12.07.2015 Views

α - International Journal of Research in Pharmaceutical and ...

α - International Journal of Research in Pharmaceutical and ...

α - International Journal of Research in Pharmaceutical and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> <strong>Pharmaceutical</strong> <strong>and</strong> Biomedical Sciences ISSN: 2229-3701=K(T) f(α)------------------- (2) 8,9Where f(α) is the conversion function <strong>and</strong> K(T) isthe temperature function.The temperaturedependence <strong>of</strong> therate constant K for the processsis described by the Arrhenius equation (3)K=A exp [- E/RT]----------------------(3)Where A is the pre-exponential factor, T is theabsolute temperature, R is the Universal gasConstant <strong>and</strong> E is the apparent activation energy<strong>of</strong> the process. Substitution <strong>of</strong> equation (3) <strong>in</strong>equation (2) givesd E Aexp f dt RT ------(4)When the temperature <strong>in</strong>creases at a constant ratei.e(constant) givesdA E exp f dT q RT ----------------(5)The conversion function f (α) for a solid statereaction depends on the reaction mechanism <strong>and</strong>f m n ln1 p1 ------------(6)Where m, n <strong>and</strong> p are empirically obta<strong>in</strong>edexponent factors, one <strong>of</strong> them always be<strong>in</strong>g zero 9 .The solutions <strong>of</strong> the left h<strong>and</strong> side <strong>in</strong>tegral dependon the explicit expression <strong>of</strong> the function f(α) <strong>and</strong>are denoted as g (α). Algebraic expressions <strong>of</strong>functions <strong>of</strong> the most common reactionmechanisms operat<strong>in</strong>g <strong>in</strong> solid-state reactions aresummarized <strong>and</strong> presented <strong>in</strong> table-3 8-11 . Table-4represents the conciseTGA data <strong>and</strong> the activationenergy at different temperature range.3.2.3 Evaluation <strong>of</strong> k<strong>in</strong>etic parametersThe k<strong>in</strong>etic parameters have been calculated bas<strong>in</strong>gon eighteen various k<strong>in</strong>etic models. The formalexpressions <strong>of</strong> the functionsg(α) depend on theconversion mechanism. For the correct g(α), thecorrespond<strong>in</strong>g l<strong>in</strong>ear dependence should give thehighest correlation coefficient at the l<strong>in</strong>earregression analysis. The plot <strong>of</strong> log g(α) versus 1/Tgives the values <strong>of</strong> R 2 (correlation co-efficient) toeach mechanism. The mechanism correspond<strong>in</strong>g tohighest value <strong>of</strong> R 2 is considered to be the suitablemechanism for the degradation k<strong>in</strong>etics. From theslope value <strong>of</strong> each straight l<strong>in</strong>e, the values <strong>of</strong>activation energy ( E)is calculated.Energy From the concise TG data (table-4), it isclear that for the R-F res<strong>in</strong> the activation ism<strong>in</strong>imum <strong>in</strong> the temperature range 0-150 0 C <strong>and</strong> soit undergoes thermal decomposition at a high ratethrough F 3/2 mechanism (chemical reaction) Thenano polymerA 2 (n) breaks through F 2 mechanism(chemical reaction) at a high rate <strong>in</strong> the temperaturerange 160-350 0 C .While <strong>in</strong> the other h<strong>and</strong> for thenano polymer A 1 (n) , the rate <strong>of</strong> thermaldecomposition is high <strong>in</strong> the temperature range 0-150 0 C <strong>and</strong> the reaction proceeds through P1/4mechanism (nucleation).CONCLUSIONThe thermal study reveals the nanostructuredpolymeric sample can resist temperature upto800 o C <strong>and</strong> hence they can be best used as heatpro<strong>of</strong> materials. The calculated values <strong>of</strong>activation energy <strong>in</strong>dicates that except R – F res<strong>in</strong>,the stability enhances upto temperature 350 o C dueto low dissipation <strong>of</strong> k<strong>in</strong>etic energy, after this po<strong>in</strong>tit becomes unstable which may be due to breakpo<strong>in</strong>t <strong>of</strong> polymeric cha<strong>in</strong>. The <strong>in</strong>corporation <strong>of</strong>Urea <strong>in</strong>to the polymeric sample enhances itsthermal stability <strong>and</strong> the degree <strong>of</strong> crystall<strong>in</strong>ity both<strong>in</strong> micro scale nano scale. The sample can be usedas potential heat resist<strong>in</strong>g material thus enabl<strong>in</strong>g itscomposite formation with different biomaterialswhich is under further <strong>in</strong>vestigation.ACKNOWLEDGEMENTThe authors are grateful to Laboratory <strong>of</strong> Advanced<strong>Research</strong> <strong>in</strong> Polymeric Materials (LARPM) CIPET,Govt <strong>of</strong> India for synthesis <strong>and</strong> characterization<strong>of</strong> the samples .Vol. 4 (2) Apr– Jun 2013 www.ijrpbsonl<strong>in</strong>e.com 697


