski S., Dawson T. M. and Dawson V. L. (2007) DJ-1<br />

gene deletion reveals that DJ-1 is an atypical peroxiredox<strong>in</strong>-like peroxidase. Proc. Natl.<br />

Acad. Sci. U. S. A. 104, 14807–14812.<br />

Atienzar F., Desor D., Burnel D., Keller J. M., Lehr P. and Vasseur P. (1998) Effect <strong>of</strong> alum<strong>in</strong>um<br />

on superoxide dismutase activity <strong>in</strong> the adult rat bra<strong>in</strong>. Biol. Trace Elem. Res. 65, 19–30.<br />

ATSDR (Agency for Toxic Substances and Disease Registry) (1999) Toxicological pr<strong>of</strong>ile for<br />

<strong>alum<strong>in</strong>ium</strong> (update). Atlanta, GA, U. S. Department <strong>of</strong> Health and Human Services, Public<br />

Health Service (TP-91/01).<br />

Attems J. and Jell<strong>in</strong>ger K. A. (2008) The dorsal motor nucleus <strong>of</strong> the vagus is not an obligatory<br />

trigger site <strong>of</strong> Park<strong>in</strong>son’s disease. Neuropathol. Appl. Neurobiol. 34, 466–467.<br />

Backman C. M., Malik N., Zhang Y., Shan L., Gr<strong>in</strong>berg A., H<strong>of</strong>fer B. J., Westphal H. and Tomac A.<br />

C. (2006) Characterization <strong>of</strong> a mouse stra<strong>in</strong> express<strong>in</strong>g Cre recomb<strong>in</strong>ase from the 3’<br />

untranslated region <strong>of</strong> the dopam<strong>in</strong>e transporter locus. Genesis 44, 383–390.<br />

Baldereschi M., Di Carlo A., Rocca W. A., Vanni P., Maggi S., Periss<strong>in</strong>otto E., Grigoletto F.,<br />

Amaducci L. and Inzitari D. (2000) Park<strong>in</strong>son's disease and park<strong>in</strong>sonism <strong>in</strong> a longitud<strong>in</strong>al<br />

study: two-fold higher <strong>in</strong>cidence <strong>in</strong> men. Neurology 55, 1358–1363.<br />

Baldi I., Cantagrel A., Lebailly P., Tison F., Dubroca B., Chrysostome V., Dartigues J. F. and<br />

Brochard P. (2003) Association between Park<strong>in</strong>son's disease and exposure to pesticides <strong>in</strong><br />

southwestern France. Neuroepidemiology 22, 305–310.<br />

181


REFERENCES<br />

Baquet Z. C., Bickford P. C. and Jones K. R. (2005) Bra<strong>in</strong>derived neurotrophic factor is required<br />

182<br />

for the establishment <strong>of</strong> the proper number <strong>of</strong> dopam<strong>in</strong>ergic neurons <strong>in</strong> the substantia<br />

nigra pars compacta. J. Neurosci. 25, 6251–6259.<br />

Barlow B. K., Cory-Slechta D. A., Richfield E. K. and Thiruchelvam M. (2007) The gestational<br />

environment and Park<strong>in</strong>son's disease: evidence for neurodevelopmental orig<strong>in</strong>s <strong>of</strong> a<br />

neurodegenerative disorder. Reprod. Toxicol. 23, 457–470.<br />

Baron J. A. (1986) Cigarette smok<strong>in</strong>g and Park<strong>in</strong>son's disease. Neurology 36, 1490–1496.<br />

Bartels A. L. and Leenders K. L. (2007) Neuro<strong>in</strong>flammation <strong>in</strong> the pathophysiology <strong>of</strong><br />

Park<strong>in</strong>son’s disease: evidence from animal models to human <strong>in</strong> vivo studies with *(11)C+-<br />

PK11195 PET. Movement Disorders 22, 1852–1856.<br />

Bast-Pattersen R., Drablos P. A., G<strong>of</strong>feng L. O., Thomassen Y. and Torres C. G. (1994)<br />

Neuropsychological deficit among elderly workers <strong>in</strong> alum<strong>in</strong>um production. Am. J. Ind.<br />

Med. 25, 649–662.<br />

Baydar T., Papp A., Ayd<strong>in</strong> A., Nagymajtenyi L., Schulz H., Isimer A. and Sah<strong>in</strong> G. (2003)<br />

Accumulation <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> rat bra<strong>in</strong>: does it lead to behavioral and electrophysiological<br />

changes? Biol. Trace Elem. Res. 92, 231–244.<br />

Beal M. F. (1998) Excitotoxicity and nitric oxide <strong>in</strong> Park<strong>in</strong>son’s disease pathogenesis. Ann.<br />

Neurol. 44, S110 –S114.<br />

Beal M. F. (2001) Experimental models <strong>of</strong> Park<strong>in</strong>son’s disease. Nat. Rev. Neurosci. 2, 325–334.<br />

Becaria A., Campbell A. and Bondy S. C. (2002) Alum<strong>in</strong>um as a toxicant. Toxicol. Ind. Health. 18,<br />

309–320.<br />

Becaria A., Bondy S.C. and Campbell A. (2003) Alum<strong>in</strong>um and copper <strong>in</strong>teract <strong>in</strong> the promotion<br />

<strong>of</strong> <strong>oxidative</strong> but not <strong>in</strong>flammatory events: implications for Alzheimer’s disease. J.<br />

Alzheimers Dis. 5, 31–38.


REFERENCES<br />

Beckman J. S. and Koppenol W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good,<br />

the bad, and ugly. Am. J. Physiol. 271, C1424– C1437.<br />

Benito-León J., Bermejo-Pareja F., Rodríguez J., Mol<strong>in</strong>a J. A., Gabriel R. and Morales J. M.<br />

(2003) Prevalence <strong>of</strong> PD and other types <strong>of</strong> park<strong>in</strong>sonism <strong>in</strong> three elderly populations <strong>of</strong><br />

central Spa<strong>in</strong>. Mov. Disord. 18, 267–274.<br />

Benito-León J., Bermejo-Pareja F., Morales-González J. M., Porta-Etessam J., Tr<strong>in</strong>cado R., Vega<br />

S. and Louis E. D. (2004) Incidence <strong>of</strong> Park<strong>in</strong>son disease and park<strong>in</strong>sonism <strong>in</strong> three elderly<br />

populations <strong>of</strong> central Spa<strong>in</strong>. Neurology 62, 734–741.<br />

Benner E. J., Banerjee R., Reynolds A. D., Sherman S., Pisarev V. M., Tsiperson V., Nemachek C.,<br />

Ciborowski P., Przedborski S., Mosley R. L. and Gendelman H. E. (2008) Nitrated alpha-<br />

synucle<strong>in</strong> immunity accelerates degeneration <strong>of</strong> nigral dopam<strong>in</strong>ergic neurons. PLoS ONE 3,<br />

e1376.<br />

Bernheimer H., Birkmayer W., Hornykiewicz O., Jell<strong>in</strong>ger K. and Seitelberger F. (1973) Bra<strong>in</strong><br />

dopam<strong>in</strong>e and the syndromes <strong>of</strong> Park<strong>in</strong>son and Hunt<strong>in</strong>gton. Cl<strong>in</strong>ical, morphological and<br />

neurochemical correlations. J. Neurol. Sci. 20, 415-455.<br />

Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V., and Greenamyre J. T.<br />

(2000) Chronic systemic pesticide exposure reproduces features <strong>of</strong> Park<strong>in</strong>son's disease.<br />

Nat. Neurosci. 3, 1301–1306.<br />

Betarbet R. Sherer T. B. and Greenamyre J. T. (2002) Animal models <strong>of</strong> Park<strong>in</strong>son’s disease.<br />

Bioessays 24, 308–318.<br />

Bezard E., Boraud T., Bioulac B. and Gross C. E. (1999) Involvement <strong>of</strong> the subthalamic nucleus<br />

<strong>in</strong> glutamatergic compensatory mechanisms. Eur. J. Neurosci. 11, 2167–2170.<br />

Bezard E., Dovero S., Prunier C., Ravenscr<strong>of</strong>t P., Chalon S., Guilloteau D., Crossman A. R.,<br />

Bioulac B., Brotchie J. M. and Gross C. E. (2001) Relationship between the appearance <strong>of</strong><br />

symptoms and the level <strong>of</strong> nigrostriatal degeneration <strong>in</strong> a progressive 1-methyl-4-phenyl-<br />

183


REFERENCES<br />

184<br />

1,2,3,6-tetrahydropyrid<strong>in</strong>e-lesioned macaque model <strong>of</strong> Park<strong>in</strong>son’s disease. J. Neurosci. 21,<br />

6853– 6861.<br />

Bharathi, Vasudevaraju P., Gov<strong>in</strong>daraju M., Palanisamy A. P., Sambamurti K. and Rao K. S. J.<br />

(2008) Molecular toxicity <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> relation to neurodegeneration. Indian J. Med.<br />

Res. 128, 545–556.<br />

Bishop N. J., Rob<strong>in</strong>son M. J., Lendon M., Hewitt C. D., Day J. P. and O'Hara M. (1989) Increased<br />

concentration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the bra<strong>in</strong> <strong>of</strong> a parenterally fed preterm <strong>in</strong>fant. Arch. Dis.<br />

Child. 64, 1316–1317.<br />

Biskup S., Gerlach M., Kupsch A., Reichmann H., Riederer P., Vieregge P., Wüllner U. and<br />

Gasser T. (2008) Genes associated with Park<strong>in</strong>son syndrome. J. Neurol. 255, 8–17.<br />

Björklund L. M., Sánchez-Pemaute R., Chung S., Andersson T., Chen I. Y., McNaught K. S.,<br />

Brownell A. L., Jenk<strong>in</strong>s B. G., Wahlestedt C., Kim K. S. and Isacson O. (2002) Embryonic<br />

stem cells develop <strong>in</strong>to functional dopam<strong>in</strong>ergic neurons after transplantation <strong>in</strong> a<br />

Park<strong>in</strong>son rat model. Proc. Natl. Acad. Sci. U. S. A. 99, 2344–2349.<br />

Blum-Degen D., Muller T., Kuhn W., Gerlach M., Przuntek H. and Riederer P. (1995) Interleuk<strong>in</strong>-<br />

1 beta and <strong>in</strong>terleuk<strong>in</strong>-6 are elevated <strong>in</strong> the cerebrosp<strong>in</strong>al fluid <strong>of</strong> Alzheimer’s and de novo<br />

Park<strong>in</strong>son’s disease patients. Neurosci. Lett. 202, 17–20.<br />

Boje K. M. (2004) Nitric oxide <strong>neurotoxicity</strong> <strong>in</strong> neurodegenerative diseases. Front. Biosci. 9,<br />

763–776.<br />

Boka G., Anglade P., Wallach D., Javoy-Agid F., Agid Y. and Hirsch E. C. (1994)<br />

Immunocytochemical analysis <strong>of</strong> tumor necrosis factor and its receptors <strong>in</strong> Park<strong>in</strong>son’s<br />

disease. Neurosci. Lett. 172, 151–154<br />

Bondy S. C. and Kirste<strong>in</strong> S. (1996) The promotion <strong>of</strong> iron <strong>in</strong>duced generation <strong>of</strong> reactive oxygen<br />

species <strong>in</strong> nerve tissue by alum<strong>in</strong>um. Mol. Chem. Neuropathol. 27, 185–94.<br />

Bondy S. C., Ali S. F. and Guo-Ross S. (1998) Alum<strong>in</strong>um but not iron treatment <strong>in</strong>duces pro-<br />

oxidant events <strong>in</strong> the rat bra<strong>in</strong>. Mol. Chem. Neuropathol. 34, 219–232.


REFERENCES<br />

Bonifati V., Rizzu P., van Baren M. J., Schaap O., Breedveld G. J., Krieger E., Dekker M. C.,<br />

Squitieri F., Ibanez P., Joosse M., van Dongen J. W., Vanacore N., van Swieten J. C., Brice<br />

A., Meco G., van Duijn C. M., Oostra B. A. and Heut<strong>in</strong>k P. (2003) Mutations <strong>in</strong> the DJ-1 gene<br />

associated with autosomal recessive early-onset park<strong>in</strong>sonism. Science 299, 256–259.<br />

Borgkvist A., Puelles E., Carta M., Acampora D., Ang S. L., Wurst W., Go<strong>in</strong>y M., Fisone G.,<br />

Simeone A. and Usiello A. (2006) Altered dopam<strong>in</strong>ergic <strong>in</strong>nervation and amphetam<strong>in</strong>e<br />

response <strong>in</strong> adult Otx2 conditional mutant mice. Mol. Cell. Neurosci. 31, 293–302.<br />

Braak H. and Braak E. (2000) Pathoanatomy <strong>of</strong> Park<strong>in</strong>son’s disease. J. Neurol. 247, II3–II10.<br />

Braak H., Del Tredici K., Rüb U., de Vos R. A. I., Jansen Steur E. N. H. and Braak E. (2003) Stag<strong>in</strong>g<br />

<strong>of</strong> bra<strong>in</strong> pathology related to sporadic Park<strong>in</strong>son's disease. Neurobiol. Ag<strong>in</strong>g 24, 197–211.<br />

Braak H., Bohl J. R., Müller C. M., Rüb U., de Vos R. A. and Del Tredici K. (2006) Stanley Fahn<br />

Lecture 2005: The stag<strong>in</strong>g procedure for the <strong>in</strong>clusion body pathology associated with<br />

sporadic Park<strong>in</strong>son's disease reconsidered. Mov. Disord. 21, 2042–2051.<br />

Braak H. and Del Tredici K. (2008) Invited Article: Nervous system pathology <strong>in</strong> sporadic<br />

Park<strong>in</strong>son disease. Neurology 70, 1916–1925.<br />

Brand M. D., Affourtit C., Esteves T. C., Green K., Lambert A. J., Miwa S., Pakay J. L. and Parker<br />

N. (2004) Mitochondrial superoxide: production, biological effects, and activation <strong>of</strong><br />

uncoupl<strong>in</strong>g prote<strong>in</strong>s. Free Radic. Biol. Med. 37, 755–767.<br />

Brooks A. I., Chadwick C. A., Gelbard H. A., Cory-Slechta D. A. and Feder<strong>of</strong>f H. J. (1999)<br />

Paraquat elicited neurobehavioral syndrome caused by dopam<strong>in</strong>ergic neuron loss. Bra<strong>in</strong><br />

Res. 823, 1–10.<br />

Brusewitz S. (1984) Alum<strong>in</strong>um, Vol 203. Stockholm, Sweden, University <strong>of</strong> Stockholm Institute<br />

<strong>of</strong> Theoretical Physics.<br />

Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., Kop<strong>in</strong> I. J. (1983) A<br />

primate model <strong>of</strong> park<strong>in</strong>sonism: selective destruction <strong>of</strong> dopam<strong>in</strong>ergic neurons <strong>in</strong> the pars<br />

185


REFERENCES<br />

186<br />

compacta <strong>of</strong> the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e. Proc.<br />

Natl. Acad. Sci. USA 80, 4546–4550.<br />

Cadenas E. and Davies K. J. (2000) Mitochondrial free radical generation, <strong>oxidative</strong> <strong>stress</strong>, and<br />

ag<strong>in</strong>g. Free Radic. Biol. Med. 29, 222–230.<br />

Campbell A., Hamai D. and Bondy S. C. (2001) Differential toxicity <strong>of</strong> alum<strong>in</strong>um salts <strong>in</strong> human<br />

cell l<strong>in</strong>es <strong>of</strong> neural orig<strong>in</strong>: implications for neurodegeneration. Neurotoxicology 22, 63–71.<br />

Campbell A., Yang E. Y., Tsai-Turton M. and Bondy S. C. (2002) Pro<strong>in</strong>flammatory effects <strong>of</strong><br />

alum<strong>in</strong>um <strong>in</strong> human glioblastoma cells. Bra<strong>in</strong> Res. 933, 60–65.<br />

Campbell A., Becaria A., Lahiri D. K., Sharman K. and Bondy S. C. (2004) Chronic exposure to<br />

alum<strong>in</strong>um <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water <strong>in</strong>creases <strong>in</strong>flammatory parameters selectively <strong>in</strong> the bra<strong>in</strong>. J.<br />

Neurosci. Res. 75, 565–572.<br />

Cann C. E., Pruss<strong>in</strong> S. G. and Gordan G. S. (1979) Alum<strong>in</strong>um uptake by the parathyroid gland. J.<br />

Cl<strong>in</strong>. Endocr<strong>in</strong>ol. Metab. 49, 543–545.<br />

Cannon J. R., Tapias V., Na H. M., Honick A. S., Drolet R. E. and Greenamyre T. J. (2009) A highly<br />

reproducible rotenone model <strong>of</strong> Park<strong>in</strong>son's disease. Neurobiol. Dis. 34, 279–290.<br />

Castano A., Herrera A. J., Cano J. and Machado A. (1998) Lipopolysaccharide <strong>in</strong>tranigral<br />

<strong>in</strong>jection <strong>in</strong>duces <strong>in</strong>flammatory reaction and damage <strong>in</strong> nigrostriatal dopam<strong>in</strong>ergic system.<br />

J. Neurochem. 70, 1584–1592.<br />

Cav<strong>in</strong>ess J. N., Driver-Dunckley E., Connor D. J., Sabbagh M. N., Hentz J. G., Noble B., Evidente<br />

V. G., Shill H. A. and Adler C. H. (2007) Def<strong>in</strong><strong>in</strong>g mild cognitive impairment <strong>in</strong> Park<strong>in</strong>son's<br />

disease. Mov. Disord. 22, 1272–1277.<br />

Cecar<strong>in</strong>i V., Gee J., Fioretti E., Amici M., Angeletti M., Eleuteri A. M. and Keller J. N. (2007)<br />

Prote<strong>in</strong> oxidation and cellular homeostasis: emphasis on metabolism. Biochim. Biophys.<br />

Acta 1773, 93–104.


REFERENCES<br />

Cedarbaum J. M. and McDowell F. H. (1987) Sixteen-year follow-up <strong>of</strong> 100 patients begun on<br />

levodopa <strong>in</strong> 1968: emerg<strong>in</strong>g problems. Adv. Neurol. 45, 469–472.<br />

Chartier-Harl<strong>in</strong> M. C., Kachergus J., Roumier C., Mouroux V., Douay X., L<strong>in</strong>coln S., Levecque C.,<br />

Larvor L., Andrieux J., Hulihan M., Waucquier N., Defebvre L., Amouyel P., Farrer M. and<br />

Destée A. (2004) Alpha-synucle<strong>in</strong> locus duplication as a cause <strong>of</strong> familial Park<strong>in</strong>son's<br />

disease. Lancet 364, 1167–1169.<br />

Chaudhuri K. R., Healy D. G. and Schapira A. H.; National Institute for Cl<strong>in</strong>ical Excellence (2006)<br />

Non-motor symptoms <strong>of</strong> Park<strong>in</strong>son's disease: diagnosis and management. Lancet Neurol.<br />

5, 235–45.<br />

Chen H., Zhang S. M., Hernan M. A., Schwarzschild M. A., Willett W. C., Colditz G. A., Speizer F.<br />

E. and Ascherio A. (2003) Nonsteroidal anti-<strong>in</strong>flammatory drugs and the risk <strong>of</strong> Park<strong>in</strong>son<br />

disease. Arch. Neurol. 60, 1059–1064.<br />

Chesselet M. F. (2007) In vivo alpha-synucle<strong>in</strong> overexpression <strong>in</strong> rodents: a useful model <strong>of</strong><br />

Park<strong>in</strong>son’s disease? Exp. Neurol. 209, 22–27.<br />

Cheung Z. H. and Ip N. Y. (2004) Cdk5: mediator <strong>of</strong> neuronal death and survival, Neurosci. Lett.<br />

361, 47–51.<br />

Cheung Z. H., Fu A. K., Ip N. Y. (2006) Synaptic roles <strong>of</strong> Cdk5: implications <strong>in</strong> higher cognitive<br />

functions and neurodegenerative diseases, Neuron 50, 13–18.<br />

Chiba K., Trevor A. and Castagnoli Jr. N. (1984) Metabolism <strong>of</strong> the neurotoxic tertiary am<strong>in</strong>e,<br />

MPTP, by bra<strong>in</strong> monoam<strong>in</strong>e oxidase. Biochem. Biophys. Res. Commun. 120, 574–578.<br />

Chiba K., Trevor A. J. and Castagnoli Jr. N.(1985) Active uptake <strong>of</strong> MPP + , a metabolite <strong>of</strong> MPTP,<br />

by bra<strong>in</strong> synaptosomes. Biochem. Biophys. Res. Commun 128, 1228–1232.<br />

Chung K. K. (2007) Say NO to neurodegeneration: role <strong>of</strong> S-nitrosylation <strong>in</strong> neurodegenerative<br />

disorders. Neurosignals 15, 307–313.<br />

187


REFERENCES<br />

Chung K. K., Dawson V. L. and Dawson T. M. (2001) The role <strong>of</strong> the ubiquit<strong>in</strong>–proteasomal<br />

188<br />

pathway <strong>in</strong> Park<strong>in</strong>son's disease and other neurodegenerative disorders. Trends Neurosci.<br />

24, S7–S14.<br />

Chung K. K., Thomas B., Li X., Pletnikova O., Troncoso J. C., Marsh L., Dawson V. L. and Dawson<br />

T. M. (2004) S-nitrosylation <strong>of</strong> park<strong>in</strong> regulates ubiquit<strong>in</strong>ation and compromises park<strong>in</strong>'s<br />

protective function. Science 304, 1328–1331.<br />

Cicchetti F., Brownell A. L., Williams K., Chen Y. I., Livni E. and Isacson O. (2002)<br />

Neuro<strong>in</strong>flammation <strong>of</strong> the nigrostriatal pathway dur<strong>in</strong>g progressive 6-OHDA dopam<strong>in</strong>e<br />

degeneration <strong>in</strong> rats monitored by immunohistochemistry and PET imag<strong>in</strong>g. Eur. J.<br />

Neurosci. 15, 991– 998.<br />

Clarke C. E. and Guttman M. (2002) Dopam<strong>in</strong>e agonist monotherapy <strong>in</strong> Park<strong>in</strong>son’s disease.<br />

Lancet 360, 1767–1769.<br />

Claveria L. E., Duarte J., Sevillano M. D., Pérez-Sempere A., Cabezas C., Rodríguez F. and de<br />

Pedro-Cuesta J. (2002) Prevalence <strong>of</strong> Park<strong>in</strong>son’s disease <strong>in</strong> Cantalejo, Spa<strong>in</strong>: a door-to-<br />

door survey. Mov. Disord. 17, 242–249.<br />

Colom<strong>in</strong>a M. T., Roig J. L., Sánchez D. J. and Dom<strong>in</strong>go J. L. (2002) Influence <strong>of</strong> age on<br />

alum<strong>in</strong>um-<strong>in</strong>duced neurobehavioral effects and morphological changes <strong>in</strong> rat bra<strong>in</strong>.<br />

Neurotoxicology 23, 775–781.<br />

Constant<strong>in</strong>i S. and Giordano R. (1991) Alum<strong>in</strong>ium determ<strong>in</strong>ation <strong>in</strong> complex matrixes, <strong>in</strong><br />

Alum<strong>in</strong>um <strong>in</strong> Chemistry, Biology and Medic<strong>in</strong>e, (Nicol<strong>in</strong>i M., Zatta P. F. and Cora<strong>in</strong> B., eds),<br />

pp. 21–29. Raven Press, New York.<br />

Conway K. A., Rochet J. C., Bieganski R. M., Lansbury Jr. P. T. (2001) K<strong>in</strong>etic stabilization <strong>of</strong> the<br />

alpha-synucle<strong>in</strong> prot<strong>of</strong>ibril by a dopam<strong>in</strong>e-alpha-synucle<strong>in</strong> adduct. Science 294, 1346–<br />

1349.<br />

Cookson M. R. (2005) The biochemistry <strong>of</strong> Park<strong>in</strong>son's disease. Annu. Rev. Biochem. 74, 29–52.


REFERENCES<br />

Cooper J. R., Bloom F. E. and Roth R. H. (1996) Dopam<strong>in</strong>e, <strong>in</strong> The Biochemical Basis <strong>of</strong><br />

Neuropharmacology (Cooper J. R., Bloom F. E. and Roth R. H., eds), 7th edn, pp. 293–351,<br />

Oxford University Press, New York.<br />

Cordeiro J. M., Silva V. S., Oliveira C. R. and Goncalves P. P. (2003) Alum<strong>in</strong>ium-<strong>in</strong>duced<br />

impairment <strong>of</strong> Ca 2+ modulatory action on GABA transport <strong>in</strong> bra<strong>in</strong> cortex nerve term<strong>in</strong>als.<br />

J. Inorg. Biochem. 97, 132–142.<br />

Crapper D. R., Krishnan S. S. and Dalton A. J. (1973) Bra<strong>in</strong> alum<strong>in</strong>um distribution <strong>in</strong> Alzheimer's<br />

disease and experimental neur<strong>of</strong>ibrillary degeneration. Science 180, 511–513.<br />

Cronan C. S. and Sch<strong>of</strong>ield C. L. (1979) Alum<strong>in</strong>um leach<strong>in</strong>g response to acid precipitation:<br />

effects on high-elevation watersheds <strong>in</strong> the northeast. Science 204, 304–306.<br />

Cutillas B., Espejo M., Gil J., Ferrer I. and Ambrosio S. (1999) Caspase <strong>in</strong>hibition protects nigral<br />

neurons aga<strong>in</strong>st 6-OHDA-<strong>in</strong>duced retrograde degeneration. Neuroreport 10, 2605–2608.<br />

Czlonkowska A., Kohutnicka M., Kurkowska-Jastrzebska I. and Czlonkowski A. (1996) Microglial<br />

reaction <strong>in</strong> MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e) <strong>in</strong>duced Park<strong>in</strong>son’s<br />

disease mice model. Neurodegeneration 5, 137–143.<br />

Danielson S. R. and Andersen J. K. (2008) Oxidative and nitrative prote<strong>in</strong> modifications <strong>in</strong><br />

Park<strong>in</strong>son's disease. Free Radic. Biol. Med. 44, 1787–1794.<br />

Darios F., Corti O., Lück<strong>in</strong>g C. B., Hampe C., Muriel M. P., Abbas N., Gu W. J., Hirsch E. C.,<br />

Rooney T., Ruberg M. and Brice A. (2003) Park<strong>in</strong> prevents mitochondrial swell<strong>in</strong>g and<br />

cytochrome c release <strong>in</strong> mitochondria-dependent cell death. Hum. Mol. Genet. 12, 517–<br />

526.<br />

Dauer W. and Przedborski S. (2003) Park<strong>in</strong>son's disease: mechanisms and models. Neuron 39,<br />

889–909.<br />

Davie C. A. (2008) A review <strong>of</strong> Park<strong>in</strong>son’s disease. Br. Med. Bull. 86, 109–127.<br />

189


REFERENCES<br />

Davies K. J. (2001) Degradation <strong>of</strong> oxidized prote<strong>in</strong>s by the 20S proteasome. Biochimie 83, 301–<br />

190<br />

310.<br />

Davis G. C., Williams A. C., Markey S. P., Ebert M. H., Ca<strong>in</strong>e E. D., Reichert C. M. and Kop<strong>in</strong> I. J.<br />

(1979) Chronic Park<strong>in</strong>sonism secondary to <strong>in</strong>travenous <strong>in</strong>jection <strong>of</strong> meperid<strong>in</strong>e analogues.<br />

Psychiatry Res. 1, 249-254.<br />

Dawson T. M. and Dawson V. L. (2003) Rare genetic mutations shed light on the pathogenesis<br />

<strong>of</strong> Park<strong>in</strong>son disease. J. Cl<strong>in</strong>. Invest. 111, 145–151.<br />

de Lau L. M. and Breteler M. M. (2006) Epidemiology <strong>of</strong> Park<strong>in</strong>son’s disease. Lancet Neurol. 5,<br />

525–535.<br />

de Lau L. M., Giesbergen P. C., de Rijk M. C., H<strong>of</strong>man A., Koudstaal P. J. and Breteler M. M.<br />

(2004) Incidence <strong>of</strong> park<strong>in</strong>sonism and Park<strong>in</strong>son disease <strong>in</strong> a general population: the<br />

Rotterdam Study. Neurology 63, 1240–1244.<br />

de Rijk M. C., Breteler M. M., Graveland G. A., Ott A., Grobee D. E., van der Meché F. G. and<br />

H<strong>of</strong>man A. (1995) Prevalence <strong>of</strong> Park<strong>in</strong>son’s disease <strong>in</strong> the elderly: the Rotterdam Study.<br />

Neurology 45, 2143–2146.<br />

de Rijk M. C., Rocca W. A., Anderson D. W., Melcon M. O., Breteler M. M. and Maraganore D.<br />

M. (1997a) A population perspective on diagnostic criteria for Park<strong>in</strong>son’s disease.<br />

Neurology 48, 1277–1281.<br />

de Rijk M. C., Tzourio C., Breteler M. M., Dartigues J. F., Amaducci L., Lopez-Pousa S.,<br />

Manubens-Bertran J. M., Alpérovitch A. and Rocca W. A. (1997b) Prevalence <strong>of</strong><br />

park<strong>in</strong>sonism and Park<strong>in</strong>son's disease <strong>in</strong> Europe: the EUROPARKINSON Collaborative Study.<br />

European Community Concerted Action on the Epidemiology <strong>of</strong> Park<strong>in</strong>son's disease, J.<br />

Neurol. Neurosurg. Psychiatry 62, 10–15.<br />

Deloncle R., Huguet F., Bab<strong>in</strong> P., Fernández B., Quellard N. and Guillard O. (1999) Chronic<br />

adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> L-glutamate <strong>in</strong> young mature rats: effects on iron levels and<br />

lipid peroxidation <strong>in</strong> selected bra<strong>in</strong> areas. Toxicol. Lett. 104, 65–73.


