12.07.2015 Views

Temperature and water deprivation and their effect on ... - Nwrc.gov.sa

Temperature and water deprivation and their effect on ... - Nwrc.gov.sa

Temperature and water deprivation and their effect on ... - Nwrc.gov.sa

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IIIc<strong>on</strong>tentspageAcknowledgementsAbstractc<strong>on</strong>tentsList of plates <str<strong>on</strong>g>and</str<strong>on</strong>g> figuresI II III VI Chapter <strong>on</strong>e:General introducti<strong>on</strong>1.1 Genus: Gazella 3 1.2 Gazelles of the Arabian peninsula 3 1.3 Ecophysiological studies <strong>on</strong> the Arabian gazelles11 1.4 Objectives of the study 13 Chapter two:General materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods2.1 Field work 15 2.1.1 Preparati<strong>on</strong> of gazelles 15 2.1. 2 Metabolic cages arrangements 16 2.1. 3 Radio Telemetry System arrangements 19 2.1. 4 Air temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidity21 2.1.5 Samples collecti<strong>on</strong> 21 2.2 Laboratory work 22 2.3 statistical analysis 23


IV Chapter three:Effect of temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> body temperature3.1 Introducti<strong>on</strong> 25 3.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods 29 3.3 Results 31 3.4 Discussi<strong>on</strong> 35 Chapter four:Effect of temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> some of bloodc<strong>on</strong>stituents4.1 Introducti<strong>on</strong> 41 4.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods 45 4.2.1 Haematological analysis 45 4.2.2 Serum analysis 47 4.3 Results 51 4.3.1 Haematology 51 4.3.2 Serum c<strong>on</strong>stituents 58 4.4 Discussi<strong>on</strong> 73 Chapter five:Effect of temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> some of urine_c<strong>on</strong>stituents. ..... .'.':' ,i-." . "" ' ~ i! ;':': :;"$-'" "~~ :- ': :"" ~_ ;;'~'X.' !..-'~. I ' : " . '5.1 Introducti<strong>on</strong> 83 5.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods 87 5.3 Results 90 5.4 Discussi<strong>on</strong> 102


v Chapter six:Etteot ot temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> Gazelle's weight, food<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> intake <str<strong>on</strong>g>and</str<strong>on</strong>g> faeces moisture6.1 Introducti<strong>on</strong> 110 6.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods 114 6.2.1 Gazelle's weight 114 6.2.2 Dry matter intake 115 6.2.3 Water intake 116 6.2.4 Faeces moisture 116 6.3 Results 1TS'6.4 Discussi<strong>on</strong> 126 Chapter seven: General discussi<strong>on</strong> 131 Referenoes139


VI LIST OF PLATES AND FIGURES pagePlate (1) The general external features of theIdmi gazelle (male). 8Plate (2) Transmitter's implantati<strong>on</strong> in theabdominal cavity of the Idmi gazelle. 20Fig.(l) The metabolic cage which was . especiallydesgined for the experiment. 17Fig. (2) Variati<strong>on</strong> in mean temperature ofgazelles during the experiment in winter. 33Fig. (3) Variati<strong>on</strong> in mean temperature ofgazelles during the experiment in summer. 33Fig. (4) Variati<strong>on</strong> in mean RBCs count ofgazelles during the experiment in winter. 52Fig. (5) variati<strong>on</strong> in mean RBCs count ofgazelles during the experiment in summer. 52Fig. (6) Variati<strong>on</strong> in mean WBCs count ofgazelles during the experiment in winter. 54Fig. (7) Variati<strong>on</strong> in mean WBCs count ofgazelles during the experiment in summer. 54Fig. (8) Variati<strong>on</strong> in mean Hb of gazellesduring the experiment in winter. 56Fig. (9) Variati<strong>on</strong> in mean Hb of gazellesduring the experiment in summer. 56


VII · (10) Var in mean PCV of gazellesdur w 57F • (11) Var mean PCV of gazellesduring the experiment summer. 57Fig. (12) Vari<strong>on</strong> in mean serum Na ofgazelles during the experiment 59F • (13) Var mean serum Na ofgazelles during the experiment in summer. 59· (14) Var mean serum K ofelle dur the exper 61F • (15) Var mean serum K ofzelles the experiment in summer. 61Fig. (16) Vari<strong>on</strong> in mean serum Cl ofgazelles during 63F • (17) Var mean serum Clzelles during the experiment in summer. 63· (18) Var mean serum osmolalityof lIes during experiment in winter. 64F · (19) Var mean serum osmolalityof zelles the summer. 64Fig. (20) Variati<strong>on</strong> in mean serum gofgazelles during the iment in 66F · (21) Var i<strong>on</strong> in mean serum ofles during the iment in summer. 66F · (22) Var mean BUN of gazelduring the 67


VIIIF. (23) Variati<strong>on</strong> in mean BUN of gazellesthe experiment summer. 67.(24) Variat<strong>on</strong> mean serum total proteinof les in winter.• (25) Variati<strong>on</strong> in mean serum total proteinof zelles during in summer. 69F. (26) Variati<strong>on</strong> in mean serum albumin ofzelles during winter. 71F. (27) Variati<strong>on</strong> in mean serum albumin ofgazelles during the in summer. 71• (28) variati<strong>on</strong> in mean urine volume ofgazelles thein winetr. 91Fig. (29) Variati<strong>on</strong> mean volume ofgazelles during experiment in summer. 91Fig. (30) VariatNa ofgazelles during experiment in winter. 93Fig(31) Variati<strong>on</strong> in mean urine Na ofgazelles the in summer. 93Fig. (32)mean urine K ofgazel iment in winter. 95Fig. (33) Vargazelles durFig. (34) variati<strong>on</strong>gazelles durFig. (35) variatmean urine K ofexperiment summer. 95mean urine Cl ofthe experiment in 97in mean urine Clgazeldurthe experiment summer. 97


IX F • (36) in mean urine urea of gazelles dur the in winter.98 • (37)in mean urine urea of zel in summer. 98 F . (38) Var in mean osmola of gazelles during the experiment in100 Fig. (39) mean osmolal of lIes during the in summer. 100 Fig.(40) Variati<strong>on</strong> in mean gazelle's weight dur the in 119 Fig. (41) Varduring theIe's in summer. · (42) Var i<strong>on</strong> in mean dry of gazelles during the in 121 Fig.(43) Variati<strong>on</strong> in mean dry matter intake of gazelles during the experiment summer. 121 · (44) i<strong>on</strong> in mean <str<strong>on</strong>g>water</str<strong>on</strong>g> les the winter. 123 · (45) Variati<strong>on</strong> mean <str<strong>on</strong>g>water</str<strong>on</strong>g> intake of lIes during the summer. 123 • (46) Variati<strong>on</strong> in mean faecesof gazelles during the experiment winter. 125 · (47) mean moisture of gazel during the experiment summer. 125


GENERAL INTRODUCTION


GENERAL INTRODUCTIONIn most desert areas, mammals in general <str<strong>on</strong>g>and</str<strong>on</strong>g> thelarge mammals in particular face many deterringproblems. The most important of these are the highambient temperature,scarcity of <str<strong>on</strong>g>water</str<strong>on</strong>g> supply inadditi<strong>on</strong> to the high solar radiati<strong>on</strong> (Grenot, 1992).Most of the Arabian Peninsula is dry <str<strong>on</strong>g>and</str<strong>on</strong>g> arid desert,with great variati<strong>on</strong>s in atmospheric temperature(Williams<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Delima, 1990). This drastic situati<strong>on</strong>of this part of the world has forced its inhabitantanimals to acclimatize <str<strong>on</strong>g>and</str<strong>on</strong>g> adapt for survival. Theyfaced these difficulties by adopting many ways ofadaptati<strong>on</strong> including morphological, physiological <str<strong>on</strong>g>and</str<strong>on</strong>g>behavioral means.These extremely difficult desertsituati<strong>on</strong>s areworse for the large mammals that cannot hide like small mammals in order to avoid the highsolar radiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> air temperature, in which casethey have to disperse some of <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature. ' , . '.. ;- . ' ',' ', . , 0 ,'" -, ':' /> /., • '" I 'to the external surroundings ': (Grenot ·~ 1992). It is anecessity for these animals to be able to cope withthese high ambient temperatures without loss of largequantities of <str<strong>on</strong>g>water</str<strong>on</strong>g> (Williams<strong>on</strong> et al., 1991).Little is known about the ecophysiology of largemammalsinhabiting arid envir<strong>on</strong>ments, <str<strong>on</strong>g>and</str<strong>on</strong>g> less isknown about the mammals of the Arabian Peninsula,especially the Arabian gazelles. Previous studies~-'.. ­


3were c<strong>on</strong>centrated <strong>on</strong> tackling different patterns ofbehaviour.1.1 Genus: Gazella.The genus Gazella is part of the tribe Antilopiniwhich bel<strong>on</strong>gs to the family Bovidae. Twelve species or-- .~ -more bel<strong>on</strong>ging to this genus are scattered alloverthe world (Groves, 1989). The species in the ArabianPeninsula are not thoroughly known, <str<strong>on</strong>g>and</str<strong>on</strong>g> there is someambiguity in the classificati<strong>on</strong> due to the scarcity orpaucity of museum specimens, that did not givecomplete geographical variati<strong>on</strong>s between thepopulati<strong>on</strong>s (Thouless et al., 1991). Linnaeus (1758)was the first to use the scientific nomenclature forthe gazelle, naming an Egyptian <strong>on</strong>e as Capra dorcas.Pallas (1766) gave the species of gazelle describedfrom Syria by Buff<strong>on</strong> in 1764 scientific name Antilopegazella (Palestine mountain gazelle). This was thefirst scientific reference c<strong>on</strong>cerning the Arabiangazelles (Groves,1989).1.2 Gazelles ot the Arabian PeninsulaTax<strong>on</strong>omists have differed in classifying themoderate number of gazelles found in the ArabianPeninsula (Groves, 1989; <str<strong>on</strong>g>and</str<strong>on</strong>g> Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates,1991), but according to Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates (1991) itcould be assumed that at least four species wereliving in several parts of the peninsula." . . '. ;


4 ~.2.~ G. subgutturo<strong>sa</strong> s<str<strong>on</strong>g>and</str<strong>on</strong>g> gazelle (Rheem)The s<str<strong>on</strong>g>and</str<strong>on</strong>g> gazelle was first described byGuldenstaedt in 1780 as Antilope sUbgutturo<strong>sa</strong>.Gazella s. marica is an endemic subspecies ofthis s<str<strong>on</strong>g>and</str<strong>on</strong>g> gazelle to the Arabian Peninsula. Am<strong>on</strong>g thes<str<strong>on</strong>g>and</str<strong>on</strong>g> gazelles, this subspecies is the <strong>on</strong>ly <strong>on</strong>e whosefemales possess horns, though they are short <str<strong>on</strong>g>and</str<strong>on</strong>g>straight (Groves, 1989).It is characterized by a relatively large size, shorttail, relatively short ears, with l<strong>on</strong>g horns in themale that bend towards each other at <str<strong>on</strong>g>their</str<strong>on</strong>g> extremes,whilst the female has short straight <strong>on</strong>es. The bodycolour is light clay brown <str<strong>on</strong>g>and</str<strong>on</strong>g> the males have acharacteristic goitre-like swelling at the mid-line ofthe throat (Groves, 1989; Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates, 1991;<str<strong>on</strong>g>and</str<strong>on</strong>g> Nader, 1989).Distributi<strong>on</strong>:-Gazella s. marica inhabits the s<str<strong>on</strong>g>and</str<strong>on</strong>g>y areas of thecentral parts of the Arabian peninsula, northerngravel plains <str<strong>on</strong>g>and</str<strong>on</strong>g> large parts of the Empty Quarter.The gradual scarcity of rainfall, excessive humanactivity <str<strong>on</strong>g>and</str<strong>on</strong>g> game hunting led to a critical regressi<strong>on</strong>in the number of this gazelle which made it <strong>on</strong>e of thespecies threatened by extincti<strong>on</strong>. This situati<strong>on</strong>limited the existence of this species to <strong>on</strong>ly threeprotected areas, the reserves of AL-Harrah, AL­Khunfah, <str<strong>on</strong>g>and</str<strong>on</strong>g> AI-Tubaiq, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Empty Quarter


5 (Thouless et aI, 1991). There is s probabil ofthe existence of this species <strong>on</strong> the<str<strong>on</strong>g>and</str<strong>on</strong>g>eastern periphery of AL-Nafud (Nader, 1989).Harr <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates (1991) areas theMiddle East where s<str<strong>on</strong>g>and</str<strong>on</strong>g> lIe occurs such asof Ithe easternof Jordan, inhabiting mainly the s<str<strong>on</strong>g>and</str<strong>on</strong>g>y areas, gravelplains, <str<strong>on</strong>g>and</str<strong>on</strong>g> limest<strong>on</strong>e plateaus, feeding <strong>on</strong>1dwarf shrubs <str<strong>on</strong>g>and</str<strong>on</strong>g>after rainfall.1.2.2 Gazella dorcas dorcas)It was f described by 1758.Groves (1989) that it a small gazellea shoulder hethat reaches <strong>on</strong>ly 60 cm. There are. G . d. la G. d.I'l'he fairly with distinct two str<strong>on</strong> the s to a black <strong>on</strong> the nose.It wa<strong>sa</strong>l<strong>on</strong>g the Red Sea in Sudan <str<strong>on</strong>g>and</str<strong>on</strong>g> Egyptup to S i Pa in the ofthe Arabian Peninsula ( <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates, 1991).G. d. <strong>sa</strong>udiya a smal subspecies with s<str<strong>on</strong>g>and</str<strong>on</strong>g>ybrowncolour the side face isplainly coloured, ears very l<strong>on</strong>g,tail is<str<strong>on</strong>g>and</str<strong>on</strong>g> the horns are l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> straight in both the male<str<strong>on</strong>g>and</str<strong>on</strong>g> the fema (Groves, 1989). subspecies livedin Arabia <strong>on</strong> theplains in the eastern


6 side of the Hijaz mountains. It is c<strong>on</strong>sidered to beextinct in the wild, due to the drastic huntingactivities (Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates, 1991).1.2.3 Gazella bilkis Bilkis gazelleGroves <str<strong>on</strong>g>and</str<strong>on</strong>g> Lay first described this species in1985. They reported that it is a very dark in colourwith two dark stripes <strong>on</strong> the sides <str<strong>on</strong>g>and</str<strong>on</strong>g> has thickstraight horns <str<strong>on</strong>g>and</str<strong>on</strong>g> short ears. It is found <strong>on</strong> thenorthern Yemenmountains with the possibility ofcrossing the Saudi borders (Groves, 1989).1.2.4 Gazella gazella mountain gazelle (Idmi)Pallas first described this species in 1766.According to Groves (1989) <str<strong>on</strong>g>and</str<strong>on</strong>g> Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates(1991), there are three subspecies of the Idmi in theArabian Peninsula: G. g. cora, G. g. gazella, <str<strong>on</strong>g>and</str<strong>on</strong>g> G.g. muscatensis <str<strong>on</strong>g>and</str<strong>on</strong>g> they render great difficulty todistinguish even for the specialists. However, Grethet al (1993) menti<strong>on</strong>ed that there are four subspeciesoccurring in the southern part of the ArabianPeninsula (G. g. cora, G. g. fara<strong>sa</strong>ni, G. g.muscatensis <str<strong>on</strong>g>and</str<strong>on</strong>g> G.g. erlangeri). They added that. chromosomesstudies .':4 of ·)~ G:g; ~\"~ cora ·. · <str<strong>on</strong>g>and</str<strong>on</strong>g> ' G ~ g~' ! ! erlangerishowed that <str<strong>on</strong>g>their</str<strong>on</strong>g> numbers are identical to the <strong>on</strong>esfound in G. g. gazella. Greth <str<strong>on</strong>g>and</str<strong>on</strong>g> Williams<strong>on</strong> (1994)<strong>sa</strong>id that the data <strong>on</strong> races of G.gazella <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g>, .. ,. ,, :~--"


7 ibuti<strong>on</strong> are very imprecise. Al Basri <str<strong>on</strong>g>and</str<strong>on</strong>g>:Thouless(1988) in the study <strong>on</strong> the mounta gazellepopulati<strong>on</strong> of King Khalid WildlResearch Centre(KKWRC) stated that those seem to tothe G. g. gazella.the tax<strong>on</strong>omicalpos i<strong>on</strong> of the mountain areunclear, the subspecifwas not taken intoaccount in thstudy.ly . body isII I t <str<strong>on</strong>g>and</str<strong>on</strong>g> has l<strong>on</strong>g (Harr <str<strong>on</strong>g>and</str<strong>on</strong>g>Bates, 1991) (plate. 1). The shou height is about 61em I with l<strong>on</strong>g in the males (about 22em) having success ly <str<strong>on</strong>g>and</str<strong>on</strong>g> thetampered ends bend towards other. In thefemales, the horns are (11 cm) <str<strong>on</strong>g>and</str<strong>on</strong>g>circu(Groves, 1989 <str<strong>on</strong>g>and</str<strong>on</strong>g> Nader, 1989). Thean oval cross secti<strong>on</strong> at the base <str<strong>on</strong>g>and</str<strong>on</strong>g>leI body caserna , but in the females horns have a 1 1cross ( , 1991).The dor<strong>sa</strong>l pelage of the Arabian idmi has alight red, brown colour, <str<strong>on</strong>g>and</str<strong>on</strong>g> atthe mid dor<strong>sa</strong>l z<strong>on</strong>e,1<strong>on</strong>· the necks to the <str<strong>on</strong>g>and</str<strong>on</strong>g> flanks (Harr <str<strong>on</strong>g>and</str<strong>on</strong>g>I 1991).are two <strong>on</strong> sides of· the flanksextending al<strong>on</strong>g the body, separating the darker dor<strong>sa</strong>l


.n :".,­. ~,,';".'~. , '~ ' ~" ': ;.: '" '~..'; ' 1 .-.:I.~~,. '.; ,J ~f( f"~ ": ' , ,\'.1, .......... :'Io.~ ~ ~ J_:~., ~ ~ :,. ~.J:~'~ : t~ -,~~'t>- . ".1. ,; :' t: ~; ;,',,. . : . ",.. :.'.•i . -,..... " . ",, : .":. >, . ", I .• :..... ..' io..' ~ ....·~?;~(J; ;U':~i;;~" ,~rt' ,: ..' .." ~ ,,.. ..~ ~ ~. ...\'.1' \.)\ ( . (I) '1'11(' ~ lr ~ II C r ('\ J (;;{LCl.ll ;\1 J. c a Lurcs o f t ile 111 .1 1


9 side from the lighter ventral side. There is a brownspot <strong>on</strong> the nose <str<strong>on</strong>g>and</str<strong>on</strong>g> two white lines <strong>on</strong> the sides ofthe face (Grove, 1989). The hooves are l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g>pointed at <str<strong>on</strong>g>their</str<strong>on</strong>g> fr<strong>on</strong>t extremes, <str<strong>on</strong>g>and</str<strong>on</strong>g> the ears arerelatively l<strong>on</strong>g. Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates (1991) havementi<strong>on</strong>ed some differences between the threesUbspecies: G.g. cora is smaller in size <str<strong>on</strong>g>and</str<strong>on</strong>g> itshorns are not as straight as those of G. g. gazella,<str<strong>on</strong>g>and</str<strong>on</strong>g> they are also bent str<strong>on</strong>gly at <str<strong>on</strong>g>their</str<strong>on</strong>g> terminals. Inthe case of G. g. muscatensis, the body is larger thanthat of G. g. cora <str<strong>on</strong>g>and</str<strong>on</strong>g> the colour is dark grey withl<strong>on</strong>ger dor<strong>sa</strong>l pelage.Distributi<strong>on</strong>:­The exact distributi<strong>on</strong> of the idmi in Arabia isnot well known (Thouless at al, 1991), but it used tobe found in the mountainous areas , the foothills <str<strong>on</strong>g>and</str<strong>on</strong>g>the coastal plains al<strong>on</strong>g the west, southwest <str<strong>on</strong>g>and</str<strong>on</strong>g> southof the Arabian Peninsula, always in associati<strong>on</strong> withAcacia trees (Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates, 1991). Baharav(1974) menti<strong>on</strong>ed its vast existence in Palestine, witha density of 23 gazelle/km 2 ,acting as an epidemic <strong>on</strong>the cultural areas. This situati<strong>on</strong> was followed by adecrease in <str<strong>on</strong>g>their</str<strong>on</strong>g> numbers, then again <str<strong>on</strong>g>their</str<strong>on</strong>g> numbers~ ~rose in Palestine. Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates (1991)havementi<strong>on</strong>ed its existence also in some parts of Jordan.The idmi gazelle used to live there in the suitable


10 valley places foothills, rocky open places, inadditi<strong>on</strong> to some s<str<strong>on</strong>g>and</str<strong>on</strong>g>y areas that incorporate Acaciatrees (Thouless et aI, 1991). Baharav (1983) <strong>sa</strong>id thatthis gazelle used to live in moderately numbered herdsthat are led by the dominant male.Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bates (1991) menti<strong>on</strong>ed that G. g.gazella inhabits north western Arabia, G.g.muscatensisinhabits south western Arabia, but G.g.cora isscattered in the mountain areas <str<strong>on</strong>g>and</str<strong>on</strong>g> foothills of SaudiArabia including eastern Mecca till the coast near AL­Gunfudah, extending southwards till the northern Yemenborder.The number of idmi gazelle has decreased due tothe aggressive hunting, <str<strong>on</strong>g>and</str<strong>on</strong>g> loss of its suitablehabitats, <str<strong>on</strong>g>and</str<strong>on</strong>g> even was wiped out in some places inArabia, like the narrow coastal plains of Tihama, thefoothills ofAsir, down towards the northern borderof Yemen. There is small number in the Asir Nati<strong>on</strong>alPark <str<strong>on</strong>g>and</str<strong>on</strong>g> other places north of Hijaz. The largest wildpopulati<strong>on</strong> of the Idmi is present in the Fara<strong>sa</strong>nReserve. It is also present in Yemen(Harris<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>Bates, 1991).