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> <strong>Pharmaceutical</strong> <strong>and</strong> Biomedical Sciences ISSN: 2229-3701Table 1: Structural study <strong>of</strong> Nano Res<strong>in</strong> Polymer A 1 (n) <strong>and</strong> A 2 (n) from XRD DataName <strong>of</strong> theCompoundA 2(n)A 1(n)2 d (A o FWHMAverage % <strong>of</strong>)D (nm)(Radian)<strong>of</strong> D(nm) Crystall<strong>in</strong>ity17.8188 4.97377 0.0048441 28.9720.64119.2637 4.60384 0.0049938 28.161 0.58423.1224 3.84353 0.008004 17.681 0.50925.4210 3.50097 0.0074855 13.032 25.165 0.17428.2695 3.15434 0.0060813 23.511 0.32329.4347 3.03709 0.0050147 28.586 0.57633.8944 2.64263 0.004002 36.218 1.12517.932 4.94268 0.0034226 41.01131.81619.13 4.63468 0.0023733 32.9821 3.09419.44 4.56297 0.004263 32.9970 0.94123.16 3.83594 0.0032172 43.991 1.66425.35 3.51035 0.0021228 66.9448 7.64547.83525.60 3.47581 0.0026082 54.5139 4.57428.33 3.14726 0.0033129 43.163 2.00328.44 3.13478 0.0030624 46.706 2.51529.55 3.02075 0.0030154 47.5518 2.6546.25 1.96133 0.0022011 68.4922 6.826Average %<strong>of</strong> crystal<strong>in</strong>ity0.5093.373MicroScaleNanoScaleTable 2: Weight loss pattern <strong>of</strong> the res<strong>in</strong> polymers at different temperature range <strong>in</strong> micro scale<strong>and</strong> nano scaleS. No.Name <strong>of</strong> the% <strong>of</strong> wt. loss at different temperaturecompound 100 o C 200 o C 300 o C 400 o C 500 o C 600 o C 700 o C 800 o C1 R – F 5.3 12.3 20.3 29.7 41.5 50.0 55.1 64.02 R – PNA – F (A 2) 6.6 7.7 12.6 20.4 33.0 50.0 62.6 72.03 R – U – PNA – F (A 1) 8.3 10.3 24.3 35.6 45.0 53.4 60.6 67.34 A 2 (n) 2.6 34.4 64.0 65.9 68.7 72.7 75.9 77.45 A 1 (n) 2.2 23.8 38.0 42.4 47.3 53.5 58.2 60.5Table3: Algebraic expressions <strong>of</strong> function, g( ) <strong>and</strong> its correspond<strong>in</strong>g MechanismSl. MechaName <strong>of</strong> the function g( ) Rate. determ<strong>in</strong><strong>in</strong>g MechanismNo. -nisma. (based on the diffusion mechanism)1 D 1 Parabola law 2One-dimensional diffusionln l 2 D 2 Valensi (Barrer) Equation 3 D 3 J<strong>and</strong>er Equation1 1 1/ 3 21-2 /3- 1 1/ 3equation 1 1 21 1/ 314 D 4 G<strong>in</strong>stl<strong>in</strong>g-Brounste<strong>in</strong> Equation5 D 5 Zhuravlev, Lesok<strong>in</strong>Tempelman6 D 6 Anti-J<strong>and</strong>er Equationb. (r<strong>and</strong>om nucleation <strong>and</strong> subsequent growth)7 A 1 Avrami –Er<strong>of</strong>eev Equation8 A 3/2 Avrami –Er<strong>of</strong>eev Equation9 A 2 Avrami –Er<strong>of</strong>eev Equation10 A 3 Avrami –Er<strong>of</strong>eev Equation11 A 4 Avrami –Er<strong>of</strong>eev Equationc. (Phase boundary equation)12 R 2 Power Law1Two-dimensional diffusion 2-ln 1 ln1 2 / 3ln1 1/ 2ln1 1/ 3 ln11- 1/ 21Three- dimensional diffusion Sphericalsymmetry2 / 3 Three- dimensional diffusion Cyl<strong>in</strong>dricalsymmetryThree- dimensional diffusionThree- dimensional diffusionAssumed r<strong>and</strong>om nucleation <strong>and</strong> itssubsequent growth n=1Assumed r<strong>and</strong>om nucleation <strong>and</strong> itssubsequent growth n=1.5Assumed r<strong>and</strong>om nucleation <strong>and</strong> itssubsequent growth n=2Assumed r<strong>and</strong>om nucleation <strong>and</strong> itssubsequent growth n=31 / 4 Assumed r<strong>and</strong>om nucleation <strong>and</strong> itssubsequent growth n=4Contract<strong>in</strong>g cyl<strong>in</strong>derCyl<strong>in</strong>drical symmetryVol. 4 (2) Apr– Jun 2013 www.ijrpbsonl<strong>in</strong>e.com 698