REFERENCES<br />

Deloncle R., Huguet E., Fernandez B., Quellard N., Bab<strong>in</strong> P. H. and Guillard O. (2001)<br />

Ultrastructural study <strong>of</strong> rat hippocampus after chronic adm<strong>in</strong>istration <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> L-<br />

glutamate: an acceleration <strong>of</strong> ag<strong>in</strong>g process. Exp. Gerontol. 36, 234–244.<br />

DeLong M. R. (1990) Primate models <strong>of</strong> movement disorders <strong>of</strong> basal ganglia orig<strong>in</strong>. Trends<br />

Neurosci. 13, 281–285.<br />

Demirkiran M., Bozdemir H. and Sarica Y. (2001) Vascular park<strong>in</strong>sonism: a dist<strong>in</strong>ct,<br />

heterogeneous cl<strong>in</strong>ical entity. Acta Neurol. Scand. 104, 63–67.<br />

Deng H., Dodson M. W., Huang H. and Guo M. (2008) The Park<strong>in</strong>son's disease genes p<strong>in</strong>k1 and<br />

park<strong>in</strong> promote mitochondrial fission and/or <strong>in</strong>hibit fusion <strong>in</strong> Drosophila. Proc. Natl. Acad.<br />

Sci. U. S. A. 105, 14503–14508.<br />

Deng Z., Coudray C., Gouzoux L., Mazur A., Rayssiguier Y. and Pep<strong>in</strong> D. (1998) Effect <strong>of</strong> oral<br />

alum<strong>in</strong>um and alum<strong>in</strong>um citrate on blood level and short-term tissue distribution <strong>of</strong><br />

alum<strong>in</strong>um <strong>in</strong> the rat. Biol. Trace. Elem. Res. 63, 139–147.<br />

Deng Z., Coudray C., Gouzoux L., Mazur A., Rayssiguier Y. and Pép<strong>in</strong> D. (2000) Effects <strong>of</strong> acute<br />

and chronic co<strong>in</strong>gestion <strong>of</strong> AlCl3 with citrate or polyphenolic acids on tissue retention and<br />

distribution <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> rats. Biol. Trace Elem. Res. 76, 245–256.<br />

Deumens R., Blokland A. and Prickaerts J. (2002) Model<strong>in</strong>g Park<strong>in</strong>son’s disease <strong>in</strong> rats: an<br />

evaluation <strong>of</strong> 6-OHDA lesions <strong>of</strong> the nigrostriatal pathway. Exp. Neurol. 175, 303– 317.<br />

Dexter D. T., Wells F. R., Lees A. J., Agid F., Agid Y., Jenner P. and Marsden C. D. (1989)<br />

Increased nigral iron content and alterations <strong>in</strong> other metal ions occurr<strong>in</strong>g <strong>in</strong> bra<strong>in</strong> <strong>in</strong><br />

Park<strong>in</strong>son's disease. J. Neurochem. 52, 1830-1836.<br />

Dexter D. T., Sian J., Jenner P. and Marsden C. D. (1993) Implications <strong>of</strong> alterations <strong>in</strong> trace<br />

element levels <strong>in</strong> bra<strong>in</strong> <strong>in</strong> Park<strong>in</strong>son’s disease and other neurological disorders affect<strong>in</strong>g<br />

the basal ganglia. Adv. Neurol. 60, 273–281.<br />

191


REFERENCES<br />

Dhillon A. S., Tarbutton L. G., Lev<strong>in</strong> J. L., Plotk<strong>in</strong> G. M., Lowry L. K., Nalbone T. J. and Shepherd<br />

192<br />

S. (2008) Pesticide/environmental exposures and Park<strong>in</strong>son's disease <strong>in</strong> East Texas. J.<br />

Agromedic<strong>in</strong>e 13, 37–48.<br />

Di J. and Bi S. (2003) Alum<strong>in</strong>um ions accelerated the <strong>oxidative</strong> <strong>stress</strong> <strong>of</strong> copper-mediated<br />

melan<strong>in</strong> formation. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 59, 3075–3083<br />

Di Paolo N., Masti A., Compar<strong>in</strong>i I. B., Garosi G., Di Paolo M., Cent<strong>in</strong>i F., Brardi S., Monaci G. and<br />

F<strong>in</strong>ato V. (1997) Uremia, dialysis and <strong>alum<strong>in</strong>ium</strong>. Int. J. Artif. Organs 20, 547–552.<br />

Dick F. D. (2006) Park<strong>in</strong>son’s disease and pesticide exposures. Br. Med. Bull. 79–80, 219–231.<br />

Dickson D. W., Ruan D., Crystal H., Mark M. H., Davies P., Kress Y. and Yen S. H. (1991)<br />

Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from<br />

Alzheimer's disease: light and electron microscopic immunocytochemistry <strong>of</strong> CA2-3<br />

neurites specific to DLBD. Neurology 41, 1402–1409.<br />

Dickson D. W., Fujishiro H., Delledonne A., Menke J., Ahmed Z., Klos K. J., Josephs K. A., Frigerio<br />

R., Burnett M., Parisi J. E. and Ahlskog J. E. (2008) Evidence that <strong>in</strong>cidental Lewy body<br />

disease is presymptomatic Park<strong>in</strong>son’s disease. Acta Neuropathol. 115, 437–444.<br />

D<strong>in</strong>g W. and Zhu Q. (1997) Metabolism <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> rats. Zhonghua Yu Fang Yi Xue Za Zhi<br />

31, 338–341.<br />

D<strong>in</strong>g Y., Restrepo J., Won L., Hwang D. Y., Kim K. S. and Kang U. J. (2007) Chronic 3,4-<br />

dihydroxyphenylalan<strong>in</strong>e treatment <strong>in</strong>duces dysk<strong>in</strong>esia <strong>in</strong> aphakia mice, a novel genetic<br />

model <strong>of</strong> Park<strong>in</strong>son’s disease. Neurobiol. Dis. 27, 11–23.<br />

Div<strong>in</strong>e K. K., Lewis J. L., Grant P. G. and Bench G. (1999) Quantitative particle-<strong>in</strong>duced X-ray<br />

emission imag<strong>in</strong>g <strong>of</strong> rat olfactory epithelium applied to the permeability <strong>of</strong> rat epithelium<br />

to <strong>in</strong>haled alum<strong>in</strong>um. Chem. Res. Toxicol. 12, 575–581.<br />

Dodson M. W. and Guo M. (2007) P<strong>in</strong>k1, Park<strong>in</strong>, DJ-1 and mitochondrial dysfunction <strong>in</strong><br />

Park<strong>in</strong>son's disease. Curr. Op<strong>in</strong>. Neurobiol. 17, 331–337.


REFERENCES<br />

Döllken U. (1897) Ueber die Wirkung des Alum<strong>in</strong>ium mit besonderer Berücksichtigung der<br />

durch das Alum<strong>in</strong>ium verursachten Läsionen im Centralnervensystem, Naunyn<br />

Schmiedebergs Arch. Exp. Path. Pharmac. 40, 98–120.<br />

Dom<strong>in</strong>go J. L., Gomez M., Llobet J. M. and Corbella J. (1991) Influence <strong>of</strong> some dietary<br />

constituents on alum<strong>in</strong>um absorption and retention <strong>in</strong> rats. Kidney Int. 39, 598–601.<br />

Dom<strong>in</strong>go J. L., Gomez M., Llobet J. M., del Castillo D. and Corbella J. (1994) Influence <strong>of</strong> citric,<br />

ascorbic and lactic acids on the gastro<strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> uremic rats.<br />

Nephron 66, 108–109.<br />

Dorsey E. R., Constant<strong>in</strong>escu R., Thompson J. P., Biglan K. M., Holloway R. G., Kieburtz K.,<br />

Marshall F. J., Rav<strong>in</strong>a B. M., Schifitto G., Siderowf A. and Tanner C. M. (2007) Projected<br />

number <strong>of</strong> people with Park<strong>in</strong>son disease <strong>in</strong> the most populous nations, 2005 through<br />

2030. Neurology 68, 384–386.<br />

Dua R. and Gill K. D. (2001) Alum<strong>in</strong>ium phosphide exposure: implications on rat bra<strong>in</strong> lipid<br />

peroxidation and antioxidant defence system. Pharmacol. Toxicol. 89, 315–319.<br />

Duffy P. E. and Tennyson V. M. (1965) Phase and electron microscopic observations <strong>of</strong> Lewy<br />

bodies and melan<strong>in</strong> granules <strong>in</strong> the substantia nigra and locus coeruleus <strong>in</strong> Park<strong>in</strong>son’s<br />

disease. J. Neuropathol. Exp. Neurol. 24, 398–414.<br />

Dymecki J., Lechowicz W., Bertrand E. and Szpak G. M. (1996) Changes <strong>in</strong> dopam<strong>in</strong>ergic<br />

neurons <strong>of</strong> the mesocorticolimbic system <strong>in</strong> Park<strong>in</strong>son’s disease. Folia Neuropathol. 34,<br />

102–106.<br />

Edwardson J. A., Ferrier I. N., McArthur F. K., McKeith L. G., McLaughl<strong>in</strong> I., Morris C. M.,<br />

Mountfort S. A., Oakley A. E., Taylor G. A., Ward M. K. and Candy J. M. (1991) Alzheimer’s<br />

disease and alum<strong>in</strong>um hypothesis, <strong>in</strong> Alum<strong>in</strong>um <strong>in</strong> Chemistry, Biology and Medic<strong>in</strong>e,<br />

(Nicol<strong>in</strong>i M., Zatta P. F. and Cora<strong>in</strong> B., eds), Raven Press, New York.<br />

193


REFERENCES<br />

Ekstrand M. I., Falkenberg M., Rantanen A., Park C. B., Gaspari M., Hultenby K., Rust<strong>in</strong> P.,<br />

194<br />

Gustafsson C. M. and Larsson N. G. (2004) Mitochondrial transcription factor A regulates<br />

mtDNA copy number <strong>in</strong> mammals. Hum. Mol. Genet. 13, 935–944.<br />

Elliott H. L., Dryburgh F., Fell G. S., Sabet S. and Macdougall A. I. (1978) Alum<strong>in</strong>um toxicity<br />

dur<strong>in</strong>g regular haemodialysis. Br. Med. J. 1, 1101–1103.<br />

El-Rahman S. S. (2003) Neuropathology <strong>of</strong> alum<strong>in</strong>um toxicity <strong>in</strong> rats (glutamate and GABA<br />

impairment). Pharmacol. Res. 47, 189–194.<br />

Emre M. (2003) Dementia associated with Park<strong>in</strong>son’s disease. Lancet Neurol. 2, 229–237.<br />

Engel L. S., Checkoway H., Keifer M. C., Seixas N. S., Longstreth W. T. Jr., Scott K. C., Hudnell K.,<br />

Anger W. K. and Camicioli R. (2001) Park<strong>in</strong>sonism and occupational exposure to pesticides.<br />

Occup. Environ. Med. 58, 582–589.<br />

Eriksen J. L., Wszolek Z. and Petrucelli L. (2005) Molecular pathogenesis <strong>of</strong> Park<strong>in</strong>son disease.<br />

Arch. Neurol. 62, 353–357.<br />

Esparza J. L., Gómez M., Romeu M., Mulero M., Sánchez D. J., Mallol J. and Dom<strong>in</strong>go J. L.<br />

(2003) Alum<strong>in</strong>um-<strong>in</strong>duced pro-oxidant effects <strong>in</strong> rats: protective role <strong>of</strong> exogenous<br />

melaton<strong>in</strong>. J. P<strong>in</strong>eal Res. 35, 32–39.<br />

Esparza J. L., Gómez M., Nogués M. R., Paterna<strong>in</strong> J. L., Mallol J. and Dom<strong>in</strong>go J. L. (2005)<br />

Melaton<strong>in</strong> reduces <strong>oxidative</strong> <strong>stress</strong> and <strong>in</strong>creases gene expression <strong>in</strong> the cerebral cortex<br />

and cerebellum <strong>of</strong> alum<strong>in</strong>um-exposed rats. J. P<strong>in</strong>eal Res. 39, 129–136.<br />

Exley C. (1998) Does antiperspirant use <strong>in</strong>crease the risk <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>-related disease,<br />

<strong>in</strong>clud<strong>in</strong>g Alzheimer’s disease? Mol. Med. Today 4, 107–109.<br />

Exley C. (1999) A molecular mechanism <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong>duced Alzheimer's disease? J. Inorg.<br />

Biochem. 76, 133–140.<br />

Exley C. (2004a) The pro-oxidant activity <strong>of</strong> alum<strong>in</strong>um. Free Radic. Biol. Med. 36, 380–387.


REFERENCES<br />

Exley C. (2004b) Alum<strong>in</strong>um <strong>in</strong> antiperspirants: more than just sk<strong>in</strong> deep. Am. J. Med. 117, 969–<br />

970.<br />

Exley C. and Esiri M. M. (2006) Severe cerebral congophilic angiopathy co<strong>in</strong>cident with<br />

<strong>in</strong>creased bra<strong>in</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> a resident <strong>of</strong> Camelford, Cornwall, UK. J. Neurol. Neurosurg.<br />

Psychiatry 77, 877–879.<br />

Exley C., Burgess E., Day J. P., Jeffery E. H., Melethil S. and Yokel R. A. (1996) Alum<strong>in</strong>um<br />

toxicok<strong>in</strong>etics. J. Toxicol. Environ. Health 48, 569–584.<br />

Fahn S. (2003) Description <strong>of</strong> Park<strong>in</strong>son’s disease as a cl<strong>in</strong>ical syndrome. Ann. N. Y. Acad. Sci.<br />

991, 1–14.<br />

Fahn S. and Przedborski S. (2000) Park<strong>in</strong>sonism, <strong>in</strong> Merritt's Neurology (Rowland L. P., ed), pp.<br />

679–693. Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s, New York.<br />

Fahn S. and Sulzer D. (2004) Neurodegeneration and neuroprotection <strong>in</strong> Park<strong>in</strong>son disease.<br />

NeuroRx. 1, 139–154.<br />

Faull R. L. and Laverty R. (1969) Changes <strong>in</strong> dopam<strong>in</strong>e levels <strong>in</strong> the corpus striatum follow<strong>in</strong>g<br />

lesions <strong>in</strong> the substantia nigra. Exp. Neurol. 23, 332–340.<br />

Fearnley J. M. and Lees A. J. (1991) Age<strong>in</strong>g and Park<strong>in</strong>son's disease: substantia nigra regional<br />

selectivity. Bra<strong>in</strong> 114, 2283–2301.<br />

Flarend R., B<strong>in</strong> T., Elmore D. and Hem S. L. (2001) A prelim<strong>in</strong>ary study <strong>of</strong> the dermal absorption<br />

<strong>of</strong> <strong>alum<strong>in</strong>ium</strong> from antiperspirants us<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong>-26. Food Chem. Toxicol. 39, 163–168.<br />

Flaten T. P. (2001) Alum<strong>in</strong>ium as a risk factor <strong>in</strong> Alzheimer’s disease, with emphasis on dr<strong>in</strong>k<strong>in</strong>g<br />

water. Bra<strong>in</strong> Res. Bull. 55, 187–196.<br />

Flaten T. P., Glattre E., Viste A. and Søoreide O. (1991) Mortality from dementia among<br />

gastroduodenal ulcer patients. J. Epidemiol. Community Health, 45, 203–206.<br />

195


REFERENCES<br />

Flem<strong>in</strong>g S. M., Delville Y. and Schallert T. (2005) An <strong>in</strong>termittent, controlled-rate, slow<br />

196<br />

progressive degeneration model <strong>of</strong> Park<strong>in</strong>son’s disease: antipark<strong>in</strong>son effects <strong>of</strong> S<strong>in</strong>emet<br />

and protective effects <strong>of</strong> methylphenidate. Behav. Bra<strong>in</strong> Res. 156, 201–213.<br />

Flohe L. and Gunzler W. A. (1984) Assays <strong>of</strong> glutathione peroxidase. Methods Enzymol. 105,<br />

114–121.<br />

Flora S. J., Mehta A., Satsangi K., Kannan G. M. and Gupta M. (2003) Alum<strong>in</strong>um-<strong>in</strong>duced<br />

<strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> rat bra<strong>in</strong>: response to comb<strong>in</strong>ed adm<strong>in</strong>istration <strong>of</strong> citric acid and HEDTA.<br />

Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134, 319–328.<br />

Forno L. S., DeLanney L. E., Irw<strong>in</strong> I. and Langston J. W. (1996) Electron microscopy <strong>of</strong> Lewy<br />

bodies <strong>in</strong> the amygdala-parahippocampal region. Comparison with <strong>in</strong>clusion bodies <strong>in</strong> the<br />

MPTP-treated squirrel monkey. Adv. Neurol. 69, 217–228.<br />

Friguet B. and Szweda L. I. (1997) Inhibition <strong>of</strong> the multicatalytic prote<strong>in</strong>ase (proteasome) by 4-<br />

hydroxy-2-nonenal cross-l<strong>in</strong>ked prote<strong>in</strong>. FEBS Lett. 405, 21–25.<br />

Froment D. P., Molitoris B. A., Budd<strong>in</strong>gton B., Miller N. and Alfrey A. C. (1989) Site and<br />

mechanism <strong>of</strong> enhanced gastro<strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> alum<strong>in</strong>um by citrate. Kidney Int. 36,<br />

978–984.<br />

Fu H. J., Hu Q. S., L<strong>in</strong> Z. N., Ren T. L., Song H., Cai C. K. and Dong S. Z. (2003) Alum<strong>in</strong>um-<strong>in</strong>duced<br />

apoptosis <strong>in</strong> cultured cortical neurons and its effect on SAPK/JNK signal transduction<br />

pathway. Bra<strong>in</strong> Res. 980, 11–23.<br />

Fuchs J., Nilsson C., Kachergus J. Munz M., Larsson E. M., Schüle B., Langston J. W., Middleton<br />

F.A., Ross O. A., Hulihan M., Gasser T. and Farrer M. J. (2007) Phenotypic variation <strong>in</strong> a<br />

large Swedish pedigree due to SNCA duplication and triplication. Neurology 68, 916–922.<br />

Gandhi S. and Wood N. W. (2005) Molecular pathogenesis <strong>of</strong> Park<strong>in</strong>son’s disease. Hum. Mol.<br />

Genet. 14, 2749–2755.<br />

Gandhi S., Muqit M. M., Stanyer L., Healy D. G., Abou-Sleiman P. M., Hargreaves I., Heales S.,<br />

Ganguly M., Parsons L., Lees A. J., Latchman D. S., Holton J. L., Wood N. W. and Revesz T.


REFERENCES<br />

(2006) PINK1 prote<strong>in</strong> <strong>in</strong> normal human bra<strong>in</strong> and Park<strong>in</strong>son's disease. Bra<strong>in</strong>, 129, 1720–<br />

1731.<br />

Ganrot P. O. (1986) Metabolism and possible health effects <strong>of</strong> alum<strong>in</strong>um. Environ. Health.<br />

Perspect. 65, 363–441.<br />

Gao H. M., Jiang J., Wilson B., Zhang W., Hong J. S. and Liu B. (2002) Microglial activation-<br />

mediated delayed and progressive degeneration <strong>of</strong> rat nigral dopam<strong>in</strong>ergic neurons:<br />

relevance to Park<strong>in</strong>son’s disease. J. Neurochem. 81:1285–1297.<br />

Garver D. L., Cedarbaum J. and Maas J. W. (1975) Blood-bra<strong>in</strong> barrier to 6-hydroxydopam<strong>in</strong>e:<br />

uptake by heart and bra<strong>in</strong>. Life Sci. 17, 1081–1084.<br />

Gasser T. (2009) Mendelian forms <strong>of</strong> Park<strong>in</strong>son's disease. Biochim. Biophys. Acta. 1792, 587–<br />

596.<br />

Gechev T., Gadjev I., van Breusegem F., Inzé D., Dukiandjiev S., Toneva V. and Monkov I. (2002)<br />

Hydrogen peroxide protects tobacco from <strong>oxidative</strong> <strong>stress</strong> by <strong>in</strong>duc<strong>in</strong>g a set <strong>of</strong> antioxidant<br />

enzymes. Cell Mol. Life Sci. 59, 708–714.<br />

Gelb D. J., Oliver E. and Gilman S. (1999) Diagnostic criteria for Park<strong>in</strong>son disease. Arch. Neurol.<br />

56, 33–39.<br />

Gelman D. M., Noa<strong>in</strong> D., Avale M. E., Otero V., Low M. J. and Rub<strong>in</strong>ste<strong>in</strong> M. (2003) Transgenic<br />

mice eng<strong>in</strong>eered to target Cre ⁄ loxP-mediated DNA recomb<strong>in</strong>ation <strong>in</strong>to catecholam<strong>in</strong>ergic<br />

neurons. Genesis 36, 196–202.<br />

Gerlach M., Blum-Degen D., Lan J. and Riederer P. (1999) Nitric oxide <strong>in</strong> the pathogenesis <strong>of</strong><br />

Park<strong>in</strong>son’s disease. Adv. Neurol. 80, 239–245.<br />

Ghribi O., Dewitt D. A., Forbes M. S., Arad A., Herman M. M. and Savory J. (2001a) Cyclospor<strong>in</strong><br />

A <strong>in</strong>hibits Al-<strong>in</strong>duced cytochrome c release from mitochondria <strong>in</strong> aged rabbits. J.<br />

Alzheimers Dis. 3, 387–391.<br />

197


REFERENCES<br />

Ghribi O., Dewitt D. A., Forbes M. S., Herman M. M. and Savory J. (2001b) Co-<strong>in</strong>volvement <strong>of</strong><br />

198<br />

mitochondria and endoplasmic reticulum <strong>in</strong> regulation <strong>of</strong> apoptosis: changes <strong>in</strong><br />

cytochrome-c, Bcl-2 and Bax <strong>in</strong> the hippocampus <strong>of</strong> Alum<strong>in</strong>ium treated rabbits. Bra<strong>in</strong> Res.<br />

8, 764–773.<br />

Ghribi O., Herman M. M., DeWitt D. A., Forbes M. S. and Savory J. (2001c) Abeta(1–42) and<br />

<strong>alum<strong>in</strong>ium</strong> <strong>in</strong>duce <strong>stress</strong> <strong>in</strong> the endoplasmic reticulum <strong>in</strong> rabbit hippocampus, <strong>in</strong>volv<strong>in</strong>g<br />

nuclear translocation <strong>of</strong> gadd 153 and NF-kappaB. Bra<strong>in</strong> Res. Mol. Bra<strong>in</strong> Res. 96, 30–38.<br />

Ghribi O., Herman M. M. and Savory J. (2002) The endoplasmic reticulum is the ma<strong>in</strong> site for<br />

Caspase-3 activation follow<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong>-<strong>in</strong>duced <strong>neurotoxicity</strong> <strong>in</strong> rabbit hippocampus.<br />

Neurosci. Lett. 324, 217–221.<br />

Giasson B. I. and Lee V. M. (2000) A new l<strong>in</strong>k between pesticides and Park<strong>in</strong>son’s disease. Nat.<br />

Neurosci. 3, 1227–1228.<br />

Giasson B. I., Duda J. E., Murray I. V., Chen Q., Souza J. M., Hurtig H. I., Ischiropoulos H.,<br />

Trojanowski J. Q. and Lee V. M. (2000) Oxidative damage l<strong>in</strong>ked to neurodegeneration by<br />

selective alpha-synucle<strong>in</strong> nitration <strong>in</strong> synucle<strong>in</strong>opathy lesions. Science 290, 985–989.<br />

Gibb W. R. and Lees A. J. (1988) The relevance <strong>of</strong> the Lewy body to the pathogenesis <strong>of</strong><br />

idiopathic Park<strong>in</strong>son’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752.<br />

Gitelman H. J., Aldernan F. R., Jurs-Lasky M. and Rockette H. E. (1995) Serum and ur<strong>in</strong>ary<br />

alum<strong>in</strong>um levels <strong>of</strong> workers <strong>in</strong> the alum<strong>in</strong>um <strong>in</strong>dustry. Ann. Occup. Hyg. 39, 181–191.<br />

Giuffra M. E., Sethy V. H., Davis T. L., Mouradian M. M. and Chase T. N. (1993) Milacemide<br />

therapy for Park<strong>in</strong>son's disease. Mov. Disord. 8, 47–50.<br />

Gl<strong>in</strong>ka Y. Y. and Youdim M. B. (1995) Inhibition <strong>of</strong> mitochondrial complexes I and IV by 6-<br />

hydroxydopam<strong>in</strong>e. Eur. J. Pharmacol. 292, 329–332.<br />

Gl<strong>in</strong>ka Y., Tipton K. F. and Youdim M. B. (1996) Nature <strong>of</strong> <strong>in</strong>hibition <strong>of</strong> mitochondrial<br />

respiratory complex I by 6-hydroxydopam<strong>in</strong>e. J. Neurochem. 66, 2004–2010.