11 1.3 Ecophysiological Studies <strong>on</strong> the Arabian gazellesFew studies were d<strong>on</strong>e <strong>on</strong> Arabian gazelles, <str<strong>on</strong>g>and</str<strong>on</strong>g>most of themwere d<strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>their</str<strong>on</strong>g> tax<strong>on</strong>omy (Groves,1989, Groves <str<strong>on</strong>g>and</str<strong>on</strong>g> Harris<strong>on</strong> ,1967, Nader ,1989 <str<strong>on</strong>g>and</str<strong>on</strong>g>Thouless <str<strong>on</strong>g>and</str<strong>on</strong>g> AL-Basri, 199~).Some studies <strong>on</strong> behaviour were d<strong>on</strong>e e.g. the <strong>on</strong>eby Habibi (1989) at KKWRC c<strong>on</strong>cerning dominanceinterrelati<strong>on</strong>s of the three species of gazelles: ~~eRheem, the Idmi, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Afri. Another study was d<strong>on</strong>eby Mohammed et ale (1991) <strong>on</strong> the natural diet of Rheemgazelle.Ecophysiological studies (e.g. <str<strong>on</strong>g>water</str<strong>on</strong>g> intake) wered<strong>on</strong>e byWilliams<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Delima (1991) <strong>on</strong> G. gazella<str<strong>on</strong>g>and</str<strong>on</strong>g> G. subgutturo<strong>sa</strong> at KKWRC. Williams<strong>on</strong> et ale (1992)also d<strong>on</strong>e some work <strong>on</strong> the Arabian s<str<strong>on</strong>g>and</str<strong>on</strong>g> gazelle,G. subgutturo<strong>sa</strong> in relati<strong>on</strong> to temperature.In additi<strong>on</strong> to the previous studies some workhave been d<strong>on</strong>e <strong>on</strong> n<strong>on</strong>-Arabian gazelles <str<strong>on</strong>g>and</str<strong>on</strong>g> otherdesert animals, mainly <strong>on</strong> the Afri gazelle <str<strong>on</strong>g>and</str<strong>on</strong>g> thecamel. Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong> (1966) studiedthe <str<strong>on</strong>g>effect</str<strong>on</strong>g> of <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the Afri gazelle(G. dorcas) in Sudan. Schmidt-Nielsen et ale (1967)studied <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong>metabolic rate <str<strong>on</strong>g>and</str<strong>on</strong>g> the weight specific temperaturemetabolic rate <strong>on</strong> the Arabian camel, Camelusdromedarius. Ghobrial (1970b)worked <strong>on</strong> the <str<strong>on</strong>g>water</str<strong>on</strong>g>relati<strong>on</strong>s of the Sudanese Afri gazelle <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor


12 (1970a) stud the a temperature <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>water</str<strong>on</strong>g>i<strong>on</strong> <strong>on</strong> the thermoregulati<strong>on</strong> ofhoofed mammals ( ). (1972) also worked<strong>on</strong> <str<strong>on</strong>g>water</str<strong>on</strong>g> needs for G. thoms<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g> G. granti inrelat to to desert life.were d<strong>on</strong>e <strong>on</strong> the Sudanese sheep,gazel <str<strong>on</strong>g>and</str<strong>on</strong>g> the ( etal. I 1984; I, 1976 i <str<strong>on</strong>g>and</str<strong>on</strong>g> Osman la,1974). Mohammed et al. (1988) have d<strong>on</strong>e a <strong>on</strong> theSudanesegazelle c<strong>on</strong>cerning thermal relati<strong>on</strong>s<str<strong>on</strong>g>water</str<strong>on</strong>g>Ahmed (1994) <strong>on</strong>c<strong>on</strong>cerning <str<strong>on</strong>g>water</str<strong>on</strong>g> icti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> some bloodIn the , more attenti<strong>on</strong> paid <strong>on</strong><strong>on</strong>e of means envir<strong>on</strong>mental<strong>on</strong>s, namely physio1<strong>on</strong>shave been adopted by the mountain gazelPeninsula.la (Pal 1766)


GENERAL MATERIALSAND METHODS


15GENERAL MATERIALS AND METHODSwork was at the Khalid wildlifeResearch Centre (KKWRC) at -Thumamah which about80 Km North of Riyadh, Saudi Arabia.This work comprtwo2.1 Field WorkIn this partIs <str<strong>on</strong>g>and</str<strong>on</strong>g> the metabolof the experimentalwas d<strong>on</strong>e in additi<strong>on</strong>to the2.1.1 Preparati<strong>on</strong> Gazelles:adult males ( la la) wereselected for this study. were about 1-2<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g>17-21 Kgs. They werefrom the main enclosure of KKWRC. Animals weremed 1 by , <str<strong>on</strong>g>and</str<strong>on</strong>g> accl izedfor 11 weeks ior to experimentati<strong>on</strong>. werehoused f 3 x 4 m eachgood light <str<strong>on</strong>g>and</str<strong>on</strong>g> aerati<strong>on</strong>. The stables were arranged insuch a way that to 1 ina 1which had been covered by dry s<str<strong>on</strong>g>and</str<strong>on</strong>g>;<str<strong>on</strong>g>water</str<strong>on</strong>g> werewereleft for further 4 weeks for acclimati<strong>on</strong> withc<strong>on</strong>tinuous observati<strong>on</strong>., ! !•~


16 2.1.2 Metabolic Cage Arrangements:six metabolic cages measuring 110 cm in length<str<strong>on</strong>g>and</str<strong>on</strong>g> 165 cm in height were used in this study. Fivecages were used for collecti<strong>on</strong> of the gazelle'sexcreta (droppings <str<strong>on</strong>g>and</str<strong>on</strong>g> urine). The sixth <strong>on</strong>e was usedfor assessing the amount of urine <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> lost (seechapter 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6). These metabolic cages we~eprovidedwith four shelves <strong>on</strong>, different levels:-, .; I. I1- The Lower level (Ll):­This level is made up of a metal plate, about 20cm of ground level.It is made in the form of a bigfunnel that c<strong>on</strong>verges to the centre, where asmallhole is c<strong>on</strong>nected to a ranged bottle via a tube tocollect urine. This level is 70 x 40 cm i movable <str<strong>on</strong>g>and</str<strong>on</strong>g>adjustable with the above sec<strong>on</strong>d level.2- The Sec<strong>on</strong>d level (L2):­There is a wire mesh whose dimensi<strong>on</strong>s are 70 x 40cm, the mesh opening is 2 x 2 mm, which is situated 20cm higher than the first level. It is movable <str<strong>on</strong>g>and</str<strong>on</strong>g> itsmain objective is to collect the dropp~ngswithoutretenti<strong>on</strong> of the urine.3- The third level (L3):­This Level is made of two parts, the smaller <strong>on</strong>eis square shaped made up of wood whose side is 40 cml<strong>on</strong>g. This is situated in the fr<strong>on</strong>t part o~ the cage.The other part is made in the form of ~etalfor the gazelle to st<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>.inettingIt has medium sizedopenings (10 x 10 mm) <str<strong>on</strong>g>and</str<strong>on</strong>g> dimensi<strong>on</strong>s of 70 x 40 cm. It. :. ,.. . !. i 'j'~ , jIi


17 METAL MESH- --~--- '/"­~"" ~ 110 em.~ ---------~==----------- -~L4o 0o~------~'-r---------------7r-'r-~ 020cm.Eu10DOOROPENINGMETALMESH//./././- -71// IIIr-­__-.­IIIIIt-: 'i.!Eu 'o~ .EugNEu0NL3METALMESH_L2METALFUNNEL-­L 10•0­0FOOD a WATERCONTAINER25mm It'l


18 . \;is specifically made for the hind limbs of thegazelle, hence faeces<str<strong>on</strong>g>and</str<strong>on</strong>g> urine can pass through.This level is n<strong>on</strong>-movable <str<strong>on</strong>g>and</str<strong>on</strong>g> situated 15 cm above thelevel beneath.4- The fourth level (L4):­A metal netting with large openings (4 x 4cm)was situated 115 cm above the third level,specifically made to hinder the animal from leavingthe cage.In the fr<strong>on</strong>t part of the cage, food <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>tainer was situated at the dimensi<strong>on</strong>s of 70x 40 x 20 cm, i.e. 70 cm above the third level.Thelower part of the c<strong>on</strong>tainer is divided into twosmaller <strong>on</strong>es.One is 10 x 20 x 15 cm for <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>the other <strong>on</strong>e is 15 x 25 x 20 cm for food.On theback side of the cage is a door for letting the animalin <str<strong>on</strong>g>and</str<strong>on</strong>g> out (Fig.I).The cage is well aerated, <str<strong>on</strong>g>and</str<strong>on</strong>g>allows the animal slight movements, but does not allowit to reverse its directi<strong>on</strong>. The cages were situatedunder a shaded building whose roof was about 4.5 mhigh, open at . three sides <str<strong>on</strong>g>and</str<strong>on</strong>g> the cages were 4 mapart.After the first acclimati<strong>on</strong>, the animals weretransferreu tc the five cages <str<strong>on</strong>g>and</str<strong>on</strong>g> they . were givenenough food <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g>, ad lib. for two weeks in order,\to acclimate to live in the cages. The :animals wereweighed <strong>on</strong> a sensitive electr<strong>on</strong>ic Seca balance(accurate to 50 g) before being distri~utedcages.in the~-......_-.


19 . 2.1.3 Radio Telemetry System Arrangements:o Telemetry System (RTS) was by theAmer Tel Company. TheRadio receiver, a pulse intervalof<str<strong>on</strong>g>and</str<strong>on</strong>g> five waxcoatedthat ffer s Is (see3) • The were ibratedfor . Each wassurgicalabdominal cavity of the gazellesthrough a small opening (5-7 cm)(plate.2). The wholewas functi<strong>on</strong>ing, recordinggazelle's bodyfrom time to time without anyto them. 1 the were d<strong>on</strong>e bydoctors from KKWRC.i<strong>on</strong>were shito1 wa<strong>sa</strong>l<strong>on</strong>e.They were observed <str<strong>on</strong>g>and</str<strong>on</strong>g> followed up for fourweeks till complete recovery.toanimals were then<strong>on</strong>cemore for a week. The anima were weighed before <str<strong>on</strong>g>and</str<strong>on</strong>g>afterThe animals were used as c<strong>on</strong>trol group at theas an1group afterwards.Each gazelle was placed in ametabol cage I fed <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g>ed ad 1 for5during <str<strong>on</strong>g>and</str<strong>on</strong>g> summer. Ga les were un<str<strong>on</strong>g>water</str<strong>on</strong>g>ed for8 during winter (January) for .3 days in," j.summer (July) <str<strong>on</strong>g>and</str<strong>on</strong>g> 24;11:, ' bothper:1~ , ;' '


} ()or II,,' l clilli q il7,r] Ie'.


; ,21 2.1.4 <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Relative Humidity:­The <str<strong>on</strong>g>and</str<strong>on</strong>g> the therelat humid were from themeteorolog 1 at KKWRC (about 100 m from thegazelle s). In additi<strong>on</strong> to that athermometer wasclose to the gazelle's sto record the air temperature 2 h 6 am - 6pmsummer.2.1.5 Samples Collaoti<strong>on</strong>:­Blood, <str<strong>on</strong>g>and</str<strong>on</strong>g> were colduring th in winter (January) <str<strong>on</strong>g>and</str<strong>on</strong>g> summer(July) as llow:2.1.5.1­ Blood .­Blood <strong>sa</strong>mples were collected <strong>on</strong>ce.dayall in summerf 5 days of the beginning of theDuring <str<strong>on</strong>g>water</str<strong>on</strong>g> i<strong>on</strong>, blood was col <strong>on</strong>ceeveryday in winter; <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ce every 24 h duringsummer.During both seas<strong>on</strong>s blood <strong>sa</strong>mples were2 h 24 h rehydrat In both seas<strong>on</strong>s,blood were col from animal at the<strong>sa</strong>me tof theBlood <strong>sa</strong>mples were collected by the j~gularveinof the animals 3 ml tubesDiamine(EDTA) as anfor I into(10II '


22 vacuta in tubes for serolog 1 tests. Alltubes were suppl by Meylan Cedex.2.1.5.2- Faeces Col :­In both seas<strong>on</strong>s, fresh faecalfrom allan Is were collected <strong>on</strong>ce 24 h theus the sec<strong>on</strong>d mesh layer of themetabol just after dropping. Faecalwere we p in covered <str<strong>on</strong>g>and</str<strong>on</strong>g>taken to the oven for drying.2.1.5.3- Ur Collect :­In both seas<strong>on</strong>s allwere collected24 h from each animal using the Lower levelif 1 made for objective.Every morn ur were colfrom each animal <str<strong>on</strong>g>and</str<strong>on</strong>g> taken to the <str<strong>on</strong>g>and</str<strong>on</strong>g> at4 °C for 1 ana is.2.2 Work:­2.2.1 Transmitter's Calibrati<strong>on</strong>:­Thebeen calthe laboratory before being fixed in the animals.were cal by ing them ina var A 1regressi<strong>on</strong> as the variable,<str<strong>on</strong>g>and</str<strong>on</strong>g> the pulse 1 as the dependent var wasThis relatthe pulse interval to anbe calculated from0.1 °C.


23 2.2.2 Blood <str<strong>on</strong>g>and</str<strong>on</strong>g> Urine Analysis:­• ;, ,:; : IBoth blood <str<strong>on</strong>g>and</str<strong>on</strong>g> urine tests were d<strong>on</strong>e at thelaboratory.For serological <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical testsserum was separated from the whole blood afterclotting <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifugati<strong>on</strong> at 3000 rpm for 10 min_The sera were kept at -20°C prior to serologicalanalysis. Haematological tests were d<strong>on</strong>e right aftercollecti<strong>on</strong> of the <strong>sa</strong>mples. Urine analysis was d<strong>on</strong>eaccordingly (see Chapter 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5).2.2.3 Faeces Drying:­Faecal <strong>sa</strong>mples were weighedfresh <str<strong>on</strong>g>and</str<strong>on</strong>g> afterdrying in an electrical oven at 105°C to assess <str<strong>on</strong>g>their</str<strong>on</strong>g>moisture.2.3 statistical AnalysisMinitab, Inc (1989) statistical Program was used foranalyzing the results of body temperatures, bloodc<strong>on</strong>stituents, urine c<strong>on</strong>stituents, gazelle's weights,<str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> food intake <str<strong>on</strong>g>and</str<strong>on</strong>g> the faeces moisture.Analysis of variance (ANOVA)<str<strong>on</strong>g>and</str<strong>on</strong>g> Covariance (COVA)were used for comparing the results of the threephases (Hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>) duringthe two seas<strong>on</strong>s (winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer). Harvard graphics programme was used for plotting the graphs <str<strong>on</strong>g>and</str<strong>on</strong>g> the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> is given <strong>on</strong> each graph (figs 4-47).


CHAPTER THREE OF TEMPERATUREAND WATERDEPRIVAl'IONON BODY TEMPERATURE


25 3.1Louw <str<strong>on</strong>g>and</str<strong>on</strong>g>(1982) menti<strong>on</strong>ed that most of theare by insolat <str<strong>on</strong>g>and</str<strong>on</strong>g>high in additi<strong>on</strong> to highlyelevated substratum temperatureexceeds 55°C insummer. This situati<strong>on</strong> always accompanied acutelevel. Thus, 1envir<strong>on</strong>ments have to to res thisthatfollowtwoto resthetemperature.The smaller animals allow <str<strong>on</strong>g>their</str<strong>on</strong>g> bodytemperature to fluctuate extens, whilst keepingrate of at On other, the ungulates is toatatthe morning, then allowing• Theat , ne allowing forbody temperature nor for humidity.Taylor (1970a) that some an like's Ie ( ), Thomps<strong>on</strong>'s gazelle(Gazella thomps<strong>on</strong>ii) , the oryx (Oryx ), thecan 10 ) 1 wildbeest<str<strong>on</strong>g>and</str<strong>on</strong>g> the Zebra have elevatedbe ambient temperature (40-50 0 C), whilst no change had .,


26 '- ..... ­been observed <strong>on</strong> the other group of animals that weregiven <str<strong>on</strong>g>water</str<strong>on</strong>g> freely.The author also added that thelevel of evaporati<strong>on</strong> was lower when the animals wereun<str<strong>on</strong>g>water</str<strong>on</strong>g>ed. Schmidt-Nielsen et al. (1967)menti<strong>on</strong>edthat un<str<strong>on</strong>g>water</str<strong>on</strong>g>ed camels allow <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature tofluctuate up to a difference of 6°C, whilst it is <strong>on</strong>ly2°C when they are <str<strong>on</strong>g>water</str<strong>on</strong>g>ed. He also found out that<str<strong>on</strong>g>their</str<strong>on</strong>g> metabolic rate is related directly proporti<strong>on</strong>alto <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature but this relati<strong>on</strong>ship isreversed when the camel is un<str<strong>on</strong>g>water</str<strong>on</strong>g>ed, as the rate ofdehydrati<strong>on</strong> is inversely proporti<strong>on</strong>al to the metabolicrate. Mu<strong>sa</strong> (1978) assumed that <strong>on</strong>e of the majorfactors that enables the camel to endure dehydrati<strong>on</strong>is its ability to allow its body temperature to varyextensively, a situati<strong>on</strong> that could enable it to copewith external surrounding temperatures.Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong> (1966) menti<strong>on</strong>edthat the Afri (G. dorcas) could endure a period of 12days of dehydrati<strong>on</strong> at low air temperature (10-30°C)<str<strong>on</strong>g>and</str<strong>on</strong>g> a relative humidity of (25-40%). When thec<strong>on</strong>diti<strong>on</strong>s deteriorate (high air temperature (35-45°C)<str<strong>on</strong>g>and</str<strong>on</strong>g> low relative humidity (10-30%)) these gazelles cannot survive for more than 5 days. Cloudsley-Thomps<strong>on</strong>(1969) found out that dehydrati<strong>on</strong> of this speciesseverely affects its body temperature that lead to abreak in its system of thermoregulati<strong>on</strong>..~ .