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> <strong>Pharmaceutical</strong> <strong>and</strong> Biomedical Sciences ISSN: 2229-370113R 3 dPower Law1- 1/ 31d. (Acceleratory rate equation)14 P 1/2 Mampel Power Law 1/ 215 P 1/3 Mampel Power Law 1/ 316 P 1/4 Mampel Power Law 1/ 4e. (Chemical Process or Mechanism non-<strong>in</strong>vok<strong>in</strong>g equation)17 F 2 Second order18 F 3/2 One <strong>and</strong> a half order1 1 1 21 1/1Contract<strong>in</strong>g SphereSpherical symmetryNucleationNucleationNucleationChemical reactionChemical reactionTable 4: Concise TG data show<strong>in</strong>g the activation energy for the highest regression correlationcoefficient <strong>and</strong> the correspond<strong>in</strong>g degradation mechanism for thermal analysis <strong>of</strong> the res<strong>in</strong>s atdifferent temperature rangesSl. NoName <strong>of</strong> theCompound1 R – F Res<strong>in</strong>23R-PNA-FNano res<strong>in</strong> polymerA 2(n)R-U-PNA-FNano res<strong>in</strong> polymerA 1(n)Temperature ( o Function / Activation Energy (E) <strong>in</strong> CorrelationC)mechanismK Joule / Mole coefficient (R 2 )0-150 o C F 3/2 0.2739 0.9495160-350 o C D 6 3.9963 0.9021360-500 o C D 6 22.0091 0.9882Above 500 o C D 4 38.9241 0.99610-150 o C F 2 11.22 0.852160-350 o C F 2 8.482 0.755360-500 o C D 2 95.295 0.979510-650 o C D 1 54.99 0.999660-800 o C F 2 42.6 0.9850-150 o C P 1/4 4.71 0.979160-350 o C F 2 20.68 0.859360-500 o C D 4 75.26 0.991510-650 o C D1 13.95 0.999660-800 o C F 3/2 47.24 0.988Vol. 4 (2) Apr– Jun 2013 www.ijrpbsonl<strong>in</strong>e.com 699