REFERENCES<br />

Gl<strong>in</strong>ka Y., Tipton K. F. and Youdim M. B. H. (1998) Mechanism <strong>of</strong> <strong>in</strong>hibition <strong>of</strong> mitochondrial<br />

respiratory complex I by 6-hydroxydopam<strong>in</strong>e and its prevention by desferrioxam<strong>in</strong>e. Eur. J.<br />

Pharmacol. 351, 121–129.<br />

Goedert M. (2001) Alpha-synucle<strong>in</strong> and neurodegenerative diseases. Nat. Rev. Neurosci. 2,<br />

492–501.<br />

Goetz M. E. and Gerlach M. (2004) Formation <strong>of</strong> radicals, <strong>in</strong> Bra<strong>in</strong> damage and repair,<br />

(Herdegen T. and Delgado-Garcia J., eds), pp. 135–164,. Kluwer, London.<br />

Goldberg M. S., Flem<strong>in</strong>g S. M., Palac<strong>in</strong>o J. J., Cepeda C., Lam H. A., Bhatnagar A., Meloni E. G.,<br />

Wu N., Ackerson L. C., Klapste<strong>in</strong> G. J., Gajendiran M., Roth B. L., Chesselet M. F., Maidment<br />

N. T., Lev<strong>in</strong>e M. S. and Shen J. (2003) Park<strong>in</strong>-deficient mice exhibit nigrostriatal deficits but<br />

not loss <strong>of</strong> dopam<strong>in</strong>ergic neurons. J. Biol. Chem. 278, 43628–43635.<br />

Golub M. S., Germann S. L., Han B. and Keen C. L. (2000) Lifelong feed<strong>in</strong>g <strong>of</strong> a high alum<strong>in</strong>um<br />

diet to mice. Toxicology 150, 107–117.<br />

Gómez M., Esparza J. L., Dom<strong>in</strong>go J. L., S<strong>in</strong>gh P. K. and Jones M. M. (1999) Chelation therapy <strong>in</strong><br />

alum<strong>in</strong>um-loaded rats: <strong>in</strong>fluence <strong>of</strong> age. Toxicology 137, 161–168.<br />

Gómez M., Esparza J. L., Nogués M. R., Giralt M., Cabré M. and Dom<strong>in</strong>go JL. (2005) Pro-oxidant<br />

activity <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> the rat hippocampus: gene expression <strong>of</strong> antioxidant enzymes after<br />

melaton<strong>in</strong> adm<strong>in</strong>istration. Free Radic. Biol. Med. 38, 104–11.<br />

Gonçalves P. P. and Silva V. S. (2007) Does neurotransmission impairment accompany<br />

<strong>alum<strong>in</strong>ium</strong> <strong>neurotoxicity</strong>? J. Inorg. Biochem. 101, 1291–1338.<br />

González-Muñoz M. J., Meseguer I., Sanchez-Reus M. I., Schultz A., Olivero R., Benedí R. J. and<br />

Sánchez-Muniz F. J. (2008) Beer consumption reduces cerebral oxidation caused by<br />

alum<strong>in</strong>um toxicity by normaliz<strong>in</strong>g gene expression <strong>of</strong> tumor necrotic factor alpha and<br />

several antioxidant enzymes. Food Chem. Toxicol. 46, 1111–1118.<br />

199


REFERENCES<br />

Good P. F., Olanow C. W. and Perl D. P. (1992) Neuromelan<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g neurons <strong>of</strong> the<br />

200<br />

substantia nigra accumulate iron and alum<strong>in</strong>um <strong>in</strong> Park<strong>in</strong>son's disease: a LAMMA study.<br />

Bra<strong>in</strong> Res. 593, 343–346.<br />

Gorell J. M., Johnson C. C., Rybicki B. A., Peterson E. L., Kortsha G. X., Brown G. G. and<br />

Richardson R. J. (1997) Occupational exposures to metals as risk factors for Park<strong>in</strong>son's<br />

disease. Neurology 48, 650–658.<br />

Gorell J. M., Johnson C. C., Rybicki B. A., Peterson E. L. and Richardson R. J. (1998) The risk <strong>of</strong><br />

Park<strong>in</strong>son’s disease with exposure to pesticides, farm<strong>in</strong>g, well water, and rural liv<strong>in</strong>g.<br />

Neurology 50, 1346–1350.<br />

Gorell J. M., Johnson C. C., Rybicki B. A., Peterson E. L., Kortsha G. X., Brown G. G. and<br />

Richardson R. J. (1999) Occupational exposure to manganese, copper, lead, iron, mercury<br />

and z<strong>in</strong>c and the risk <strong>of</strong> Park<strong>in</strong>son's disease. Neurotoxicology 20, 239–247.<br />

Gorell J. M., Peterson E. L., Rybicki B. A. and Johnson C. C. (2004) Multiple risk factors for<br />

Park<strong>in</strong>son's disease. J. Neurol. Sci. 217, 169–174.<br />

Gow A. J., Farkouh C. R., Munson D. A., Posencheg M. A. and Ischiropoulos H. (2004) Biological<br />

significance <strong>of</strong> nitric oxidemediated prote<strong>in</strong> modifications. Am. J. Physiol. Lung. Cell. Mol.<br />

Physiol. 287, L262–L268.<br />

Graham D. G. (1978) Oxidative pathways for catecholam<strong>in</strong>es <strong>in</strong> the genesis <strong>of</strong> neuromelan<strong>in</strong><br />

and cytotoxic qu<strong>in</strong>ones. Mol. Pharmacol. 14, 633–643.<br />

Graves A. B., White E., Koepsell T. D., Reifler B. V., van Bell G. and Larson E. B. (1990) The<br />

association between alum<strong>in</strong>um-conta<strong>in</strong><strong>in</strong>g products and Alzheimer’s disease. J. Cl<strong>in</strong>.<br />

Epidemiol. 43, 35–44.<br />

Greger J. L. (1993) Alum<strong>in</strong>um metabolism. Annu. Rev. Nutr. 13, 43–63.<br />

Greger J. L. and Sutherland J. E. (1997) Alum<strong>in</strong>um exposure and metabolism. Crit. Rev. Cl<strong>in</strong>.<br />

Lab. Sci. 34, 439–474.


REFERENCES<br />

Grune T., Jung T., Merker K. and Davies K. J. (2004) Decreased proteolysis caused by prote<strong>in</strong><br />

aggregates, <strong>in</strong>clusion bodies, plaques, lip<strong>of</strong>usc<strong>in</strong>, ceroid, and ‘aggresomes’ dur<strong>in</strong>g <strong>oxidative</strong><br />

<strong>stress</strong>, ag<strong>in</strong>g, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530.<br />

Guillard O., Fauconneau B., Olichon D., Dedieu G. and Deloncle R. (2004) Hyperalum<strong>in</strong>emia <strong>in</strong> a<br />

woman us<strong>in</strong>g alum<strong>in</strong>um-conta<strong>in</strong><strong>in</strong>g antiperspirant for 4 years. Am. J. Med. 117, 956–959.<br />

Gupta A. and Shukla G. S. (1995) Effect <strong>of</strong> chronic alum<strong>in</strong>um exposure on the levels <strong>of</strong><br />

conjugated dienes and enzymatic antioxidants <strong>in</strong> hippocampus and whole bra<strong>in</strong> <strong>of</strong> rat. Bull.<br />

Environ. Contam. Toxicol. 55, 716–722.<br />

Gupta V. B., Anitha S., Hegde M. L., Zecca L., Garruto R. M., Ravid R., Shankar S. K., Ste<strong>in</strong> R.,<br />

Shanmugavelu P. and Jagannatha Rao K. S. (2005) Alum<strong>in</strong>ium <strong>in</strong> Alzheimer’s disease: are<br />

we still at a crossroad? Cell Mol. Life Sci. 62, 143–158.<br />

Gutteridge J. M. C., Qu<strong>in</strong>lan G. J., Clark I. and Halliwell B. (1985) Alum<strong>in</strong>ium salts accelerate<br />

peroxidation <strong>of</strong> membrane lipids stimulated by iron salts. Biochem. Biophys. Acta 835,<br />

441–447.<br />

Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59,<br />

1609–1623.<br />

Halliwell B. and Gutteridge J. M. (1985) The importance <strong>of</strong> free radicals and catalytic metal ions<br />

<strong>in</strong> human diseases. Mol. Aspects Med. 8, 89–193.<br />

Halliwell B. and Gutteridge J. M. C. (2003) Free radicals <strong>in</strong> biology and medic<strong>in</strong>e. Oxford<br />

University, New York.<br />

Halliwell B. and Gutteridge J. M. C. (2006) Free Radicals <strong>in</strong> Biology and Medic<strong>in</strong>e (4th edn).<br />

Oxford University Press, Oxford.<br />

Hallman H., Lange J., Olson L., Stromberg I. and Jonsson G. (1985) Neurochemical and<br />

histochemical characterization <strong>of</strong> neurotoxic effects <strong>of</strong> 1-methyl-4-phenyl-1,2,3,6-<br />

tetrahydropyrid<strong>in</strong>e on bra<strong>in</strong> catecholam<strong>in</strong>e neurones <strong>in</strong> the mouse. J. Neurochem. 44,<br />

117–127.<br />

201


REFERENCES<br />

Hamilton E. I., M<strong>in</strong>iski M. J. and Cearly J. J. (1973) The concentration and distribution <strong>of</strong> some<br />

202<br />

stable elements <strong>in</strong> healthy human tissues from the United K<strong>in</strong>gdom: An environmental<br />

study. Sci. Total Environ. 1, 341–374.<br />

Hantson P., Mahieu P., Gersdorff M., S<strong>in</strong>dic C. J. and Lauwerys R. (1994) Encephalopathy with<br />

seizures after use <strong>of</strong> <strong>alum<strong>in</strong>ium</strong>-conta<strong>in</strong><strong>in</strong>g bone cement. Lancet 344, 1647.<br />

Haque E. M., Thomas K. J., D’Souza C., Callaghan S., Kitada T., Slack R. S., Fraser P., Cookson M.<br />

R., Tandon A. and Park D. S. (2008) Cytoplasmic P<strong>in</strong>k1 activity protects neurons from<br />

dopam<strong>in</strong>ergic neurotox<strong>in</strong> MPTP. Proc. Natl. Acad. Sci. U. S. A. 105, 1716–1721.<br />

Harris W. R., Berthon G., Day J. P., Exley C., Flaten T. P., Forbes W. F., Kiss T., Orvig C. and Zatta<br />

P. F. (1996) Speciation <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> biological systems. J. Toxicol. Environ. Health. 48,<br />

543–568.<br />

Harris W. R., Berthon G., Day J. P., Exley C., Flaten T. P., Forbes W. F., Kiss T., Orvig C. and Zatta<br />

P. F. (1997) Speciation <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> biological systems, <strong>in</strong> Research issues <strong>in</strong> alum<strong>in</strong>um<br />

toxicity, (Yokel R. A. and Golub M. S., eds.), Taylor and Francis, Wash<strong>in</strong>gton DC, pp. 91–116.<br />

Harris W. R., Wang Z. and Hamada Y. Z. (2003) Competition between transferr<strong>in</strong> and the serum<br />

ligands citrate and phosphate for the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> alum<strong>in</strong>um. Inorg. Chem. 42, 3262–3273.<br />

Hartmann A., Hunot S. and Hirsch E. C. (2003) Inflammation and dopam<strong>in</strong>ergic neuronal loss <strong>in</strong><br />

Park<strong>in</strong>son’s disease: a complex matter. Exp. Neurol. 184, 561–564.<br />

Hawkes C. H., Del Tredici K. and Braak H. (2007) Park<strong>in</strong>son’s disease: a dual-hit hypothesis.<br />

Neuropathol. Appl. Neurobiol. 33, 599–614.<br />

He Y., Appel S. and Le W. (2001) M<strong>in</strong>ocycl<strong>in</strong>e <strong>in</strong>hibits microglial activation and protects nigral<br />

cells after 6-hydroxydopam<strong>in</strong>e <strong>in</strong>jection <strong>in</strong>to mouse striatum. Bra<strong>in</strong> Res. 909, 187–193.<br />

Healy D. G., Abou-Sleiman P. M. and Wood N. W. (2004) Genetic causes <strong>of</strong> Park<strong>in</strong>son's disease:<br />

UCHL-1. Cell Tissue Res. 318, 189–194.


REFERENCES<br />

Hegde R., Sr<strong>in</strong>ivasula S. M., Zhang Z., Wassell R., Mukattash R., Cilenti L., DuBois G., Lazebnik,<br />

Y., Zervos A. S., Fernandes-Alnemri T. and Alnemri E. S. (2002) Identification <strong>of</strong> Omi/HtrA2<br />

as a mitochondrial apoptotic ser<strong>in</strong>e protease that disrupts <strong>in</strong>hibitor <strong>of</strong> apoptosis prote<strong>in</strong>-<br />

caspase <strong>in</strong>teraction. J. Biol. Chem. 277, 432–438.<br />

Heikkila R. E., Manz<strong>in</strong>o L., Cabbat F. S. and Duvois<strong>in</strong> R. C. (1984) Protection aga<strong>in</strong>st the<br />

dopam<strong>in</strong>ergic <strong>neurotoxicity</strong> <strong>of</strong> 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrid<strong>in</strong>e by<br />

monoam<strong>in</strong>e oxidase <strong>in</strong>hibitors. Nature 311, 467–469.<br />

Heikkila R. E., Nicklas W. J. and Duvois<strong>in</strong> R. C. (1985) Dopam<strong>in</strong>ergic toxicity after the stereotaxic<br />

adm<strong>in</strong>istration <strong>of</strong> the 1-methyl-4-phenylpyrid<strong>in</strong>ium ion (MPP + ) to rats. Neurosci. Lett. 59,<br />

135–140.<br />

Hermida-Ameijeiras A., Méndez-Álvarez E., Sánchez-Iglesias S., Sanmartín-Suárez C. and Soto-<br />

Otero R. (2004) Autoxidation and MAO-mediated metabolism <strong>of</strong> dopam<strong>in</strong>e as a potential<br />

cause <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong>: role <strong>of</strong> ferrous and ferric ions. Neurochem. Int. 45, 103–116.<br />

Hernan M. A., Takkouche B., Caamano-Isorna F. and Gestal-Otero J. J. (2002) A meta-analysis<br />

<strong>of</strong> c<strong>of</strong>fee dr<strong>in</strong>k<strong>in</strong>g, cigarette smok<strong>in</strong>g, and the risk <strong>of</strong> Park<strong>in</strong>son’s disease. Ann. Neurol. 52,<br />

276–284.<br />

Herrera A. J., Castano A., Venero J. L., Cano J. and Machado A. (2000) The s<strong>in</strong>gle <strong>in</strong>tranigral<br />

<strong>in</strong>jection <strong>of</strong> LPS as a new model for study<strong>in</strong>g the selective effects <strong>of</strong> <strong>in</strong>flammatory reactions<br />

on dopam<strong>in</strong>ergic system. Neurobiol. Dis. 7, 429–447.<br />

Hertzman C., Wiens M., Bower<strong>in</strong>g D., Snow B. and Calne D. (1990) Park<strong>in</strong>son's disease: a case-<br />

control study <strong>of</strong> occupational and environmental risk factors. Am. J. Ind. Med. 17, 349–355.<br />

Hess D. T., Matsumoto A., Kim S. O., Marshall H. E., Stamler J. S. (2005) Prote<strong>in</strong> S-nitrosylation:<br />

purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166.<br />

Hilker R., Schweitzer K., Coburger S., et al. (2005) Nonl<strong>in</strong>ear progression <strong>of</strong> Park<strong>in</strong>son disease<br />

as determ<strong>in</strong>ed by serial positron emission tomographic imag<strong>in</strong>g <strong>of</strong> striatal fluorodopa F 18<br />

activity. Arch. Neurol. 62, 378 –382.<br />

203


REFERENCES<br />

Hirsch E. C., Brandel J. P., Galle P., Javoy-Agid F. and Agid Y. (1991) Iron and alum<strong>in</strong>um <strong>in</strong>crease<br />

204<br />

<strong>in</strong> the substantia nigra <strong>of</strong> patients with Park<strong>in</strong>son's disease: an X-ray microanalysis. J.<br />

Neurochem. 56, 446–451.<br />

Hirsh E. C., Hunot S., Damier P. and Faucheux B. (1998) Glial cells and <strong>in</strong>flammation <strong>in</strong><br />

Park<strong>in</strong>son’s disease: a role <strong>in</strong> neurodegeneration? Ann. Neurol. 44, S115–S120.<br />

Hirsch E. C., Hunot S., Faucheux B., Agid Y., Mizuno Y., Mochizuki H., Tatton W. G., Tatton N.<br />

and Olanow W. C. (1999) Dopam<strong>in</strong>ergic neurons degenerate by apoptosis <strong>in</strong> Park<strong>in</strong>son’s<br />

disease. Mov. Disord. 14, 383–385.<br />

Hochstrasser H., Bauer P., Walter U., Behnke S., Spiegel J., Csoti I., Zeiler B., Bornemann A.,<br />

Pahnke J., Becker G., Riess O., Berg D. (2004) Ceruloplasm<strong>in</strong> gene variations are associated<br />

with substantia nigra hyperechogenicity <strong>in</strong> Park<strong>in</strong>son’s disease. Neurology 63, 1912–1917.<br />

Hong S. J., Dawson T. M. and Dawson V. L. (2004) Nuclear and mitochondrial conversations <strong>in</strong><br />

cell death: PARP-1 and AIF signal<strong>in</strong>g. Trends Pharmacol. Sci. 25, 259–264.<br />

Hornykiewicz O. and Kish S. J. (1987) Biochemical pathophysiology <strong>of</strong> Park<strong>in</strong>son’s disease. Adv.<br />

Neurol. 45, 19–34.<br />

Hosovski E., Mastelica Z., Sunderic D. and Radulovic D. (1990) Mental abilities <strong>of</strong> workers<br />

exposed to alum<strong>in</strong>um. Med. Lav. 81, 119–123.<br />

Hsuan S. L., Kl<strong>in</strong>tworth H. M. and Xia Z. (2006) Basic fibroblast growth factor protects aga<strong>in</strong>st<br />

rotenone-<strong>in</strong>duced dopam<strong>in</strong>ergic cell death through activation <strong>of</strong> extracellular signal-<br />

regulated k<strong>in</strong>ases 1/2 and phosphatidyl<strong>in</strong>ositol-3 k<strong>in</strong>ase pathways. J. Neurosci. 26, 4481–<br />

4491.<br />

Hughes A. J., Daniel S. E., Kilford L. and Lees A. J. (1992a) Accuracy <strong>of</strong> cl<strong>in</strong>ical diagnosis <strong>of</strong><br />

idiopathic Park<strong>in</strong>son's disease: a cl<strong>in</strong>ico-pathological study <strong>of</strong> 100 cases. J. Neurol.<br />

Neurosurg. Psychiatry. 55, 181–184.


REFERENCES<br />

Hughes A. J., Ben-Shlomo Y., Daniel S. E. and Lees A. J. (1992b) What features improve the<br />

accuracy <strong>of</strong> cl<strong>in</strong>ical diagnosis <strong>in</strong> Park<strong>in</strong>son’s disease: A cl<strong>in</strong>icopathologic study. Neurology<br />

42, 1142–1146.<br />

Hughes A. J., Daniel S. E. and Lees A. J. (1993) The cl<strong>in</strong>ical features <strong>of</strong> Park<strong>in</strong>son’s disease <strong>in</strong> 100<br />

histologically proven cases. Adv. Neurol. 60, 595–599.<br />

Hughes A. J., Daniel S. E. and Lees A.J. (2001) Improved accuracy <strong>of</strong> cl<strong>in</strong>ical diagnosis <strong>of</strong> Lewy<br />

body Park<strong>in</strong>son’s disease. Neurology 57, 1497–1499.<br />

Hughes A. J., Daniel S. E., Ben-Shlomo Y. and Lees A. J. (2002) The accuracy <strong>of</strong> diagnosis <strong>of</strong><br />

park<strong>in</strong>sonian syndromes <strong>in</strong> a specialist movement disorder service. Bra<strong>in</strong> 125, 861–870.<br />

Hunot S., Boissiere F., Faucheux B., Brugg B., Mouatt-Prigent A. and Agid Y. (1996) Nitric oxide<br />

synthase and neuronal vulnerability <strong>in</strong> Park<strong>in</strong>son’s disease. Neuroscience 72, 355–363.<br />

Hunot S., Dugas N., Faucheux B., Hartmann A., Tardieu M., Debre P., Agid Y., Dugas B. and<br />

Hirsch E. C. (1999) FcepsilonRII/CD23 is expressed <strong>in</strong> Park<strong>in</strong>son’s disease and <strong>in</strong>duces, <strong>in</strong><br />

vitro, production <strong>of</strong> nitric oxide and tumor necrosis factor-alpha <strong>in</strong> glial cells. J. Neurosci.<br />

19, 3440–3447.<br />

Iaccar<strong>in</strong>o C., Crosio C., Vitale C., Sanna G., Carri M. T. and Barone P. (2007) Apoptotic<br />

mechanisms <strong>in</strong> mutant LRRK2-mediated cell death. Hum. Mol. Genet. 16, 1319–1326.<br />

Ibañez P., Bonnet A. M., Debarges B. Lohmann E., Tison F., Pollak P., Agid Y., Dürr A. and Brice<br />

A. (2004) Causal relation between alpha-synucle<strong>in</strong> gene duplication and familial<br />

Park<strong>in</strong>son’s disease. Lancet 364, 1169–1171.<br />

Ichitani I., Okamura H., Matsumoto Y., Nagatsu I. and Ibata Y. (1991) Degeneration <strong>of</strong> the nigral<br />

dopam<strong>in</strong>e neurons after 6-hydroxydopam<strong>in</strong>e <strong>in</strong>jection <strong>in</strong>to the rat striatum. Bra<strong>in</strong> Res.<br />

549, 330–353.<br />

Ilic T. V., Jovanovic M., Jovicic A. and Tomovic M. (1999) Oxidative <strong>stress</strong> <strong>in</strong>dicators are<br />

elevated <strong>in</strong> de novo Park<strong>in</strong>son's disease patients. Funct. Neurol. 14, 141–147.<br />

205


REFERENCES<br />

Inden M., Kitamura Y., Takeuchi H., Yanagida T., Takata K., Kobayashi Y., Taniguchi T.,<br />

206<br />

Yoshimoto K., Kaneko M., Okuma Y., Taira T., Ariga H. and Shimohama S. (2007)<br />

Neurodegeneration <strong>of</strong> mouse nigrostriatal dopam<strong>in</strong>ergic system <strong>in</strong>duced by repeated oral<br />

adm<strong>in</strong>istration <strong>of</strong> rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J.<br />

Neurochem. 101, 1491–1504.<br />

Inzelberg R., Schechtman E. and Paleacu D. (2002) Onset age <strong>of</strong> Park<strong>in</strong>son disease, Am. J. Med.<br />

Genet. 111, 459–460.<br />

Iravani M. M., Leung C. C., Sadeghian M., Haddon C. O., Rose S. and Jenner P. (2005) The acute<br />

and the long-term effects <strong>of</strong> nigral lipopolysaccharide adm<strong>in</strong>istration on dopam<strong>in</strong>ergic<br />

dysfunction and glial cell activation. Eur. J. Neurosci. 22, 317–330.<br />

Itier J. M., Ibanez P., Mena M. A., Abbas N., Cohen-Salmon C., Bohme G. A., Laville M., Pratt J.,<br />

Corti O., Pradier L., Ret G., Joubert C., Periquet M., Araujo F., Negroni J., Casarejos M. J.,<br />

Canals S., Solano R., Serrano A., Gallego E., Sanchez M., Denefle P., Benavides J., Tremp G.,<br />

Rooney T. A., Brice A. and Garcia de Yebenes J. (2003) Park<strong>in</strong> gene <strong>in</strong>activation alters<br />

behaviour and dopam<strong>in</strong>e neurotransmission <strong>in</strong> the mouse. Hum. Mol. Genet. 12, 2277–<br />

2291.<br />

Ittel T. H. (1993) Determ<strong>in</strong>ants <strong>of</strong> gastro<strong>in</strong>test<strong>in</strong>al absorption and distribution <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong><br />

health and uraemia. Nephrol. Dial. Transplant 8, 17–24.<br />

Jackson D. M. and Westl<strong>in</strong>d-Danielsson A. (1994) Dopam<strong>in</strong>e receptors: molecular biology,<br />

biochemistry and behavioral aspects. Pharmacol. Ther. 64, 291–370.<br />

Jang H., Boltz D. A., Webster R. G. and Smeyne R. J. (2009) Viral park<strong>in</strong>sonism. Biochim.<br />

Biophys. Acta. 1792, 714–721.<br />

Jankovic J. (2008) Park<strong>in</strong>son’s disease: cl<strong>in</strong>ical features and diagnosis. J. Neurol. Neurosurg.<br />

Psychiatry 79, 368–376.<br />

Jankovic J., McDermott M., Carter J., Gauthier S., Goetz C., Golbe L., Huber S., Koller W.,<br />

Olanow C., Shoulson I., Stern M., Tanner C., We<strong>in</strong>er W. and Park<strong>in</strong>son Study Group (1990)


REFERENCES<br />

Variable expression <strong>of</strong> Park<strong>in</strong>son’s disease: a base-l<strong>in</strong>e analysis <strong>of</strong> the DATATOP cohort.<br />

The Park<strong>in</strong>son Study Group. Neurology 40, 1529–1534.<br />

Javoy F., Sotelo C., Herbert A. and Agid Y. (1976) Specificity <strong>of</strong> dopam<strong>in</strong>ergic neuronal<br />

degeneration <strong>in</strong>duced by <strong>in</strong>tracerebral <strong>in</strong>jection <strong>of</strong> 6-hydroxydopam<strong>in</strong>e <strong>in</strong> the nigrostriatal<br />

dopam<strong>in</strong>e system. Bra<strong>in</strong> Res. 102, 201–215.<br />

Javoy-Agid F. and Agid Y. (1980) Is the mesocortical dopam<strong>in</strong>ergic system <strong>in</strong>volved <strong>in</strong> Park<strong>in</strong>son<br />

disease? Neurology 30, 1326–1330.<br />

Jell<strong>in</strong>ger K. A. (2004) Lewy body-related alpha-synucle<strong>in</strong>opathy <strong>in</strong> the aged human bra<strong>in</strong>. J.<br />

Neural Transm. 111, 1219–1235.<br />

Jenner P. (1998) Oxidative mechanisms <strong>in</strong> nigral cell death <strong>in</strong> Park<strong>in</strong>son's disease. Mov. Disord.<br />

13, 24–34.<br />

Jenner P. (2003) Oxidative <strong>stress</strong> <strong>in</strong> Park<strong>in</strong>son’s disease. Ann. Neurol. 53, S26 –S36.<br />

Jeon B. S., Jackson-Lewis V. and Burke R. E. (1995) 6-Hydroxydopam<strong>in</strong>e lesion <strong>of</strong> the rat<br />

substantia nigra: time course and morphology <strong>of</strong> cell death. Neurodegeneration 4, 131–<br />

137.<br />

Jiang H., Jackson-Lewis V., Muthane U., Dollison A., Ferreira M., Esp<strong>in</strong>osa A., Parsons B. and<br />