27 In astudy of the skin tissue of the Afri,Ghobr 1 (1970a) c<strong>on</strong>firmed the presence of <str<strong>on</strong>g>and</str<strong>on</strong>g>(1970b)inedthat when the a exceeds the rectalin the Sudanese G.dorcasdissipates theexcess metabol <str<strong>on</strong>g>and</str<strong>on</strong>g> airthe rate of evaporati<strong>on</strong> asincreases therate of <str<strong>on</strong>g>and</str<strong>on</strong>g>I whenanimal dehydrated allows its body temperature torup to 6°C, in order to evade evaporati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>to a minimum. I (1974) aAfri usually started to at an air temperatureof 25 ° C,at a<str<strong>on</strong>g>and</str<strong>on</strong>g> the highest rate of evaporati<strong>on</strong> tookbetween 30 <str<strong>on</strong>g>and</str<strong>on</strong>g> 35°C.(1972) found out that when the a45°C, the G. i <str<strong>on</strong>g>and</str<strong>on</strong>g>G.granti would notexcessfrommeans ofevaporati<strong>on</strong>. When a of <str<strong>on</strong>g>water</str<strong>on</strong>g>, thesespec allow ir toexcessively whilst keeping <str<strong>on</strong>g>their</str<strong>on</strong>g> brainatthe normal I (197 the<str<strong>on</strong>g>and</str<strong>on</strong>g>Jerboa could live without taking<str<strong>on</strong>g>water</str<strong>on</strong>g> directly, as they reshighthrough behavioral thermoregulati<strong>on</strong> in a way that theybecome nocturnal, I the act to thewhen the temperature drops <str<strong>on</strong>g>and</str<strong>on</strong>g>


28 humidity r . Ghobrial (1974) also explained thatthe Sudanese Afri gazelle selects the cooler hours ofthe for act during summer <str<strong>on</strong>g>and</str<strong>on</strong>g> , <str<strong>on</strong>g>and</str<strong>on</strong>g>retreats to the shade when thetemperature iselevated to reduce ; She aobserved that there was no shours bothbodysummer <str<strong>on</strong>g>and</str<strong>on</strong>g>winter when c<strong>on</strong>diti<strong>on</strong>s were normal; but when thean 1 was then the becamec<strong>on</strong>spicuous <str<strong>on</strong>g>and</str<strong>on</strong>g> reached 2°C. Mohammed et ale (1988)reported that there was no meaningful difference inrectal i zelle,<str<strong>on</strong>g>and</str<strong>on</strong>g> he referred to of todiss body temperature. The study d<strong>on</strong>e -EYwill et ale (1992) <strong>on</strong> the Rheem zelleexplained that the vari<strong>on</strong> in bodying i anima werereached 2.5 °C, whilst thdifference was <strong>on</strong>ly <strong>on</strong>ein case of <str<strong>on</strong>g>water</str<strong>on</strong>g>ed <strong>on</strong>es. They alsoin body temperature betweenthe dehydratedmore enhanced when thea exceeds 39°C. They also reported thatthe of the in the dehydratedIs was less than that ofcamels which reachedreferred that to the abilof the camel tostore heat in body <str<strong>on</strong>g>and</str<strong>on</strong>g> it <strong>on</strong>ly when thea


29 3.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods:­of all theIs was recorded<strong>on</strong>ce 2 h from 6 am to 6 pm summer<str<strong>on</strong>g>and</str<strong>on</strong>g> . These readings Were taken daily ing thethree of the (<str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>). The Radio Telemetry (RTS)was used as by Will (1992) •Briefly, the made up of a receiver,a pulse interval timer (accurate to 1 11 <str<strong>on</strong>g>and</str<strong>on</strong>g>a zed, which sends outpulses by that vary directlyproporti<strong>on</strong>al with temperature.Thewerethem in a laboratory which thewas var so that a 1could be plotted, with temperature as the independent<str<strong>on</strong>g>and</str<strong>on</strong>g> Se as varUs this relati<strong>on</strong>ship, temperature could becalcu from pulse 1 to an of O.l°C(Will <str<strong>on</strong>g>and</str<strong>on</strong>g> Delima, 1990). After calibrati<strong>on</strong>,transmitters were into abdominalzelly. Thus within half an hourthe tter will measure gazel bodyThrough anfixed near thegazel 's sheds, s Is could bereceived asthat could


30transformed by the pulse interval timer to readablenumbers that are changed according to the change intemperature.statistical Analysis:-Minitab, Inc (1989) statistical Program has beenused. Body temperature of all test animals for thethree phases of the experiment, during both summer <str<strong>on</strong>g>and</str<strong>on</strong>g>winter were included in the calculati<strong>on</strong>. Analysis ofvariance (ANOVA) <str<strong>on</strong>g>and</str<strong>on</strong>g> variance were used for comparingthe three phases during the two seas<strong>on</strong>s.Comparis<strong>on</strong>of the results at different times of the day to seethe variati<strong>on</strong> in body temperature when <str<strong>on</strong>g>water</str<strong>on</strong>g> wa<strong>sa</strong>vailable.Also comparis<strong>on</strong> of the results of the<str<strong>on</strong>g>water</str<strong>on</strong>g>ed animals phase, the <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> phase,<str<strong>on</strong>g>and</str<strong>on</strong>g> the rehydrati<strong>on</strong> phase during summer <str<strong>on</strong>g>and</str<strong>on</strong>g> winter, tosee the differences between them. The summer resultswere also compared with the winter results to see thedifferences in body temperature in relati<strong>on</strong> to theexternal temperature factor.,: \


31 3.3: Results:a) Winter:­In winter the air temperature ranged from low 3­8°C to maximum of II-19°C. The relative humidity washigh; (61-97%) in the early hours of the morning, <str<strong>on</strong>g>and</str<strong>on</strong>g>low (35-54%)later in the day. In such c<strong>on</strong>diti<strong>on</strong>s,with the presence of <str<strong>on</strong>g>water</str<strong>on</strong>g>; no wide range differencehad been observed in the body temperature of thegazelles (~0.2 °C), especially during the day (6 am ­6 pm)), as the body temperature ranged between 39.4°Cat 8 am <str<strong>on</strong>g>and</str<strong>on</strong>g> 39.6°C at 4 pm. But, a significantdifference of 1.3 °C (P::;0.05, F=8.24) was noticedwhenthese animals were given enough <str<strong>on</strong>g>water</str<strong>on</strong>g> afterdehydrati<strong>on</strong> fig(3). It was observed that the animalsbody temperature was lowest (38.6 °C)at the earlymorning (6-8 am), then gradually rises to its maximum(39.4°C) at 6 pm. It was noticed that when thesedehydrated animals were rehydrated a substantialdecrease in <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature occurred, as thebody temperature decreased to 38.3 °C after 2 h ofrehydrati<strong>on</strong>. This decrease in body temperaturec<strong>on</strong>tinued untill the animals reached <str<strong>on</strong>g>their</str<strong>on</strong>g> normallevel of body temperature, 10 h after rehydrati<strong>on</strong> .. 1


32 b) Summer:­In summer the atmospheric temperature ranged froma minimum of 26-28°C <str<strong>on</strong>g>and</str<strong>on</strong>g> a maximum of 42-44°C.Therelative humidity was 38-40% in the early hours of themorning <str<strong>on</strong>g>and</str<strong>on</strong>g> was as low as 20-30% in the late hours ofthe day.In such c<strong>on</strong>diti<strong>on</strong>s when the animals weregiven enough <str<strong>on</strong>g>water</str<strong>on</strong>g>, there was no significant variati<strong>on</strong>in <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature (0.5°C), as the bodytemperature ranged between 39.6°C at 6 am <str<strong>on</strong>g>and</str<strong>on</strong>g> 40.loCat 6 pm, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the hot weather did not affect theanimal's body temperature as l<strong>on</strong>g as <str<strong>on</strong>g>water</str<strong>on</strong>g> wa<strong>sa</strong>vailable.But, when these animals were dehydratedfor c<strong>on</strong>secutive 3 days, a significant (psO.Ol,F=ll.98) variati<strong>on</strong> was noticed (2.1°C) during the day.It was noticed that the lowest animal body temperature(39.5°C) was in the morning (6-8 am.) <str<strong>on</strong>g>and</str<strong>on</strong>g> the highest(41.6°C) was in the afterno<strong>on</strong> (4-6 pm.) Fig(3) .When the animals were rehydrated <strong>on</strong>ce more, <str<strong>on</strong>g>their</str<strong>on</strong>g>body temperature dropped a little (0.1 DC)then rosewithin two hours to follow the <strong>sa</strong>me pattern as beforedehydrati<strong>on</strong>.The results show that the animal's bodytemperature, with the availability of <str<strong>on</strong>g>water</str<strong>on</strong>g> did notvary significantly (P~0.912,F=0.ll107) during winter<str<strong>on</strong>g>and</str<strong>on</strong>g> summer. The variati<strong>on</strong> was 0.2°C in the morning <str<strong>on</strong>g>and</str<strong>on</strong>g>0.7°C in the late afterno<strong>on</strong>.


31 40Hy


34 The difference in body temperature wassignif in case of the dehydrated group ( 0.010;F= 16.29). The var was 1.10C theearly hours of the morning <str<strong>on</strong>g>and</str<strong>on</strong>g> was up to 2.4°Cthelate hours of the day. The variati<strong>on</strong> wasinsignif (P20.422, F=0.77) after i<strong>on</strong> ofthe an 1s during the two seas<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> summer.


35 3.4. Discussi<strong>on</strong>:­It appears that when G.gazella was given dryfood (moisture c<strong>on</strong>tent 8-13% during winter, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3-5%in summer) should have free <str<strong>on</strong>g>water</str<strong>on</strong>g> to drink.It couldendure the absence of drinking <str<strong>on</strong>g>water</str<strong>on</strong>g> for variousperiods of time <str<strong>on</strong>g>and</str<strong>on</strong>g> this situati<strong>on</strong> depends up<strong>on</strong> thec<strong>on</strong>diti<strong>on</strong>s of the air temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> the relativehumidity.The gazelle would survive for 8 days inwinter when deprived of <str<strong>on</strong>g>water</str<strong>on</strong>g>, that was when themorning air temperature was 3-8°C <str<strong>on</strong>g>and</str<strong>on</strong>g> the afterno<strong>on</strong>air temperature did not exceed 11-19°C with relativehumidity of 61-97% <str<strong>on</strong>g>and</str<strong>on</strong>g> 35-54% in the morning <str<strong>on</strong>g>and</str<strong>on</strong>g>afterno<strong>on</strong>, respectively.In the extreme c<strong>on</strong>diti<strong>on</strong>s of summer, when themorning <str<strong>on</strong>g>and</str<strong>on</strong>g> afterno<strong>on</strong> air temperatures were 26-28°C<str<strong>on</strong>g>and</str<strong>on</strong>g> 42-44°C, respectively <str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidity 38-40%<str<strong>on</strong>g>and</str<strong>on</strong>g> 20-30%, respectively, gazelles could <strong>on</strong>lywithst<str<strong>on</strong>g>and</str<strong>on</strong>g> 3 days of dehydrati<strong>on</strong>. At thi~point, allanimals were very weak, drowsy <str<strong>on</strong>g>and</str<strong>on</strong>g> very emaciated. Inadditi<strong>on</strong> to that, a degree of eyeball retracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>skin turgor wasnoticed. Similar c<strong>on</strong>diti<strong>on</strong>s werereported by Gary et ale (1979) <strong>on</strong> horses <str<strong>on</strong>g>and</str<strong>on</strong>g> Mohamed(1986) <strong>on</strong> dorcas gazelle during <str<strong>on</strong>g>their</str<strong>on</strong>g> studies of the<str<strong>on</strong>g>effect</str<strong>on</strong>g> of dehydrati<strong>on</strong> in summer seas<strong>on</strong>. Comparis<strong>on</strong> ofthe dehydrati<strong>on</strong>'s periods during winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summerrevealed a great difference in the gazelles enduranceof dehydrati<strong>on</strong>. The animals survived dehydrati<strong>on</strong> in


36 winter 2.7 t more than the summer. Th could beattr to the difference thethat affects<str<strong>on</strong>g>and</str<strong>on</strong>g> hencebody <str<strong>on</strong>g>water</str<strong>on</strong>g> balance through evaporati<strong>on</strong> ( I,1966; 1967;19 2, (1970b)<str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor (1972) that the of evaporati<strong>on</strong>to animalThe resu showed that body of1the gazelles not vary the winteras the difference was <strong>on</strong>ly O.2°C.The <strong>sa</strong>mesituat was also summer whenthe <str<strong>on</strong>g>water</str<strong>on</strong>g> waslable, as the difference was <strong>on</strong>O.5°C. This shows that these Is could ma in asteady body temperature when<str<strong>on</strong>g>water</str<strong>on</strong>g>availabwithout being muchexternalmakeuse of to ma body1,1970b).summer,tend to use evaporati<strong>on</strong> to reduce <str<strong>on</strong>g>their</str<strong>on</strong>g> body(Taylor, 1972 <str<strong>on</strong>g>and</str<strong>on</strong>g> '"'......,........ ial, 1974).Theismisdissipat of excess body theiz of the surface 1 ofthe lungs, mucous membranes, the nose <str<strong>on</strong>g>and</str<strong>on</strong>g>skin (by), <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the ( , 1972).During winter dehydrati<strong>on</strong>,animals did notshow signif the as


37 the difference was <strong>on</strong>ly O.8°C.Thus, the animals didnot allow for much decrease in <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature,although the air temperature was low. This isprobably because the animals tend to take more food(while dehydrati<strong>on</strong>), in additi<strong>on</strong> to using <str<strong>on</strong>g>their</str<strong>on</strong>g> ownbody fat to produce excess heat energy to counter thedrop of the air temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> succeed to keep asteady body temperature (Tietz, 1987).The opposite situati<strong>on</strong> was seen when the animalswere dehydrated in summer as they allowed for greatervariati<strong>on</strong> in <str<strong>on</strong>g>their</str<strong>on</strong>g> body temperature (2.1°C) during theday.A directly proporti<strong>on</strong>al relati<strong>on</strong>ship has beennoticed between the air temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> the animalbody temperature during the last periods ofdehydrati<strong>on</strong>.This was seen when the lowest animalbody temperature was 39.5°C when the air. temperaturewas 28°C, <str<strong>on</strong>g>and</str<strong>on</strong>g> the highest recorded animal bodytemperature was 41.6°C when the air temperature was41°C at 4-6 pm. It could be explained that thisvariati<strong>on</strong> was accomplished in <str<strong>on</strong>g>their</str<strong>on</strong>g> attempt to reduceevaporati<strong>on</strong> through respirati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sweating duringhigh body <str<strong>on</strong>g>and</str<strong>on</strong>g> air temperature in the day. Similarresults were obtained by Ghobrial(1970b) <strong>on</strong> Afrigazelle <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor (1970b) <strong>on</strong> Thomps<strong>on</strong>'s <str<strong>on</strong>g>and</str<strong>on</strong>g> Grant'sgazelles. When the air temperature starts to drop inIthe afterno<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> night, the animals dissipate <str<strong>on</strong>g>their</str<strong>on</strong>g>body heat to the envir<strong>on</strong>ment to reach the lbwest~ : . i :' ."' t ;.,.• ' ~ j •


38 possible body temperature without much loss of body<str<strong>on</strong>g>water</str<strong>on</strong>g> through respirati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sweating. 'I'hesezelles by so doingdesert mammals.These results are in goodwith (Ghobrial, 1974; I 1970a,1970b, 1974; Williams<strong>on</strong> et a1., 1992 <str<strong>on</strong>g>and</str<strong>on</strong>g> Zari <str<strong>on</strong>g>and</str<strong>on</strong>g> AL-Hazmi, 1993) as they reported that theofthe rectalof the Arabian5 °e during summer days.One ofmain factors that allows the Idmizelle to sustain high bodyisthe panting mechanism.These gazelles could cool theblood coming to through thatbl to coo na<strong>sa</strong>l muco<strong>sa</strong> by (LouwSee , 1982). This process is exh by many ofas an an1 Most <str<strong>on</strong>g>their</str<strong>on</strong>g> blood going tothe brain is via the 1 carotidThisinto numerous arteriolesblood 1 pass the na<strong>sa</strong>l open<str<strong>on</strong>g>and</str<strong>on</strong>g> muco<strong>sa</strong>, then reunite before supplying the brain.When blood smallit is cooled down by evaporati<strong>on</strong> of respirati<strong>on</strong> by 3°ebefore the bra ( , 1972).When the animals were rehydrated in winter, adrop of O.3°e in body wasThis cou be attributed to that these


39 animals took alot of cold <str<strong>on</strong>g>water</str<strong>on</strong>g> (1099 mI/2h), ofwhich the temperature was 'not measured ' but may notexceed 4°C.This situati<strong>on</strong> might have lowered <str<strong>on</strong>g>their</str<strong>on</strong>g>body temperature for a period of 4 h. After 10 hr ofrehydrati<strong>on</strong>,animals body temperature returned t<strong>on</strong>ormal. The case was different when these animals wererehydrated during summer, as there was nodrop ofbody temperature, probably due to the optimum <str<strong>on</strong>g>water</str<strong>on</strong>g>temperature (29°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> hence did not affect theanimal's body temperature.. : 1


CHAPTERFOUREFFECT OF TEMPERATURE AND WATER DEPRIVATION ON SOME BLOOD CONSTITUENTS ' . I .: . ". , ,t,:, ' .


41 4.1 Introducti<strong>on</strong>:There are no studies <strong>on</strong> the blood c<strong>on</strong>stituents ofthe Idmi Gazelle, G. gazella under dehydrati<strong>on</strong>c<strong>on</strong>diti<strong>on</strong>. This also applies to the rest of theArabian gazelle species. There are very limitedstudies <strong>on</strong> other n<strong>on</strong>-Arabian gazelles, e.g. theSudanese Afri G. dorcas in additi<strong>on</strong> to other desertmammals. The study of Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong>(1966) <strong>on</strong> G. dorcas in Sudan showed an increase inthe urea level in the dehydrated animals (5 days insummer), when the range of air temperature was 35­45°c, <str<strong>on</strong>g>and</str<strong>on</strong>g> the relative humidity was 10-30%. The urealevel increased from a range of 5-10 mg/100 ml to 70­110 mg/100 mI. An increase was also noticed in thelevel of haemoglobin (Hb) <str<strong>on</strong>g>and</str<strong>on</strong>g> packed cell volume (PCV) ,from a range of 14-18 g/100 ml to 20-29 g/100 ml; <str<strong>on</strong>g>and</str<strong>on</strong>g>from a range of 4.5-5.5 g/100 ml to 5.5-7 g/100 ml,respectively. The study of Couldsley-Thomps<strong>on</strong> (1969)<strong>on</strong> blood parameters of dehydrated G. dorcas indicatedan increase in blood urea that reached 11-14 timesmore than the level of the n<strong>on</strong>-dehydrated gazelles.Also the Hb <str<strong>on</strong>g>and</str<strong>on</strong>g> PCV levels increased by 30-39% for Hb<str<strong>on</strong>g>and</str<strong>on</strong>g> from 40-55% to 55-59% for PVC.Mohammed et ale(1988) have d<strong>on</strong>e a similar study <strong>on</strong> the <strong>sa</strong>me gazelleafter dehydrating the animals for 10 i ,days then'. j 1:'rehydrated them for 2 days. Significant: increase in,' , ! ''1' I .the levels of Hb <str<strong>on</strong>g>and</str<strong>on</strong>g> albumin up to 34% ~rtd, 18%,I. ., , I:


: I ~ I42respectively, were recorded. They added that thec<strong>on</strong>centrati<strong>on</strong>s of Na+, K+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Cl- were also increasedby23%, 44%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 18%, respectively, in the dehydratedgazelles. After rehydrati<strong>on</strong> these levels restored<str<strong>on</strong>g>their</str<strong>on</strong>g> previous levels. In the study of MacFarlane etal. (1961) <strong>on</strong> dehydrated Merino Sheep (5 days insummer under maximum temperature of 39-42.2°c), theanimals lost 45% of the total plasma volume, the bloodvolume decreased by 30%, the PCV increased by 39%, theHb increased by a ratio of 43%,the plasma proteinincreased by 60%, Na+ increased by 10%, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Ureaincreased by a ratio of 42%, compared to the levelsbefore dehydrati<strong>on</strong>.Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> Lynch (1972) in <str<strong>on</strong>g>their</str<strong>on</strong>g> study <strong>on</strong> Mernioewes had shown that low uptake of <str<strong>on</strong>g>water</str<strong>on</strong>g> producedlimited <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> the levels of Blood Urea Nitrogen(BUN). They found out that Na+ c<strong>on</strong>centrati<strong>on</strong> washigher in November than October. Moreover, when sheepwere dehydrated, variati<strong>on</strong> in PVC was insignificant.This was due to the high level of humid foodOsman <str<strong>on</strong>g>and</str<strong>on</strong>g> Fadlalla (1974) found that there was asignificant increase in the level of BUN of the desertsheep when they were short <strong>on</strong> <str<strong>on</strong>g>water</str<strong>on</strong>g>, compared to thosethat took <str<strong>on</strong>g>water</str<strong>on</strong>g> ad Lib. They also foundthat the BUNlevel increased by 14% in animals fed <strong>on</strong> Alfafa hay<str<strong>on</strong>g>and</str<strong>on</strong>g> deprived of <str<strong>on</strong>g>water</str<strong>on</strong>g>. A slight decrease o( BUN was1:.