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> <strong>Pharmaceutical</strong> <strong>and</strong> Biomedical Sciences ISSN: 2229-3701Fig. 2(a): TGA curves <strong>of</strong> res<strong>in</strong> polymer R-PNA-F (), R-F ( ),R-PNA-U-F ( ) shows thermal stability <strong>of</strong> the res<strong>in</strong> polymersVol. 4 (2) Apr– Jun 2013 www.ijrpbsonl<strong>in</strong>e.com 700


<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Research</strong> <strong>in</strong> <strong>Pharmaceutical</strong> <strong>and</strong> Biomedical Sciences ISSN: 2229-3701REFERENCES1. Bruce R <strong>and</strong> Prime IBM.Consultant.“An <strong>in</strong>troduction tothermosets”.2. Pawan P. Kalbende, Mangesh V.Tarase <strong>and</strong> Anil B. Zade. Preparation,characterization <strong>and</strong> ThermalDegradation studies <strong>of</strong> P-Nitrophenol –Based Copolymer. <strong>Journal</strong> <strong>of</strong>Chemistry.2013;Article ID 846327.3. Sk<strong>in</strong>ner GA, Ha<strong>in</strong>es PJ <strong>and</strong> Lever TJ.Thermal degradation <strong>of</strong> polyesterthermosets prepared us<strong>in</strong>gdibromoneopentyl glycol. <strong>Journal</strong> <strong>of</strong>applied polymer science. 29(3):763-776.4. David A. Babb, Harold W. Boone,Dennis W. Smith JR <strong>and</strong> Phillip W.Rundolf.PerfluorocyclobutaneAromatic Ether Polymer-III, Synthesis<strong>and</strong> thermal stability <strong>of</strong> a thermosetpolymer conta<strong>in</strong><strong>in</strong>g Triphenylphosph<strong>in</strong>e oxide. <strong>Journal</strong> <strong>of</strong> AppliedPolymer Science.1998;69.5. Haydar U. Zamam, Avik Khan, RubulA. Khan, Tanz<strong>in</strong>aHuq, Mubarak A.Khan, Md. Shahruzzaman, Md.MushfaqurRahman, Md. Al-Mamun<strong>and</strong> Poddar P. Preparation <strong>and</strong>characterization <strong>of</strong> jute fabricsre<strong>in</strong>forced urethane based thermosetcomposites. Effect <strong>of</strong> UV radiation.Fibers <strong>and</strong> polymers.11(2):258-265.6. Dejan D, Ndjelkovic A,MarlenValverde, Phillip Henna,Fengkui Li, Richard C<strong>and</strong> Larock.Novel Thermosets prepared by cationicpolymerization <strong>of</strong> various vegetableoils – synthesis <strong>and</strong> their structureproperty relationships. Polymer.46(23):9674-9685.7. Suresh Kumar G, EKGirija<strong>and</strong>AThamiZhaved. <strong>Journal</strong> <strong>of</strong> colloid <strong>and</strong><strong>in</strong>terface science.2010;349:56-62.8. Chen Y <strong>and</strong> Wang Q. PolymerDegradation <strong>and</strong> Stability.2007;92:280– 291.9. Vlaev I, Georgieva V <strong>and</strong> Genieva S.<strong>Journal</strong> <strong>of</strong> Thermal analysis <strong>and</strong>Calorimetry. 2007;88:805 – 812.10. Zhang F, Zhang J <strong>and</strong> Wang Y.Express polymer Letters.2007;1:157 –165.11. Ramix X, Cadenato A, Salla JM,Morancho JM, Valles A <strong>and</strong> Contact,L.Ribes. A polymer Degradation <strong>and</strong>Stability.2004;86:483 – 491.Vol. 4 (2) Apr– Jun 2013 www.ijrpbsonl<strong>in</strong>e.com 701

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!