Przedborski S. (1993) Adenos<strong>in</strong>e receptor antagonists potentiate dopam<strong>in</strong>e receptor<br />

agonist-<strong>in</strong>duced rotational behaviour <strong>in</strong> 6-hydroxydopam<strong>in</strong>e-lesioned rats. Bra<strong>in</strong> Res. 613,<br />

347–351.<br />

Jiang H., Ren Y., Zhao J. and Feng J. (2004) Park<strong>in</strong> protects human dopam<strong>in</strong>ergic<br />

neuroblastoma cells aga<strong>in</strong>st dopam<strong>in</strong>e-<strong>in</strong>duced apoptosis. Hum. Mol. Genet. 13, 1745–<br />

1754.<br />

Joglar B., Rodriguez-Pallares J., Rodriguez-Perez A. I., Rey P., Guerra M. J. and Labandeira-<br />

Garcia J. L. (2009) The <strong>in</strong>flammatory response <strong>in</strong> the MPTP model <strong>of</strong> Park<strong>in</strong>son's disease is<br />

mediated by bra<strong>in</strong> angiotens<strong>in</strong>: relevance to progression <strong>of</strong> the disease. J. Neurochem.<br />

109, 656–669.<br />

207


REFERENCES<br />

Johnson V. J. and Sharma R. P. (2003) Alum<strong>in</strong>um disrupts the pro-<strong>in</strong>flammatory<br />

208<br />

cytok<strong>in</strong>e/neurotroph<strong>in</strong> balance <strong>in</strong> primary bra<strong>in</strong> rotation-mediated aggregate cultures:<br />

possible role <strong>in</strong> neurodegeneration. Neurotoxicology 24, 261–268.<br />

Johnson V. J., Kim S. H. and Sharma R. P. (2005) Alum<strong>in</strong>um-maltolate <strong>in</strong>duces apoptosis and<br />

necrosis <strong>in</strong> neuro-2a cells: potential role for p53 signal<strong>in</strong>g. Toxicol. Sci. 83, 329–339.<br />

Jones K. C. and Benett B. G. (1986) Exposure <strong>of</strong> man to environmental alum<strong>in</strong>um–An exposure<br />

commitment assessment. Sci. Total Environ. 52, 65–82.<br />

Jonsson G. (1983) Chemical lesion<strong>in</strong>g techniques: monoam<strong>in</strong>e neurotox<strong>in</strong>s, <strong>in</strong> Handbook <strong>of</strong><br />

Chemical Neuroanatomy. Methods <strong>in</strong> Chemical Neuroanatomy, (Björklund A. and Hökfelt<br />

T., eds), pp. 463–507. Elsevier Science Publisher B. V., Amsterdam.<br />

Jost W.H. (2003) Autonomic dysfunctions <strong>in</strong> idiopathic Park<strong>in</strong>son’s disease. J. Neurol. 250, I28–<br />

30.<br />

Julka D. and Gill K. D. (1996a) Effect <strong>of</strong> alum<strong>in</strong>um on regional bra<strong>in</strong> antioxidant defense status<br />

<strong>in</strong> Wistar rats. Res. Exp. Med. 196, 187–194.<br />

Julka D. and Gill K. D. (1996b) Altered calcium homeostasis: a possible mechanisms <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong>-<strong>in</strong>duced <strong>neurotoxicity</strong>. Biochim. Biophys. Acta 1315, 47–54.<br />

Julka D., Sandhir R. and Gill K. D. (1995) Altered chol<strong>in</strong>ergic metabolism <strong>in</strong> rat CNS follow<strong>in</strong>g<br />

alum<strong>in</strong>um exposure: implications on learn<strong>in</strong>g performance. J. Neurochem. 65, 2157–2164.<br />

Junn E., Jang W. H., Zhao X., Jeong B. S. and Mouradian M. M. (2009) Mitochondrial<br />

localization <strong>of</strong> DJ-1 leads to enhanced neuroprotection. J. Neurosci. Res. 87, 123–129.<br />

Jyoti A. and Sharma D. (2006) Neuroprotective role <strong>of</strong> Bacopa monniera extract aga<strong>in</strong>st<br />

<strong>alum<strong>in</strong>ium</strong>-<strong>in</strong>duced <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> the hippocampus <strong>of</strong> rat bra<strong>in</strong>. Neurotoxicology 27,<br />

451–457.<br />

Jyoti A., Sethi P. and Sharma D. (2007) Bacopa monniera prevents from <strong>alum<strong>in</strong>ium</strong><br />

<strong>neurotoxicity</strong> <strong>in</strong> the cerebral cortex <strong>of</strong> rat bra<strong>in</strong>. J. Ethnopharmacol. 111, 56–62.


REFERENCES<br />

Kalaitzakis M. E., Graeber M. B., Gentleman S. M. and Pearce R. K. (2008a) The dorsal motor<br />

nucleus <strong>of</strong> the vagus is not an obligatory trigger site <strong>of</strong> Park<strong>in</strong>son’s disease: a critical<br />

analysis <strong>of</strong> α-synucle<strong>in</strong> stag<strong>in</strong>g. Neuropathol. Appl. Neurobiol. 34, 284–295.<br />

Kalaitzakis M. E., Graeber M. B., Gentleman S. M. and Pearce R. K. (2008b) Controversies over<br />

the stag<strong>in</strong>g <strong>of</strong> α-synucle<strong>in</strong> pathology <strong>in</strong> Park<strong>in</strong>son’s disease. Acta Neuropathol. 116, 125–<br />

128.<br />

Kamsler A. and Segal M. (2004) Hydrogen peroxide as a diffusible signal molecule <strong>in</strong> synaptic<br />

plasticity. Mol. Neurobiol. 29, 167–178.<br />

Kandiah J. and Kies C. (1994) Alum<strong>in</strong>um concentrations <strong>in</strong> tissues <strong>of</strong> rats: effect <strong>of</strong> s<strong>of</strong>t dr<strong>in</strong>k<br />

packag<strong>in</strong>g. Biometals 7, 57–60.<br />

Katyal R., Desigan B., Sodhi C. P. and Ojha S. (1997) Oral alum<strong>in</strong>um adm<strong>in</strong>istration and<br />

<strong>oxidative</strong> <strong>in</strong>jury. Biol. Trace Elem. Res. 57, 125-130.<br />

Kavoussi L. R., Gelste<strong>in</strong> L. D. and Andriole G. L. (1986) Encephalopathy and an elevated serum<br />

alum<strong>in</strong>um level <strong>in</strong> a patient receiv<strong>in</strong>g <strong>in</strong>travesical alum irrigation for severe ur<strong>in</strong>ary<br />

hemorrhage. J. Urol. 136, 665–667.<br />

Kavya R., Saluja R., S<strong>in</strong>gh S. and Dikshit M. (2006) Nitric oxide synthase regulation and<br />

diversity: implications <strong>in</strong> Park<strong>in</strong>son's disease. Nitric Oxide 15, 280–294.<br />

Kawahara M. (2005) Effects <strong>of</strong> alum<strong>in</strong>um on the nervous system and its possible l<strong>in</strong>k with<br />

neurodegenerative diseases. J. Alzheimers Dis. 8, 171–182.<br />

Kawahara M. (2005) Effects <strong>of</strong> alum<strong>in</strong>um on the nervous system and its possible l<strong>in</strong>k with<br />

neurodegenerative diseases. J. Alzheimers Dis. 8, 171–182.<br />

Khanna P. and Nehru B. (2007) Antioxidant enzymatic system <strong>in</strong> neuronal and glial cells<br />

enriched fractions <strong>of</strong> rat bra<strong>in</strong> after alum<strong>in</strong>um exposure. Cell Mol. Neurobiol. 27, 959–969.<br />

209


REFERENCES<br />

Kim W. G., Mohney R. P., Wilson B., Jeohn G. H., Liu B. and Hong J. S. (2000) Regional<br />

210<br />

difference <strong>in</strong> susceptibility to lipopolysaccharide-<strong>in</strong>duced <strong>neurotoxicity</strong> <strong>in</strong> the rat bra<strong>in</strong>:<br />

role <strong>of</strong> microglia. J. Neurosci. 20, 6309–6316.<br />

Kim S., Nam J. and Kim K. (2007) Alum<strong>in</strong>um exposure decreases dopam<strong>in</strong>e D1 and D2 receptor<br />

expression <strong>in</strong> mouse bra<strong>in</strong>. Human Exp. Toxicol. 26, 741–746.<br />

Kish S. J., Shannak K., Rajput A., Deck J. H. and Hornykiewicz O. (1992) Ag<strong>in</strong>g produces a<br />

specific pattern <strong>of</strong> striatal dopam<strong>in</strong>e loss: implications for the etiology <strong>of</strong> idiopathic<br />

Park<strong>in</strong>son’s disease. J. Neurochem. 58, 642–648.<br />

Kitada T., Asakawa S., Hattori N., Matsum<strong>in</strong>e H., Yamamura Y., M<strong>in</strong>oshima S., Yokochi M.,<br />

Mizuno Y. and Shimizu N. (1998) Mutations <strong>in</strong> the park<strong>in</strong> gene cause autosomal recessive<br />

juvenile Park<strong>in</strong>sonism. Nature 392, 605–608.<br />

Kitada T., Pisani A., Porter D. R., Yamaguchi H., Tscherter A., Martella G., Bonsi P., Zhang C.,<br />

Pothos E. N. and Shen J. (2007) Impaired dopam<strong>in</strong>e release and synaptic plasticity <strong>in</strong> the<br />

striatum <strong>of</strong> PINK1-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 104, 11441–11446.<br />

Klatzo I., Wi’Sniewski H. and Streicher E. (1965) Experimental Production <strong>of</strong> Neur<strong>of</strong>ibrillary<br />

Degeneration. I. Light Microscopic Observations. J. Neuropathol. Exp. Neurol. 24, 187–199.<br />

Kle<strong>in</strong> C. and Schlossmacher M. G. (2007) Park<strong>in</strong>son disease, 10 years after its genetic<br />

revolution: multiple clues to a complex disorder. Neurology 69, 2093–2104.<br />

Kle<strong>in</strong> G. L. and Coburn J. W. (1994) Total parenteral nutrition and its effects on bone<br />

metabolism. Crit. Rev. Cl<strong>in</strong>. Lab. Sci. 31, 135–167.<br />

Kle<strong>in</strong> G. L., Alfrey A. C., Miller N. L., Sherrard D. J., Hazlet T. K., Ament M. E. and Coburn J. W.<br />

(1982) Alum<strong>in</strong>um load<strong>in</strong>g dur<strong>in</strong>g total parenteral nutrition. Am. J. Cl<strong>in</strong>. Nutr. 35, 1425–<br />

1429.<br />

Kle<strong>in</strong> G. L., Herndon D. N., Rutan T. C., Barnett J. R., Miller N. L. and Alfrey A. C. (1994) Risk <strong>of</strong><br />

alum<strong>in</strong>um accumulation <strong>in</strong> patients with burns and ways to reduce it. J. Burn Care Rehabil.<br />

15, 354–358.


REFERENCES<br />

Kl<strong>in</strong>tworth H., Garden G. and Xia Z. (2009) Rotenone and paraquat do not directly activate<br />

microglia or <strong>in</strong>duce <strong>in</strong>flammatory cytok<strong>in</strong>e release. Neurosci. Lett. 462, 1–5.<br />

Knott C., Stern G. and Wilk<strong>in</strong> G. P. (2000) Inflammatory regulators <strong>in</strong> Park<strong>in</strong>son’s disease: iNOS,<br />

Lipocort<strong>in</strong>-1, and cyclooxygenase-1 and-2. Mol. cell Neurosci. 16, 724–739.<br />

Koller W. C. (1992) How accurately can Park<strong>in</strong>son's disease be diagnosed? Neurology 42, 6–16.<br />

Koller W., Vetere-Overfield B., Gray C., Alexander C., Ch<strong>in</strong> T., Dolezal J., Hassane<strong>in</strong> R. and<br />

Tanner C. (1990) Environmental risk factors <strong>in</strong> Park<strong>in</strong>son’s disease. Neurology 40, 1218–<br />

1221.<br />

Kong S., Liochev S. and Fridovich I. (1992) Alum<strong>in</strong>um(III) facilitates the oxidation <strong>of</strong> NADH by<br />

the superoxide anion. Free Radic. Biol. Med. 13, 79–81.<br />

Korrell M. and Tanner C. M. (2005) Epidemiology <strong>of</strong> Park<strong>in</strong>son’s disease: an overview, <strong>in</strong><br />

Park<strong>in</strong>son’s disease (Ebadi M. and Pfeiffer R. F., eds), pp. 39–50. CRC Press, New York.<br />

Kovalchik M. T., Kaehny W. D., Hegg A. P., Jackson J. T. and Alfrey A. C. (1978) Alum<strong>in</strong>um<br />

k<strong>in</strong>etics dur<strong>in</strong>g hemodialysis. J. Lab. Cl<strong>in</strong>. Med. 92, 712–720.<br />

Krantic S., Mechawar N., Reix S. and Quirion R. (2005) Molecular basis <strong>of</strong> programmed cell<br />

death <strong>in</strong>volved <strong>in</strong> neurodegeneration. Trends Neurosci. 28, 670–676.<br />

Kreitzer A. C. and Malenka A. C. (2008) Striatal plasticity and basal ganglia circuit function.<br />

Neuron 60, 543–554.<br />

Krüger R., Kuhn W., Müller T., Woitalla D., Graeber M., Kösel S., Przuntek H., Epplen J.T., Schöls<br />

L. and Riess O. (1998) Ala30Pro mutation <strong>in</strong> the gene encod<strong>in</strong>g alpha-synucle<strong>in</strong> <strong>in</strong><br />

Park<strong>in</strong>son’s disease. Nat. Genet. 18, 106–108.<br />

Kubis N., Hirsch E. C. and Faucheux B. (1995) Variation dur<strong>in</strong>g ag<strong>in</strong>g <strong>in</strong> the number <strong>of</strong> bra<strong>in</strong><br />

stem catecholam<strong>in</strong>ergic neurones selectively vulnerable <strong>in</strong> Park<strong>in</strong>son’s disease. Neurology<br />

45, А239–А240.<br />

211


REFERENCES<br />

Kuhn W., W<strong>in</strong>kel R., Woitalla D., Meves S., Przuntek H. and Müller T. (1998) High prevalence <strong>of</strong><br />

212<br />

park<strong>in</strong>sonism after occupational exposure to lead-sulfate batteries. Neurology 50, 1885–<br />

1886.<br />

Kumar V. And Gill K. D. (2009) Alum<strong>in</strong>ium <strong>neurotoxicity</strong>: neurobehavioural and <strong>oxidative</strong><br />

aspects. Arch. Toxicol. In press. DOI 10.1007/s00204-009-0455-6. Published onl<strong>in</strong>e: 01 July<br />

2009.<br />

Kurland L. T. (1988) Amylotrophic lateral sclerosis and Park<strong>in</strong>son’s disease complex on Guam<br />

l<strong>in</strong>ked to an environmental neurotox<strong>in</strong>. Trends Neurosci. 5, 1151–1158.<br />

Kuzuhara S., Mori H., Izumiyama N., Yoshimura M. and Ihara Y. (1988) Lewy bodies are<br />

ubiquit<strong>in</strong>ated. A light and electron microscopic immunocytochemical study. Acta<br />

Neuropathol. 75, 345–353.<br />

Lai B. C., Marion S. A., Teschke K. and Tsui J. K. (2002) Occupational and environmental risk<br />

factors for Park<strong>in</strong>son’s disease. Park<strong>in</strong>sonism Relat. Disord. 8, 297–309.<br />

Lai B. C., Schulzer M., Marion S., Teschke K. and Tsui J. K. (2003) The prevalence <strong>of</strong> Park<strong>in</strong>son's<br />

disease <strong>in</strong> British Columbia, Canada, estimated by us<strong>in</strong>g drug tracer methodology.<br />

Park<strong>in</strong>sonism Relat. Disord. 9, 233–238.<br />

Landrigan, P. J., Sonawane B., Butler R. N., Trasande L., Callan R. and Droller D. (2005) Early<br />

environmental orig<strong>in</strong>s <strong>of</strong> neurodegenerative disease <strong>in</strong> later life. Environ. Health Perspect.<br />

113, 1230–1233.<br />

Lane E. and Dunnett S. (2008) Animal models <strong>of</strong> Park<strong>in</strong>son’s disease and L-dopa <strong>in</strong>duced<br />

dysk<strong>in</strong>esia: How close are we to the cl<strong>in</strong>ic? Psychopharmacology (Berl). 199, 303–312.<br />

Lang A. E. (2007) The progression <strong>of</strong> Park<strong>in</strong>son disease: a hypothesis. Neurology 68, 948–952.<br />

Lang A. E. and Lozano A. M. (1998) Park<strong>in</strong>son's disease. First <strong>of</strong> two parts. N. Engl. J. Med. 339,<br />

1044–1053.


REFERENCES<br />

Langston J. W. and Ballard Jr. P. A. (1983) Park<strong>in</strong>son’s disease <strong>in</strong> a chemist work<strong>in</strong>g with 1-<br />

methyl-4-phenyl-1,2,5,6-tetrahydropyrid<strong>in</strong>e. N. Engl. J. Med. 309, 310.<br />

Langston J. W., Ballard P., Tetrud J. W. and Irw<strong>in</strong> I. (1983) Chronic Park<strong>in</strong>sonism <strong>in</strong> humans due<br />

to a product <strong>of</strong> meperid<strong>in</strong>e-analog synthesis. Science 219, 979–980.<br />

Langston J. W., Irw<strong>in</strong> I., Langston E. B. and Forno L. S. (1984) Pargyl<strong>in</strong>e prevents MPTP-<strong>in</strong>duced<br />

park<strong>in</strong>sonism <strong>in</strong> primates. Science 225, 1480–1482.<br />

Langston J. W., Forno L. S., Tetrud J., Reeves A. G., Kaplan J. A. and Karluk D. (1999) Evidence <strong>of</strong><br />

active nerve cell degeneration <strong>in</strong> the substantia nigra <strong>of</strong> humans years after 1-methyl-4-<br />

phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e exposure. Ann. Neurol. 46, 598–605.<br />

Langston J. W. (2006) The Park<strong>in</strong>son’s complex: park<strong>in</strong>sonism is just the tip <strong>of</strong> the iceberg. Ann.<br />

Neurol. 59, 591–596.<br />

Lau Y. S., Trobough K. L., Crampton J. M. and Wilson J. A. (1990) Effects <strong>of</strong> probenecid on<br />

striatal dopam<strong>in</strong>e depletion <strong>in</strong> acute and longterm 1-methyl-4-phenyl-1,2,3,6-<br />

tetrahydropyrid<strong>in</strong>e (MPTP)-treated mice. Gen. Pharmacol. 21, 181–187.<br />

LaVoie M. J., Ostaszewski B. L., Weih<strong>of</strong>en A., Schlossmacher M. G. and Selkoe D. J. (2005)<br />

Dopam<strong>in</strong>e covalently modifies and functionally <strong>in</strong>activates park<strong>in</strong>. Nat. Med. 11, 1214–<br />

1221.<br />

Lee C. S., Sauer H. and Björklund A. (1996) Dopam<strong>in</strong>ergic neuronal degeneration and motor<br />

impairments follow<strong>in</strong>g axon term<strong>in</strong>al lesion by <strong>in</strong>trastriatal 6-hydroxydopam<strong>in</strong>e <strong>in</strong> the rat.<br />

Neuroscience 72, 641–653.<br />

Lee C. S., Samii A., Sossi V., Ruth T. J., Schulzer M., Holden J. E., Wudel J., Pal P. K., de la Fuente-<br />

Fernandez R., Calne D. B. and Stoessl A. J. (2000) In vivo positron emission tomographic<br />

evidence for compensatory changes <strong>in</strong> presynaptic dopam<strong>in</strong>ergic nerve term<strong>in</strong>als <strong>in</strong><br />

Park<strong>in</strong>son’s disease. Ann. Neurol. 47, 493–503.<br />

Leroy E., Boyer R., Auburger G., Leube B., Ulm G., Mezey E., Harta G., Brownste<strong>in</strong> M. J.,<br />

Jonnalagada S., Chernova T., Dehejia A., Lavedan C., Gasser T., Ste<strong>in</strong>bach P. J., Wilk<strong>in</strong>son<br />

213


REFERENCES<br />

214<br />

K.D. and Polymeropoulos M. H. (1998) The ubiquit<strong>in</strong> pathway <strong>in</strong> Park<strong>in</strong>son’s disease.<br />

Nature 395, 451–452.<br />

Lévesque L., Mizzen C. A., McLachlan D. R. and Fraser P. E. (2000) Ligand specific effects <strong>of</strong><br />

alum<strong>in</strong>um <strong>in</strong>corporation and toxicity <strong>in</strong> neurons and astrocytes. Bra<strong>in</strong> Res. 877, 191–202.<br />

Lev<strong>in</strong> B. E. and Katzen H. L. (2005) Early cognitive changes and nondement<strong>in</strong>g behavioral<br />

abnormalities <strong>in</strong> Park<strong>in</strong>son's disease. Adv. Neurol. 96, 84–94.<br />

Levy O. A., Malagelada C. and Greene L. A. (2009) Cell death pathways <strong>in</strong> Park<strong>in</strong>son's disease:<br />

proximal triggers, distal effectors, and f<strong>in</strong>al steps. Apoptosis 14, 478–500.<br />

Lewis J. L., Hahn F. F. and Dahl A. R. (1994) Transport <strong>of</strong> <strong>in</strong>haled toxicants to the central<br />

nervous system. Characteristics <strong>of</strong> a nose-bra<strong>in</strong> barrier, <strong>in</strong> The vulnerable bra<strong>in</strong> and<br />

environmental risks, tox<strong>in</strong>s <strong>in</strong> air and water, (Isaacson R. L. and Jensen K. F., eds), Vol. 3,<br />

pp. 77–103. Plenum Press, New York.<br />

L<strong>in</strong> J. L., Yang Y. J., Yang S. S. and Leu M. L. (1997) Alum<strong>in</strong>um utensils contribute to alum<strong>in</strong>um<br />

accumulation <strong>in</strong> patients with renal disease. Am. J. Kidney Dis. 30, 653–658.<br />

L<strong>in</strong>deberg J., Usosk<strong>in</strong> D., Bengtsson H., Gustafsson A., Kylberg A., Soderstrom S. and Ebendal T.<br />

(2004) Transgenic expression <strong>of</strong> Cre recomb<strong>in</strong>ase from the tyros<strong>in</strong>e hydroxylase locus.<br />

Genesis 40, 67–73.<br />

L<strong>in</strong>g Z., Gayle D. A., Ma S. Y., Lipton J. W., Tong C. W., Hong J. S. and Carvey P. M. (2002) In<br />

utero bacterial endotox<strong>in</strong> exposure causes loss <strong>of</strong> tyros<strong>in</strong>e hydroxylase neurons <strong>in</strong> the<br />

postnatal rat midbra<strong>in</strong>. Mov. Disord. 17, 116–124.<br />

L<strong>in</strong>g Z., Chang Q. A., Tong C. W., Leurgans S. E., Lipton J. W. and Carvey P. M. (2004) Rotenone<br />

potentiates dopam<strong>in</strong>e neuron loss <strong>in</strong> animals exposed to lipopolysaccharide prenatally.<br />

Exp. Neurol. 190, 373–383.<br />

L<strong>in</strong>g Z., Zhu Y., Tong C., Snyder J. A., Lipton J. W. and Carvey P. M. (2006) Progressive dopam<strong>in</strong>e<br />

neuron loss follow<strong>in</strong>g supra-nigral lipopolysaccharide (LPS) <strong>in</strong>fusion <strong>in</strong>to rats exposed to<br />

LPS prenatally. Exp. Neurol. 199, 499–512.


REFERENCES<br />

Lione A. (1983) The prophylactic reduction <strong>of</strong> alum<strong>in</strong>um <strong>in</strong>take. Food Chem. Toxicol. 21, 103–<br />

109.<br />

Lione A. (1984) Alum<strong>in</strong>um <strong>in</strong> foods. Nutr. Rev. 42, 31.<br />

Lione A. (1985) Alum<strong>in</strong>um toxicology and the alum<strong>in</strong>um-conta<strong>in</strong><strong>in</strong>g medications. Pharmacol.<br />

Ther. 29, 255–285.<br />

Litvan I., Bhatia K. P., Burn D. J., Goetz C. G., Lang A. E., McKeith I., Qu<strong>in</strong>n N., Sethi K. D., Shults<br />

C. and Wenn<strong>in</strong>g G. K. (2003) Movement Disorders Society Scientific Issues Committee<br />

report: SIC Task Force appraisal <strong>of</strong> cl<strong>in</strong>ical diagnostic criteria for Park<strong>in</strong>sonian disorders.<br />

Mov. Disord. 18, 467–486.<br />

Ljunggren K. G., Lidums V. and Sjögren B. (1991) Blood and ur<strong>in</strong>e concentrations <strong>of</strong> <strong>alum<strong>in</strong>ium</strong><br />

among workers exposed to <strong>alum<strong>in</strong>ium</strong> flake powders. Br. J. Ind. Med. 48, 106–109.<br />

López-Real A., Rey P., Soto-Otero R., Méndez-Álvarez E. and Labandeira-García J. L. (2005)<br />

Antiotens<strong>in</strong>-convert<strong>in</strong>g enzyme <strong>in</strong>hibition reduces <strong>oxidative</strong> <strong>stress</strong> and protects<br />

dopam<strong>in</strong>ergic neurons <strong>in</strong> a 6-hydroxydopam<strong>in</strong>e rat model <strong>of</strong> park<strong>in</strong>sonism. J. Neurosci.<br />

Res. 81, 865–873.<br />

Louis E. D., Marder K., Cote L., Wilder D., Tang M. X., Lantigua R., Gurland B. and Mayeux R.<br />

(1996) Prevalence <strong>of</strong> a history <strong>of</strong> shak<strong>in</strong>g <strong>in</strong> persons 65 years <strong>of</strong> age and older: diagnostic<br />

and functional correlates. Mov. Disord. 11, 63–69.<br />

Louis E. D., Tang M. X., Cote L., Alfaro B., Mejia H. and Marder K. (1999) Progression <strong>of</strong><br />

park<strong>in</strong>sonian signs <strong>in</strong> Park<strong>in</strong>son disease. Arch. Neurol. 56, 334–337.<br />

Luthman J., Fredriksson A., Sundström E., Jonsson G. and Archer T. (1989) Selective lesion <strong>of</strong><br />

central dopam<strong>in</strong>e or noradrenal<strong>in</strong>e neuron systems <strong>in</strong> the neonatal rat: motor behavior<br />

and monoam<strong>in</strong>e alterations at adult stage. Behav. Bra<strong>in</strong> Res. 33, 267–277.<br />

Mann V. M., Cooper J. M., Daniel S. E., Srai K., Jenner P., Marsden C. D., Schapira A. H. (1994)<br />

Complex I, iron, and ferrit<strong>in</strong> <strong>in</strong> Park<strong>in</strong>son’s disease substantia nigra. Ann. Neurol. 36, 876–<br />

881.<br />

215


REFERENCES<br />

Maraganore D. M., Lesnick T. G., Elbaz A., Chartier-Harl<strong>in</strong> M. C., Gasser T., Krüger R., Hattori N.,<br />

216<br />

Mellick G. D., Quattrone A., Satoh J., Toda T., Wang J., Ioannidis J. P., de Andrade M., Rocca<br />

W.A.; UCHL1 Global Genetics Consortium. (2004) UCHL1 is a Park<strong>in</strong>son's disease<br />

susceptibility gene. Ann. Neurol. 55, 512–521.<br />

Marek K., Jenn<strong>in</strong>gs D. and Seibyl J. (2002) Do dopam<strong>in</strong>e agonists or levodopa modify<br />

Park<strong>in</strong>son’s disease progression? Eur. J. Neurol. 9, 15–22.<br />

Markesbery W. R., Ehmann W. D., Hossa<strong>in</strong> T. I., Alaudd<strong>in</strong> M. and Good<strong>in</strong> D. T. (1981)<br />

Instrumental neutron activation analysis <strong>of</strong> bra<strong>in</strong> alum<strong>in</strong>um <strong>in</strong> Alzheimer disease and<br />

ag<strong>in</strong>g. Ann. Neurol. 10, 511–516.<br />

Markesbery W. R., Ehmann W. D., Alaudd<strong>in</strong> M. and Hossa<strong>in</strong> T. I. (1984) Bra<strong>in</strong> trace element<br />

concentrations <strong>in</strong> ag<strong>in</strong>g. Neurobiol. Ag<strong>in</strong>g 5, 19–28.<br />

Markey S. P., Johannessen J. N., Chiueh C. C., Burns R. S. and Herkenham M. A. (1984)<br />

Intraneuronal generation <strong>of</strong> a pyrid<strong>in</strong>ium metabolite may cause drug-<strong>in</strong>duced<br />

park<strong>in</strong>sonism. Nature 311, 464–467.<br />

Markwell M. A., Haas S. M., Bieber L. L. and Tolbert N. E. (1978) A modification <strong>of</strong> the Lowry<br />

procedure to simplify prote<strong>in</strong> determ<strong>in</strong>ation <strong>in</strong> membrane and lipoprote<strong>in</strong> samples. Anal.<br />

Biochem. 87, 206–210.<br />

Marongiu R., Spencer B., Crews L., Adame A., Patrick C., Trejo M., Dallapiccola B., Valente E. M.<br />

and Masliah E. (2009) Mutant P<strong>in</strong>k1 <strong>in</strong>duces mitochondrial dysfunction <strong>in</strong> a neuronal cell<br />

model <strong>of</strong> Park<strong>in</strong>son's disease by disturb<strong>in</strong>g calcium flux. J. Neurochem. 108, 1561–1574.<br />

Marsden C. D. (1983) Neuromelan<strong>in</strong> and Park<strong>in</strong>son's disease. J. Neural Transm. Suppl. 19, 121–<br />

141.<br />

Marshansky V. N., Novgorodov S. A. and Yaguzh<strong>in</strong>sky L. S. (1983) The role <strong>of</strong> lipid peroxidation<br />

<strong>in</strong> the <strong>in</strong>duction <strong>of</strong> cation transport <strong>in</strong> rat liver mitochondria. The antioxidant effect <strong>of</strong><br />

oligomyc<strong>in</strong> and dicyclohexylcarbodiimide. FEBS Lett. 158, 27–30.