43 not an Is fed <strong>on</strong> Alfafa <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> ad Lib.When the black Bedouinwere dehydrated till theylost 25-30% of <str<strong>on</strong>g>their</str<strong>on</strong>g> body weight <str<strong>on</strong>g>and</str<strong>on</strong>g> thenChosn <str<strong>on</strong>g>and</str<strong>on</strong>g> Shkoln (1977) found that theosmolal signif decreased from 336.5 ± 6.7 to303 . 7 ± 7. 5 mOsm/kg a 7 h of i<strong>on</strong>. Thestudy of Mu<strong>sa</strong> (1978) <strong>on</strong> Camels, desert <str<strong>on</strong>g>and</str<strong>on</strong>g>desert had shown that of Camelsreflected var of as was~15%, serum osmolality was 7 ". In desertserum total in c<strong>on</strong>centrati<strong>on</strong> had by21%, Albumin by 1 by27% <str<strong>on</strong>g>and</str<strong>on</strong>g> serum osmolal sed by 12% when theyrefof serum total protein, serum albumin,serum urea, serumNa+ <str<strong>on</strong>g>and</str<strong>on</strong>g> serum osmolality by ratiosof 19%, 12%, 63%, 18% 9%,Gary et (1979) found out a s ficantincrease in the of f <str<strong>on</strong>g>and</str<strong>on</strong>g> osmolality inthe plasma of the the Isof K+, ca+, <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg+ remained unchanged. Sin the c<strong>on</strong>centrati<strong>on</strong> of 1 plasma inwas noticed. There was a marked decrease in<str<strong>on</strong>g>and</str<strong>on</strong>g> osmolal when the Is wereICl-rema c<strong>on</strong>stant. When¥u~oHinaket a1. (1984) dehydrated the black11 25 3 body


44 Ithe blooddecreased after 4 h of by 29 kg theyalso nota 9.5 mmol/l <str<strong>on</strong>g>and</str<strong>on</strong>g> a 8.0 mmol/l decrease inof Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g>, respectively. No<strong>on</strong> theof blood urea <str<strong>on</strong>g>and</str<strong>on</strong>g> K+ wa<strong>sa</strong>fterMa z et . (1984), <strong>on</strong> thereported a signif in the plasmaosmolalof a 4 days dehydrated lactating or n<strong>on</strong>­1 They noticed an inplasmalevel from 141 ± 1 mmol!l to 162.2±2 mmol/l;<str<strong>on</strong>g>and</str<strong>on</strong>g> from 146±0 mmol/l to 164±1 mmol/l<str<strong>on</strong>g>and</str<strong>on</strong>g>n<strong>on</strong>-l <strong>on</strong>es, ively. was nosf<strong>on</strong>e hour ofanimals approached normal 1, but then<strong>on</strong>-lactating <strong>on</strong>es took l<strong>on</strong>ger t to reach s lar<strong>on</strong>e hourrehydrati<strong>on</strong> both lactating<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-lactatingIsc<strong>on</strong>centratSnedd<strong>on</strong> et al. (1993) had found that thedehydrated Namib horses <str<strong>on</strong>g>and</str<strong>on</strong>g> Boerperd 14.3%<str<strong>on</strong>g>and</str<strong>on</strong>g> 14.2% of the total body <str<strong>on</strong>g>water</str<strong>on</strong>g>, iva . sixof the lost <str<strong>on</strong>g>water</str<strong>on</strong>g> wasI27% of 1 spaces <str<strong>on</strong>g>and</str<strong>on</strong>g> 67% from thecombined intracellular transcellular space. They afound out that the osmolal significantly" I: ,.


45 increased during dehydrati<strong>on</strong> , then rapidly decreasedto reach the normal previous level within 3 hours inboth types of horses.4.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> MethodsWork was d<strong>on</strong>e in two main parts:The first part was d<strong>on</strong>e in the field (see chapter 2)<str<strong>on</strong>g>and</str<strong>on</strong>g> the other was d<strong>on</strong>e in the laboratory. In thelaboratory two types of analyses were made.4.2.1 : Haematological Analysis:Blood <strong>sa</strong>mples for Haematological analysis werecollected by Jugular vein puncture into 3 mlvacutainer tubeswith L Ethylene ~ DiamineTetra Acetate(EDTA)as an anticoagulant. (Supplied by Dickins<strong>on</strong>France) .4.2.1.1 Red Blood cells (RBCs) <str<strong>on</strong>g>and</str<strong>on</strong>g> white Blood cells(WBCs) counts:RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> WBCs counts were d<strong>on</strong>e using ZM Coultercounter from Coulter Electr<strong>on</strong>ics LTD (Northwell Drive,Lut<strong>on</strong>,Engl<str<strong>on</strong>g>and</str<strong>on</strong>g>). Blood <strong>sa</strong>mples were diluted usingbuffered isot<strong>on</strong>ic <strong>sa</strong>line (Isot<strong>on</strong> II) from coulterelectr<strong>on</strong>ics. Different settings were used foranalyzing RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> WBCs. RBCs setting would' rot allowWBCs to pass through, <str<strong>on</strong>g>and</str<strong>on</strong>g> counted with RBCs~ ! RBCs wereHaemolyzed using Zap-Oglobin (from Coulterelectr<strong>on</strong>ics) in order to count WBCs without RBCs. . I II


46interference after changing the setting to WBCs mode.Reading were recorded directly from theCalculatCalculati<strong>on</strong> for RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> for WBCs were d<strong>on</strong>e asfollows:-RBCsSum of 4 readings,WBCs = mean of 2 readings, /1.4.2.1.2: Packed cell volume (PCV)PCV was measured the Microhaemotocrmethod as Ja (1986), us theMicrohaematocr centrifuge from Heraeus GMBH­. The 1 tubes were centr at 12000rpm.PCV was from the scale inpercentage.4.2.1.3: (Hb was determined using the SpectrophotometrCyanmethemog method as Jain (1986).Drabkins-Rea~ent was obtained from bioMerieux Marcy L, Etoile-France. Spectrophotometer wavelength was adjusted at 540 nm. valuesHb were calculated as follow: Hb c<strong>on</strong>centra <strong>on</strong> 1)=xHb c<strong>on</strong>centrati<strong>on</strong> of the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard (gIl).


47 4.2.2: Serum analysisBlood were col by vein10 ml vacutainer plain tubes (fromBect<strong>on</strong> D ) .Whole bloodwere left for about 30 minutestill get clotted complete Serum wasfrom the i of the bloodfugati<strong>on</strong> at 3000 rpm for 10 minutes.Serum were kept a freezer at -20°C untilanalyzed later.4.2.2.1. Determinati<strong>on</strong> of serum sodium (Na+)potassium (K+):were determined using Na/K analyzer, Ori<strong>on</strong>1020, (Or Inc. Products,Bost<strong>on</strong>, USA), Ori<strong>on</strong> 1020 Analyzer measuresNa+means of se eCalculati<strong>on</strong>:The Na/K er g the in mmol/l4.2.2.2. Determinati<strong>on</strong> of blood urea nitrogen (BUN):BUN c<strong>on</strong>centrat were measured us the seralyzer111 from Ames si<strong>on</strong>, Miles Inc. ,USA, us reacti<strong>on</strong> of 0­I as by (1974) •Serum were di 1 in 3.


48The results were read directly from the seralyzerIII in mg/100 ml, a correcti<strong>on</strong> factor of 0.3581 i<strong>sa</strong>pplied to c<strong>on</strong>vert the units in to mmol/l.4.2.2.3: Determinati<strong>on</strong> of Glucose: Glucose c<strong>on</strong>centrati<strong>on</strong> was measured using the seralyzer III from Ames Divisi<strong>on</strong>, using Hexokinase method as described by Henry (1974). Calculati<strong>on</strong>: Values were read directly from the seralyzer III, the units obtained were in mg/100 ml, a correcti<strong>on</strong> factor 0.0555 was applied to c<strong>on</strong>vert the units in to mmol/l. 4.2.2.4: Determinati<strong>on</strong> of chloride c<strong>on</strong>centrati<strong>on</strong>(CI-) :Chloride c<strong>on</strong>centrati<strong>on</strong>s were measured usingspectrophotometer (from spectr<strong>on</strong>ic 601 Bausch <str<strong>on</strong>g>and</str<strong>on</strong>g>Lomb-Milt<strong>on</strong> Roycompany-USA.) at wavelength 460 nm,using chlorofix kit (from A.menarini, Divisi<strong>on</strong>eDiagnostici: Firenze, Italy).The method used fordeterminati<strong>on</strong> of CI-is the modificati<strong>on</strong> of Schales<str<strong>on</strong>g>and</str<strong>on</strong>g> Schales (1974) which involves using the excess ofthe poorly dissociated mercuric thiocyanate as theprimary reagent. This forms mercuric chloride leavingthyiocyanate i<strong>on</strong>s in soluti<strong>on</strong> which then react with aferric <strong>sa</strong>lt. The colour produced by t~e red ferricthiocyanate is measured (Gowenlock, 1988) ~


49 Reacti<strong>on</strong> sequence as follows:6 Cl- + J Hg(Scn)2 ~ JHgCl 2 + 6SCN- + 6SCN­6SCN- + 2Fe 3 + ~2Fe(SCn)3Absorbance of SampleAbsorbance of st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard x 345. 45mg/ 100ml345.45 mg/100 ml = c<strong>on</strong>centrati<strong>on</strong> of cl- in the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard sodium chloride. A correcti<strong>on</strong> factor of (0.2821) was applied to c<strong>on</strong>vert the unit in to mmol/l. 4.2.2.5. Determinati<strong>on</strong> of albumin <str<strong>on</strong>g>and</str<strong>on</strong>g> total proteins: Albumin <str<strong>on</strong>g>and</str<strong>on</strong>g> total proteins c<strong>on</strong>centrati<strong>on</strong>s weremeasured using the spectrophotometer (Spectr<strong>on</strong>ic 601)at wavelength 628 nm. <str<strong>on</strong>g>and</str<strong>on</strong>g> 545 nm, respectively.Albumin was determined using bromocresol green (BCG)at pH 4.2 as described by Gowenlock (1988) .Determinati<strong>on</strong> of total protein was d<strong>on</strong>e by Biuretreacti<strong>on</strong> as described in Gowenlock (1988).Calculati<strong>on</strong>s:Albumin <str<strong>on</strong>g>and</str<strong>on</strong>g> Total protein were calculated in thefollowing sequences:Albumin (g/l) = Absorbance of <strong>sa</strong>mple x 50Absorbance of st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard50 = C<strong>on</strong>centrati<strong>on</strong> of bovine Albumin (g/l) of tilest<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.Total Protein ( / I) = Absrobance of <strong>sa</strong>mple x lOOg Absorbance of st<str<strong>on</strong>g>and</str<strong>on</strong>g>ar¢]100 = C<strong>on</strong>centrati<strong>on</strong> of bovine albumin ~ng/l of thest<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.. , 1 '" .


50 4.2.2.6: Determ of Serum Osmolal :­Serum osmolality was determined us vapourpressure osmometer 5100C from Wescor, USA. Calof Wescor osmometer was d<strong>on</strong>e us the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards A(290mmol/kg) <str<strong>on</strong>g>and</str<strong>on</strong>g> B(1000 mmol/kg) (from Wescor) asdescribed by the Wescor Manual (1983). In Wescorosmometer, an 8 microliter <strong>sa</strong>mple of the serum was<strong>on</strong>to a small, solute-free paper disc, whichwas then inserted a chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> sealed.A sensitive thermocouple hygrometer was incorporatedi I within the chamber. Thsensor <strong>on</strong> the bas of a thermalenergy balancing principle to measure the dewntwithinThe values obtained from Wescor Osmometer wered ly mmol/Kg.. \


51 4.3. Results:of the gazelle for 8 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3c<strong>on</strong>secut in <str<strong>on</strong>g>and</str<strong>on</strong>g> summerly,showed fol results:4.3.1 Haematology4.3.1.1 Red Cells (RBCs) <str<strong>on</strong>g>and</str<strong>on</strong>g> white B Cells(WBCs) :RBCs count from the normal of 13.9 ±0.59 x 1 /1 to 15.20± 0.60 x 10 12 /1 in all testedanimals that had been for 8 in winter.After rehydrati<strong>on</strong> the count decreased to a level of10% of the normal count two hours before dehydrati<strong>on</strong>.with 24 hours a count returnedto its normal level Fig(4).are highlysignificant (0.005 ,F=3.45).Significant (P sO.05 F=3. 22) werealso obtathree c<strong>on</strong>secutles weresummer .forRBCs count rosefrom 12.38± 0.93X10 12 /l to 15.5±O.57 X10 12 /l with anincrease range of 2 . After rehydrati<strong>on</strong> the countdecreased to a level of 10% of1 count 2 hbefore 24 h after i<strong>on</strong> thecount returned to normal level .5).WBCs count were significant increased following. 05 , F=2 • 4 8 ) as rosefrom the normal level 3.95± 0.4 /1 to 5.1 ±


52 17 ----------- -----,- ---------------­Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>16 -..(:,:s~ 15II)()~ 14 -13 -o 48 96 144 192 240 288 290 312HoursFig (4) Variati<strong>on</strong> In mean of RBCs counts of gazelles during the experiment In winter.18Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>16 -..(:,:sVI()~ 14~ 12 -10 -8 ~~ ___~______L-__~______L_____~_____L___~______ ~____ ~__ ~o 48 96 144 168 170 192HoursFig (5) Variati<strong>on</strong> In mean of RBCs count of gazelles during the experiment In summer.


53 1.35 x 10 9 /1 (29%). Within 24 hours of rehydrati<strong>on</strong> allanimals regained <str<strong>on</strong>g>their</str<strong>on</strong>g> previous countas beforedehydrati<strong>on</strong> (Fig.6).In the summer, dehydrati<strong>on</strong> of the gazelles forthree c<strong>on</strong>secutive days resulted in asignificantincrease (PsO.05, F= 3.60) in the count of WBCs from4.11±0.90x10 9 /1 to 5.63±1.34X10 9 /1 (40%).Two hour<strong>sa</strong>fter rehydrati<strong>on</strong>, a decrease of 4%in the WBCs countwas recorded, but within 24 h after rehydrati<strong>on</strong> thecounts of all tested animals returned to normal(Fig.7) .Comparis<strong>on</strong> of the winter results with the summer<strong>on</strong>es showed no significant difference (P~0.413,F=0.68) for RBCs counts in all stages of theexperiment (hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>).A similar situati<strong>on</strong> was also obtained in the case ofWBCs counts, as the results of winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer wereinsignificantly different (P~0.265,F=1.27).4.3.1.2. Haemoglobin (Hb).Dehydrati<strong>on</strong> of the Idmi gazelles for -- 8c<strong>on</strong>secutive days in winter, followed by rehydrati<strong>on</strong>for 24 h showed significant differences (P~0.016,F=2.66) in the blood Hb c<strong>on</strong>centrati<strong>on</strong>. There was agradual increase in the Hb level c<strong>on</strong>centrati<strong>on</strong> from174.5±8.7 gil to 190±4.8 gil (9%). Within 24 h of


546Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrat i<strong>on</strong>7-... -- 0.-­enUCO~65432o 48 96 144 192 240 268 290 312HoursFig (6) Variati<strong>on</strong> In mean of WBCs counts of gazelles during the experiment In winter.8 ,--------------------------------,---------------------,-----------------,Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati <strong>on</strong>..-..o,sS


55 rehydrati<strong>on</strong>, the Hb level decreased to 170.6±10.6,Fig (8).Dehydrati<strong>on</strong> of the animals for 3c<strong>on</strong>secutivesummer days followed by rehydrati<strong>on</strong> for 24 h resultedin a highly significant increase (P~0.005,F= 5.62) inthe level of blood Hb. The Hb level increased from164.3±9.7 gil upto 192.5±10.6 gil (15-21%). within 24hof rehydrati<strong>on</strong> the Hb level decreased to 161.5±16.0gil, (Fig.9). statistical analyses of the data of Hbc<strong>on</strong>centrati<strong>on</strong> of the winter results in comparis<strong>on</strong> withthose of the summer <strong>on</strong>es showed no significantdifference (P~0.720,F =0.13) in all the three stagesof the experiment (hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>).4.3.1.3. Packed Cell Volume (PCV):Dehydrati<strong>on</strong> of the gazelles during winterresulted in a highly significant increase(P~0.005,f=3.63) in PCV. PCV increased from 51±1.3%to 55.8±2.0% with a percentage increase of 9%.24 hafter rehydrati<strong>on</strong>, PCV decreased to 49.2±2.2 %(Fig.l0).A highly significant increase (P~O.OOl,F=6.21)was also observed during summer. The PCVincreasedfrom 48.8±3.1 to 55.3 ±3.4 (13.3%) afterdehydrati<strong>on</strong>. On rehydrati<strong>on</strong> the PCV decreased, thu<strong>sa</strong>llowing the return to the normal level of 48.5±3.8%/


56 Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>200 190 180 170 190 o 49 96 144 192 240 288 290 312 HoursFig (8) Variati<strong>on</strong> In mGan of Hb o<strong>on</strong>centratl<strong>on</strong> during the Gxporlment In wlntQr.Hydrati<strong>on</strong>DehydrAti<strong>on</strong>nohyurllil<strong>on</strong>200 --190 .­180 -170 180 o 48 96 144 198 170 192 Houre(9) Variati<strong>on</strong> In mean of Hb c<strong>on</strong>c<strong>on</strong>trati<strong>on</strong> during the ...experiment In Bummer.c.


57 Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrall<strong>on</strong>5654~> 52oa..5048-o 48 96 144 192 240 288 290 312HOUfSFig (10) Variati<strong>on</strong> In mean of PCV of gazelles during the experiment In winter.Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>54 -> 52 -oa.50 -4846 ~~______~______~____ -L______~____ ~______ ~____~______~____~__-Jo 48 96 144 168 170 192HoursFig (11) VAriati<strong>on</strong> In mean of PCV of tho In ltlummer.


58before dehydrati<strong>on</strong> (Fig.11).Comparis<strong>on</strong> of the winter results with those of thesummer <strong>on</strong>es did not show any significant differences(P~O.73,F=O.ll) in the PCV values in all stages ofthe experiment (hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>)•4.3.2: Serum C<strong>on</strong>stituents:4.3.2.1 Serum Sodium (Na+)Dehydrati<strong>on</strong> during winter did not show asignificant difference (P~O.103,F=1.77) in the serumNa+. Serum Na+ gradually increased from 137. 2±4.1mmol/ I to 155. 2±4 . 0 mmol/ I - a 13.1% increase. Onrehydrati<strong>on</strong> a slight decrease was noticed within 2 hof rehydrati<strong>on</strong> (5.4%), but within 24 h the levelsreturned to normal (Fig.12).Dehydrati<strong>on</strong> of the animals in summer, caused ahighly significant increase (P50.001, F=6.97) in theserum Na+ c<strong>on</strong>centrati<strong>on</strong>. The increment was about 19%,from a c<strong>on</strong>centrati<strong>on</strong> of 141.8±3.5 mmol/l to 168.5±11mmol/l.On rehydrati<strong>on</strong> a slight (8%) decrease was noticedin the serum Na+ c<strong>on</strong>centrati<strong>on</strong> after 2 h, but within24 h the level returned to normal (Fig.13).Comparis<strong>on</strong> of the winter results with the summerresults showed a highly significant increa~e(P50.001,F=25.8) in Na+ c<strong>on</strong>centrati<strong>on</strong>s during the, s,ummer./ The" i!;"'i'• t ,_ \ ,


59 165-Hydrall<strong>on</strong>Dehydra!l<strong>on</strong>Re hydra!i<strong>on</strong>-155:::::0E.s+ 145Z'"135125L-~__~____L­ __-L__~____~__~__~~__~__~____L­ __-L__~____~__~~o 48 96 144 192 240 288 290 312HoursFIg (12) VarIati<strong>on</strong> In mean of serum Na+ of gazelles during the experiment In winter.180 .--------------------------------r--------------------r---------------~Hydra!l<strong>on</strong>Dehydrall<strong>on</strong>Aohydra!l<strong>on</strong>170 r-------------------------------~--------------------r---------------~-160:;:.oEg 160+z '"140 -130 -120 L-~______-L______L_____ ~ ______~____ ~ ______~____~L-____ ~ ______~~o 4896 144 - 168 170 192HoursFig (13) Variati<strong>on</strong> In mean of serumNa+ of gazellos during the experiment In summer.. ,' I.'I)':!' jl~ '\i ,I. \ ' \" '.:'.I ~ ; ;.: , '~ .. ..


60 level of Na +c<strong>on</strong>centrati<strong>on</strong> was 155. 2±4 . 0 mmol/ 1 inwinter, compared to the summer level that reached168.5±11 mmol/l during dehydrati<strong>on</strong> sessi<strong>on</strong>, anincrease of 9%.4.3.2.2: Serum Potassium (K+)Gazelle's dehydrati<strong>on</strong> during winter days revealedan insignificant difference (P~O. 082, F=1. 88)in theserum K+(Fig. 14). Also, in the summer experiment,there was no significant difference (P~0.177,F=I.69)due to dehydrati<strong>on</strong> (Fig.15). Comparis<strong>on</strong> of the winterresults with the Bummer <strong>on</strong>es revealed a highlysignificant (P~0.001, F = 31.12) increase as thesummer c<strong>on</strong>centrati<strong>on</strong>s were higher than the winter <strong>on</strong>esby 12%, 35% <str<strong>on</strong>g>and</str<strong>on</strong>g> 20%in all the three stages of theexperiment (hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>) .4.3.3.3: Serum Chloride (Cl-).Dehydrati<strong>on</strong> during winter, followed by rehydrati<strong>on</strong>did not reveal any significant difference(P:50.114, F=1. 73) in the serum CI- c<strong>on</strong>centrati<strong>on</strong>(Fig.16). C<strong>on</strong>trary to this in summer, when theseanimals were dehydrated the9 rehydrated, asignificant increase in the CI- c<strong>on</strong>centrati<strong>on</strong>(P:50.005, F=5.68) was noticed. The serum Cl~increasedfrom 105.1±4.0 mmol/l to 115.8±3.6 mmol/l, a 10%i I:increase. The c<strong>on</strong>centrati<strong>on</strong> returned to normal as, : :: i


L-__~____~______~______~______~______~______~______L_____~L_____~__~617Hydratio n Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>6-~5oEE~+~43o 4696 144 192 240 266 290 312HoursFig (14) Variati<strong>on</strong> In mean of serum K+ of gazelles during the experlm<strong>on</strong>t In wlntor.6 .------------------------------,,--------------------r----------------,Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>7-s­ oEg~6+~543o 46 96 144 166 170 192Hoursi IFig (15) Variati<strong>on</strong> In mean of serum K+ of gazolles during the experiment In summer.:,..


62 before dehydrati<strong>on</strong> within 24 h of rehydrati<strong>on</strong>(Fig.I7).Comparis<strong>on</strong> of the winter results with those of thesummer <strong>on</strong>es revealed that serum Cl- c<strong>on</strong>centrati<strong>on</strong>varied significantly (P:$0.001, F=48. 27) . Thec<strong>on</strong>centrati<strong>on</strong> of Cl-increased gradually in winterduring dehydrati<strong>on</strong> to a maximum within 6 days ofdehydrati<strong>on</strong>, then reversed to a slight decrease by theend of the dehydrati<strong>on</strong> process. In summer, serum Clc<strong>on</strong>centrati<strong>on</strong>c<strong>on</strong>tinued increasing until the end ofthe dehydrati<strong>on</strong> process (Fig.16,17) .4.3.2.4: Serum osmolality (SO):Dehydrati<strong>on</strong> of the Idmi gazelles during winterdays, followed by rehydrati<strong>on</strong> revealed a significantincrease (P:$O.OI, F=2.81) in the serum osmolality. Theserum osmolality increased from 292.3±1.85 mOsm/Kg to350±4.82 mOsm/Kg, an increment of 20%. A decrease of5% was noticed within 2 h of rehydrati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> thisdecrease c<strong>on</strong>tinued until it reached normal levels(304±7.4) within 24 h of rehydrati<strong>on</strong> (Fig.i8).Dehydrati<strong>on</strong> of the animals during summer followedby rehydrati<strong>on</strong> revealed a highly significa~tincrease(P:$O.OOI, F=8.13) in the SO as it incr¢ased from302.9±5.7 mOsm/Kg to 354.5±6.8 mOsm/Kg, an lncrease of17%. within 2 h of rehydrati<strong>on</strong> the SO decre~sed by 5%I ' ,' I J i .' ~<str<strong>on</strong>g>and</str<strong>on</strong>g> the decrease c<strong>on</strong>tinued till the init~~~ ~ormal, t· ~ I )~ i'l~ ", : ..$,


63 135 r--------------------,--------------------------------~----_r----------_.Hydrali<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>130 -125o E 120Eu115110105 L-~__~____~__ ~____~__ ~__ __~___L__ ~____ ~__~____~__~____~__~~o 48 96 144 192 240 288 290 312HoursFig (16) Variati<strong>on</strong> In mean of serum CI- of gazelles during the experiment In winter.\125Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>120115oE 110E~10510095o 48 96 144 168 170 192HoursFig (17) Variati<strong>on</strong> In mean of serum CI- of gazelles during the experiment In summer..,< I ;," 3 j:I ,i : ~ . ~~: " ., "! !' ", ' .


64 __~____L___~___L___J____~__~___L__~____~__~__~__~~' . I370- Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati <strong>on</strong>0; 350~---0Ẹ ,0 330E-~--co3100Ẹ0,E 290:::J...CD(/)270- -250 L-l-__-Lo 48 96 144 192 240 288 290 312HoursFig (18) Variati<strong>on</strong> In mean of serum osmolality of gazelles during the experiment In winter.370Hydrall<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>-CI~ 350 -oE1/1oE-330~~oE~ 310 -E::3...41(/)290 -270 L-~______~______ L- ____~______~____ ~__ ____~____-L~____~____~__~o 48 96 144 -166; : 170 192Hours,[,I; ...11,,:Fig (19) Variati<strong>on</strong> In mean of serum osmolality of gazelles during the experiment In summer.• ,0; ". :< ' .: .!


65 level (303.5±4.6) was attained after 24 h ( .19) .s<strong>on</strong> of the results those of thesummer revealed a highly signif difference(PSO. DOl, F=l1. 73) the three ofthe experiment (hydrati<strong>on</strong>, dehydrati<strong>on</strong> rehydrati<strong>on</strong>),( .18,19).4.3.2.5: Serum Glucose:of the lesrevealed no significant difference (P~O.238,F=1.38)in the serum glucose c<strong>on</strong>centrati<strong>on</strong> (Fig.20).A s lar s was anwerefor 3 summer days, as <strong>on</strong> rehydratthere was no significant difference ( .359, F=1. 2)serum ( .21) .Compar of the winter results summer <strong>on</strong>esrevea no significant difference . 086 I F= 3 . 05 )in the serum glucose.4.3.2.6: Blood Urea (BUN) :I'lowed byreveal a significant increase (Pso. " F=2. 38) in! .the BUN c<strong>on</strong>centrati<strong>on</strong>. BUN c<strong>on</strong>centratl<strong>on</strong>' edfrom 13.76±2.66 to 31.8±3.23 mmol!l,of131%. with 24 h i<strong>on</strong>decreased to 16.11±2.36 mmol!l (.22) •Also summer when the gazelles <str<strong>on</strong>g>and</str<strong>on</strong>g>


669r-------------------~-------------------------------------r----------~Hydrali<strong>on</strong>Dehydrall<strong>on</strong>Rehyd rali<strong>on</strong>8CD0)og6t!'-5- ­4 L-~__-L__~____~__~__~__ ~____~__J­__~__~____~__-L__~____~o 48 96 144 192 240 288 290 312HoursFig (20) Variati<strong>on</strong> In mean of serum glucose of gazelles during the experiment In winter.9 ~-------------------------------r---------------------r-----------------.Hydrall<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>8 -~7oE.s6Q)eno::JCJse.0 _ L" la i. ... " 'J'.: :. 1'.1 '" ·'i ! I'!'' 1::"" . ~ ~43 L-~______~__ ____ ~____~______~____~____~~____~______~__ __-L~o 48 96 144 ,. 168 170 192HoursFig (21) Variati<strong>on</strong> In mean of serum glucose of gazelles during the experiment In summer.'.'


67 40Hydrati<strong>on</strong> Dehydrall<strong>on</strong> Rehydrati<strong>on</strong>3530:g 25EgZ:::l 20CO151050 48 96 144 192 240 288 290 312Hours Fig (22) Variati<strong>on</strong> In mean of BUN of gazelles during the experiment In winter, 19 ,-----------------------------,-------------------,----------------,Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>17151311 -9 -­o 48 96 144 168 170 192HoursFig (23) Variati<strong>on</strong> In mean of BUN of gazeiles during theIn summer.


68 rehydrated, that revealed a highly significantincrease (P~0.005,F=4.56) in the BUN c<strong>on</strong>centrati<strong>on</strong>.BUN increased from a level of 9.73±0.54 mmolll to16.17±2.38 mmolll, an increase of 66%.Rehydrati<strong>on</strong> for24 h lead to a decrease in the BUN c<strong>on</strong>centrati<strong>on</strong> downto a level of 11. 91±1. 77 mmoll l, a decrease of 26%(Fig.23).comparis<strong>on</strong> of the winter results with those of summerrevealed a highly significant difference (P~O. 001,F=21. 23) in the BUN c<strong>on</strong>centrati<strong>on</strong>. The winter BUNc<strong>on</strong>centrati<strong>on</strong> was higher than the summer <strong>on</strong>e (41.4%)during hydrati<strong>on</strong>, but at the end of the dehydrati<strong>on</strong>sessi<strong>on</strong> the increment of BUNlevel rose till itreached 79% of the summer results. After 24 h ofrehydrati<strong>on</strong> the winter BUN c<strong>on</strong>centrati<strong>on</strong> was alsohigher than the summer level by 35.3%4.3.2.7: Serum Total Protein (TP):Dehydrati<strong>on</strong> of the gazelles in winter, followedby rehydrati<strong>on</strong> revealed a highly significant increase(P~O.OOl, F=5.15) in the TP level. The TP levelincreased from6.09±O.56 gil to 6.4±O.64 gil, anincrease of 5%. Within 24 h of rehydrati<strong>on</strong> the leveldecreased to 5.08±0.52 gil, a decrease of 20.6%,(Fig.24).Dehydrati<strong>on</strong> of the animals in summerrevealed a significant increase (PsO. 01 i'F=4 . 1) in. '.. j. ,!.


69 7 r---------------------~------------------------------------r_--------_.Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>6.5 -6 5.55 ~ __-,-I__-,--- ~.~ L..I_---'-__'--_ ~..l-I_---'__'--_-'-__ ..L.....__--'-__.L..........-... o 46 96 144 192 240 288 290 312 Hours Fig (24) Variati<strong>on</strong> In mean of serum total protein of gazelles during the experiment In winter.7.5 I----------------------------~-----------------~-------------~76.565.5o 48 96 144 168 170 192 Hours (25) Variati<strong>on</strong> In mean 01 total protein of gazelles during the experiment In summer.


70 the TP c<strong>on</strong>centrati<strong>on</strong>, as the level increased from aninitial normal value of 5.9±0.53 gil to a value of7.2±0.85 gil, an increase of 22%. The TP level droppedto 5.6±0.88 gil after 24 h of rehydrati<strong>on</strong>, a drop of22% (Fig.25).comparis<strong>on</strong> of the winter results with those ofthe summer, revealed a highly significant difference(P~0.001,F=27.81) in the TP level. The summer TPlevel was higherthan the winter level during the<str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong> sessi<strong>on</strong>s by 12.5%<str<strong>on</strong>g>and</str<strong>on</strong>g> 9%, respectively, whilst the levels in thehydrati<strong>on</strong> were nearly the <strong>sa</strong>me.4.3.2.8: Serum Albumin:Dehydrati<strong>on</strong> of the gazelles during winter,.. -" '. : " ,;.' ~ . :,... ( ···,~ :: ,,.~~~~~}.:!:.j.;f, ·


71 Dehydrali<strong>on</strong>-­ 0.......Eg£:E::l..a;;:(490440390o 48 96 144 192 240 288 290 312Hours Fig (26) Variati<strong>on</strong> In mean of serum albumin of gazelles during the experiment In winter. 590 Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>570550530£:'e.& 510::(490470 -4500 48 96 144 168 170 192HoursFig (27) Variati<strong>on</strong> In mGsn of serum albumin of gazelles during the experiment In aummQf.


72 albumin. The serum a~~uHl~from a level of519.4±18.5 ~mol/l to a value of 561.6±18.8 ~mol/l, an8% within <strong>on</strong>ly 2 days. the end of thesessi<strong>on</strong> adown to 547.1±21.5 ~mol/lwas not Rehydrati<strong>on</strong> of the animals for 24 hfurther reduced the serum albumin level down to468.7±16.9 /1, a i<strong>on</strong> of 17% (F .27).is<strong>on</strong> of the winter results with those ofthe summer revealed a highly signiffference(P:::;O.OOl, F=109.81) the serum albumin c<strong>on</strong>centrati<strong>on</strong>.The summer serum albumin levels wereh than the levels the ofthe experiment (hydrati<strong>on</strong>, dehydrati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>)by a of 12%, 17% <str<strong>on</strong>g>and</str<strong>on</strong>g> 2respectively.


. 73gazelle (G. 1a) 8having an access to <str<strong>on</strong>g>water</str<strong>on</strong>g> in winter. But in summer theI survived for <strong>on</strong>ly 3 days whenof <str<strong>on</strong>g>water</str<strong>on</strong>g>. This endurance of thel<strong>on</strong>ger dehydrati<strong>on</strong> periodwasgazelle forthan in summercould be attrto the <str<strong>on</strong>g>effect</str<strong>on</strong>g> of weather(e. g. <strong>on</strong> the1 inthe body of these animals. Theofwas higher summer than (see3) as a signif lity hadtheof many bloodthat cou be i as :­4.4.1 RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> WBCs:­The RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> WBCs counts had increasedwinterby 9% 29%, I during i<strong>on</strong>, thenreturned to <str<strong>on</strong>g>their</str<strong>on</strong>g> normal values after rehydrati<strong>on</strong>. Insummer, the RBCs WBCs counts had by a25% <str<strong>on</strong>g>and</str<strong>on</strong>g> 40%,, <str<strong>on</strong>g>and</str<strong>on</strong>g> then returned to thenormal va before . Ana of theseresults reveahada high s <strong>on</strong> the numbers of RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g>WBCs.in the numbers of RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> WBCsdue to summer could beias a resufleads todecrease in the


74 (Ghobr I, 1967). It could also be buted to thedecrease in plasma volume (Macfarlane et al., 1961 <str<strong>on</strong>g>and</str<strong>on</strong>g>Mohammed et ala 1988). The lossvolumedue to loss i<strong>on</strong>, asby the increase of the body( 1972), of <str<strong>on</strong>g>water</str<strong>on</strong>g> withfaeces (Ghobr I <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong>, 1966,1 1967 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1970b <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor 1972).As the rate ofcorrelated withthe<str<strong>on</strong>g>and</str<strong>on</strong>g> the animal's temperature (Ghobrial,1970b; 1972) I the reas<strong>on</strong>s the slowin the numbers of RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> WBCs, coube wellunderstood add to blood parametersduring i<strong>on</strong> to summer.4.4.2:- Haemoglobin (Hb):Dehydrati<strong>on</strong> of the gazelles in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summerled to an the Hb level a 9% <str<strong>on</strong>g>and</str<strong>on</strong>g> 17.2%,i<strong>on</strong>, the levels returned t<strong>on</strong>ormal <str<strong>on</strong>g>and</str<strong>on</strong>g> the were s f <str<strong>on</strong>g>and</str<strong>on</strong>g>highly sficant in summer. The reas<strong>on</strong> behind theHb c<strong>on</strong>centrati<strong>on</strong> could be due to thedecreaselular fluid thathaemoc<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> then annumberof RBCs <str<strong>on</strong>g>and</str<strong>on</strong>g> Hb c<strong>on</strong>centrati<strong>on</strong>.It could also be due tothe decrease cel <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>tent of the RBCsthat led to the accumulati<strong>on</strong> of Hb level. These


75 results are in agreement with those of Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g>Cloudsley-Thomps<strong>on</strong> (1966) <strong>on</strong> the Sudanese Afri gazelle(G.dorcas) ,as the Hb level increased by 53% when theanimal was dehydrated 5 days in summer, <str<strong>on</strong>g>and</str<strong>on</strong>g> those ofMacFarlane et al. (1961) <strong>on</strong> merino sheep as the Hblevel increased by 33% when the animal was deprived of<str<strong>on</strong>g>water</str<strong>on</strong>g> for 4 days in summer.4.4.3:- Packed cell volume (PCV):­Dehydrati<strong>on</strong> of the gazelles in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summerresulted in an increase in the level of the PCV by 9%<str<strong>on</strong>g>and</str<strong>on</strong>g> 13.3 %, respectively. On rehydrati<strong>on</strong> the levelsreturned to normal. This situati<strong>on</strong> could beinterpreted as an <str<strong>on</strong>g>effect</str<strong>on</strong>g> of haemoc<strong>on</strong>centrati<strong>on</strong> thatfollowed the decrease in plasma volume <str<strong>on</strong>g>and</str<strong>on</strong>g> all bodyfluids. These results are in agreement with those ofGhobrial <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong> (1966) <strong>on</strong> the SudaneseAfri gazelle as the PCV increased by 19% when thegazelle was dehydrated for 5 days in summer, inadditi<strong>on</strong> to the results of Gray et al. (1979)<strong>on</strong>horses. Similar results were also attained byMacFarlane et al. (1961) <strong>on</strong> merino sheep, however,<str<strong>on</strong>g>their</str<strong>on</strong>g> results showed an increase of 28% in the pev ofthe dehydrated animals for a period of 4 days duringsummer.


76 4.4.4:- Serum sodium (Na+):Dehydrati<strong>on</strong> of the gazelles in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summerresulted in an increase of the serum Na+ by 13.1% <str<strong>on</strong>g>and</str<strong>on</strong>g>19%, respectively. On rehydrati<strong>on</strong> the levels returnedto normal.These results were not significant inwinter, but in summer the results were highlysignificant. The increase in the serum Na+c<strong>on</strong>centrati<strong>on</strong>s could be attributed to the loss in theplasma volume <str<strong>on</strong>g>and</str<strong>on</strong>g> extracellular body fluids (Mohammedet al 1988). This could be an <str<strong>on</strong>g>effect</str<strong>on</strong>g> of thealdoster<strong>on</strong>e as it stimulates the kidneys to increasethe rate of reabsorpti<strong>on</strong> of Na+chapter 5. These results are in(S<strong>on</strong>bol, 1988), seeagreement with thefindin'gs ; '~' Of'~iMoha:mme""d:~#e'£e~a~';~~rf988y"f'"<strong>on</strong> "" the SudaneseAfri (23%) during summer dehydrati<strong>on</strong>. Similar resultswere also obtained by Mu<strong>sa</strong> (1978) <strong>on</strong> sheep (18%) <str<strong>on</strong>g>and</str<strong>on</strong>g>Camels (15%).4.4.5:- Serum potassium (K+):Gazelle's dehydrati<strong>on</strong> in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> in summerrevealed no significant difference in thec<strong>on</strong>centrati<strong>on</strong> of serum K+. These results were similarto those obtained by Gary et ale (1979)<strong>on</strong> horses.Mu<strong>sa</strong> (1978) reported that there was no appreciableincrease in the serum K+ level of sheep, but there wa<strong>sa</strong> 3% increase for goats <str<strong>on</strong>g>and</str<strong>on</strong>g> a 4% increase in camels.


77 is<strong>on</strong> of the winter results with those ofthe summer results revea an the summerserum K+ by 12.35 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20% hydrati<strong>on</strong>,Irespectively. The summerto therate of evaporati<strong>on</strong> which leads to atheloss inplasma volume <str<strong>on</strong>g>and</str<strong>on</strong>g> extracellular f (Mohamed,1986) •4.4.6:­ Serum chloride ( ) :of the in <str<strong>on</strong>g>and</str<strong>on</strong>g> summerrevealed an increase in the levels of serumIbutthis level was signif summer (10%). Thincrease was to the loss of theextracelluar i<strong>on</strong>. S larresults were ined by Mohamed et al. (1988) butthe results showed an 18% of the level.The drop of the end ofto <str<strong>on</strong>g>water</str<strong>on</strong>g>c ).i<strong>on</strong> decrease of (the source of4.4.7:- Serum lity:During two periods <str<strong>on</strong>g>and</str<strong>on</strong>g> summeri<strong>on</strong> the level of serum osmolality wasincreased by 20% <str<strong>on</strong>g>and</str<strong>on</strong>g> 17%, respectively. within 24 hlevereturned to normal. This


78 increuse could be attributed to the decrease in boththe plasma volume <str<strong>on</strong>g>and</str<strong>on</strong>g> the extracelluar fluids, whichhave led to an increase in the Na+ c<strong>on</strong>centrati<strong>on</strong> whichis correlated directly proporti<strong>on</strong>al to osmolality(Gary et al., 1979). Osmolality is also correlated tothe increase of electrolytes that had increased atdifferent proporti<strong>on</strong>s according to dehydrati<strong>on</strong>. Theincrease in SOcould be a functi<strong>on</strong> of antidiuretichorm<strong>on</strong>e (ADH) , as it increases in serum with theincrease ofosmolality (Roberts<strong>on</strong> et al 1976). Itcould also be a functi<strong>on</strong> of aldoster<strong>on</strong>e, as itstimulates the kidneys to increase the rate ofreabsorpti<strong>on</strong> of Na+ (S<strong>on</strong>bol, 1988), which leads to anincrease in serum osmolality (Gary et al., 1979).These results agree with those of Choshniak <str<strong>on</strong>g>and</str<strong>on</strong>g>Shkolnik (1977) <strong>on</strong> the black Bedouin goat. Little etal. (1976) working <strong>on</strong> Cattle reported that osmolalitycould be used as a good <str<strong>on</strong>g>and</str<strong>on</strong>g> sensitive parameter forshortage of <str<strong>on</strong>g>water</str<strong>on</strong>g> (dehydrati<strong>on</strong>). Maltz et al. (1984)obtained similar results by working <strong>on</strong> the blackBedouin goat, but adifference was noticed in theslowness of regaining normal serum osmolality afterrehydrati<strong>on</strong> which was due to the slow absorpti<strong>on</strong> of<str<strong>on</strong>g>water</str<strong>on</strong>g> in the goat rumen. These results agree withthose of Abdelatif <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahmed (1994) <strong>on</strong> the desertsheep, as the increment was 10% when sheep dehydratedfor 3 days in summer.