REFERENCES<br />

Marti M. J., James C.J., Oo T. F., Kelly W. J. and Burke R. E. (1997) Early developmental<br />

destruction <strong>of</strong> term<strong>in</strong>als <strong>in</strong> the striatal target <strong>in</strong>duces apoptosis <strong>in</strong> dopam<strong>in</strong>e neurons <strong>of</strong><br />

the substantia nigra. J. Neurosci. 17, 2030–2039.<br />

Mart<strong>in</strong> R. B. (1986) The chemistry <strong>of</strong> alum<strong>in</strong>um as related to biology and medic<strong>in</strong>e. Cl<strong>in</strong>. Chem.<br />

32, 1797–1806.<br />

Mart<strong>in</strong> R. B. (1997) Chemistry <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> the central nervous system, <strong>in</strong> M<strong>in</strong>eral and Metal<br />

Neurotoxicology (Yasui M., Strong M. J., Ota K. and Verity M. A., eds), Vol. 80, pp. 75–80.<br />

CRC Press, Boca Raton, Florida.<br />

Mart<strong>in</strong>ez-Mart<strong>in</strong> P., Gil-Nagel A., Gracia L. M., Gomez J. B., Mart<strong>in</strong>ez-Sarries J. and Bermejo F.<br />

(1994) Unified Park<strong>in</strong>son’s Disease Rat<strong>in</strong>g Scale characteristics and structure. Mov. Disord.<br />

9, 76–83.<br />

Mart<strong>in</strong>ez-Vicente M., Talloczy Z., Kaushik S., Massey A. C., Mazzulli J., Mosharov E. V., Hodara<br />

R., Fredenburg R., Wu D. C., Follenzi A., Dauer W., Przedborski S., Ischiropoulos H.,<br />

Lansbury P. T., Sulzer D. and Cuervo A. M. (2008) Dopam<strong>in</strong>e-modified alpha-synucle<strong>in</strong><br />

blocks chaperone-mediated autophagy. J. Cl<strong>in</strong>. Invest. 118, 777–788.<br />

Masliah E., Rockenste<strong>in</strong> E., Ve<strong>in</strong>bergs I., Mallory M., Hashimoto M., Takeda A., Sagara Y., Sisk<br />

A. and Mucke L. (2000) Dopam<strong>in</strong>ergic loss and <strong>in</strong>clusion body formation <strong>in</strong> alpha-synucle<strong>in</strong><br />

mice: implications for neurodegenerative disorders. Science 287, 1265–1269.<br />

Mattson M. P. (2000) Apoptosis <strong>in</strong> neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1,<br />

120–129.<br />

Mayeux R. (2003) Epidemiology <strong>of</strong> neurodegeneration. Annu. Rev. Neurosci. 26, 81–104.<br />

Mazzulli J. R., Mishizen A. J., Giasson B. I., Lynch D. R., Thomas S. A., Nakashima A., Nagatsu T.,<br />

Ota A. and Ischiropoulos H. (2006) Cytosolic catechols <strong>in</strong>hibit alpha-synucle<strong>in</strong> aggregation<br />

and facilitate the formation <strong>of</strong> <strong>in</strong>tracellular soluble oligomeric <strong>in</strong>termediates. J. Neurosci.<br />

26, 10068–10078.<br />

217


REFERENCES<br />

McCord J. M. and Fridovich I. (1969) Superoxide dismutase. An enzymic function for<br />

218<br />

erythrocupre<strong>in</strong> (hemocupre<strong>in</strong>). J. Biol. Chem. 244, 6049–6055.<br />

McDermott J. R., Smith A. I., Iqbal K. and Wisniewski H. M. (1979) Bra<strong>in</strong> alum<strong>in</strong>um <strong>in</strong> ag<strong>in</strong>g and<br />

Alzheimer disease. Neurology 29, 809–814.<br />

McDonald L. J. and Mamrack M. D. (1988) Alum<strong>in</strong>um affects phospho<strong>in</strong>ositide hydrolysis by<br />

phospho<strong>in</strong>ositidase C. Biochem. Biophys. Res. Commun 155, 203–208.<br />

McDonald L. J. and Mamrack M. D. (1995) Phospho<strong>in</strong>ositide hydrolysis by phospholipase C<br />

modulated by multivalent cations La(3+), Al(3+), neomyc<strong>in</strong>, polyam<strong>in</strong>es, and melitt<strong>in</strong>. J.<br />

Lipid. Mediat. Cell. Signal 11, 81–91.<br />

McDonald W. M., Richard I. H. and DeLong M. R. (2003) Prevalence, etiology, and treatment <strong>of</strong><br />

depression <strong>in</strong> Park<strong>in</strong>son’s disease. Biol. Psychiatry 54, 363–375.<br />

McGeer P. L., Yasojima K. and McGeer E. G. (2001) Inflammation <strong>in</strong> Park<strong>in</strong>son’s disease. Adv.<br />

Neurol. 86, 83–89.<br />

McGeer P. L. and McGeer E. G. (2004) Inflammation and neurodegeneration <strong>in</strong> Park<strong>in</strong>son’s<br />

disease. Park<strong>in</strong>sonism Relat. Disord. 10, S3–S7.<br />

McGeer P. L., McGeer E. G. and Suzuki J. S. (1977) Ag<strong>in</strong>g and extrapyramidal function. Arch.<br />

Neurol. 34, 33–35.<br />

McLachlan D. R. C. (1995). Alum<strong>in</strong>um and the risk <strong>of</strong> Alzheimer’s disease. Environmetrics 6,<br />

233–275.<br />

Meglio L. and Oteiza P. I. (1999) Alum<strong>in</strong>um enhances melan<strong>in</strong>-<strong>in</strong>duced lipid peroxidation.<br />

Neurochem Res. 24, 1001-1008.<br />

Méndez-Álvarez E. and Soto-Otero (2004) Dopam<strong>in</strong>e: a double-edged sword for the human<br />

bra<strong>in</strong>. Recent Res. Devel. Life Sci. 2, 217–246.


REFERENCES<br />

Méndez-Álvarez E., Soto-Otero R., Sánchez-Sellero I. and López-Rivadulla-Lamas M. (1997)<br />

Inhibition <strong>of</strong> bra<strong>in</strong> monoam<strong>in</strong>e oxidase by adducts <strong>of</strong> 1,2,3,4-tetrahydroisoqu<strong>in</strong>ol<strong>in</strong>e with<br />

components <strong>of</strong> cigarette smoke. Life Sci. 60, 1719–1727.<br />

Méndez-Álvarez E., Soto-Otero R., Sánchez-Sellero I. and López-Rivadulla-Lamas M. (1998) In<br />

vitro <strong>in</strong>hibition <strong>of</strong> catalase activity by cigarette smoke: relevance for <strong>oxidative</strong> <strong>stress</strong>. J.<br />

Appl. Toxicol. 18, 443–448.<br />

Méndez-Álvarez E., Soto-Otero R., Hermida-Ameijeiras A., López-Martín M. E. and Labandeira-<br />

García J. L. (2001) Effect <strong>of</strong> iron and manganese on hydroxyl radical production by 6-<br />

hydroxydopam<strong>in</strong>e: mediation <strong>of</strong> antioxidants. Free Radic. Biol. Med. 31, 986–998.<br />

Méndez-Álvarez E., Soto-Otero R., Hermida-Ameijeiras A., López-Real A. M. and Labandeira-<br />

García J. L. (2002) Effects <strong>of</strong> alum<strong>in</strong>um and z<strong>in</strong>c on the <strong>oxidative</strong> <strong>stress</strong> caused by 6-<br />

hydroxydopam<strong>in</strong>e autoxidation: relevance for the pathogenesis <strong>of</strong> Park<strong>in</strong>son’s disease.<br />

Biochim. Biophys. Acta 1586, 155–168.<br />

Meredith G. E., Totterdell S., Petroske E., Santa Cruz K., Callison R. C. Jr and Lau Y. S. (2002)<br />

Lysosomal malfunction accompanies alpha-synucle<strong>in</strong> aggregation <strong>in</strong> a progressive mouse<br />

model <strong>of</strong> Park<strong>in</strong>son’s disease. Bra<strong>in</strong> Res. 956, 156–165.<br />

Meredith G. E., Halliday G. M. and Totterdell S. (2004) A critical review <strong>of</strong> the development and<br />

importance <strong>of</strong> prote<strong>in</strong>aceous aggregates <strong>in</strong> animal models <strong>of</strong> Park<strong>in</strong>son’s disease: new<br />

<strong>in</strong>sights <strong>in</strong>to Lewy body formation. Park<strong>in</strong>sonism Relat. Disord. 10,191–202.<br />

Meyer-Baron M., Schäper M., Knapp G. and van Thriel C. (2007) Occupational alum<strong>in</strong>um<br />

exposure: evidence <strong>in</strong> support <strong>of</strong> its neurobehavioral impact. Neurotoxicology 28, 1068–<br />

1078.<br />

Middleton F. A. and Strick P. L. (2000) Basal ganglia and cerebellar loops: motor and cognitive<br />

circuits. Bra<strong>in</strong> Res. Rev. 31, 236–250.<br />

Milanese M. Lkhayat M. I. and Zatta P. (2001) Inhibitory effect <strong>of</strong> alum<strong>in</strong>um on dopam<strong>in</strong>e beta-<br />

hydroxylase from bov<strong>in</strong>e adrenal gland. J. Trace Elem. Med. Biol. 15, 139–141.<br />

219


REFERENCES<br />

Miu A. C. and Benga O. (2006) Alum<strong>in</strong>um and Alzheimer's disease: a new look. J. Alzheimers<br />

220<br />

Dis. 10, 179–201.<br />

Mogi M., Harada M., Riederer P., Narabyashi H., Fujita J. and Nagatsu T. (1994) Interleuk<strong>in</strong>-1<br />

beta growth factor and transform<strong>in</strong>g growth factor-alpha are elevated <strong>in</strong> the bra<strong>in</strong> from<br />

Park<strong>in</strong>sonian patients. Neurosci. Lett. 180, 147–150.<br />

Moore D. J., West A. B., Dawson V. L. and Dawson T. M. (2005) Molecular pathophysiology <strong>of</strong><br />

Park<strong>in</strong>son's disease. Annu. Rev. Neurosci. 28, 57–87.<br />

Moore P. B., Day J. P., Taylor G. A., Ferrier I. N., Fifield L. K. and Edwardson J. A. (2000)<br />

Absorption <strong>of</strong> 26<strong>alum<strong>in</strong>ium</strong> <strong>in</strong> Alzheimer’s disease, measured us<strong>in</strong>g accelerator mass<br />

spectrometry. Dement. Geriatr. Cogn. Disord. 11, 66–69.<br />

Morens D. M., Grand<strong>in</strong>etti A., Reed D., White L. R. and Ross G. W. (1995) Cigarette smok<strong>in</strong>g<br />

and protection from Park<strong>in</strong>son’s disease: false association or etiologic clue? Neurology 45,<br />

1041–1051.<br />

Morgante L., Rocca W. A., Di Rosa A. E., De Domenico P., Grigoletto F., Menegh<strong>in</strong>i F., Reggio A.,<br />

Savettieri G., Castiglione M. G., Patti F. and Di Pierri R. (1992) Prevalence <strong>of</strong> Park<strong>in</strong>son’s<br />

disease and other types <strong>of</strong> park<strong>in</strong>sonism: a door-to-door survey <strong>in</strong> three Sicilian<br />

municipalities. Neurology 42, 1901–1907.<br />

Morrish P. K., Sawle G. V., Brooks D. J. (1996) An [18F]dopa-PET and cl<strong>in</strong>ical study <strong>of</strong> the rate <strong>of</strong><br />

progression <strong>in</strong> Park<strong>in</strong>son’s disease. Bra<strong>in</strong> 119, 585–591.<br />

Mosharov E. V., Staal R. G., Bove J., Prou D., Hananiya A., Markov D., Poulsen N., Larsen K. E.,<br />

Moore C. M., Troyer M. D., Edwards R. H., Przedborski S. and Sulzer D. (2006)<br />

Alphasynucle<strong>in</strong> overexpression <strong>in</strong>creases cytosolic catecholam<strong>in</strong>e concentration. J.<br />

Neurosci. 26, 9304–9311.<br />

Moumen R., Ait-Oukhatar N., Bureau F., Fleury C., Boublé D., Arhan P., Neuville D. and Viader<br />

F. (2001) Alum<strong>in</strong>ium <strong>in</strong>creases xanth<strong>in</strong>e oxidase activity and disturbs antioxidant status <strong>in</strong><br />

the rat. J. Trace Elem. Med. Biol. 15, 89–93.


REFERENCES<br />

Muller T., Blum-Degen D., Przuntek H. and Kuhn W. (1998) Interleuk<strong>in</strong>-6 levels <strong>in</strong> cerebrosp<strong>in</strong>al<br />

fluid <strong>in</strong>versely correlate to severity <strong>of</strong> Park<strong>in</strong>son’s disease. Acta Neurol. Scand. 98, 142–<br />

144.<br />

Muñoz A. M., Rey P., Soto-Otero R., Guerra M. J. and Labandeira-García J. L. (2004) Systemic<br />

adm<strong>in</strong>istration <strong>of</strong> N-acetylcyste<strong>in</strong>e protects dopam<strong>in</strong>ergic neurons aga<strong>in</strong>st 6-<br />

hydroxydopam<strong>in</strong>e-<strong>in</strong>duced degeneration. J. Neurosci. Res. 76, 551–562.<br />

Muñoz A., Rey P., Guerra M. J., Mendez-Alvarez E., Soto-Otero R., Labandeira-Garcia J. L.<br />

(2006) Reduction <strong>of</strong> dopam<strong>in</strong>ergic degeneration and <strong>oxidative</strong> <strong>stress</strong> by <strong>in</strong>hibition <strong>of</strong><br />

angiotens<strong>in</strong> convert<strong>in</strong>g enzyme <strong>in</strong> a MPTP model <strong>of</strong> park<strong>in</strong>sonism. Neuropharmacology 51,<br />

112–120.<br />

Murphy C. P., Cox R. L., Harden E. A., Stevens D. A., Heye M. M. and Herzig R. H. (1992)<br />

Encephalopathy and seizures <strong>in</strong>duced by <strong>in</strong>travesical alum irrigations. Bone Marrow<br />

Transplant. 10, 383–385.<br />

Muthane U. B., Swamy H. S., Satishchandra P., Subhash M. N., Rao S. and Subbakrishna D.<br />

(1994) Early onset Park<strong>in</strong>son's disease: are juvenile- and young-onset different? Mov.<br />

Disord. 9, 539–544.<br />

Nagasawa K., Ito S., Kakuda T., Nagai K., Tamai I., Tsuji A. and Fujimoto S. (2005) Transport<br />

mechanism for alum<strong>in</strong>um citrate at the blood-bra<strong>in</strong> barrier: k<strong>in</strong>etic evidence implies<br />

<strong>in</strong>volvement <strong>of</strong> system Xc- <strong>in</strong> immortalized rat bra<strong>in</strong> endothelial cells. Toxicol. Lett. 155,<br />

289–296.<br />

Nagatsu T. (2002) Park<strong>in</strong>son’s disease: changes <strong>in</strong> apoptosis-related factors suggest<strong>in</strong>g possible<br />

gene therapy. J. Neural. Transm. 109, 731–745.<br />

Nagatsu T., Mogi M., Ich<strong>in</strong>ose H. and Togari A. (2000) Cytok<strong>in</strong>es <strong>in</strong> Park<strong>in</strong>son’s disease. J.<br />

Neural Transm. Suppl. 58, 143–151.<br />

221


REFERENCES<br />

Nair V. D., McNaught K., St P, González-Maeso J., Sealfon S. and Olanow C. W. (2006) p53<br />

222<br />

mediates non-transcriptional cell death <strong>in</strong> dopam<strong>in</strong>ergic cells <strong>in</strong> response to proteasome<br />

<strong>in</strong>hibitors. J. Biol. Chem. 281, 39550–39560.<br />

Narendra D., Tanaka A., Suen D. F. and Youle R. J. (2008) Park<strong>in</strong> is recruited selectively to<br />

impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.<br />

Nayak P. and Chatterjee A. K. (2003) Dietary prote<strong>in</strong> restriction causes modification <strong>in</strong><br />

alum<strong>in</strong>um-<strong>in</strong>duced alteration <strong>in</strong> glutamate and GABA system <strong>of</strong> rat bra<strong>in</strong>. BMC Neurosci. 4,<br />

4–11.<br />

Nehru B. and Anand P. (2005) Oxidative damage follow<strong>in</strong>g chronic <strong>alum<strong>in</strong>ium</strong> exposure <strong>in</strong> adult<br />

and pup rat bra<strong>in</strong>s. J. Trace Elem. Med. Biol. 19, 203–208.<br />

Ngim C.H. and Devathasan G. (1989) Epidemiologic study on the association between body<br />

burden mercury level and idiopathic Park<strong>in</strong>son's disease. Neuroepidemiology 8, 128–1241.<br />

Nicklas W. J., Vyas I. and Heikkila R. E. (1985) Inhibition <strong>of</strong> NADH-l<strong>in</strong>ked oxidation <strong>in</strong> bra<strong>in</strong><br />

mitochondria by 1-methyl-4-phenyl-pyrid<strong>in</strong>e, a metabolite <strong>of</strong> the neurotox<strong>in</strong>, 1-methyl-4-<br />

phenyl-1,2,5,6-tetrahydropyrid<strong>in</strong>e. Life Sci. 36, 2503–2508.<br />

Nieboer E., Gibson B. L., Oxman A. D. and Kramer J. R. (1995) Health effects <strong>of</strong> alum<strong>in</strong>um: a<br />

critical review with emphasis on alum<strong>in</strong>um <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water. Environ. Rev. 3, 29–81.<br />

Niu P. Y., Niu Q., Zhang Q. L., Wang L. P., He S. E., Wu T. C., Conti P., Di Gioacch<strong>in</strong>o M. and<br />

Boscolo P. (2005) Alum<strong>in</strong>um impairs rat neural cell mitochondria <strong>in</strong> vitro. Int. J.<br />

Immunopathol Pharmacol. 18, 683–689.<br />

Nostrandt A. C., Shafer T. J., Mundy W. R. and Padilla S. (1996) Inhibition <strong>of</strong> rat bra<strong>in</strong><br />

phosphatidyl<strong>in</strong>ositol-specific phospholipase C by alum<strong>in</strong>um: regional differences,<br />

<strong>in</strong>teractions with alum<strong>in</strong>um salts, and mechanisms. Toxicol. Appl. Pharmacol. 136, 118–<br />

125.


REFERENCES<br />

Nunes I., Tovmasian L. T., Silva R. M., Burke R. E. and G<strong>of</strong>f S. P. (2003) Pitx3 is required for<br />

development <strong>of</strong> substantia nigra dopam<strong>in</strong>ergic neurons. Proc. Natl. Acad. Sci. U. S. A. 100,<br />

4245–4250.<br />

Obeso J. A., Mar<strong>in</strong> C., Rodriguez-Oroz C., Blesa J., Benitez-Temiño B., Mena-Segovia J.,<br />

Rodríguez M. and Olanow C. W. (2008) The basal ganglia <strong>in</strong> Park<strong>in</strong>son's disease: current<br />

concepts and unexpla<strong>in</strong>ed observations. Ann. Neurol. 64, S30–46.<br />

Ogasawara Y., Ohata E., Sakamoto T., Ishii K., Takahashi H. and Tanabe S. (2003) A model <strong>of</strong><br />

alum<strong>in</strong>um exposure associated with lipid peroxidation <strong>in</strong> rat bra<strong>in</strong>. Biol. Trace Elem. Res.<br />

96, 191–201.<br />

O'Hare M. J., Kushwaha N., Zhang Y., Aleyas<strong>in</strong> H., Callaghan S. M., Slack R. S., Albert P. R.,<br />

V<strong>in</strong>cent I. and Park D. S. (2005) Differential roles <strong>of</strong> nuclear and cytoplasmic<br />

cycl<strong>in</strong>dependent k<strong>in</strong>ase 5 <strong>in</strong> apoptotic and excitotoxic neuronal death. J. Neurosci. 25,<br />

8954–8966.<br />

Ohba S., Hiramatsu M., Edamatsu R., Mori I. and Mori A. (1994) Metal ions affect neuronal<br />

membrane fluidity <strong>of</strong> rat cerebral cortex. Neurochem. Res. 19, 237–241.<br />

Ohyashiki T., Suzuki S., Satoh E. and Uemori Y. (1998) A marked stimulation <strong>of</strong> Fe 2+ -<strong>in</strong>itiated<br />

lipid peroxidation <strong>in</strong> phospholipid liposomes by a lipophilic alum<strong>in</strong>um complex, alum<strong>in</strong>um<br />

acetylacetonate. Biochim. Biophys. Acta 1389, 141–149.<br />

Olanow C. W. (1990) Oxidation reactions <strong>in</strong> Park<strong>in</strong>son's disease. Neurology 40, suppl 32–37.<br />

Olanow C. W., Perl D. P., DeMart<strong>in</strong>o G. N. and McNaught K. S. (2004) Lewy-body formation is<br />

an aggresome-related process: a hypothesis. Lancet Neurol. 3, 496–503.<br />

Olanow C. W. and McNaught K. S. (2006) Ubiquit<strong>in</strong>-proteasome system and Park<strong>in</strong>son disease.<br />

Mov. Disord. 21, 1806–1823.<br />

Olanow C. W. (2007) The pathogenesis <strong>of</strong> cell death <strong>in</strong> Park<strong>in</strong>son's disease – 2007. Mov. Disord.<br />

22, S335–S342.<br />

223


REFERENCES<br />

Onyango I. G. (2008) Mitochondrial dysfunction and <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> Park<strong>in</strong>son’s disease.<br />

224<br />

Neurochem. Res. 33, 589–97.<br />

Orr C. F., Rowe D. B. and Halliday GM (2002) An <strong>in</strong>flammatory review <strong>of</strong> Park<strong>in</strong>son’s disease.<br />

Prog. Neurobiol. 68, 325–340.<br />

Oteiza P. I. (1994) A mechanism for the stimulatory effect <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> on iron-<strong>in</strong>duced lipid<br />

peroxidation. Arch. Biochem. Biophys. 308, 374–379.<br />

Oteiza P. I., Fraga C. G. and Keen C. L. (1993a) Alum<strong>in</strong>um has both oxidant and antioxidant<br />

effects <strong>in</strong> mouse bra<strong>in</strong> membranes. Arch. Biochem. Biophys. 300, 517–521.<br />

Oteiza P. I., Keen C. L., Han B. and Golub M. S. (1993b) Alum<strong>in</strong>um accumulation and<br />

<strong>neurotoxicity</strong> <strong>in</strong> Swiss-Webster mice after long-term dietary exposure to alum<strong>in</strong>um and<br />

citrate. Metabolism 42, 1296–1300.<br />

Paisán-Ruiz C., Ja<strong>in</strong> S., Evans E. W., Gilks W. P., Simón J., van der Brug M., López de Muna<strong>in</strong> A.,<br />

Aparicio S., Gil A. M., Khan N., Johnson J., Martínez J. R., Nicholl D., Carrera I. M., Pena A.<br />

S., de Silva R., Lees A., Martí-Massó J. F., Pérez-Tur J., Wood N. W. and S<strong>in</strong>gleton A. B.<br />

(2004) Clon<strong>in</strong>g <strong>of</strong> the gene conta<strong>in</strong><strong>in</strong>g mutations that cause PARK8-l<strong>in</strong>ked Park<strong>in</strong>son’s<br />

disease. Neuron 44, 595–600.<br />

Palac<strong>in</strong>o J. J., Sagi D., Goldberg M. S., Krauss S., Motz C., Wacker M., Klose J. and Shen J. (2004)<br />

Mitochondrial dysfunction and <strong>oxidative</strong> damage <strong>in</strong> park<strong>in</strong>-deficient mice. J. Biol. Chem.<br />

279, 18614–18622.<br />

Palmeira C. M. and Oliveira C. R. (1992) Partition<strong>in</strong>g and membrane disorder<strong>in</strong>g effects <strong>of</strong><br />

dopam<strong>in</strong>e antagonists: <strong>in</strong>fluence <strong>of</strong> lipid peroxidation, temperature, and drug<br />

concentration. Arch. Biochem. Biophys. 295, 161–171.<br />

Pandya J. D., Dave K. R. and Katyare S. S. (2004) Effect <strong>of</strong> long-term alum<strong>in</strong>um feed<strong>in</strong>g on<br />

lipid/phospholipid pr<strong>of</strong>iles <strong>of</strong> rat bra<strong>in</strong> myel<strong>in</strong>. Lipids Health Dis. 3:13.