794.4.8:- Serum glucose :­During the winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summerdehydrati<strong>on</strong> ofgazelles, there wasno significant increase in thelevel of serum glucose.Comparis<strong>on</strong> of the winter levels with the summer levelsrevealed no significant differences. These resultsshowed that the gazelles were able to keep <str<strong>on</strong>g>their</str<strong>on</strong>g> serumglucose balanced <str<strong>on</strong>g>and</str<strong>on</strong>g> the narrow range of differencecould be due to the decrease in the plasma volume.These results differ from those obtained by Mu<strong>sa</strong>(1978) who stated that serum glucose of sheep <str<strong>on</strong>g>and</str<strong>on</strong>g>goats increased by 27% <str<strong>on</strong>g>and</str<strong>on</strong>g> 24%, respectively, <str<strong>on</strong>g>and</str<strong>on</strong>g> wassignificantly different in the dehydrated camels. Theresults were also different from those obtained byMohamed (1986) who reported that serum glucosedecreased by 34.4% in the dehydrated Sudanese Afrigazelle (10 days in summer), <str<strong>on</strong>g>and</str<strong>on</strong>g> he attributed this tothe low food intake with the c<strong>on</strong>tinuati<strong>on</strong> ofdehydrati<strong>on</strong>.4.4.9:- Blood urea nitrogen (BUN):Dehydrati<strong>on</strong> of the gazelles during winter <str<strong>on</strong>g>and</str<strong>on</strong>g>summer resulted in an increase in the level of BUN by131% <str<strong>on</strong>g>and</str<strong>on</strong>g> 66%, respectively. On rehydrati<strong>on</strong> the levelof BUN decreased by 49% in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> 40% in summer.This increment could be due to the loss in


80 plasma volume extracel flu. It isthat the reducti<strong>on</strong>plasma volume had reduced therate of fi of <str<strong>on</strong>g>and</str<strong>on</strong>g> the oliguria tendedtourea absorpti<strong>on</strong> leading to high blood ureac<strong>on</strong>centrati<strong>on</strong> (Mohamed, 1986). lar results were1 <str<strong>on</strong>g>and</str<strong>on</strong>g> (1966)the Sudanesegazelle (125%), <str<strong>on</strong>g>and</str<strong>on</strong>g> by MacFarlane etale (1961) for the mer sheep, who attr thehigh level (325%) in BUN to renal failure thatfollowed dehydrati<strong>on</strong>. These resu are also s ito the results of Abdel if <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahmed (1994) <strong>on</strong>, as increment of the urea was36% when the 1 dehydrated for 3 summer.4.4.10:- Serum total (TP) :during<str<strong>on</strong>g>and</str<strong>on</strong>g>summer resulin an increase in the level of TP by5% <str<strong>on</strong>g>and</str<strong>on</strong>g> 22%, of1 the summer level revealed an increase of12.5% <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> summer. wa<strong>sa</strong>ttributed the decrease in the <str<strong>on</strong>g>and</str<strong>on</strong>g>the extracelluar flu . S lar wereby Gary et ale (1979) <strong>on</strong> horses (14%), <str<strong>on</strong>g>and</str<strong>on</strong>g> those ofMacFarlane (1961) <strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> f <str<strong>on</strong>g>and</str<strong>on</strong>g>Ahmed (1994) <strong>on</strong> desert(7%) •


81 4.4.11:- Serum albumin:Dehydrati<strong>on</strong> during winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer resulted inan increase in the serum albumin by 3% <str<strong>on</strong>g>and</str<strong>on</strong>g> 8%,respectively. This was followed by a decrease of 20%<str<strong>on</strong>g>and</str<strong>on</strong>g> 14%, respectively <strong>on</strong> rehydrati<strong>on</strong>. This situati<strong>on</strong>could be interpreted in terms of the decrease in theresults agree with those obtained by Mohammed et ale(1988) as serum albumin increased by 18% when theanimal was dehydrated for 10 days in summer.Theincrease in albumin level could be an adaptati<strong>on</strong> ofthe gazelle to increase the osmotic pressure of theblood. By doing so, the vascular spaces would gainmore <str<strong>on</strong>g>water</str<strong>on</strong>g> from the extra <str<strong>on</strong>g>and</str<strong>on</strong>g> intracellular fluid, <str<strong>on</strong>g>and</str<strong>on</strong>g>thereby maintaining the plasma volume within thetolerable range (Wils<strong>on</strong>, 1984). '!'he decrease in thoserum protein c<strong>on</strong>centrati<strong>on</strong> associated with thec<strong>on</strong>tinuati<strong>on</strong> of dehydrati<strong>on</strong> could be attributed to thelow intake of food (chapter 6).Comparis<strong>on</strong> of the winter results with the summerresults revealed an increase in the levels of thesummer albumin in all the stages of the experiment(hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>) by 12%, 20%,<str<strong>on</strong>g>and</str<strong>on</strong>g> 26%,respectively. This could be due to thegreater rate of decrease in the summer plasma volumeresulting from increased evaporati<strong>on</strong>.


EFFECT OF TEMPERA'TURE AND WATER DEPRIVATION ON SOME URINE CONSTITUENTS


83 5.1. Introducti<strong>on</strong>:­There are no previous records <strong>on</strong> the <str<strong>on</strong>g>effect</str<strong>on</strong>g> ofheat <str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrati<strong>on</strong> <strong>on</strong> the urine c<strong>on</strong>stituents of theIdmi gazelle (G. gazella) or any other Arabiangazelle. However, studies have been d<strong>on</strong>e <strong>on</strong> SudaneseAfri gazelle, other African gazelles <str<strong>on</strong>g>and</str<strong>on</strong>g> other groupsof mammals. Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong> (1966)repOL" tell thn t the volume of the urine o[ thedehydrated Afri gazelles decreased to 1/8th (from 200­700 ml to 30-80 ml) in comparis<strong>on</strong> with the normalvolume.Taylor et ale (1969) found that the <str<strong>on</strong>g>water</str<strong>on</strong>g> lostthrough urinati<strong>on</strong> was not affected by dehydrati<strong>on</strong> ofAfrican antelopes. They also reported that the mainfactors c<strong>on</strong>trolling the loss of <str<strong>on</strong>g>water</str<strong>on</strong>g> throughurinati<strong>on</strong> are electrolytes <str<strong>on</strong>g>and</str<strong>on</strong>g>nitrogen in food.Ghobrial (1970b)menti<strong>on</strong>ed that there were severalfactors c<strong>on</strong>trolling the volume <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> ofthe urine in the Afri gazelle, most important of thesewere the volume of the <str<strong>on</strong>g>water</str<strong>on</strong>g> taken, quantity <str<strong>on</strong>g>and</str<strong>on</strong>g>quality of food, volume of <str<strong>on</strong>g>water</str<strong>on</strong>g> lost throughrespirati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thermoregulati<strong>on</strong>, the surroundingstemperature <str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidity. Louw<str<strong>on</strong>g>and</str<strong>on</strong>g> Seely(1982) reported that the animals possessing the loopof Henle in the kidney tubules are the <strong>on</strong>es that wereable to produce c<strong>on</strong>centrated urine. Theyadded'thatthe more the number of loops of Hen!e the better was-­


84 the abil of the kidney to c<strong>on</strong>centrate the <str<strong>on</strong>g>and</str<strong>on</strong>g>hence retain <str<strong>on</strong>g>water</str<strong>on</strong>g>. Grenot (1992) reported thatwas an apparent relati<strong>on</strong>ship between the abilofk ney to c<strong>on</strong>centrate urine <str<strong>on</strong>g>and</str<strong>on</strong>g> ar ofhabitat. He addedof the level ofurine flow accomplished two methods. first<strong>on</strong>e regu when the ltrate enterthe nephr<strong>on</strong>es. The sec<strong>on</strong>d is distributing the amountof the fi absorbed in col ducts. Healso ment that an evoluti<strong>on</strong> had occurred theloop of Henle1 of these capabil of thek in <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> hence urinei<strong>on</strong>. This situati<strong>on</strong> is in agreement with theof Wils<strong>on</strong> (1984) who ment that the<str<strong>on</strong>g>and</str<strong>on</strong>g> funct the kidney are 1for <str<strong>on</strong>g>water</str<strong>on</strong>g> retenti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> theimprove the output <str<strong>on</strong>g>and</str<strong>on</strong>g> urineof Henle's. Thealso c<strong>on</strong>trols body <str<strong>on</strong>g>water</str<strong>on</strong>g> by urc<strong>on</strong>centrating its rate of flow. The urnot <strong>on</strong>ly useful in <str<strong>on</strong>g>water</str<strong>on</strong>g>a anima to<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g>in high levels of <strong>sa</strong>lt.Ghobrial (1974)reduced the volume ofzelles3-4 times when they weredehydrated,in additi<strong>on</strong> to that they c<strong>on</strong>centrated<str<strong>on</strong>g>their</str<strong>on</strong>g> ur . She found dehydrati<strong>on</strong>


85 resulted in an increase in the urine urea by 70%, <str<strong>on</strong>g>and</str<strong>on</strong>g>the K+ (Potassium i<strong>on</strong>) by 52%, c<strong>on</strong>trary to thec<strong>on</strong>centrati<strong>on</strong> of Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Cl- which were reduced to 43%<str<strong>on</strong>g>and</str<strong>on</strong>g> 26%, respectively. Ghobrial (1976) reported thatthe Afri gazelles that tooksea <str<strong>on</strong>g>water</str<strong>on</strong>g> producedc<strong>on</strong>centrated urine exceeds the c<strong>on</strong>centrati<strong>on</strong> of theurine produced by gazelles that took soft <str<strong>on</strong>g>water</str<strong>on</strong>g> by300% (3100 mOsmolJl), <str<strong>on</strong>g>and</str<strong>on</strong>g> more than the dehydrated<strong>on</strong>es by 16% (500 mOsmlJl). Mohammed et al. (1988)stated that the volume of urine of the 10daysdehydrated Sudanese Afri gazelles was reduced by 66%.On rehydrati<strong>on</strong> the volume returned to normal <strong>on</strong> thesec<strong>on</strong>d day. These results are similar to those ofJhala et al. (1992) who reported that 3 daysdehydrati<strong>on</strong> of the black-buck produced 50% reducti<strong>on</strong>in the urine flow rate. They also menti<strong>on</strong>ed that thisprocess was accompanied by a 25 times increment in thetotal urea excreted in the urine, c<strong>on</strong>trary to this wasthe reducti<strong>on</strong> in the Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+ c<strong>on</strong>centrati<strong>on</strong>s by 82%<str<strong>on</strong>g>and</str<strong>on</strong>g> 47%, respectively, in the dehydrated animalsurine.MacFarlane et al. (1961) working <strong>on</strong> the merinosheep found out that the urine volume was c<strong>on</strong>tinuouslyreduced by dehydrati<strong>on</strong>. This situati<strong>on</strong> was accompaniedby a remarkable reducti<strong>on</strong> in the Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+c<strong>on</strong>centrati<strong>on</strong>.On rehydrati<strong>on</strong> the levels returned t<strong>on</strong>ormal.


86 et . (1962) that urea excretin cattle was basically<strong>on</strong> the crude protec<strong>on</strong>tent of the food taken. They alsothatthere was a d proporti<strong>on</strong>al re betweencrude of the <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong> of theexcreted urea nc<strong>on</strong>trary tothe workof Brown (1972) <strong>on</strong>where they found that the urine volumewhilst the urea nitrogen c<strong>on</strong>centrati<strong>on</strong> has<str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>sa</strong>me s also forosmolality in comparis<strong>on</strong> with <str<strong>on</strong>g>water</str<strong>on</strong>g>ed sheep. Little et(1976) found that osmolal of thedairy cows s <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g>, but the Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>urine volume d s f with <str<strong>on</strong>g>water</str<strong>on</strong>g>depr i<strong>on</strong>. Choshniak et al. (1984) found theurvolume of the dehydrated Bedouin goat is reducedby 50%, <str<strong>on</strong>g>and</str<strong>on</strong>g> after 4 levelreturned to normal. also not a decrease inofNa+ <str<strong>on</strong>g>and</str<strong>on</strong>g>fourafter rehydrati<strong>on</strong> by 47% <str<strong>on</strong>g>and</str<strong>on</strong>g> 34%,ly,no change occurred with theof K+ <str<strong>on</strong>g>and</str<strong>on</strong>g> urea.The ect this the investigati<strong>on</strong>was to<str<strong>on</strong>g>and</str<strong>on</strong>g><strong>on</strong>of


87 Na+, K+, cl-, urea in urine <str<strong>on</strong>g>and</str<strong>on</strong>g> urine osmolality.These are c<strong>on</strong>sidered to the parameters of theadaptati<strong>on</strong>s of the Idmi gazelle for preserving <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> resisting thirst.5.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods:­The work was d<strong>on</strong>e in two main parts. The firstpart was d<strong>on</strong>e in the field as the urine <strong>sa</strong>mples werecollected <str<strong>on</strong>g>and</str<strong>on</strong>g> the urine volume was measured.Thesec<strong>on</strong>d part was d<strong>on</strong>e in the laboratory.Urine <strong>sa</strong>mples/24h were collected, during allstages of the experiment (Hydrati<strong>on</strong>, dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>rehydrati<strong>on</strong>) in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer, using the metaboliccage. The <strong>sa</strong>mples were collected in the graduatedbottle that had been placed under the lower part ofthe cage (Fig.1).5.2.1 Urine Volume:­The urine volume was measured using the lowerlevel of the metabolic cage as was described inchapter 2. The loss of the urine due to evaporati<strong>on</strong>was assessed using the sixth cage which had no gazelleinside.A measured volume of urine was poured intothe cage (over the third level) <str<strong>on</strong>g>and</str<strong>on</strong>g> left till itaccumulates into the bottle.After 24 h the bottlec<strong>on</strong>tent was measured using a measuring cylinder.


88 Calculati<strong>on</strong>s:­Total urine loss=the initial urine volume-bottlec<strong>on</strong>tent volume.The urine volume = bottle c<strong>on</strong>tent volume + total urineloss.5.2.2 Determinati<strong>on</strong> of Urine Sodium (Na+) <str<strong>on</strong>g>and</str<strong>on</strong>g> UrinePotassium (K+):­The Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+ levels were determined by the useof Na/K Analyzer from Ori<strong>on</strong> (Ori<strong>on</strong> 1020) using the i<strong>on</strong>selective electrode system (Chapter 4). Urine <strong>sa</strong>mpleswere diluted with Mg(C 2 H 3 0 2 )2 in ratio of 1/10 (1:9).The values of Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+ were given as mmol/l directly.5.2.3 Determinati<strong>on</strong> of Urine Chloride (Cl-):­The urine Cl- level was determined by the use ofa Chlorofix Kit (A. Menarini Divisi<strong>on</strong>e Diagnostici,Italy), using the spectrophotometer (From Spectr<strong>on</strong>ic601) as described in Chapter 4.5.2.4. Determinati<strong>on</strong> of Urine Urea:­The urine urea was measured by the use of 'Urea­Kit S 180' from bioMerueux using urease-modifiedBerthelot Reacti<strong>on</strong>, as had been described by Gowenlock(1988). The urine was diluted with distilled <str<strong>on</strong>g>water</str<strong>on</strong>g>(1/100) .


89 The values were obtained from thewhich readsreacti<strong>on</strong> at 580 nm wavelength.Ca :­Urea (mmol/l) =-,__-,,-____-=~.-~--~ x 55 = Urea in (mmol/I) .5.2.5. i<strong>on</strong> of Ur Osmolality:­The osmolality was by the use oftheIPressure Osmometer 5100' from Wescor, USA.The cali<strong>on</strong> of the Wescor Osmometer was d<strong>on</strong>e usthe st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards A (290 8(1000 mmoll ) ashad been described by the Wescor Manual (1983).was mentwere diluted 1/10 I4. As thethe Wescor Osmometer vammol/kg were corrected byfactor 10 to c<strong>on</strong>vert the


90 5.3: Results:­Dehydrati<strong>on</strong> of the Idmi gazeduring<str<strong>on</strong>g>and</str<strong>on</strong>g> summer led to some in the volume <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>stituents.5.3.1. Urine volume:­A signif 0.01, F=2.55) wasnoticed in the urine volume dehydrati<strong>on</strong> of thegazelles for 8 a 24-h. The ur volume was reduced from 301 ±42ml/24 h to 171 ± 43 ml/24 h (a 43% decrease). Oni<strong>on</strong> the was to 213 ± 16 24h - a 25% • 28).In summer , a icant decrease 0.001,F=7.75) was in thedehydrati<strong>on</strong> folby a 24 h rehydrati<strong>on</strong>. The urinevolume was reduced more than 1/6 (from 345 ± 125/24 h to 48 ± 11 ml/24 h) <strong>on</strong> i<strong>on</strong>, theurine volumeto 129 ± 52 ml/24 h (169%) Fig.(29) .A signi di 0.05, F=4.47) wasnot the summer, asthe urine volumesummer was more than that ofby 13%,whiwinter volumes were greater by 256% <str<strong>on</strong>g>and</str<strong>on</strong>g> 39% dur<str<strong>on</strong>g>water</str<strong>on</strong>g> ivat <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong>,


91 400 - Rehydrall<strong>on</strong>Hydrati<strong>on</strong>Dehydrati<strong>on</strong>350-~ ~ ~ 300E­CI)E:::J 2500>CDc''::::> 200150100 L-~____ ~ ____ ~ __ ~ ____ ~ ____ ~ ____ L­__ ~ ____ ~ ____ ~ __ ~ ____ ~ ____ ~~24 48 72 96 120 144 168 192 216 240 264 288 312HoursFig (28) Variati<strong>on</strong> In mean of urine volume of gazelles during the experiment In winter.500 -- -- -- ---- - -- - --- ----------,-----------­Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>400 --~~N::::- 300E­CDE:::Jo>CI) 200 -c100o L-__ ~ ________-L________J_________ ________ ______ ________,~------~--~~24 48 72 96 120 144 166 192HoursFig (29) Variati<strong>on</strong> In mean of urine volume of gazelles during the experiment In summer.


92 5.3.2. Urine Sodium (Na+):­Dehydrati<strong>on</strong> during winter followed by rehydrati<strong>on</strong>showed a significant increase (psO.05, F=2.07) in thec<strong>on</strong>centrati<strong>on</strong>s of the urine Na+.The level of Na+c<strong>on</strong>centrati<strong>on</strong>s increased in the first five days from218.1 ±44.4 mmol/l to 283.2 ± 36.3 mmol/l (30%). Thendropped gradually to 135.8 ± 16.6 mmol/l (52%decrease) by the end of the dehydrati<strong>on</strong> sessi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><strong>on</strong> rehydrati<strong>on</strong> the level of Na+increased until itreached 173 ± 21.4 mmol/l (Fig. 30).Dehydrati<strong>on</strong> during summer followed by rehydrati<strong>on</strong>showed a highly significant difference (PsO.001,F=4.86) in the urine Na+ c<strong>on</strong>centrati<strong>on</strong>. The urine Na+decreased from 181 ± 27.4 mmol/l to 58.0 ± 17.5 mmol/lby the end of the dehydrati<strong>on</strong> sessi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>rehydrati<strong>on</strong> the Na+ level rose to 95.8 ± 26.6 mmol/l(Fig.31).Comparis<strong>on</strong> of the winter results with those ofthe summer revealed ahighly significant (psO.001,F=29.75) difference. The winter urine Na+c<strong>on</strong>centrati<strong>on</strong>s were higher than those of summer in allparts of the experiment (hydrati<strong>on</strong>, <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>) by 17%, 58% <str<strong>on</strong>g>and</str<strong>on</strong>g> 45%, respectively.5.3.3 Urine potassium (K+):­Dehydrati<strong>on</strong> during winter followed by rehydrati<strong>on</strong>revealed a significant increase (psO.005, F~3.12)in


93 350 ,------------------,---------------------------------------,---------,Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>300-- o::::- 250E!.+."Z 200150-100~~----~--~----~--~----~----~--~----~--~----~----~--~~24 48 72 98 120 144 148 192 218 240 264 288 312HoursFIg (30) VarIati<strong>on</strong> In mean of urIne Na+ Of gazolles durIng the experIment In wlntor.260Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>210oE 160E~+1\1:z1106010 ~--~------~------~------~------~------~--------~------~------~~o 24 48 72 96 120 144 166 192HoursFIg (31) Variati<strong>on</strong> In mean of urine Na+ of gazelle8 durIng the experIment In summer.


94 the urine K+ c<strong>on</strong>centrati<strong>on</strong>s. The K+ c<strong>on</strong>centrati<strong>on</strong>sincreased gradually from 216.3 ± 61.9 romol/l to 321.6± 40.7 mmol/l (49% increase) <strong>on</strong> the fifth day !?_~dehydrati<strong>on</strong>. This was followed by a reducti<strong>on</strong> in theK+ c<strong>on</strong>centrati<strong>on</strong> until it reached 278.6 ± 50.6 mmol/l(13% decrease) by the end of dehydrati<strong>on</strong> sessi<strong>on</strong>. Onrehydrati<strong>on</strong> for 24 h the levels of K+returned t<strong>on</strong>ormal (Fig. 32) .Dehydrati<strong>on</strong> of the gazelles during summerfollowed by rehydrati<strong>on</strong> revealed a significantdifference (P~0.05,F=2.52)in the K+ c<strong>on</strong>centrati<strong>on</strong>s.The K+ levels were reduced from 361.8 ± 37.9 mmol/l to302.5 ± 32.2 mmol/l (16%). The levels rose to 326 ±21.4 mmol/l after 24 h (Fig.33).Comparis<strong>on</strong> of the winter results with those ofthe summer revealed a highly significant difference(P$O.OOl, F=66.95). Summer K+ c<strong>on</strong>centrati<strong>on</strong>s werehigher than those of winter by 40% <str<strong>on</strong>g>and</str<strong>on</strong>g> 53% in twoparts of the experiment (hydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>).There were variati<strong>on</strong>s in the resp<strong>on</strong>se to <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g>, the levels of K+ c<strong>on</strong>centrati<strong>on</strong>s increasedby the <strong>on</strong>set winter dehydrati<strong>on</strong> which was followed bya decrease at the end of the sessi<strong>on</strong>. The situati<strong>on</strong> insummer revealed a gradual decrease from the beginningof the dehydrati<strong>on</strong> sessi<strong>on</strong> up to the end.


95 400 iHydrati<strong>on</strong> Dehvdrati<strong>on</strong> Rehydrati<strong>on</strong>350300


96 5.3.4. Urine Chloride (Cl-):­Dehydrati<strong>on</strong> during winter followed by rehydrati<strong>on</strong>revealed no significant difference (P~0.110,F=1.70)in the c<strong>on</strong>centrati<strong>on</strong>s of the urine Cl-(Fig.34). The<strong>sa</strong>me situati<strong>on</strong> was obtained during summer dehydrati<strong>on</strong>followed by rehydrati<strong>on</strong>,as there was no significantchange (P~0.162,F=1.65) in the urine Cl- (Fig.35).Comparis<strong>on</strong> of the winter results with the summer<strong>on</strong>es revealed a highly significant difference(P~O.OOl,F=17.06), as the winter dehydrati<strong>on</strong> urinec<strong>on</strong>centrati<strong>on</strong> was higher than the summerdehydrati<strong>on</strong> urine Cl­ c<strong>on</strong>centrati<strong>on</strong> by 43%. On theother h<str<strong>on</strong>g>and</str<strong>on</strong>g> the Cl­ levels during hydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>rehydrati<strong>on</strong> were almost the <strong>sa</strong>me.5.3.5. Urine urea:­Dehydrati<strong>on</strong> during winter followed by rehydrati<strong>on</strong>revealed a highly significant difference (P~O. 001,F=3.84) in the c<strong>on</strong>centrati<strong>on</strong>s of the urine urea, as anincrement from 1976 ± 306 mmol/l to 3233 ± 515 mmol/l(39%) was recorded. The levels returned to normalafter 24 h of rehydrati<strong>on</strong> (Fig. 36).Dehydrati<strong>on</strong> of the gazelles for 3 summer daysfollowed by 24 h rehydrati<strong>on</strong> also revealed a highlysignificant difference (PsO.005, F=3.82) in the urineurea c<strong>on</strong>centrati<strong>on</strong>, as an increment from 3123 ± 493mmol/l to 5155 ± 79 mmol/l (65%) was recorded. The


97 550r------------------.~----·------------------------------------~------_.Hyd rati<strong>on</strong>450 -350 (3 250 150 24 46 72 96 120 144 168 192 216 240 264 266 312 Hours Fig (34) Variati<strong>on</strong> In mean of urine CI' of gazelles during the experiment In winter.Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>400. U300 -200 -o 24 48 72 96 120 144 168 192 Hours (35) Variati<strong>on</strong> In mean of urlno CI' of gazolle8 during tho exporlment In Gummar,


98 4000 r-----------------~------------------------------------------~------~IIydrnliollDehydrati<strong>on</strong>nehydrnllol3500­,....:::::.~ 3000gIIICD....::J~ 2500;:::>2000-1500~~----~--~----~--~----~----~--~----~----~--~----~--~~24 48 72 96 120 144 168 192 216 240 264 288 312HoureFig (36) Variati<strong>on</strong> In mean of urine urea of gazelles during the experiment In winter.6 ~----------------------------------~--------------------~r----------.Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>,....5::::::.'0Ego 24 46 72 96 120 144 166 192HoureFig (37) Varlall<strong>on</strong> In mean of urine urea of gazelles during the experiment In summer.


99 levels returned to normal after 24 h rehydrati<strong>on</strong>(Fig . 37) .comparis<strong>on</strong> of the winter results with the summer<strong>on</strong>es revealed a highly significant difference(PSO.001, F=96.61) in the c<strong>on</strong>centrati<strong>on</strong> of the urineurea, as the summer c<strong>on</strong>centrati<strong>on</strong> was higher than thewinter <strong>on</strong>es in all the stages of the experiment(Hydrati<strong>on</strong>, <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong>) by aratio of 58%, 60% <str<strong>on</strong>g>and</str<strong>on</strong>g> 62%, respectively.5.3.6. Urine osmolality (UO):­Dehydrati<strong>on</strong> during winter followed by rehydrati<strong>on</strong>revealed a highly significant increase (PsO.OOl,F=7.48) in the level of urine osmolality, as the UOlevel gradually increased from 2523 ± 590 mOsm/Kg to4493 ± 382 mOsm/Kg(78%) in the 6th day of dehydrati<strong>on</strong>,then the level decreased to3521 ± 216 mOsm/Kg(22%)by the end of the dehydrati<strong>on</strong> period. On rehydrati<strong>on</strong>the level of VO decreased to 3098 ± 194 mOsm/Kg, a 12%decrease (Fig.38).Dehydrati<strong>on</strong> of the gazelles during summerfollowed by rehydrati<strong>on</strong> revealed a highly significantdifference (psO.005, F=4.07) in the level of UO, as itincreased from 2401 ±337 mOsm/Kg to 3668 ±139 mOsm/kg(53%) .On rehydrati<strong>on</strong> the level decreased to 3185 ±231mOsm/kg ,a 13% decrease (Fig.39).


100 5.5 ,-----------------,-----------------------------------------r------,Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydratior01~c : 4.5 :::Io.cI­~t:7I~E CII 3.5oSoECIIo~ 2.5 -a::;:)1.5 ~~____L____L____~__~____~____~__~____~__~____~____L-~_L~24 46 72 96 120 144 164 192 216 240 264 266 312HoursFig (36) Variati<strong>on</strong> In mean of urine osmolality of gazelles during the experiment in winter.4200 -Hydrati<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>3700~t:7I~~ 3200oSciE 2700In0QIC.;:::::> 2200-1700 -1200 ~~L-____~______~______~______~____~______~______~______L_~o 24 46 72 96 120 144 166 192HoursFig (39) Variati<strong>on</strong> in mean of urine osmolality of gazelles during the experiment In summer.


101comparis<strong>on</strong> of the winter results with those of thesummer showed a highly significant difference (psO.OOl,F=21.91) in the level of UOas the level in winterincreased gradually until it reached its highest level<strong>on</strong> the 6th day, alevel that exceeded the highestsummer UO level by 23%. This wasdecrease in the level that was almostfollowed by asimilar to thesummer end of depY. ~lfa~iC?:t:'l ;. ; >~~~el. The levels before':' ...,.' .. ,..... .-: . ~ .. ~ ->;: ~ •.


102 5.4. Discussi<strong>on</strong>:­Dehydrati<strong>on</strong> of the Idmi gazelles under winter <str<strong>on</strong>g>and</str<strong>on</strong>g>summer c<strong>on</strong>diti<strong>on</strong>s lead to several significantvariati<strong>on</strong>s in urine volume <str<strong>on</strong>g>and</str<strong>on</strong>g> its compositi<strong>on</strong>.5.4.1. Urine volumeDehydrati<strong>on</strong> of the Idmi gazelles during winter<str<strong>on</strong>g>and</str<strong>on</strong>g> summer lead to a reducti<strong>on</strong> of about 43% <str<strong>on</strong>g>and</str<strong>on</strong>g> 619%in the urine volume, respectively. On rehydrati<strong>on</strong> thelevel rose by 25% <str<strong>on</strong>g>and</str<strong>on</strong>g> 169%.The decrease in the urine volume is due to the<str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> of <str<strong>on</strong>g>water</str<strong>on</strong>g>. As reported by Gauthier-Pilters<str<strong>on</strong>g>and</str<strong>on</strong>g> Dagg (1981), it may be a functi<strong>on</strong> of high tubularreabsorpti<strong>on</strong> in the kidneys <str<strong>on</strong>g>and</str<strong>on</strong>g> its high sensitivityto the ADH. Ghobrial (1970b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor (1972) agreedwith the previous -,,.~\fn~~ .ngfi" j.: but they added that thisbecome more clear during summer as the ambienttemperature lead to greater loss of evaporative <str<strong>on</strong>g>water</str<strong>on</strong>g>from the body.S<strong>on</strong>bol (1988)menti<strong>on</strong>ed that the decrease of bodyfluids would increase the osmotic pressure . In suchc<strong>on</strong>diti<strong>on</strong>sOsmoreceptors become active , <str<strong>on</strong>g>and</str<strong>on</strong>g> thatwould stimulate the pituitary gl<str<strong>on</strong>g>and</str<strong>on</strong>g> to release ADH.This would affect the distal c<strong>on</strong>voluted tubules <str<strong>on</strong>g>and</str<strong>on</strong>g>collecting tubules <str<strong>on</strong>g>and</str<strong>on</strong>g> encourage them to increase therate of <str<strong>on</strong>g>water</str<strong>on</strong>g> reabsorpti<strong>on</strong>. A decrease in the urinevolume may also be a functi<strong>on</strong> of the <str<strong>on</strong>g>effect</str<strong>on</strong>g>s of the


103aldoster<strong>on</strong>e, as it stimulates the distal c<strong>on</strong>volutedtubules to increase the rate of reabsorpti<strong>on</strong> of Na+.This would be followed by reabsorpti<strong>on</strong> of <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>hence reducing urine volume. These results are inagreement with those obtained by Ghobrial (1974) <strong>on</strong>the Sudanese Afri, as the urine volume decreased 3-4folds when the animals were dehydrated Similarresults were obtained <strong>on</strong> Afri gazelle by Mohammed eta1. (1988) as the urine volume decreased by 66% duringdehydrati<strong>on</strong> for 10 days, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> goats by Choshniak eta1. (1984) as the urine volume decreased by 50% .5.4.2 Urine Sodium (Na+):Dehydrati<strong>on</strong> during winter led to an increase inNa+ c<strong>on</strong>centrati<strong>on</strong> of the urine by 30%, for the first5 days of dehydrati<strong>on</strong>. That was followed by areducti<strong>on</strong> of 52% at the end of this sessi<strong>on</strong>. Insummer, dehydrati<strong>on</strong> lead to a decrease in the level ofNa+ by 212%. The increase of Na+ level <strong>on</strong> thebeginning of de;h,~~E~~i,RIl ' -i~~~:I:"ingwinter could beinterpreted as a result of the reducti<strong>on</strong> in the urinevolume (Ghobrial,.)",~70b!(,al'\d ;'i. 1976).The reducti<strong>on</strong> of Na+ c<strong>on</strong>centrati<strong>on</strong> during winter<str<strong>on</strong>g>and</str<strong>on</strong>g> summer could be due to the reducti<strong>on</strong> in the level'::;- ·C o ,..' ' " ;.~ 'c' ,"\_ ~ ·'.", ,·,;,;,~,,:;'~?N"''::~~> ·: ;";."'''.~N&::;f'~~~)~1.f~~~i%~~!ri10'.~ '· :!1!5i.( ,ri !iAi· :.'· '' ' ~ ~' ", '. ' :" }L': ,. 'of food intake that ' extremely decreased withc<strong>on</strong>tinuati<strong>on</strong> of dehydrati<strong>on</strong> (figs. 42 <str<strong>on</strong>g>and</str<strong>on</strong>g> 43)(Macfarlane et a1., 1961 <str<strong>on</strong>g>and</str<strong>on</strong>g> Ghobrial, 1970b). Also,


., '. ."'.~ . ' " .... '. ".- ....it may be a functi<strong>on</strong> of aldoster<strong>on</strong>e as it stimulatesthe distal c<strong>on</strong>voluted tubules of the kidneys <str<strong>on</strong>g>and</str<strong>on</strong>g>increase the rate of reabsorpti<strong>on</strong> of Na+ i<strong>on</strong>s (Haggag<str<strong>on</strong>g>and</str<strong>on</strong>g> EI-Husseini, 1974 <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>bol, 1988).Comparis<strong>on</strong>of the winter results with those of the summer showedan increase in Na+ c<strong>on</strong>centrati<strong>on</strong> in all stages of theexperiment.This could be as a result of the increaseof sweating during summer (Taylor, 1972) as some ofNa+ i<strong>on</strong>s excreted with sweating (Ghobria1, 1974).These results are in agreement with those obtained byGhobrial (1974) <strong>on</strong> Afri gazelle as Na+ level wasdecreased by 43% when it was dehydrated, <str<strong>on</strong>g>and</str<strong>on</strong>g> Jhala atal. (1992)<strong>on</strong> the black-buck as Na+ c<strong>on</strong>centrati<strong>on</strong>sdecreased by dehydrati<strong>on</strong> for about 82%Similarresults were obtained by Choshniak et al. (1984) <strong>on</strong>the Bedouin goat.5.4 . 3 Urine potassium (K+):Dehydrati<strong>on</strong> during winter lead to an increase inK+ c<strong>on</strong>centrati<strong>on</strong> in the urine by 49%, for the first 5days of dehydrati<strong>on</strong>. That was followed by a reducti<strong>on</strong>of 13% at the end of this sessi<strong>on</strong>. In summer, K+c<strong>on</strong>centrati<strong>on</strong>s decreased by 16% due to dehydrati<strong>on</strong>.The increase of K+ level <strong>on</strong> the beginning ofdehydrati<strong>on</strong> during winter could be interpreted as a. ~


105 during winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer could be due to the reducti<strong>on</strong>in the level of food which was extremely decreasedwith dehydrati<strong>on</strong> (Macfarlane et a1., 1961 <str<strong>on</strong>g>and</str<strong>on</strong>g> Ghobrial1970b) .comparis<strong>on</strong> of the winter results with those ofthe summer showed an increase in K+ c<strong>on</strong>centrati<strong>on</strong>s inthe hydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrati<strong>on</strong> sessi<strong>on</strong>s. This could bedue to the increase of the level of sweating duringsummer (Ghobrial 1970b <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor, 1972) as some of K+may be excreted with sweating (Ghobrial, 1974).These results are in agreement with thoseobtained by Jhala et a1. (1992) <strong>on</strong> the black-buck, asK+ c<strong>on</strong>centrati<strong>on</strong>s decreased by dehydrati<strong>on</strong> for about47%, when the animals dehydrated for 3 days. Similarresults were obtained by Macfarlane et a1. (1961) <strong>on</strong>the merino sheep.5.4 Urine chloride (Cl-):­Urine Cl- c<strong>on</strong>centrati<strong>on</strong>s were not changedsignificantly by dehydrati<strong>on</strong> of the Idmi gazellesduring winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer. Comparis<strong>on</strong> of the winterresults with the summer <strong>on</strong>es showed an increase in Clc<strong>on</strong>centrati<strong>on</strong>sby 43% The decrease in summerdehydrati<strong>on</strong> sessi<strong>on</strong> could be attributed to theincrease in the level of Cl- loss, that was increasedby sweating during summer as a result of hightemperature (Ghobrial, 1974). That could also be due


106 to the differencesi<strong>on</strong>iods of winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer, as the summer dry matteri was reduced by 64% in(F 1). These results are in agreement with theobta by (1974) <strong>on</strong> the Afrigazelles (26% decrease), <str<strong>on</strong>g>and</str<strong>on</strong>g>results ofet al. (1984) <strong>on</strong> the bedouin goat, asdecreased 34%.5.4.5. Ur urea:­Dehydrati<strong>on</strong> during winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer led to anthevolume, hence the c<strong>on</strong>centrati<strong>on</strong> level rose.couldtotalin I lowered urea 1through the rumen (Jha et ale , 1992) .Comparis<strong>on</strong> of c<strong>on</strong>centrati<strong>on</strong> of summer urine ureawith of revealed an by 58%,60% <str<strong>on</strong>g>and</str<strong>on</strong>g> 62% in all i<strong>on</strong>Idehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the rehydrati<strong>on</strong>,could be attributed to<str<strong>on</strong>g>effect</str<strong>on</strong>g> of heat <strong>on</strong> the leveli<strong>on</strong> (Taylor, 1972). This si<strong>on</strong> may leadto a decrease vo summercomparis<strong>on</strong> with winter urinei<strong>on</strong>. The winter urine volume was more than


107 summer by 255% during dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 66% <strong>on</strong>rehydrati<strong>on</strong>, whilst the levels were almost similarbefore <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g>. These results are inagreement with those obtained by Ghobrial (1974) <strong>on</strong>Afri gazelle, as the urine urea increased bydehydrati<strong>on</strong> for about 70%.similar results wereobtained by Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> Lynch (1972) <strong>on</strong> sheep.5.4.6. Urine osmolality (UO):­Gazelle's dehydrati<strong>on</strong> during winter led to agradual increase in the level of UO by 78% during thefirst 6 days, then UO was decreased with dehydrati<strong>on</strong>.The increase in Uo could be interpreted as due to thedecrease in the volume of urine. On c<strong>on</strong>tinuati<strong>on</strong> ofdehydrati<strong>on</strong>, the level of food intake decreased <str<strong>on</strong>g>and</str<strong>on</strong>g>that may be caused a decrease in the levels of many of, :',:"- c";; ": ';" ';. ,,, :,,-,,'the 'l eleetro ;rytCe 's~an~';Eic:lil~'s1fe~q~~a::t~J Cl- ,~/·4.;:K+ 'Yete~" That ", ~ :5· ~ ' ", , ,have led to a deer'ease in the level of UO1970b) .' : ~,~~: \ :.: ." ..-:..... ~.....


108could be due to the difference in the level of foodintake, as it was greater in winter than in summer by179% (Figs. 42 <str<strong>on</strong>g>and</str<strong>on</strong>g> 43). Ghobrial (1970b) found similarresults <strong>on</strong> Afri gazelle reporting that the urineosmolality in winter was higher than the UOof thesummer by 14%. Similar results were obtained by Brown<str<strong>on</strong>g>and</str<strong>on</strong>g> Lynch (1972) <strong>on</strong> sheep.


~.: j'... '.: ' . , .. .. ' .... .,'.. ..'." ... '· , ·-: ~u-


110 6.1 Introducti<strong>on</strong>:­studies <strong>on</strong> the <str<strong>on</strong>g>effect</str<strong>on</strong>g>s of heat <str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrati<strong>on</strong> <strong>on</strong>the weight, food <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> intake, <str<strong>on</strong>g>and</str<strong>on</strong>g> feaces moistureof desert animals in general <str<strong>on</strong>g>and</str<strong>on</strong>g> gazelles inparticular are meagre. Presently there are no studies<strong>on</strong> the <str<strong>on</strong>g>effect</str<strong>on</strong>g> of dehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> heat <strong>on</strong> these, '." .": ," ",~ '>(~'; ' : ;'~;;i-~~"~~~i;..,~'~4§%,!~~'l;£ l~ ;:': 'c..,.,~:b":' ',:,' ".'parameters <strong>on</strong> Arabian gazelles. However,there are" ' some "studi'es " ·<strong>on</strong> '!'>th:e~Sudaheqs~~fr1il.1g 'a""ze;rl'es "''' ( Ghob'r "i a f', '"';', iJ~'"1966, 1967 <str<strong>on</strong>g>and</str<strong>on</strong>g> ' · Moh'i;mm'ed "j;;et~(.~1 ':"';"I:f,\ '1988) · <str<strong>on</strong>g>and</str<strong>on</strong>g> some other.: ", ';~ \! ·F~'::'\':'·:~. :~~;~l~~~·.~•.':f.tj ::~~ :: ~~Y , .. ! ·.~··.~..,,;7-' ~..;." .,'", :,.