REFERENCES<br />

Pappolla M. A. (1986) Lewy bodies <strong>of</strong> Park<strong>in</strong>son’s disease. Immune electron microscopic<br />

demonstration <strong>of</strong> neur<strong>of</strong>ilament antigens <strong>in</strong> constituent filaments. Arch. Pathol. Lab. Med.<br />

110, 1160–1163.<br />

Park<strong>in</strong>son I. S., Feest T. G., Kerr D. N. S., Ward M. K. and Fawcett P. (1979) Fractur<strong>in</strong>g dialysis<br />

osteodystrophy and dialysis encephalopathy: An epidemiological survey. Lancet 313, 406–<br />

409.<br />

Park<strong>in</strong>son J. (1817) An essay on the shak<strong>in</strong>g palsy. Sherwood, Neely and Jones. London.<br />

Parkk<strong>in</strong>en L., Kaupp<strong>in</strong>en T., Pirttila T., Autere J. M. and Alafuz<strong>of</strong>f I. (2005) Alpha-synucle<strong>in</strong><br />

pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 57, 82–<br />

91.<br />

Parkk<strong>in</strong>en L., Pirttila T. and Alafuz<strong>of</strong>f I. (2008) Applicability <strong>of</strong> current stag<strong>in</strong>g/categorization <strong>of</strong><br />

alpha-synucle<strong>in</strong> pathology and their cl<strong>in</strong>ical relevance. Acta Neuropathol. 115, 399–407.<br />

Partridge N. A., Regnier F. E., White J. L.and Hem S. L. (1989) Influence <strong>of</strong> dietary constituents<br />

on <strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> alum<strong>in</strong>um. Kidney Int. 35, 1413–1417.<br />

Pax<strong>in</strong>os G. and Watson C. (2007) The rat bra<strong>in</strong> <strong>in</strong> stereotaxic coord<strong>in</strong>ates, 6th ed. Academic<br />

Press, London.<br />

Peng J., Mao X. O., Stevenson F. F., Hsu M. and Andersen J. K. (2004) The herbicide paraquat<br />

<strong>in</strong>duces dopam<strong>in</strong>ergic nigral apoptosis through susta<strong>in</strong>ed activation <strong>of</strong> the JNK pathway. J.<br />

Biol. Chem. 279, 32626–32632.<br />

Penn<strong>in</strong>gton J. A. (1988) Alum<strong>in</strong>ium content <strong>of</strong> foods and diets. Food Addit Contam. 5, 161–232.<br />

Pereira C., Ferreira C., Carvalho C. and Oliveira C. (1996) Contribution <strong>of</strong> plasma membrane<br />

and endoplasmic reticulum Ca( 2+ )-ATPases to the synaptosomal [Ca 2+ ]i <strong>in</strong>crease dur<strong>in</strong>g<br />

<strong>oxidative</strong> <strong>stress</strong>. Bra<strong>in</strong> Res. 713, 269–77.<br />

Perese D. A., Ulman J., Viola J., Ew<strong>in</strong>g S. E. and Bankiewicz K. S. (1989) A 6-hydroxydopam<strong>in</strong>e-<br />

<strong>in</strong>duced selective park<strong>in</strong>sonian rat model. Bra<strong>in</strong> Res. 494, 285–293.<br />

225


REFERENCES<br />

Perez F. A. and Palmiter R. D. (2005) Park<strong>in</strong>-deficient mice are not a robust model <strong>of</strong><br />

226<br />

park<strong>in</strong>sonism. Proc. Natl. Acad. Sci. U. S. A. 102, 2174–2179.<br />

Perl D. P. and Brody A. R. (1980) Alzheimer's disease: X-ray spectrometric evidence <strong>of</strong><br />

alum<strong>in</strong>um accumulation <strong>in</strong> neur<strong>of</strong>ibrillary tangle-bear<strong>in</strong>g neurons. Science 208, 297–299.<br />

Perl D. P. and Good P. F. (1987) Uptake <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong>to central nervous system along nasal-<br />

olfactory pathways. Lancet 1, 1028.<br />

Perl D. P., Gajdusek D. C., Garruto R. M., Yanagihara R. T. and Gibbs C. J. (1982) Intraneuronal<br />

alum<strong>in</strong>um accumulation <strong>in</strong> amyotrophic lateral sclerosis and Park<strong>in</strong>sonism-dementia <strong>of</strong><br />

Guam. Science 217, 1053–1055.<br />

Petroske E., Meredith G. E., Callen S., Totterdell S. and Lau Y. S. (2001) Mouse model <strong>of</strong><br />

Park<strong>in</strong>sonism: a comparison between subacute MPTP and chronic MPTP/probenecid<br />

treatment. Neuroscience 106, 589–601.<br />

Picc<strong>in</strong>i P. and Brooks D. J. (2006) New developments <strong>of</strong> bra<strong>in</strong> imag<strong>in</strong>g for Park<strong>in</strong>son’s disease<br />

and related disorders. Mov. Disord. 21, 2035–2041.<br />

Platt B., Fiddler G., Riedel G. and Henderson Z. (2001) Alum<strong>in</strong>ium toxicity <strong>in</strong> the rat bra<strong>in</strong>:<br />

histochemical and immunocytochemical evidence. Bra<strong>in</strong> Res. Bull. 55, 257–267.<br />

Plun-Favreau H., Klupsch K., Moisoi N., Gandhi S., Kjaer S., Frith D., Harvey K., Deas E., Harvey<br />

R. J., McDonald N., Wood N. W., Mart<strong>in</strong>s L. M. and Downward J. (2007) The mitochondrial<br />

protease HtrA2 is regulated by Park<strong>in</strong>son's disease-associated k<strong>in</strong>ase PINK1. Nat. Cell. Biol.<br />

9, 1243–1252.<br />

Poewe W. H. and Wenn<strong>in</strong>g G. K. (1998) The natural history <strong>of</strong> Park<strong>in</strong>son’s disease. Ann. Neurol.<br />

44, S1–S9.<br />

Poewe W. (2008) Non-motor symptoms <strong>in</strong> Park<strong>in</strong>son's disease. Eur. J. Neurol. 15, 14–20.<br />

Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., Pike B., Root H.,<br />

Rubenste<strong>in</strong> J., Boyer R., Stenroos E. S., Chandrasekharappa S., Athanassiadou A.,


REFERENCES<br />

Papapetropoulos T., Johnson W. G., Lazzar<strong>in</strong>i A. M., Duvois<strong>in</strong> R. C., Di Iorio G., Golbe L. I.<br />

and Nussbaum R. L. (1997) Mutation <strong>in</strong> the alpha-synucle<strong>in</strong> gene identified <strong>in</strong> families with<br />

Park<strong>in</strong>son’s disease. Science 276, 2045–2047.<br />

Potth<strong>of</strong>f M. J. and Olson E. N. (2007) MEF2: a central regulator <strong>of</strong> diverse developmental<br />

programs. Development 134, 4131–4140.<br />

Powell J. J. and Thompson R. P. (1993) The chemistry <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> the gastro<strong>in</strong>test<strong>in</strong>al<br />

lumen and its uptake and absorption. Proc. Nutr. Soc. 52, 241–253.<br />

Powell J. J., Greenfield S. M., Parkes H. G., Nicholson J. K. and Thompson R. P. (1993) Gastro-<br />

<strong>in</strong>test<strong>in</strong>al availability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> from tea. Food Chem. Toxicol. 31, 449–454.<br />

Price K. S., Farley I. J. and Hornykiewicz O. (1978) Neurochemistry <strong>of</strong> Park<strong>in</strong>son’s disease:<br />

relation between striatal and limbic dopam<strong>in</strong>e. Adv. Biochem. Psychopharmacol. 19, 293–<br />

300.<br />

Priest N. D. (2004) The biological behaviour and bioavailability <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> man, with<br />

special reference to studies employ<strong>in</strong>g <strong>alum<strong>in</strong>ium</strong>-26 as a tracer: review and study update.<br />

J. Environ. Monit. 6, 375–403.<br />

Priest N. D., Newton D., Day J. P., Talbot R. J. and Warner A. J. (1995) Human metabolism <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong>-26 and gallium-67 <strong>in</strong>jected as citrates. Hum. Exp. Toxicol. 14, 287–293.<br />

Przedborski S., Levivier M., Jiang H., Ferreira M., Jackson-Lewis V., Donaldson D. and Togasaki<br />

D. M. (1995) Dose-dependent lesions <strong>of</strong> the dopam<strong>in</strong>ergic nigrostriatal pathway <strong>in</strong>duced<br />

by <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-hydroxydopam<strong>in</strong>e. Neuroscience 67, 631–647.<br />

Priyadarshi A., Khuder S. A., Schaub E. A. and Priyadarshi S. S. (2001) Environmental risk factors<br />

and Park<strong>in</strong>son’s disease: a metaanalysis. Environ. Res. 86, 122–127.<br />

Probst A., Bloch A. and Tolnay M. (2008) New <strong>in</strong>sights <strong>in</strong>to the pathology <strong>of</strong> Park<strong>in</strong>son’s<br />

disease: does the peripheral system become central? Eur. J. Neurol. 15, 1–4.<br />

227


REFERENCES<br />

Przedborski S. and Goldman J. E. (2004) Pathogenic role <strong>of</strong> glial cells <strong>in</strong> Park<strong>in</strong>son’s disease, <strong>in</strong><br />

228<br />

Non-neuronal cells <strong>of</strong> the nervous system: function and dysfunction (Hertz L., ed), pp. 967–<br />

982. Elsevier, New York.<br />

Przedborski S., Levivier M., Jiang H., Ferreira M., Jackson-Lewis V., Donaldson D. and Togasaki<br />

D. M. (1995) Dose-dependent lesions <strong>of</strong> the dopam<strong>in</strong>ergic nigrostriatal pathway <strong>in</strong>duced<br />

by <strong>in</strong>trastriatal <strong>in</strong>jection <strong>of</strong> 6-hydroxydopam<strong>in</strong>e. Neuroscience 67, 631–647.<br />

Przedborski S., Tieu K., Perier C. and Vila M. (2004) MPTP as a mitochondrial neurotoxic model<br />

<strong>of</strong> Park<strong>in</strong>son’s disease. J. Bioenerg. Biomembr. 36, 375–379.<br />

Przuntek H., Muller T. and Riederer P. (2004) Diagnostic stag<strong>in</strong>g <strong>of</strong> Park<strong>in</strong>son’s disease:<br />

conceptual aspects. J. Neural Transm. 111, 201–216.<br />

Qu D., Rashidian J., Mount M. P., Aleyas<strong>in</strong> H., Parsanejad M., Lira A., Haque E., Zhang Y.,<br />

Callaghan S., Daigle M., Rousseaux M. W., Slack R. S., Albert P. R., V<strong>in</strong>cent I., Woulfe J. M.<br />

and Park D. S. (2007) Role <strong>of</strong> Cdk5-mediated phosphorylation <strong>of</strong> Prx2 <strong>in</strong> MPTP toxicity and<br />

Park<strong>in</strong>son's disease. Neuron 55, 37–52.<br />

Quartrale R. P. (1988) The mechanism <strong>of</strong> antiperspirant action <strong>in</strong> eccr<strong>in</strong>e sweat glands, <strong>in</strong><br />

Antiperspirants and Deodorants (Laden K. and Felger C. B., eds), pp. 89–118. Marcel<br />

Dekker, New York.<br />

Q<strong>in</strong> L., Wu X., Block M. L., Liu Y., Breese G. R., Hong J. S., Knapp D. J. and Crews F. T. (2007)<br />

Systemic LPS causes chronic neuro<strong>in</strong>flammation and progressive neurodegeneration. Glia<br />

55, 453–462.<br />

Qu<strong>in</strong>n N. P., Koller W. C., Lang A. E. and Marsden C. D. (1986) Pa<strong>in</strong>ful Park<strong>in</strong>son’s disease.<br />

Lancet 1, 1366–1369.<br />

Qu<strong>in</strong>tal-Tun F., Munoz-Sanchez J. A., Ramos-Diaz A., Escamilla-Bencomo A., Mart<strong>in</strong>ez-Estevez<br />

M., Exley C. and Hernandez-Sotomayor S. M. (2007) Alum<strong>in</strong>ium-<strong>in</strong>duced phospholipids<br />

signal transduction pathway <strong>in</strong> C<strong>of</strong>fea arabica suspension cells and its amelioration by<br />

silicic acid. J. Inorg. Biochem. 101, 362–369.


REFERENCES<br />

Rajput A. H., Rozdilsky B. and Rajput A. (1991) Accuracy <strong>of</strong> cl<strong>in</strong>ical diagnosis <strong>in</strong> park<strong>in</strong>sonism–a<br />

prospective study. Can. J. Neurol. Sci. 18, 275–278.<br />

Ransom B. R., Kunis D. M., Irw<strong>in</strong> I. and Langston J. W. (1987) Astrocytes convert the<br />

park<strong>in</strong>sonism <strong>in</strong>duc<strong>in</strong>g neurotox<strong>in</strong>, MPTP, to its active metabolite, MPP + . Neurosci. Lett. 75,<br />

323–328.<br />

Ravi S. M., Prabhu B. M., Raju T. R. and B<strong>in</strong>du P. N. (2000) Long-term effects <strong>of</strong> postnatal<br />

<strong>alum<strong>in</strong>ium</strong> exposure on acetylchol<strong>in</strong>esterase activity and biogenic am<strong>in</strong>e<br />

neurotransmitters <strong>in</strong> rat bra<strong>in</strong>. Indian. J. Physiol. Pharmacol. 44, 473–478.<br />

Regura M. R., Serrano M., Fernandez L., Gonzalez A., Gonzalez I., Gonzalez R., Noval A. and<br />

Cannata J. B. (1986) Search<strong>in</strong>g for other sources <strong>of</strong> alum<strong>in</strong>um contam<strong>in</strong>ation, <strong>in</strong> Aspects <strong>of</strong><br />

Renal Care, pp. 21–27. Transdemic Europe Ltd., London.<br />

Reiber S., Kukull W. and Standish-Lee P. (1995) Dr<strong>in</strong>k<strong>in</strong>g water alum<strong>in</strong>um and bioavailability. J.<br />

Am. Water Works Assoc. 87, 86–100.<br />

Reusche E., Pilz P., Oberascher G., L<strong>in</strong>dner B., Egensperger R., Gloeckner K., Tr<strong>in</strong>ka E. and<br />

Iglseder B. (2001) Subacute fatal alum<strong>in</strong>um encephalopathy after reconstructive<br />

otoneurosurgery: a case report. Hum Pathol. 32, 1136–1140.<br />

Rey P., López-Real A., Sánchez-Iglesias S., Muñoz A., Soto-Otero R. and Labandeira-García J. L.<br />

(2007) Angiotens<strong>in</strong> type-1-receptor antagonists reduce 6-hydroxydopam<strong>in</strong>e toxicity for<br />

dopam<strong>in</strong>ergic neurons. Neurobiol. Ag<strong>in</strong>g 28, 555–567.<br />

Reynolds M. R., Berry R. W., B<strong>in</strong>der L. I. (2007) Nitration <strong>in</strong> neurodegeneration: decipher<strong>in</strong>g the<br />

“Hows” “nYs”. Biochemistry 46, 7325–7336.<br />

Riederer P. and Youdim M. B. H. (eds) (1993) Iron <strong>in</strong> central nervous system disorders. Spr<strong>in</strong>ger<br />

Verlag, Vienna-New York.<br />

Riederer P., Rausch W. D., Schmidt B., Kruzik P., Konradi C., S<strong>of</strong>ic E., Danielczyk W., Fischer M.<br />

and Ogris E. (1988) Biochemical fundamentals <strong>of</strong> Park<strong>in</strong>son’s disease. M. S<strong>in</strong>ai J. Med. 55,<br />

21–28.<br />

229


REFERENCES<br />

Rifat S. L., Eastwood M. R., Crapper McLachlan D. R. and Corey P. N. (1990) Effect <strong>of</strong> exposure<br />

230<br />

<strong>of</strong> m<strong>in</strong>ers to <strong>alum<strong>in</strong>ium</strong> powder. Lancet 336, 1162–1165.<br />

Rippon G. A. and Marder K. S. (2005) Dementia <strong>in</strong> Park<strong>in</strong>son's disease. Adv. Neurol. 96, 95–113.<br />

Roberts E. (1986) Alzheimer’s disease may beg<strong>in</strong> <strong>in</strong> the nose and may be caused by<br />

alum<strong>in</strong>osilicates. Neurobiol. Ag<strong>in</strong>g 7, 561–567.<br />

Rodrigues R. W., Gomide V. C. and Chadi G. (2001) Astroglial and microglial reaction after a<br />

partial nigrostriatal degeneration <strong>in</strong>duced by the striatal <strong>in</strong>jection <strong>of</strong> different doses <strong>of</strong> 6-<br />

hydroxydopam<strong>in</strong>e. Int. J. Neurosci. 109, 91–126.<br />

Rodriguez M. C., Obeso J. A. and Olanow C.W. (1998) Subthalamic nucleusmediated<br />

excitotoxicity <strong>in</strong> Park<strong>in</strong>son’s disease: a target for neuroprotection. Ann. Neurol. 44, S175–<br />

188.<br />

Rodríguez-Díaz M., Abdala P., Barroso-Ch<strong>in</strong>ea P., Obeso J. and González-Hernández T. (2001)<br />

Motor behavioural changes after <strong>in</strong>tracerebroventricular <strong>in</strong>jection <strong>of</strong> 6-hydroxydopam<strong>in</strong>e<br />

<strong>in</strong> the rat: an animal model <strong>of</strong> Park<strong>in</strong>son's disease. Behav. Bra<strong>in</strong> Res. 122, 79–92.<br />

Rodriguez M., Barroso-Ch<strong>in</strong>ea P., Abdala P., Obeso J. and Gonzalez-Hernandez T. (2001)<br />

Dopam<strong>in</strong>e cell degeneration <strong>in</strong>duced by <strong>in</strong>traventricular adm<strong>in</strong>istration <strong>of</strong> 6-<br />

hydroxydopam<strong>in</strong>e <strong>in</strong> the rat: similarities with cell loss <strong>in</strong> Park<strong>in</strong>son’s disease. Exp. Neurol.<br />

169, 163–181.<br />

Rodriguez-Pallares J., Parga J. A., Muñoz A., Rey P., Guerra M. J., Labandeira-Garcia J. L. (2007)<br />

Mechanism <strong>of</strong> 6-hydroxydopam<strong>in</strong>e <strong>neurotoxicity</strong>: the role <strong>of</strong> NADPH oxidase and microglial<br />

activation <strong>in</strong> 6-hydroxydopam<strong>in</strong>e-<strong>in</strong>duced degeneration <strong>of</strong> dopam<strong>in</strong>ergic neurons. J.<br />

Neurochem. 103, 145–156.<br />

Roedter A., W<strong>in</strong>kler C., Samii M., Walter G. F., Brandis A. and Nikkhah G. Comparison <strong>of</strong><br />

unilateral and bilateral <strong>in</strong>trastriatal 6-hydroxydopam<strong>in</strong>e-<strong>in</strong>duced axon term<strong>in</strong>al lesions:<br />

evidence for <strong>in</strong>terhemispheric functional coupl<strong>in</strong>g <strong>of</strong> the two nigrostriatal pathways. J.<br />

Comp. Neurol. 432, 217–229.


REFERENCES<br />

Roider G. and Drasch G. (1999) Concentration <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> human tissues-<strong>in</strong>vestigations on<br />

an ocupationally non-exposed population <strong>in</strong> Southern Bavaria (Germany). Trace Elem.<br />

Electrolytes 16, 77–86.<br />

Roig J. L., Fuentes S., Colom<strong>in</strong>a M. T., Vicens P. and Dom<strong>in</strong>go J. L. (2006) Alum<strong>in</strong>um, restra<strong>in</strong>t<br />

<strong>stress</strong> and ag<strong>in</strong>g: behavioral effects <strong>in</strong> rats after 1 and 2 years <strong>of</strong> alum<strong>in</strong>um exposure.<br />

Toxicology 218, 112–124.<br />

Roll<strong>in</strong> H. B., Theodorou P. and Kilroe-Smith T. A. (1993) Changes <strong>in</strong> the concentration <strong>of</strong> copper<br />

and z<strong>in</strong>c <strong>in</strong> body fluids and tissues <strong>of</strong> rabbits follow<strong>in</strong>g the <strong>in</strong>halation <strong>of</strong> low concentrations<br />

<strong>of</strong> Al2O3 dust. S. African J. Sci. 89, 246–249.<br />

Roskams A. J. and Connor J. R. (1990) Alum<strong>in</strong>um access to the bra<strong>in</strong>: a role for transferr<strong>in</strong> and<br />

its receptor. Proc. Natl. Acad. Sci. U. S. A. 87, 9024–9027.<br />

Ross G. W., Abbott R. D., Petrovitch H., Morens D. M., Grand<strong>in</strong>etti A., Tung K. H., Tanner C. M.,<br />

Masaki K. H., Blanchette P. L., Curb J. D., Popper J. S. and White L. R. (2000) Association <strong>of</strong><br />

c<strong>of</strong>fee and caffe<strong>in</strong>e <strong>in</strong>take with the risk <strong>of</strong> Park<strong>in</strong>son disease. JAMA 283, 2674–2679.<br />

Ross G. W., Abbott R. D., Petrovitch H., Tanner C. M., Davis D. G., Nelson J., Markesbery W. R.,<br />

Hardman J., Masaki K., Launer L. and White L. R. (2006) Association <strong>of</strong> olfactory<br />

dysfunction with <strong>in</strong>cidental Lewy bodies. Mov. Disord. 21, 2062–2067.<br />

Roy S. and Wolman L. (1969) Ultrastructural observations <strong>in</strong> Park<strong>in</strong>sonism. J. Pathol. 99, 39–44.<br />

Rozas G., López-Martín E., Guerra M. J., Labandeira-García J. L. (1998) The overall rod<br />

performance test <strong>in</strong> the MPTP-treated-mouse model <strong>of</strong> Park<strong>in</strong>sonism. J. Neurosci.<br />

Methods. 83, 165–175.<br />

Rybicki B. A., Johnson C. C., Peterson E. L., Kortsha G. X. and Gorell J. M. (1999) A family history<br />

<strong>of</strong> Park<strong>in</strong>son's disease and its effect on other PD risk factors. Neuroepidemiology 18, 270–<br />

278.<br />

231


REFERENCES<br />

Rymar V. V., Sasseville R., Luk K. C. and Sadikot A. F. (2004) Neurogenesis and stereological<br />

232<br />

morphometry <strong>of</strong> calret<strong>in</strong><strong>in</strong>-immunoreactive GABAergic <strong>in</strong>terneurons <strong>of</strong> the neostriatum. J.<br />

Comp. Neurol. 469, 325–339.<br />

Saggu H., Cooksey J., Dexter D., Wells F. R., Lees A., Jennerand P. and Marsden C. D. (1989) A<br />

selective <strong>in</strong>crease <strong>in</strong> particulate superoxide dismutase activity <strong>in</strong> park<strong>in</strong>sonian substantia<br />

nigra. J. Neurochem. 53, 692–697.<br />

Sah<strong>in</strong> G., Varol I., Temizer A., Benli K., Demirdamar R. and Duru S. (1994) Determ<strong>in</strong>ation <strong>of</strong><br />

alum<strong>in</strong>um levels <strong>in</strong> the kidney, liver, and bra<strong>in</strong> <strong>of</strong> mice treated with alum<strong>in</strong>um hydroxide.<br />

Biol. Trace Elem. Res. 41, 129–135.<br />

Sah<strong>in</strong> G., Task<strong>in</strong> T., Benli K. and Duru S. (1995) Impairment <strong>of</strong> motor coord<strong>in</strong>ation <strong>in</strong> mice after<br />

<strong>in</strong>gestion <strong>of</strong> alum<strong>in</strong>um chloride. Biol. Trace Elem. Res. 50, 79–85.<br />

Sakamoto T., Ogasawara Y., Ishii K., Takahashi H. and Tanabe S. (2004) Accumulation <strong>of</strong><br />

alum<strong>in</strong>um <strong>in</strong> ferrit<strong>in</strong> isolated from rat bra<strong>in</strong>. Neurosci. Lett. 366, 264–267.<br />

Sánchez-Iglesias S., Rey P., Méndez-Álvarez E., Labandeira-García J. L. and Soto-Otero R.<br />

(2007a) Time-course <strong>of</strong> bra<strong>in</strong> <strong>oxidative</strong> damage caused by <strong>in</strong>trastriatal adm<strong>in</strong>istration <strong>of</strong> 6-<br />

hydroxydopam<strong>in</strong>e <strong>in</strong> a rat model <strong>of</strong> Park<strong>in</strong>son’s disease. Neurochem. Res. 32, 99–105.<br />

Sánchez-Iglesias S., Soto-Otero R., Iglesias-González J., Barciela-Alonso M. C., Bermejo-Barrera<br />

P. and Méndez-Alvarez E. (2007b) Analysis <strong>of</strong> bra<strong>in</strong> regional distribution <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong><br />

rats via oral and <strong>in</strong>traperitoneal adm<strong>in</strong>istration. J. Trace Elem. Med. Biol. 21 Suppl 1, 31–<br />

34.<br />

Sánchez-Iglesias S., Méndez-Alvarez E., Iglesias-González J., Muñoz-Patiño A., Sánchez-Sellero<br />

I., Labandeira-García J. L. and Soto-Otero R. (2009) Bra<strong>in</strong> <strong>oxidative</strong> <strong>stress</strong> and selective<br />

behaviour <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> <strong>in</strong> specific areas <strong>of</strong> rat bra<strong>in</strong>: potential effects <strong>in</strong> a 6-OHDA-<br />

<strong>in</strong>duced model <strong>of</strong> Park<strong>in</strong>son's disease. J. Neurochem. 109, 879–88.<br />

Sang T. K., Chang H. Y., Lawless G. M., Ratnaparkhi A., Mee L., Ackerson L. C., Maidment N. T.,<br />

Krantz D. E. and Jackson G. R. (2007) A Drosophila model <strong>of</strong> mutant human park<strong>in</strong>-<strong>in</strong>duced


REFERENCES<br />

toxicity demonstrates selective loss <strong>of</strong> dopam<strong>in</strong>ergic neurons and dependence on cellular<br />

dopam<strong>in</strong>e. J. Neurosci. 27, 981–992.<br />

Sattler R., Xiong Z., Lu W. Y., Hafner M., MacDonald J. F. and Tymianski M. (1999) Specific<br />

coupl<strong>in</strong>g <strong>of</strong> NMDA receptor activation to nitric oxide <strong>neurotoxicity</strong> by PSD-95 prote<strong>in</strong>.<br />

Science 284, 1845– 1848.<br />

Sauer H. and Oertel W. H. (1994) Progressive degeneration <strong>of</strong> nigrostriatal dopam<strong>in</strong>e neurons<br />

follow<strong>in</strong>g <strong>in</strong>trastriatal term<strong>in</strong>al lesions with 6-hydroxydopam<strong>in</strong>e: a comb<strong>in</strong>ed retrograde<br />

trac<strong>in</strong>g and immunocytochemical study <strong>in</strong> the rat. Neuroscience 59, 401–415.<br />

Savory J. and Ghribi O. (2007) Can studies on <strong>alum<strong>in</strong>ium</strong> toxicity <strong>in</strong> vivo and <strong>in</strong> vitro provide<br />

relevant <strong>in</strong>formation on the pathogenesis and etiology <strong>of</strong> Alzheimer’s disease? J.<br />

Alzheimers Dis. 11, 429–432.<br />

Savory J., Huang Y., Herman M. M. and Wills M. R. (1996) Quantitative image analysis <strong>of</strong><br />

temporal changes <strong>in</strong> tau and neur<strong>of</strong>ilament prote<strong>in</strong>s dur<strong>in</strong>g the course <strong>of</strong> acute<br />

experimental neur<strong>of</strong>ibrillary degeneration; nonphosphorylated epitopes precede<br />

phosphorylation. Bra<strong>in</strong> Res. 707, 272–281.<br />

Savory J., Huang Y., Wills M. R. and Herman M. M. (1998) Reversal by desferrioxam<strong>in</strong>e <strong>of</strong> tau<br />

prote<strong>in</strong> aggregates follow<strong>in</strong>g two days <strong>of</strong> treatment <strong>in</strong> alum<strong>in</strong>um-<strong>in</strong>duced neur<strong>of</strong>ibrillary<br />

degeneration <strong>in</strong> rabbit: Implications for cl<strong>in</strong>ical trials <strong>in</strong> Alzheimer’s disease.<br />

Neurotoxicology 19, 209–214.<br />

Savitt J. M., Dawson V. L. and Dawson T. M. (2006) Diagnosis and treatment <strong>of</strong> Park<strong>in</strong>son<br />

disease: molecules to medic<strong>in</strong>e. J. Cl<strong>in</strong>. Invest. 116, 1744–1754.<br />

Savory J., Exley C., Forbes W. F., Huang Y., Joshi J. G., Kruck T., McLachlan D. R. and Wakayama<br />

I. (1996) Can the controversy <strong>of</strong> the role <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> Alzheimer's disease be resolved?<br />

What are the suggested approaches to this controversy and methodological issues to be<br />

considered? J. Toxicol. Environ. Health. 48, 615–635.<br />

233


REFERENCES<br />

Savory J., Herman M. M. and Ghribi O. (2006) <strong>Mechanisms</strong> <strong>of</strong> alum<strong>in</strong>um-<strong>in</strong>duced<br />

234<br />

neurodegeneration <strong>in</strong> animals: Implications for Alzheimer's disease. J. Alzheimers Dis. 10,<br />

135–144.<br />

Schaefer K., von Herrath D., Erley C. M. (1988) Treatment <strong>of</strong> uremic hyperphosphatemia–is<br />

there still a need for alum<strong>in</strong>um salts? Am. J. Nephrol. 8, 173–178.<br />

Schapira A. H. V. (1999) Science, medic<strong>in</strong>e, and the future: Park<strong>in</strong>son's disease. BMJ 318, 311–<br />

314.<br />

Schapira A. H. (2008) Mitochondria <strong>in</strong> the aetiology and pathogenesis <strong>of</strong> Park<strong>in</strong>son's disease.<br />

Lancet Neurol. 7, 97–109.<br />

Schapira A. H., Mann V. M., Cooper J. M., Krige D., Jenner P. J. and Marsden C. D. (1992)<br />

Mitochondrial function <strong>in</strong> Park<strong>in</strong>son’s disease. The Royal K<strong>in</strong>gs and Queens Park<strong>in</strong>son’s<br />

Disease Research Group. Ann. Neurol. 32, S116–S124.<br />

Schipper H. M., Liberman A. and Stopa E. G. (1998) Neural heme oxygenase-1 expression <strong>in</strong><br />

idiopathic Park<strong>in</strong>son’s disease. Exp. Neurol. 150, 60–68.<br />

Schmidt W. J. and Kretschmer B. D. (1997) Behavioural pharmacology <strong>of</strong> glutamate receptors<br />

<strong>in</strong> the basal ganglia. Neurosci. Biobehav. Rev. 21, 381–392.<br />

Schoenberg B. S., Osuntokun B. O., Adeuja A. O., Bademosi O., Nottidge V., Anderson D. W.<br />

and Haerer A. F. (1988) Comparison <strong>of</strong> the prevalence <strong>of</strong> Park<strong>in</strong>son’s disease <strong>in</strong> black<br />

populations <strong>in</strong> the rural United States and <strong>in</strong> rural Nigeria: door-to-door community<br />

studies. Neurology 38, 645–646.<br />

Schrag A., Dodel R., Spottke A., Bornsche<strong>in</strong> B., Siebert U. and Qu<strong>in</strong>n N. P. (2007) Rate <strong>of</strong> cl<strong>in</strong>ical<br />

progression <strong>in</strong> Park<strong>in</strong>son’s disease. A prospective study. Mov. Disord. 22, 938–945.<br />

Schulz J. B. and Dichgans J. (1999) Molecular pathogenesis <strong>of</strong> movement disorders: are prote<strong>in</strong><br />

aggregates a common l<strong>in</strong>k <strong>in</strong> neuronal degeneration. Curr. Op<strong>in</strong>. Neurol. 12, 433–439.


REFERENCES<br />

Sedelis M., H<strong>of</strong>ele K., Auburger G. W., Morgan S., Huston J. P. and Schwart<strong>in</strong>g R. K. (2000)<br />

MPTP susceptibility <strong>in</strong> the mouse: behavioral, neurochemical, and histological analysis <strong>of</strong><br />

gender and stra<strong>in</strong> differences. Behav. Genet. 30, 171–182.<br />

Sedman A. B., Kle<strong>in</strong> G. L., Merritt R. J., Miller N. L., Weber K. O., Gill W. L., Anand H. and Alfrey<br />

A. C. (1985) Evidence <strong>of</strong> alum<strong>in</strong>um load<strong>in</strong>g <strong>in</strong> <strong>in</strong>fants receiv<strong>in</strong>g <strong>in</strong>travenous therapy. N.<br />

Engl. J. Med. 312, 1337–1343.<br />

Seidler A., Hellenbrand W., Robra B. P., Vieregge P., Nischan P., Joerg J., Oertel W. H., Ulm G.<br />

and Schneider E. (1996) Possible environmental, occupational, and other etiologic factors<br />

for Park<strong>in</strong>son's disease: a case-control study <strong>in</strong> Germany. Neurology 46, 1275–1284.<br />

Sgado P., Alberi L., Gherbassi D., Galasso S. L., Ramakers G. M., Alavian K. N., Smidt M. P., Dyck<br />

R. H. and Simon H. H. (2006) Slow progressive degeneration <strong>of</strong> nigral dopam<strong>in</strong>ergic<br />

neurons <strong>in</strong> postnatal Engrailed mutant mice. Proc. Natl. Acad. Sci. U. S. A. 103, 15242–<br />

15247.<br />

Shafer T. J. and Mundy W. R. (1995) Effects <strong>of</strong> alum<strong>in</strong>um on neuronal signal transduction:<br />

mechanisms underly<strong>in</strong>g disruption <strong>of</strong> phospho<strong>in</strong>ositide hydrolysis. Gen. Pharmac. 26, 889–<br />

895.<br />

Shafer T. J., Mundy W. R. and Wilson H. A. (1993) Alum<strong>in</strong>um decreases muscar<strong>in</strong>ic, adrenergic,<br />

and metabotropic receptor-stimulated phospho<strong>in</strong>ositide hydrolysis <strong>in</strong> hippocampal and<br />

cortical slices from rat bra<strong>in</strong>. Bra<strong>in</strong> Res. 629, 133–140.<br />

Sharma P. and Mishra K. P. (2006) Alum<strong>in</strong>um-<strong>in</strong>duced maternal and developmental toxicity<br />

and <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> rat bra<strong>in</strong>: response to comb<strong>in</strong>ed adm<strong>in</strong>istration <strong>of</strong> Tiron and<br />

glutathione. Reprod. Toxicol. 21, 313–321.<br />

Sherer T. B., Betarbet R., Kim J. H. and Greenamyre J. T. (2003) Selective microglial activation <strong>in</strong><br />

the rat rotenone model <strong>of</strong> Park<strong>in</strong>son’s disease. Neurosci. Lett. 341, 87–90.<br />

Shiba K., Arai T., Sato S., Kubo S. I., Ohba Y., Mizuno Y. and Hattori N. (2009) Park<strong>in</strong> stabilizes<br />

PINK1 through direct <strong>in</strong>teraction. Biochem. Biophys. Res. Commun. 383, 331–335.<br />

235


REFERENCES<br />

Shimizu H., Mori T., Koyama M., Sekiya M. and Ooami H. (1994) A correlative study <strong>of</strong> the<br />

236<br />

alum<strong>in</strong>um content and ag<strong>in</strong>g changes <strong>of</strong> the bra<strong>in</strong> <strong>in</strong> non-demented elderly subjects.<br />

Nippon Ronen Igakkai Zasshi 31, 950–960.<br />

Shimohama S., Sawada H., Kitamura Y. and Taniguchi T., 2003. Disease model: Park<strong>in</strong>son's<br />

disease. Trends Mol. Med. 9, 360–365.<br />

Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F., Jenner P. and Marsden C. D.<br />

(1994) Alterations <strong>in</strong> glutathione levels <strong>in</strong> Park<strong>in</strong>son’s disease and other<br />

neurodegenerative disorders affect<strong>in</strong>g basal ganglia. Ann. Neurol. 36, 348–355.<br />

Siderowf A. and Stern M. (2003) Update on Park<strong>in</strong>son disease. Ann. Intern. Med. 138, 651–658.<br />

Sies H. and Jones D. (2007) Oxidative Stress, <strong>in</strong> Encyclopedia <strong>of</strong> <strong>stress</strong> F<strong>in</strong>k G. (ed), pp. 45–48.<br />

Elsevier, San Diego.<br />

Silva V. S., Cordeiro J. M., Matos M. J., Oliveira C. R. and Galçalves P. P. (2002) Alum<strong>in</strong>ium<br />

accumulation and membrane fluidity alterations <strong>in</strong> synaptosomes isolated from rat bra<strong>in</strong><br />

cortex follow<strong>in</strong>g alum<strong>in</strong>um <strong>in</strong>gestion: effects <strong>of</strong> cholesterol. Neurosci. Res. 44, 181–193.<br />

Silvestri L., Caputo V., Bellacchio E., Ator<strong>in</strong>o L., Dallapiccola B., Valente E. M. and Casari G.<br />

(2005) Mitochondrial import and enzymatic activity <strong>of</strong> PINK1 mutants associated to<br />

recessive park<strong>in</strong>sonism. Hum. Mol. Genet. 14, 3477–3492.<br />

S<strong>in</strong>ger T.P. and Ramsay R. R. (1990) Mechanism <strong>of</strong> the <strong>neurotoxicity</strong> <strong>of</strong> MPTP: an update. FEBS<br />

Lett. 274, 1–8.<br />

S<strong>in</strong>gleton A. B., Farrer M., Johnson J. S<strong>in</strong>gleton A., Hague S., Kachergus J., Hulihan M.,<br />

Peural<strong>in</strong>na T., Dutra A., Nussbaum R., L<strong>in</strong>coln S., Crawley A., Hanson M., Maraganore D.,<br />

Adler C., Cookson M. R., Muenter M., Baptista M., Miller D., Blancato J., Hardy J. and<br />

Gw<strong>in</strong>n-Hardy K. (2003) alpha-Synucle<strong>in</strong> locus triplication causes Park<strong>in</strong>son’s disease.<br />

Science 302, 841.


REFERENCES<br />

Sjögren B., El<strong>in</strong>der C. G., Iregren A., McLachlan D. R. C. and Riihimaki V. (1997) Occupational<br />

<strong>alum<strong>in</strong>ium</strong> exposure and its health effects, <strong>in</strong> Research issues <strong>in</strong> alum<strong>in</strong>um toxicity (Yokel R.<br />

A. and Golub M. S., eds), pp. 165–183, Taylor and Francis, Wash<strong>in</strong>gton DC.<br />

Smith P. D., Mount M. P., Shree R., Callaghan S., Slack R. S., Anisman H., V<strong>in</strong>cent I., Wang X.,<br />

Mao Z. and Park D. S. (2006) Calpa<strong>in</strong>-regulated p35/cdk5 plays a central role <strong>in</strong><br />

dopam<strong>in</strong>ergic neuron death through modulation <strong>of</strong> the transcription factor myocyte<br />

enhancer factor 2. J. Neurosci. 26, 440–447.<br />

Smith W. W., Pei Z., Jiang H., Dawson V. L., Dawson T. M. and Ross C. A. (2006) K<strong>in</strong>ase activity<br />

<strong>of</strong> mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231–1233.<br />

S<strong>of</strong>ic E., Paulus W., Jell<strong>in</strong>ger K., Riederer P. and Youdim M. B. (1991) Selective <strong>in</strong>crease <strong>of</strong> iron<br />

<strong>in</strong> substantia nigra zona compacta <strong>of</strong> park<strong>in</strong>sonian bra<strong>in</strong>s. J. Neurochem. 56, 978–982.<br />

S<strong>of</strong>ic E., Lange K. W., Jell<strong>in</strong>ger K. and Riederer P. (1992) Reduced and oxidized glutathione <strong>in</strong><br />

the substantia nigra <strong>of</strong> patients with Park<strong>in</strong>son's disease. Neurosci. Lett. 142, 128–130.<br />

S<strong>of</strong>ic E., Riederer P., He<strong>in</strong>sen H., Beckmann H., Reynolds G. P., Hebenstreit G. and Youdim M.<br />

B. (1988) Increased iron (III) and total iron content <strong>in</strong> post mortem substantia nigra <strong>of</strong><br />

park<strong>in</strong>sonian bra<strong>in</strong>. J. Neural. Transm. 74, 199–205.<br />

Soni M. G., White S. M., Flamm W.G. and Burdock G. A. (2001) Safety evaluation <strong>of</strong> dietary<br />

alum<strong>in</strong>um. Regul Toxicol Pharmacol. 33, 66–79.<br />

Sorenson J. R., Campbell I. R., Tepper L. B. and L<strong>in</strong>gg R. D. (1974) Alum<strong>in</strong>um <strong>in</strong> the environment<br />

and human health. Environ. Health. Perspect. 8, 3–95.<br />

Soto-Otero R., Méndez-Álvarez E., Hermida-Ameijeiras A., Muñoz-Patiño A. M. and Labandeira-<br />

García J. L. (2000) Autoxidation and <strong>neurotoxicity</strong> <strong>of</strong> 6-hydroxydopam<strong>in</strong>e <strong>in</strong> the presence<br />

<strong>of</strong> some antioxidants: potential implication <strong>in</strong> relation to the pathogenesis <strong>of</strong> Park<strong>in</strong>son’s<br />

disease. J. Neurochem. 74, 1605–1612.<br />

Soto-Otero R., Méndez-Álvarez M., Hermida-Ameijeiras A., Sánchez-Sellero I., Cruz-Landeira A.<br />

and López-Rivadulla Lamas M. (2001) Inhibition <strong>of</strong> bra<strong>in</strong> monoam<strong>in</strong>e oxidase activity by<br />

237


REFERENCES<br />

238<br />

the generation <strong>of</strong> hydroxyl radicals: potential implications <strong>in</strong> relation to <strong>oxidative</strong> <strong>stress</strong>.<br />

Life Sci. 69, 879–889.<br />

Soto-Otero R., Méndez-Álvarez E., Hermida-Ameijeiras A., López-Real A. M. and Labandeira-<br />

García J. L. (2002) Effects <strong>of</strong> (-)-nicot<strong>in</strong>e and (-)-cot<strong>in</strong><strong>in</strong>e on 6-hydroxydopam<strong>in</strong>e-<strong>in</strong>duced<br />

<strong>oxidative</strong> <strong>stress</strong> and <strong>neurotoxicity</strong>: relevance for Park<strong>in</strong>son’s disease. Biochem. Pharmacol.<br />

64, 125–135.<br />

Spillant<strong>in</strong>i M. G., Crowther R. A., Jakes R., Hasegawa M. and Goedert M. (1998) alpha-Synucle<strong>in</strong><br />

<strong>in</strong> filamentous <strong>in</strong>clusions <strong>of</strong> Lewy bodies from Park<strong>in</strong>son's disease and dementia with lewy<br />

bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473.<br />

Stacy M. (2002) Sleep disorders <strong>in</strong> Park<strong>in</strong>son’s disease: epidemiology and management. Drugs<br />

Ag<strong>in</strong>g 19, 733–739.<br />

Stamler J. S., Simon D. I., Osborne J. A., Mull<strong>in</strong>s M. E., Jaraki O., Michel T., S<strong>in</strong>gel D. J. and<br />

Loscalzo J. (1992) S-nitrosylation <strong>of</strong> prote<strong>in</strong>s with nitric oxide: synthesis and<br />

characterization <strong>of</strong> biologically active compounds. Proc. Natl. Acad. Sci. U. S. A. 89, 444–<br />

448.<br />

Steece-Collier K., Maries E. and Kordower J. H. (2002) Etiology <strong>of</strong> Park<strong>in</strong>son’s disease: Genetics<br />

and environment revisited. Proc. Natl. Acad. Sci. USA 99, 13972–13974.<br />

Stewart V. C. and Heales S. J. R. (2003) Nitric oxide-<strong>in</strong>duced mitochondrial dysfunction:<br />

implications for neurodegeneration. Free Radic. Biol. Med. 34, 287–303.<br />

Stitch S. R. (1957) Trace elements <strong>in</strong> human tissue. I. A semi-quantitative spectrographic<br />

survey. Biochem. J. 67, 97–103.<br />

Stoessl A. J. and Rivest J. (1999) Differential diagnosis <strong>of</strong> park<strong>in</strong>sonism. Can. J. Neurol. Sci. 26,<br />

S1–4.<br />

Stokes A. H., Hast<strong>in</strong>gs T. G. and Vrana K. E. (1999) Cytotoxic and genotoxic potential <strong>of</strong><br />

dopam<strong>in</strong>e. J. Neurosci. Res. 55, 659–665.


REFERENCES<br />

Strassburger J. and Coble D. W. (1987) Infrared characterisation <strong>of</strong> human sweat glands<br />

<strong>in</strong>hibited with alum<strong>in</strong>um chlorohydrate. J. Soc. Cosm. Chem. 38, 109–124.<br />

Sulzer D. (2007) Multiple hit hypotheses for dopam<strong>in</strong>e neuron loss <strong>in</strong> Park<strong>in</strong>son's disease.<br />

Trends Neurosci. 30, 244–250.<br />

Suzuki Y., Imai Y., Nakayama H., Takahashi K., Takio K. and Takahashi R. (2001) A ser<strong>in</strong>e<br />

protease, HtrA2, is released from the mitochondria and <strong>in</strong>teracts with XIAP, <strong>in</strong>duc<strong>in</strong>g cell<br />

death. Mol. Cell. 8, 613–621.<br />

Suzuki Y., Takahashi-Niki K., Akagi T., Hashikawa T. and Takahashi R. (2004) Mitochondrial<br />

protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell. Death.<br />

Differ. 11, 208–216.<br />

Szabo C., Ischiropoulos H. and Radi R. (2007) Peroxynitrite: biochemistry, pathophysiology and<br />

development <strong>of</strong> therapeutics. Nat. Rev. Drug Discov. 6, 662–680.<br />

Takahashi T., Yamashita H., Nakamura T., Nagano Y. and Nakamura S. (2002) Tyros<strong>in</strong>e 125 <strong>of</strong><br />

alpha-synucle<strong>in</strong> plays a critical role for dimerization follow<strong>in</strong>g nitrative <strong>stress</strong>. Bra<strong>in</strong> Res.<br />

938, 73–80.<br />

Tanner C. M. and Aston D. A. (2000) Epidemiology <strong>of</strong> Park<strong>in</strong>son’s disease and ak<strong>in</strong>etic<br />

syndromes. Neurol. 13, 427–430.<br />

Tanner C. M., Ottman R., Goldman S. M., Ellenberg J., Chan P., Mayeux R. and Langston J. W.<br />

(1999) Park<strong>in</strong>son disease <strong>in</strong> tw<strong>in</strong>s: an etiologic study. JAMA 281, 341–346.<br />

Tansey M. G., McCoy M. K. and Frank-Cannon T. C. (2007) Neuro<strong>in</strong>flammatory mechanisms <strong>in</strong><br />

Park<strong>in</strong>son's disease: potential environmental triggers, pathways, and targets for early<br />

therapeutic <strong>in</strong>tervention. Exp. Neurol. 208, 1–25.<br />

Tatton W. G., Chalmers-Redman R., Brown D. and Tatton N. (2003) Apoptosis <strong>in</strong> Park<strong>in</strong>son’s<br />

disease: signals for neuronal degradation. Ann. Neurol. 53, S61–S70.<br />

239


REFERENCES<br />

Taylor G. A., Moore P. B., Ferrier I. N., Tyrer S. P. and Edwardson J.A. (1998) Gastro<strong>in</strong>test<strong>in</strong>al<br />

240<br />

absorption <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> and citrate <strong>in</strong> man. J. Inorg. Biochem. 69, 165–169.<br />

Teagarden D. L., Hem S. L. and White J. L. (1982) Conversion <strong>of</strong> <strong>alum<strong>in</strong>ium</strong> chlorohydrate to<br />

alum<strong>in</strong>um hydroxide. J. Soc. Cosm. Chem. 33, 281–295.<br />

Thacker E. L. and Ascherio A. (2008) Familial aggregation <strong>of</strong> Park<strong>in</strong>son's disease: a meta-<br />

analysis. Mov. Disord. 23, 1174–1183.<br />

Thomas B. and Beal M. F. (2007) Park<strong>in</strong>son's disease. Hum. Mol. Genet. 16 Spec. No. 2, R183–<br />

R194.<br />

Thrash B., Uthayathas S., Karuppagounder S. S., Suppiramaniam V. and Dhanasekaran M.<br />

(2007) Paraquat and maneb <strong>in</strong>duced <strong>neurotoxicity</strong>. Proc. West Pharmacol. Soc. 50, 31–42.<br />

Tipton I. H. and Cook M. J. (1963) Trace elements <strong>in</strong> human tissue. Part II. Adult subjects from<br />

the United States. Health Phys. 9, 103–145.<br />

Tipton I. H., and Shafer J. J. (1964) Statistical analysis <strong>of</strong> lung trace element levels. Arch.<br />

Environ. Health 8, 58–67.<br />

Tison F., Dartigues J. F., Dubes L., Zuber M., Alperovitch A. and Henry P. (1994) Prevalence <strong>of</strong><br />

Park<strong>in</strong>son’s disease <strong>in</strong> the elderly: a population study <strong>in</strong> Gironde, France. Acta Neurol.<br />

Scand. 90, 111–115.<br />

Torreilles F., Salman-Tabcheh S., Guer<strong>in</strong> M., and Torreilles J. (1999). Neurodegenerative<br />

disorders: the role <strong>of</strong> peroxynitrite. Bra<strong>in</strong> Res. Bra<strong>in</strong> Res. Rev. 30, 153–163.<br />

Trojanowski J. Q. and Lee V. M. (2002) Park<strong>in</strong>son’s disease and related synucle<strong>in</strong>opathies are a<br />

new class <strong>of</strong> nervous system amyloidoses. Neurotoxicology 23, 457–460.<br />

Trojanowski J. Q. and Lee V. M. (2003) Park<strong>in</strong>son’s disease and related alpha-synucle<strong>in</strong>opathies<br />

are bra<strong>in</strong> amyloidoses. Ann. NY Acad. Sci. 991, 107–110.


REFERENCES<br />

Tsang A. H. and Chung K. K. (2009) Oxidative and nitrosative <strong>stress</strong> <strong>in</strong> Park<strong>in</strong>son's disease.<br />

Biochim. Biophys. Acta. 1792, 643–650.<br />

Tsunoda M. and Sharma R. P. (1999) Altered dopam<strong>in</strong>e turnover <strong>in</strong> mur<strong>in</strong>e hypothalamus after<br />

low-dose cont<strong>in</strong>uous oral adm<strong>in</strong>istration <strong>of</strong> alum<strong>in</strong>um. J Trace Elem Med Biol 13:224–231.<br />

Turiault M., Parnaudeau S., Milet A., Parlato R., Rouzeau J. D., Lazar M. and Tronche F. (2007)<br />

Analysis <strong>of</strong> dopam<strong>in</strong>e transporter gene expression pattern – generation <strong>of</strong> DAT-iCre<br />

transgenic mice. FEBS J. 274, 3568–3577.<br />

Turski L., Bressler K., Rettig K. J., Loschmann P. A. and Wachtel H. (1991) Protection <strong>of</strong><br />

substantia nigra from MPP + <strong>neurotoxicity</strong> by Nmethyl- D-aspartate antagonists. Nature<br />

349, 414–418.<br />

Twelves D., Perk<strong>in</strong>s K. S. and Counsell C. (2003) Systematic review <strong>of</strong> <strong>in</strong>cidence studies <strong>of</strong><br />

Park<strong>in</strong>son’s disease. Mov. Disord. 18, 19–31.<br />

U. S. Public Health Service. (1992). ‘‘Toxicological Pr<strong>of</strong>ile for Alum<strong>in</strong>um and Compounds.’’<br />

(Contact No. 205-88-0608). Prepared by Clement International Corp.<br />

Uhl G. R., Hedreen J. C. and Price D. L. (1985) Park<strong>in</strong>son’s disease: loss <strong>of</strong> neurons from the<br />

ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35, 1215–<br />

1218.<br />

Uhl G. R., Walther D., Mash D., Faucheux B. and Javoy-Agid F. (1994) Dopam<strong>in</strong>e transporter<br />

messenger RNA <strong>in</strong> Park<strong>in</strong>son's disease and control substantia nigra neurons. Ann. Neurol.<br />

35, 494–498.<br />

Uitti R. J., Rajput A. H., Ahlskog J. E., Offord K. P., Schroeder D. R., Ho M. M., Prasad M., Rajput<br />

A. and Basran P. (1996) Amantad<strong>in</strong>e treatment is an <strong>in</strong>dependent predictor <strong>of</strong> improved<br />

survival <strong>in</strong> Park<strong>in</strong>son's disease. Neurology 46, 1551–1556.<br />

Uitti R. J., Baba Y., Wszolek Z. K. and Putzke D. J. (2005) Def<strong>in</strong><strong>in</strong>g the Park<strong>in</strong>son’s disease<br />

phenotype: <strong>in</strong>itial symptoms and basel<strong>in</strong>e characteristics <strong>in</strong> a cl<strong>in</strong>ical cohort. Park<strong>in</strong>sonism<br />

Relat. Disord. 11, 139–145.<br />

241


REFERENCES<br />

Um J. W., Stichel-Gunkel C., Lübbert H., Lee G. and Chung K. C. (2009) Molecular <strong>in</strong>teraction<br />

242<br />

between park<strong>in</strong> and PINK1 <strong>in</strong> mammalian neuronal cells. Mol. Cell. Neurosci. 40, 421–432.<br />

Ungerstedt U. (1968) 6-Hydroxydopam<strong>in</strong>e <strong>in</strong>duced degeneration <strong>of</strong> central monoam<strong>in</strong>e<br />

neurons. Eur. J. Pharmacol. 5, 107–110.<br />

Ungerstedt U. and Arbuthnott G. W. (1970) Quantitative record<strong>in</strong>g <strong>of</strong> rotational behavior <strong>in</strong><br />

rats after 6-hydroxy-dopam<strong>in</strong>e lesions <strong>of</strong> the nigrostriatal dopam<strong>in</strong>e system. Bra<strong>in</strong> Res. 24,<br />

485–493.<br />

Ungerstedt U. (1971) Stereotaxic mapp<strong>in</strong>g <strong>of</strong> the monoam<strong>in</strong>e pathways <strong>in</strong> the rat bra<strong>in</strong>. Acta<br />

Physiol. Scand. Suppl. 367, 1–48.<br />

Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., Ali Z., Del<br />

Turco D., Bentivoglio A. R., Healy D. G., Albanese A., Nussbaum R., González-Maldonado R.,<br />

Deller T., Salvi S., Cortelli P., Gilks W. P., Latchman D. S., Harvey R. J., Dallapiccola B.,<br />

Auburger G. and Wood N. W. (2004) Hereditary early-onset Park<strong>in</strong>son’s disease caused by<br />

mutations <strong>in</strong> PINK1. Science 304, 1158–1160.<br />

Van Den Eeden S. K., Tanner C. M., Bernste<strong>in</strong> A. L., Fross R. D., Leimpeter A., Bloch D. A. and<br />

Nelson L. M. (2003) Incidence <strong>of</strong> Park<strong>in</strong>son’s disease: variation by age, gender, and<br />

race/ethnicity. Am. J. Epidemiol. 157, 1015–1022.<br />

Van der Voet G. B. (1992) Alum<strong>in</strong>um, <strong>in</strong> Biology and Medic<strong>in</strong>e (Ciba Foundation Symposium<br />

169), pp. 109–122. Wiley, Chichester.<br />

Van Dyck C. H., Seibyl J. P., Malison R. T., Laruelle M., Zoghbi S. S., Baldw<strong>in</strong> R. M. and Innis R. B.<br />

(2002) Age-related decl<strong>in</strong>e <strong>in</strong> dopam<strong>in</strong>e transporters: analysis <strong>of</strong> striatal subregions,<br />

nonl<strong>in</strong>ear effects, and hemispheric asymmetries. Am. J. Geriatr. Psychiatry 10, 36–43.<br />

Ventur<strong>in</strong>i-Soriano M. and Berthon G. (2001) Alum<strong>in</strong>um speciation studies <strong>in</strong> biological fluids.<br />

Part 7. A quantitative <strong>in</strong>vestigation <strong>of</strong> alum<strong>in</strong>um(III)-malate complex equilibria and their<br />

potential implications for alum<strong>in</strong>um metabolism and toxicity. J. Inorg. Biochem. 85, 143–<br />

154.


REFERENCES<br />

Verstraeten S. V. (2000) <strong>Mechanisms</strong> <strong>in</strong>volved <strong>in</strong> the <strong>oxidative</strong> damage to membranes<br />

mediated by alum<strong>in</strong>um and alum<strong>in</strong>um-related cations. Effects <strong>in</strong> vitro and <strong>in</strong> vivo, <strong>in</strong> School<br />

<strong>of</strong> Pharmacy and Biochemistry. University <strong>of</strong> Buenos Aires, Buenos Aires, Argent<strong>in</strong>a.<br />

Verstraeten S. V. and Oteiza P. I. (1995) Sc 3+ , Ga 3+ , In 3+ , Y 3+ , and Be 2+ promote changes <strong>in</strong><br />

membrane physical properties and facilitate Fe 2+ -<strong>in</strong>itiated lipid peroxidation. Arch.<br />

Biochem. Biophys. 322, 284–290.<br />

Verstraeten S. V. and Oteiza P. I. (2000) Effects <strong>of</strong> Al 3+ and related metals on membrane phase<br />

state and hydration: correlation with lipid oxidation. Arch. Biochem. Biophys. 375, 340–<br />

346.<br />

Verstraeten S. V. and Oteiza P. I. (2002) Al 3+ -mediated changes <strong>in</strong> membrane physical<br />

properties participate <strong>in</strong> the <strong>in</strong>hibition <strong>of</strong> polyphospho<strong>in</strong>ositide hydrolysis. Arch. Biochem.<br />

Biophys. 408, 263–271.<br />

Verstraeten S. V., Nogueira L. V., Schreier S. and Oteiza P. I. (1997a) Effect <strong>of</strong> trivalent metal<br />

ions on phase separation and membrane lipid pack<strong>in</strong>g: role <strong>in</strong> lipid peroxidation. Arch.<br />

Biochem. Biophys. 338, 121–127.<br />

Verstraeten S. V., Golub M. S., Keen C. L., Oteiza P. I. (1997b) Myel<strong>in</strong> is a preferential target <strong>of</strong><br />

alum<strong>in</strong>um-mediated <strong>oxidative</strong> damage. Arch. Biochem. Biophys. 344, 289–294.<br />

Verstraeten S. V., Keen C. L., Golub M. S. and Oteiza P. I. (1998) Membrane composition can<br />

<strong>in</strong>fluence the rate <strong>of</strong> Al 3+ -mediated lipid oxidation: effect <strong>of</strong> galactolipids. Biochem. J. 333,<br />

833–838.<br />

Verstraeten S. V., Villaverde M. S. and Oteiza P. I. (2003) Al 3+ -mediated changes on membrane<br />

fluidity affects the activity <strong>of</strong> PI-PLC but not <strong>of</strong> PLC. Chem. Phys. Lipids 122, 159–163.<br />

Verstraeten S. V., Aimo L. and Oteiza P. I. (2008) Alum<strong>in</strong>ium and lead: molecular mechanisms<br />

<strong>of</strong> bra<strong>in</strong> toxicity. Arch. Toxicol. 82, 789-802.<br />

Vila M. and Przedborski S. (2003) Target<strong>in</strong>g programmed cell death <strong>in</strong> neurodegenerative<br />

diseases. Nat. Rev. Neurosci. 4, 365–375.<br />

243


REFERENCES<br />

Vila M. and Przedborski S. (2004) Genetic clues to the pathogenesis <strong>of</strong> Park<strong>in</strong>son’s disease.<br />

244<br />

Nat. Med. 10, S58–S62.<br />

V<strong>in</strong>gerhoets F. J., Snow B. J., Lee C. S., Schulzer M., Mak E. and Calne D. B. (1994) Longitud<strong>in</strong>al<br />

fluorodopa positron emission tomographic studies <strong>of</strong> the evolution <strong>of</strong> idiopathic<br />

park<strong>in</strong>sonism. Ann Neurol. 36, 759–764.<br />

Volles M. J., Lee S. J., Rochet J. C., Shtilerman M. D., D<strong>in</strong>g T. T., Kessler J. C., Lansbury Jr. P. T.<br />

(2001) Vesicle permeabilization by prot<strong>of</strong>ibrillar alpha-synucle<strong>in</strong>: implications for the<br />

pathogenesis and treatment <strong>of</strong> Park<strong>in</strong>son's disease. Biochemistry 40, 7812–7819.<br />

Von Campenhausen, Bornsche<strong>in</strong> B., Wick R., Bötzel K., Sampaio C., Poewe W., Oertel W.,<br />

Siebert U., Berger K. and Dodel R. (2005) Prevalence and <strong>in</strong>cidence <strong>of</strong> Park<strong>in</strong>son’s disease<br />

<strong>in</strong> Europe. Eur. Neuropsychopharmacol. 15, 473–490.<br />

Von Coelln R., Thomas B., Savitt J. M., Lim K. L., Sasaki M., Hess E. J., Dawson V. L. and Dawson<br />

T. M. (2004) Loss <strong>of</strong> locus coeruleus neurons and reduced startle <strong>in</strong> park<strong>in</strong> null mice. Proc.<br />

Natl. Acad. Sci. U. S. A. 101, 10744–10749.<br />

Vroegop S. M., Decker D.E. and Buxser S. E. (1995) Localization <strong>of</strong> damage <strong>in</strong>duced by reactive<br />

oxygen species <strong>in</strong> cultured cells. Free Radic. Biol. Med. 18, 141–151.<br />

Vyas I., Heikkila R. E. and Nicklas W. J. (1986) Studies on the <strong>neurotoxicity</strong> <strong>of</strong> 1-methyl-4-<br />

phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e: <strong>in</strong>hibition <strong>of</strong> NADH-l<strong>in</strong>ked substrate oxidation by its<br />

metabolite 1-methyl-4-phenylpyrid<strong>in</strong>ium. J. Neurochem. 46, 1501–1507.<br />

Wagner W. (1999) Canadian M<strong>in</strong>erals Yearbook. Natural Resources Canada, Ottawa, Ontario,<br />

Canada.<br />

Wakabayashi K. and Takahashi H. (1997) Neuropathology <strong>of</strong> autonomic nervous system <strong>in</strong><br />

Park<strong>in</strong>son's disease. Eur Neurol. 38, 2–7.<br />

Wakabayashi K., Tanji K., Mori F. and Takahashi H. (2007) The Lewy body <strong>in</strong> Park<strong>in</strong>son's<br />

disease: molecules implicated <strong>in</strong> the formation and degradation <strong>of</strong> alpha-synucle<strong>in</strong><br />

aggregates. Neuropathology 27, 494–506.


REFERENCES<br />

Walker V. R., Sutton R. A., Meirav O., Sossi V., Johnson R., Kle<strong>in</strong> J., F<strong>in</strong>k D. and Middleton R.<br />

(1994) Tissue disposition <strong>of</strong> 26alum<strong>in</strong>um <strong>in</strong> rats measured by accelerator mass<br />

spectrometry. Cl<strong>in</strong>. Invest. Med. 17, 420-425.<br />

Wallace R. A., Boldry R., Schmittgen T., Miller D. and Uretsky N. (1984) Effect <strong>of</strong> 1-methyl-4-<br />

phenyl-1,2,3,6 tetrahydropyrid<strong>in</strong>e (MPTP) on monoam<strong>in</strong>e neurotransmitters <strong>in</strong> mouse<br />

bra<strong>in</strong> & heart. Life Sci. 35, 285–291.<br />

Walton J. R. (2006) Alum<strong>in</strong>um <strong>in</strong> hippocampal neurons from humans with Alzheimer’s disease.<br />

Neurotoxicology 27, 385–394.<br />

Wang Y., White M. G., Akay C., Chodr<strong>of</strong>f R. A., Rob<strong>in</strong>son J., L<strong>in</strong>dl K. A., Dichter M. A., Qian Y.,<br />

Mao Z., Kolson D. L. and Jordan-Sciutto K. L. (2007) Activation <strong>of</strong> cycl<strong>in</strong>-dependent k<strong>in</strong>ase 5<br />

by calpa<strong>in</strong>s contributes to human immunodeficiency virus-<strong>in</strong>duced <strong>neurotoxicity</strong>. J.<br />

Neurochem. 103, 439–455.<br />

Ward N. and Mason J. (1987) Neutron activation analysis techniques for identify<strong>in</strong>g elemental<br />

status <strong>in</strong> Alzheimer’s disease. J. Radioanal. Nucl. Chem. 113, 515–526.<br />

Warner T. T. and Schapira A. H. (2003) Genetic and environmental factors <strong>in</strong> the cause <strong>of</strong><br />

Park<strong>in</strong>son's disease. Ann. Neurol. 53, S16–23.<br />

Weburg R. and Berstad A. (1986) Gastro<strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> alum<strong>in</strong>um from s<strong>in</strong>gle doses <strong>of</strong><br />

<strong>alum<strong>in</strong>ium</strong> conta<strong>in</strong><strong>in</strong>g antacids <strong>in</strong> man. Eur. J. Cl<strong>in</strong>. Invest. 16, 428–432.<br />

Weih<strong>of</strong>en A., Ostaszewski B., M<strong>in</strong>ami Y. and Selkoe D. J. (2007) P<strong>in</strong>k1 Park<strong>in</strong>son mutations, the<br />

Cdc37 ⁄ Hsp90 chaperones and Park<strong>in</strong> all <strong>in</strong>fluence the maturation or subcellular<br />

distribution <strong>of</strong> P<strong>in</strong>k1. Hum. Mol. Genet. 17, 602–616.<br />

We<strong>in</strong>er W. J. (2008) There is no Park<strong>in</strong>son disease. Arch. Neurol. 65, 705–708.<br />

White D. M., Lonstreth W. T. Jr., Rosenstock L., Claypoole K. H. J., Brodk<strong>in</strong> C. A. and Townes B.<br />

D. (1992) Neurologic syndrome <strong>in</strong> 25 workers form an alum<strong>in</strong>um smelt<strong>in</strong>g plant. Arch.<br />

Intern. Med. 152, 1443–1448.<br />

245


REFERENCES<br />

Whitehead M. W., Farrar G., Christie G. L., Blair J. A., Thompson R. P. and Powell J. J. (1997)<br />

246<br />

<strong>Mechanisms</strong> <strong>of</strong> alum<strong>in</strong>um absorption <strong>in</strong> rats. Am. J. Cl<strong>in</strong>. Nutr. 65, 1446–1452.<br />

Whitton P. S. (2007) Inflammation as a causative factor <strong>in</strong> the aetiology <strong>of</strong> Park<strong>in</strong>son's disease.<br />

Br. J. Pharmacol. 150, 963–976.<br />

Wilhelm M., Jäger D. E. and Ohnesorge F. K. (1990) Alum<strong>in</strong>ium toxicok<strong>in</strong>etics. Pharmacol<br />

Toxicol. 66, 4-9.<br />

Wilms H., Rosenstiel P., Sievers J., Deuschl G., Zecca L. and Lucius R. (2003) Activation <strong>of</strong><br />

microglia by human neuromelan<strong>in</strong> is NF-kappaB dependent and <strong>in</strong>volves p38 mitogen-<br />

activated prote<strong>in</strong> k<strong>in</strong>ase: implications for Park<strong>in</strong>son’s disease. FASEB J. 17, 500– 502.<br />

W<strong>in</strong>ogrodzka A., Bergmans P., Booij J., van Royen E. A., Janssen A. G., Wolters E. C. (2001)<br />

[123I]FP-CIT SPECT is a useful method to monitor the rate <strong>of</strong> dopam<strong>in</strong>ergic degeneration <strong>in</strong><br />

early-stage Park<strong>in</strong>son’s disease. J. Neural. Transm. 108, 1011–1019.<br />

Wood-Kaczmar A., Gandhi S. and Wood N. W. (2006) Understand<strong>in</strong>g the molecular causes <strong>of</strong><br />

Park<strong>in</strong>son’s disease. Trends Mol. Med. 12, 521–528.<br />

Wood-Kaczmar A., Gandhi S., Yao Z., Abramov A. S., Miljan E. A., Keen G., Stanyer L.,<br />

Hargreaves I., Klupsch K., Deas E., Downward J., Mansfield L., Jat P., Taylor J., Heales S.,<br />

Duchen M. R., Latchman D., Tabrizi S. J. and Wood N. W. (2008) PINK1 is necessary for long<br />

term survival and mitochondrial function <strong>in</strong> human dopam<strong>in</strong>ergic neurons. PLoS ONE 3,<br />

e2455.<br />

World Health Organization (WHO) (1997) Alum<strong>in</strong>ium. Geneva, World Health Organization,<br />

International Programme on Chemical Safety (Environmental Health Criteria 194).<br />

Xiong H., Wang D., Chen L., Choo Y. S., Ma H., Tang C., Xia K., Jiang W., Ronai Z., Zhuang X. and<br />

Zhang Z. (2009) Park<strong>in</strong>, PINK1, and DJ-1 form a ubiquit<strong>in</strong> E3 ligase complex promot<strong>in</strong>g<br />

unfolded prote<strong>in</strong> degradation. J. Cl<strong>in</strong>. Invest. 119, 650–660.<br />

Yamaguchi H. and Shen J. (2007) Absence <strong>of</strong> dopam<strong>in</strong>ergic neuronal degeneration and<br />

<strong>oxidative</strong> damage <strong>in</strong> aged DJ-1-deficient mice. Mol. Neurodegener. 2, 10.


REFERENCES<br />

Yamamuro A., Yoshioka Y., Ogita K. and Maeda S. (2006) Involvement <strong>of</strong> endoplasmic<br />

reticulum <strong>stress</strong> on the cell death <strong>in</strong>duced by 6-hydroxydopam<strong>in</strong>e <strong>in</strong> human<br />

neuroblastoma SH-SY5Y cells. Neurochem. Res. 31, 657–664.<br />

Yang E. Y., Guo-Ross S. X. and Bondy S. C. (1999) The stabilization <strong>of</strong> ferrous iron by a toxic<br />

beta-amyloid fragment and by an alum<strong>in</strong>um salt. Bra<strong>in</strong> Res. 839, 221-226.<br />

Yang Y., Gehrke S., Imai Y., Huang Z., Ouyang Y., Wang J. W., Yang L., Beal M. F., Vogel H. and<br />

Lu B. (2006) Mitochondrial pathology and muscle and dopam<strong>in</strong>ergic neuron degeneration<br />

caused by <strong>in</strong>activation <strong>of</strong> Drosophila P<strong>in</strong>k1 is rescued by Park<strong>in</strong>. Proc. Natl. Acad. Sci. U. S.<br />

A. 103, 10793–10798.<br />

Yang W., Chen L., D<strong>in</strong>g Y., Zhuang X. and Kang U. J. (2007) Paraquat <strong>in</strong>duces dopam<strong>in</strong>ergic<br />

dysfunction and proteasome impairment <strong>in</strong> DJ-1-deficient mice. Hum. Mol. Genet. 16,<br />

2900–2910.<br />

Yang Y. X., Wood N. W. and Latchman D. S. (2009) Molecular basis <strong>of</strong> Park<strong>in</strong>son's disease.<br />

Neuroreport 20, 150–156.<br />

Yao D., Gu Z., Nakamura T., Shi Z. Q., Ma Y., Gaston B., Palmer L. A., Rockenste<strong>in</strong> E. M., Zhang<br />

Z., Masliah E., Uehara T. and Lipton S. A. (2004) Nitrosative <strong>stress</strong> l<strong>in</strong>ked to sporadic<br />

Park<strong>in</strong>son's disease: S-nitrosylation <strong>of</strong> park<strong>in</strong> regulates its E3 ubiquit<strong>in</strong> ligase activity. Proc.<br />

Natl. Acad. Sci. U. S. A. 101, 10810–10814.<br />

Yasui M., Kihira T. and Ota K. (1992) Calcium, magnesium and alum<strong>in</strong>um concentrations <strong>in</strong><br />

Park<strong>in</strong>son's disease. Neurotoxicology 13, 593-600.<br />

Yazdani U., German D. C., Liang C. L., Manz<strong>in</strong>o L., Sonsalla P. K. and Zeevalk G. D. (2006) Rat<br />

model <strong>of</strong> Park<strong>in</strong>son’s disease: Chronic central delivery <strong>of</strong> 1-methyl-4-phenylpyrid<strong>in</strong>ium<br />

(MPP + ). Exp. Neurol. 200, 172–183.<br />

Yokel R. A. (2000) The toxicology <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> the bra<strong>in</strong>: a review. Neurotoxicology 21, 813–<br />

828.<br />

247


REFERENCES<br />

Yokel R. A. (2002a) Alum<strong>in</strong>um chelation pr<strong>in</strong>ciples and recent advances. Coord. Chem. Rev.<br />

248<br />

228, 97–113.<br />

Yokel R. A. (2002b) Bra<strong>in</strong> uptake, retention, and efflux <strong>of</strong> alum<strong>in</strong>um and manganese. Environ.<br />

Health Perspect. 110, 699–704.<br />

Yokel R. A. (2006) Blood-bra<strong>in</strong> barrier flux <strong>of</strong> alum<strong>in</strong>um, manganese, iron and other metals<br />

suspected to contribute to metal-<strong>in</strong>duced neurodegeneration. J. Alzheimers Dis. 10, 223–<br />

253.<br />

Yokel R. A. and McNamara P. J. (1988) Influence <strong>of</strong> renal impairment, chemical form, and<br />

serum prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g on <strong>in</strong>travenous and oral alum<strong>in</strong>um k<strong>in</strong>etics <strong>in</strong> the rabbit. Toxicol<br />

Appl Pharmacol. 95, 32-43.<br />

Yokel R. A. and McNamara P. J. (2001) Alum<strong>in</strong>ium toxicok<strong>in</strong>etics: an updated m<strong>in</strong>ireview.<br />

Pharmacol. Toxicol. 88, 159–167.<br />

Yokel R. A. and O’Callaghan J. P. (1998) An alum<strong>in</strong>um-<strong>in</strong>duced <strong>in</strong>crease <strong>in</strong> GFAP is attenuated<br />

by some chelators. Neurotoxicol. and Teratol. 20, 55-60.<br />

Yokel R. A., Meurer K. A., Sk<strong>in</strong>ner T. L. and Fredenburg A. M. (1996) The 3-hydroxypyrid<strong>in</strong>-4-<br />

ones more effectively chelate alum<strong>in</strong>um <strong>in</strong> a rabbit model <strong>of</strong> alum<strong>in</strong>um <strong>in</strong>toxication than<br />

does desferrioxam<strong>in</strong>e. Drug Metab. Disp. 24, 105–111.<br />

Yokel R. A., Rh<strong>in</strong>eheimer S. S., Brauer R. D., Sharma P., Elmore D. and McNamara P. J. (2001a)<br />

Alum<strong>in</strong>um bioavailability from dr<strong>in</strong>k<strong>in</strong>g water is very low and is not appreciably <strong>in</strong>fluenced<br />

by stomach contents or water hardness. Toxicology 161, 93–101.<br />

Yokel R. A., Rh<strong>in</strong>eheimer S. S., Sharma P., Elmore D. and McNamara P. J. (2001b) Entry, half-<br />

life, and desferrioxam<strong>in</strong>e-accelerated clearance <strong>of</strong> bra<strong>in</strong> alum<strong>in</strong>um after a s<strong>in</strong>gle (26)Al<br />

exposure. Toxicol Sci. 64, 77–82.<br />

Youdim M. B. (1988) Iron <strong>in</strong> the bra<strong>in</strong>: implications for Park<strong>in</strong>son’s and Alzheimer’s diseases.<br />

Mt. S<strong>in</strong>ai J. Med. 55, 97–101.


REFERENCES<br />

Zapatero M. D., Garcia de Jalon A., Pascual F., Calvo M. L., Escanero J., Marro A. (1995) Serum<br />

alum<strong>in</strong>um levels <strong>in</strong> Alzheimer's disease and other senile dementias. Biol. Trace Elem. Res.<br />

47, 235–240.<br />

Zarow C., Lyness S. A., Mortimer J. A. and Chui H. C. (2003) Neuronal loss is greater <strong>in</strong> the locus<br />

coeruleus than nucleus basalis and substantia nigra <strong>in</strong> Alzheimer and Park<strong>in</strong>son diseases.<br />

Arch. Neurol. 60, 337–341.<br />

Zatta P., Favarato M. and Nicol<strong>in</strong>i M. (1993) Deposition <strong>of</strong> alum<strong>in</strong>um <strong>in</strong> bra<strong>in</strong> tissues <strong>of</strong> rats<br />

exposed to <strong>in</strong>halation <strong>of</strong> alum<strong>in</strong>um acetylacetonate. Neuroreport 4, 1119–1122.<br />

Zatta P., Kiss T., Suwalsky M. and Berthon G. (2002) Alum<strong>in</strong>ium(III) as a promoter <strong>of</strong> cellular<br />

oxidation. Coord Chem. Rev. 228, 271–284.<br />

Zatta P., Lucch<strong>in</strong>i R., van Rensburg S. J. and Taylor A. (2003) The role <strong>of</strong> metals <strong>in</strong><br />

neurodegenerative processes: alum<strong>in</strong>um, manganese, and z<strong>in</strong>c. Bra<strong>in</strong> Res. Bull. 62, 15–28.<br />

Zayed J., Ducic S., Campanella G., Panisset J. C., André P., Masson H. and Roy M. (1990)<br />

Environmental factors <strong>in</strong> the etiology <strong>of</strong> Park<strong>in</strong>son's disease. Can. J. Neurol. Sci. 17, 286–<br />

291.<br />

Zhang L., Shimoji M., Thomas B., Moore D. J., Yu S., Marupudi N. I., Torp R., Torgner I. A.,<br />

Ottersen O. P., Dawson T. M. and Dawson V. L. (2005) Mitochondrial localisation <strong>of</strong> the<br />

Park<strong>in</strong>son’s disease related prote<strong>in</strong> DJ-1: implications for pathogenesis. Hum. Mol. Genet.<br />

14, 2063–2073.<br />

Zhang Y., Dawson V. L. and Dawson T. M. (2000) Oxidative <strong>stress</strong> and genetics <strong>in</strong> the<br />

pathogenesis <strong>of</strong> Park<strong>in</strong>son's disease. Neurobiol. Dis. 7, 240–250.<br />

Zheng W., Aschner M. and Ghersi-Egea J. F. (2003) Bra<strong>in</strong> barrier systems: a new frontier <strong>in</strong><br />

metal neurotoxicological research. Toxicol. Appl. Pharmacol. 192, 1–11.<br />

Zhou C., Huang Y., Shao Y., May J., Prou D., Perier C., Dauer W., Schon E. A. and Przedborski S.<br />

(2008) The k<strong>in</strong>ase doma<strong>in</strong> <strong>of</strong> mitochondrial PINK1 faces the cytoplasm. Proc. Natl. Acad.<br />

Sci. U. S. A. 105, 12022–12027.<br />

249


REFERENCES<br />

Zhou W., Zhu M., Wilson M. A., Petsko G. A. and F<strong>in</strong>k A. L. (2006) The oxidation state <strong>of</strong> DJ-1<br />

250<br />

regulates its chaperone activity toward alpha-synucle<strong>in</strong>. J. Mol. Biol. 356, 1036–1048.<br />

Zhu X. R., Maskri L., Herold C., Bader V., Stichel C. C., Gunturkun O. and Lubbert H. (2007) Non-<br />

motor behavioural impairments <strong>in</strong> park<strong>in</strong>-deficient mice. Eur. J. Neurosci. 26, 1902–1911.<br />

Zhuang X., Masson J., G<strong>in</strong>grich J. A., Rayport S. and Hen R. (2005) Targeted gene expression <strong>in</strong><br />

dopam<strong>in</strong>e and seroton<strong>in</strong> neurons <strong>of</strong> the mouse bra<strong>in</strong>. J. Neurosci. Methods 143, 27–32.<br />

Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., L<strong>in</strong>coln S., Kachergus J., Hulihan M.,<br />

Uitti R. J., Calne D. B., Stoessl A. J., Pfeiffer R. F., Patenge N., Carbajal I. C., Vieregge P.,<br />

Asmus F., Müller-Myhsok B., Dickson D. W., Meit<strong>in</strong>ger T., Strom T. M., Wszolek Z. K. and<br />

Gasser T. (2004) Mutations <strong>in</strong> LRRK2 cause autosomal-dom<strong>in</strong>ant park<strong>in</strong>sonism with<br />

pleomorphic pathology. Neuron 44, 601–607.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!