111activities in the cooler periods of the day in orderto reduce <str<strong>on</strong>g>water</str<strong>on</strong>g> loss through evaporati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hencesecuring a higher level of humidity for feeding.Taylor (1972) in his study <strong>on</strong> Thomps<strong>on</strong>'s gazelle<str<strong>on</strong>g>and</str<strong>on</strong>g> Grant gazelle found that the loss of <str<strong>on</strong>g>water</str<strong>on</strong>g> throughevaporati<strong>on</strong> reachs the highest level duringthemaximum air temperature period of the day. He addedthat the rate of the <str<strong>on</strong>g>water</str<strong>on</strong>g> loss wasreduced byshortage of <str<strong>on</strong>g>water</str<strong>on</strong>g>. He also stated that food humiditywas inversely proporti<strong>on</strong>al to heat, this situati<strong>on</strong>enabled the gazelles to go without direct intake of<str<strong>on</strong>g>water</str<strong>on</strong>g>, as they ' benefitted :from the high level of, i· " ' ~ ' ~·"·: ' : ' ·- ( - I-:..-:,"l'·v"-,:,·.• :, ;:, ;- ,,,, -: #:,,_~,:. ~;.:~~,.iiif~.J'''.'~*.t:4.~~~~~~~~~%~e~~ ~ ~.\t.~.,>~$,''k;..,::~;;c ··J., ·, ~ ·.i>;· ·' ( · ~· · '; ~,.8::. ·:::-;humidity in food when the temperature was low. Heexplainedthat ' ~~food ~humid±tY~~,counted " ' :' for;l% ' of .animalbody weight, whllst"-oxidafi'<strong>on</strong>\';of food provide about 2%of body weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> this spared the animals taking; :<str<strong>on</strong>g>water</str<strong>on</strong>g> directly.This was in agreement with Habibi(1992) <strong>on</strong> Fara<strong>sa</strong>n gazelle (G.gazella fara<strong>sa</strong>ni) whic~c<strong>on</strong>serves <str<strong>on</strong>g>water</str<strong>on</strong>g> by resorting to crepuscular activitypatterns especially in the hot m<strong>on</strong>ths of the year, <str<strong>on</strong>g>and</str<strong>on</strong>g>also by gaining <str<strong>on</strong>g>water</str<strong>on</strong>g> through c<strong>on</strong>suming hygroscopicplants in times of moderate heat when the plant leave<strong>sa</strong>re humid due to the high humidity in the isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Similar observati<strong>on</strong>s were menti<strong>on</strong>ed by Louw <str<strong>on</strong>g>and</str<strong>on</strong>g>Seeley (1982) who reported that animals gain <str<strong>on</strong>g>water</str<strong>on</strong>g>through oxidati<strong>on</strong> of food, humidity of food <str<strong>on</strong>g>and</str<strong>on</strong>g>directly taking <str<strong>on</strong>g>water</str<strong>on</strong>g>. Loss of <str<strong>on</strong>g>water</str<strong>on</strong>g> was reported to


112 be through through <str<strong>on</strong>g>and</str<strong>on</strong>g> skin, <str<strong>on</strong>g>and</str<strong>on</strong>g>faeces <str<strong>on</strong>g>and</str<strong>on</strong>g> . They added that themain factors affecting <str<strong>on</strong>g>water</str<strong>on</strong>g> are solarradiat of animal bodysize, skin structure,speed,<str<strong>on</strong>g>and</str<strong>on</strong>g> activitythe animal.wereby(1992) as the desert ungulates depend <strong>on</strong> the foodmoisture as a source This physiolog1by a behaviorali<strong>on</strong> astend to take food the cooler tomaxDaws<strong>on</strong> et al. (1989)ungulates e.g. the lIes were no of<str<strong>on</strong>g>water</str<strong>on</strong>g> choose right food <str<strong>on</strong>g>and</str<strong>on</strong>g>right time the wa<strong>sa</strong> high relative humidity.Mohammed et (1988) studied the of<strong>on</strong><strong>on</strong> theSudanese . He menti<strong>on</strong>ed they loose28.8% ofdehydratbut <strong>on</strong>e hour after rehydrati<strong>on</strong> they75% of the lost body weight, then 86.5% oflost weight <strong>on</strong> fol day. food intakethe mot were reduced by the of42% <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 respectively, <str<strong>on</strong>g>and</str<strong>on</strong>g> rega normal levels<strong>on</strong> rehydrati<strong>on</strong>.


~ .~ :; ' .. ,..; ~ : ' . ~'. , . , .. '. 1 ', ' . .t. '::113Jhala et al. (1992) studied the lowest limit of<str<strong>on</strong>g>water</str<strong>on</strong>g> dem<str<strong>on</strong>g>and</str<strong>on</strong>g> in the black-buck in winter, with theresultant findings that it was so much less than thatof summer due to variati<strong>on</strong>s in temperature. They alsofound that the faecal <str<strong>on</strong>g>water</str<strong>on</strong>g> ratio was reduced from 57%to 43% by dehydrati<strong>on</strong> in summer due to reabsorpti<strong>on</strong> of<str<strong>on</strong>g>water</str<strong>on</strong>g> in the posterior part of the digestive tract.Several studies have been d<strong>on</strong>e <strong>on</strong> domesticanimals living in semi-desert habitats, ego Brown <str<strong>on</strong>g>and</str<strong>on</strong>g>Lynch (1972) <strong>on</strong> sheep. These dehydrated sheep lost aremarkable ratio of <str<strong>on</strong>g>their</str<strong>on</strong>g> weight, which was attributedto low food intake coupled with loss of body <str<strong>on</strong>g>water</str<strong>on</strong>g> dueto dehydrati<strong>on</strong>.Gary et aI. (1979) carried out a similarstudy <strong>on</strong> the horse that gradually lost body weight by10.7% when the animal dehydrated for 3 days during thesummer. They noticed sickness symptoms like thinningof the body, eyeball retracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> backb<strong>on</strong>eprojecti<strong>on</strong>. On rehydrati<strong>on</strong> the horse c<strong>on</strong>sumes <str<strong>on</strong>g>water</str<strong>on</strong>g>about 7% of its body weight within <strong>on</strong>e hour.Degen <str<strong>on</strong>g>and</str<strong>on</strong>g> Young (1981) studied the <str<strong>on</strong>g>effect</str<strong>on</strong>g> ofdehydrati<strong>on</strong> <strong>on</strong> some physiological processes of sheep.They found that faecal <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>tent dependedprimarily <strong>on</strong> food intake <str<strong>on</strong>g>and</str<strong>on</strong>g> not the degree oftemperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> ." they : ~ : added :,-;.that the animals lost 5­13% of the total faecal <str<strong>on</strong>g>water</str<strong>on</strong>g> by dehydrati<strong>on</strong>.


114 6 • •6.2.1. GazelA Seca Balance ( SECA Germany) with anaccuracy todur the acclimati<strong>on</strong> period <str<strong>on</strong>g>and</str<strong>on</strong>g> the experiments (2). In winter, the anima were weighed <strong>on</strong>ceevery 48 hInthe hydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrati<strong>on</strong>were weighed after 2h <str<strong>on</strong>g>and</str<strong>on</strong>g> 24h.In summer,were we<strong>on</strong>ce48 hduranima also were we <strong>on</strong>ceevery 24 h in dehydrati<strong>on</strong>. In rehydrati<strong>on</strong>, they wereweighed 2h <str<strong>on</strong>g>and</str<strong>on</strong>g> 24h after.The method in weighing zel was asllow: The zel 's wereacloth whilewas in the cage to make it quite.animal carr by h<str<strong>on</strong>g>and</str<strong>on</strong>g> , the total weight ofthe<str<strong>on</strong>g>and</str<strong>on</strong>g> the was . This was1 by thec1Cai<strong>on</strong>:Gazelle's Weight (Kg)the gazel - Weightof theholdingholdingc


1156.2.2: Dry Matter Intake (OMI): This was d<strong>on</strong>e in two I the first f Id daily of a known amount of food(alfalfa hay) usingBalance accurate to 1 gm.was put c<strong>on</strong>tainer of thezel 24 h remaining food was then··,·····weighedThe was as anamount the food was weighed us a DHAUS dig 1to 0.01 gm), then put in a g(W.C. HeraeusGmbH-HERAEUS-Postfach 1153) oven 105°C tillreached a weight ( ly 7 h) tofood moisture (Mohamed, 1986) .Calculat.'­1. RFM (%) :::: Weight the 1 Wefood x 100. 2. DMI (g/24h) == IWF _ IWF x RFMOMIIWFdry initial weight of food taken by gazelle/24h. RFM of moisture.


116 of <str<strong>on</strong>g>water</str<strong>on</strong>g>24 h was cafor each zelle skipp a known volume of <str<strong>on</strong>g>water</str<strong>on</strong>g>the <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>ta of icremaining <str<strong>on</strong>g>water</str<strong>on</strong>g> is measured a 24 h.Thewasby pouring <strong>sa</strong>me volume of <str<strong>on</strong>g>water</str<strong>on</strong>g> that wasthe 1 the c<strong>on</strong>tainer of themetabolic cage (with no animal)<strong>sa</strong>metime the an Is were given 24 h theremawas;".'(ml/24 h)=initial6.2.3. <str<strong>on</strong>g>water</str<strong>on</strong>g> Intake ):­volumevo24 h.(ml/24 h) = initial volume-volume6.2.4. Moisture (FM):­Faecal(FM) was estimated by collectingsome the animal droppings in a securely closed• 2).then to the 1 (SeeIn the lab the specimens were weighed u<strong>sa</strong>OHAUS dried out by oven HEREUS 7h


117 105°C (Mohamed, 1986) till the ac<strong>on</strong>stant weight, this was followed by weighing the dry1Calcui<strong>on</strong>s:­of (%) :::: Weightbefore drying - after drying x 100.


118 6.3: Results6.3.1.of the Idmi les for 8 days,followed by i<strong>on</strong> revea a s ifin animal weights (P~O.Ol, F=3.l2). Thean Is we were reduced from 18. 65±1. 57 Kg to15. 38±1. 08 (18%) by . On theanimals we rose to 16.68±1.13 Kg (9%) after 2 h,to 17.98±1.4 Kg after 24 h. This1 was lessthan that dehydrat by 4% (Fig.40).Dehydrati<strong>on</strong> the for 3 summer days,lowed by i<strong>on</strong> a icantdif ( 0.001, F=36.24) the 1 weanima weights were from 19.32±1.58 Kg to15. 83±1. 33 Kg (18%) the end of dehydrati<strong>on</strong>. On rehydrat the level was 18. 33±1. 79 after 2 h (16%) then 19 .15±1. 59 after 24 h. This 1 lower than that dehydrati<strong>on</strong> <strong>on</strong>ly 0.17(Fig. 41). is<strong>on</strong> of winter with ofthe summer revealed no significant ( . 063 , F= 1 . 6 1 )difference the 1 weights.


119 Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>2119 17 15 ~.o 48 96 144 192 240 288 290 312 Hours Fig (40) Variati<strong>on</strong> In mean of weight of gazell08 during the experiment In wlntor.22 Hydra!l<strong>on</strong>Dehydrati<strong>on</strong>Rehydrati<strong>on</strong>20 16 ­o 48 96 144 168 170 192 HoursFig (41) Variati<strong>on</strong> In mean of weight of gazelles during the experiment In summer.


1206.3.2. Dry Matter Intake (DMI):­Dehydrati<strong>on</strong> of the Idmi gazelles during winterfollowed by rehydrati<strong>on</strong> revealed a highly significantdecrease (PSO.OOl ,F=7.53) in the level of DMI. TheDMI was reduced from 433±64 g/24 h to 131±14 g/24 h(70%) by the end of dehydrati<strong>on</strong>. On rehydrati<strong>on</strong>, thelevel of DMI was raised to 448±78 g/24 h. Thisincrease is more than the level before dehydrati<strong>on</strong> by4% (Fig.42).During summer, dehydrati<strong>on</strong> of these animalsfollowed by rehydrati<strong>on</strong> revealed a highly significantdecrease (PSO.001, F=15.36) in the level of DMI.Thelevel of OM! was reduced from 466±120 g/24 h to 47±31g/24 h (90%) by the end of dehydrati<strong>on</strong> period. Onrehydrati<strong>on</strong> the level increased to 446±45g/24 h(800%). This value is still less than the level beforedehydrati<strong>on</strong> by 4%(Fig.43).comparis<strong>on</strong> of the winter results with those ofthe summer revealed a highly significant difference(PSO.001, F=14.89) in the level of DM!, as thereducti<strong>on</strong> was slow in winter until it reached itslowest by the end of dehydrati<strong>on</strong> (131±14 g/24 h). Thislevel exceeds the lowest in summer (47±31 g /24 h) by179%, though the winter dehydrati<strong>on</strong> period was l<strong>on</strong>gerthan the summer <strong>on</strong>e.


121 650 .-----------------~------------------------------------------_r------_.Hydrati<strong>on</strong> Dahydrall<strong>on</strong> Rehydrstiol550450250150 -24 48 72 96 120 144 168 192 216 240 264 288 312 Hours (42) Variati<strong>on</strong> In mean of dry matter Intake (DMI) of gazelles during the experiment In winter.700.------------------------,----------------------,---------.Hydrati<strong>on</strong> Oehydrali<strong>on</strong> Rehydrati<strong>on</strong>500 -400 -300 -200 -100 1-­24 48 72 96 120 144 168 192HoursFig (43) Variati<strong>on</strong> In mean of dry mattar Intake (OMI) of gazelles during the experiment In summer.


122 6.3.3. Water Intake(WI):­Dehydrati<strong>on</strong> during winter followed by rehydrati<strong>on</strong>revealed a highly significant increase (PsO.001,F=9.17) in the volume of WI, as the level increasedfrom 636±167 ml/24 h(at the normal c<strong>on</strong>diti<strong>on</strong>) to1299±141 ml/24 h, an increase of 104% during the first2 h of rehydrati<strong>on</strong>, then up to 2369±304 ml/24h (273%)after 24 h of rehydrati<strong>on</strong> (Fig.44).During summer, the results showed a highlysignificant increase (PsO.001, F=20.25) in the levelof WI as the level increased from 2184±387 ml/24 h to2566±575 ml/24 h (18%) after 2 h of rehydrati<strong>on</strong>, thento 4055±287 ml 24 h (86%) after 24 h of rehydrati<strong>on</strong>(Fig.45) .comparis<strong>on</strong> of the winter results with those ofthe summer revealed a highly significant difference(PsO.001, F= 47~ i 90) ;" ; ' as >:the " ~"'summer WI level exceededthe winter level.>;iz:1. , .-~l~ ",~~"~


123 3000 r----------------.----------------------------------------~----------__,Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrati<strong>on</strong>2500~2000~E'-'(I>.x: 1500


124 On rehydrati<strong>on</strong>, the FM level to 43.8±3.3%(30%) as in Fig.46).oflowed by rehydrati<strong>on</strong>, revealed a highly sifsummerdecrease (P:::;O.OOl, F=32.94) the FM level as thefrom 49±1.7% to 37.5±O.(24%) byend of the dehydrati<strong>on</strong>I<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> rehydrati<strong>on</strong> theFM level rose to 42.8±2.2% (Fig.47).is<strong>on</strong>the winter results with those ofsummer revea no f di .146 ,F=2. 15) the of faeces moisture.


12560 .-----------------~------------------------------------------~----~Hydrati<strong>on</strong> Dehydrati<strong>on</strong> Rehydrali<strong>on</strong>55 -l50CD...~iii] 46In CD U CG If 403530 L-J-__~L____L____~__~____ ~____L___~____L___~____~__~____~~24 48 72 96 120 144 168 192 216 240 264 288 312HoursFig (46) Variati<strong>on</strong> In mean of faeces moisture of gazelles during the experlmenUn winter.55 ,--------------------------------,,---------------------,-----------,Hydrall<strong>on</strong> Dehydrati<strong>on</strong> Rehydrall<strong>on</strong>lQ)...~50iii·0 45 .­EII)Q)uCGIf4035 ~~______~______~____~______~____~______~____~_______L~o 24 48 72 96 120 144 168 192HoursFig (47) Variati<strong>on</strong> In mean of faeces moisture of gazelles during the exprlment In summer.


126 6.4. Discussi<strong>on</strong>:­During dehydrati<strong>on</strong> in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer, severalchanges occurred in the gazelle's weight,faecesmoisture <str<strong>on</strong>g>and</str<strong>on</strong>g> the food <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> intake.All of theseare discussed al<strong>on</strong>g the following path.6.4.1. Gazelle's Weight:­Dehydrati<strong>on</strong> of the gazelles in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> insummer caused a reducti<strong>on</strong> in <str<strong>on</strong>g>their</str<strong>on</strong>g> weight by 18% . Onrehydrati<strong>on</strong> they regained 9%. , <str<strong>on</strong>g>and</str<strong>on</strong>g> 16% of <str<strong>on</strong>g>their</str<strong>on</strong>g> lostweight. The levels returned to normal after 24 h ofrehydrati<strong>on</strong>. This could be due to the loss of bodyfluids, especially the extracelluar fluids, inadditi<strong>on</strong> to reducti<strong>on</strong> of food intake that accompanieddehydrati<strong>on</strong>.Comparis<strong>on</strong> of the winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer resultsrevealed that there was an equal weight loss duringdehydrati<strong>on</strong> despite the difference in the <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> periods. On rehydrati<strong>on</strong> the increase inbody weight was faster in summer, <str<strong>on</strong>g>and</str<strong>on</strong>g> the weight wasnearly the <strong>sa</strong>me as before dehydrati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> there was<strong>on</strong>ly 1% difference. In winter the loss after 24 hrehydrati<strong>on</strong> was 4% of the original weight beforedehydrati<strong>on</strong>. Difference in rehydrati<strong>on</strong> could be due tothe difference in <str<strong>on</strong>g>water</str<strong>on</strong>g> intake which was more insummer than in winter. The loss of weight by the endof rehydrati<strong>on</strong> sessi<strong>on</strong> in winter could be attributed


127 to the low food intake coupled with the l<strong>on</strong>gerdurati<strong>on</strong> of dehydrati<strong>on</strong> .These results are in agreement with the findingsof Ghobrial (1966) <strong>on</strong> the Sudanese Afrigazelles, as they lost 30%of the body weight inwinter <str<strong>on</strong>g>and</str<strong>on</strong>g> 24% in summer when they dehydrated for 5<str<strong>on</strong>g>and</str<strong>on</strong>g> 12 days, respectively; Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> Lynch (1972) <strong>on</strong>sheep as they lost 10% of the body weight ; Gary etale (1979) <strong>on</strong> horses, as they lost 10.7% bydehydrati<strong>on</strong> for 3 days; Umunna et ale (1981) <strong>on</strong> Yankasheep <str<strong>on</strong>g>and</str<strong>on</strong>g> Ali et ale (1982) <strong>on</strong> goat, sheep <str<strong>on</strong>g>and</str<strong>on</strong>g> camels.Similar results were obtained by Mohammedet ale(1988) <strong>on</strong> the Sudanese Afri gazelle as it lost 29% bydehydrati<strong>on</strong> for 10 days.6.4.2. Dry Matter Intake (OMI):­Winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer dehydrati<strong>on</strong> of the Idmi­gazelles followed by rehydrati<strong>on</strong> led to a decrease inthe OMI by 70%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 90%, respectively. After 24 h.rehydrati<strong>on</strong> the level of OMIreturned to normal. Thelow level of OMI could be attributed to the <str<strong>on</strong>g>effect</str<strong>on</strong>g> ofdehydrati<strong>on</strong> <strong>on</strong> the animals appetite which could haveoriginated fromthe interacti<strong>on</strong> of neur<strong>on</strong> of theventra-medial hypothalamus where food <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> intakeare regulated <strong>on</strong> afferent informati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bloodcompositi<strong>on</strong> (Mohamed , 1986). It could also be due tothe acetate c<strong>on</strong>tent in food (alfalfa hay) that might


128 have affected the animal appetite. It may also be dueto the dry food that led the animal to reduce thelevel of food intake, as dry food irritates <str<strong>on</strong>g>and</str<strong>on</strong>g> heatsthe stomach (Abdelatif <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahmed, 1993) especially insummer when food humidity was lowest.These results agreed with those of Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g>Cloudsley-Thomps<strong>on</strong> (1966) <str<strong>on</strong>g>and</str<strong>on</strong>g> Ghobrial (1967) <strong>on</strong> Afrigazelle as food intake decreased by dehydrati<strong>on</strong> untilit stopped when the animal lost 17% of the body weightdue to dehydrati<strong>on</strong>. Similar results were obtained byMou<strong>sa</strong> (1978) <strong>on</strong> goats <str<strong>on</strong>g>and</str<strong>on</strong>g> sheep <str<strong>on</strong>g>and</str<strong>on</strong>g> resemble those ofUmunna et ale (1981) <strong>on</strong> Yanka<strong>sa</strong> sheep <str<strong>on</strong>g>and</str<strong>on</strong>g> the resultsof Mohamed (1986) <strong>on</strong> the Sudanese Afri gazelle as thefood intake decreased by 42% when the animaldehydrated.6.4.3. <str<strong>on</strong>g>water</str<strong>on</strong>g> Intake (WI):­Dehydrati<strong>on</strong> of the Idmi gazelles in winter <str<strong>on</strong>g>and</str<strong>on</strong>g>summer followed by rehydrati<strong>on</strong>, led to an increase inthe level of WI during the first 2 h of rehydrati<strong>on</strong>(104%) <str<strong>on</strong>g>and</str<strong>on</strong>g> after 24 h of this period (650%), comparedwith the WI before dehydrati<strong>on</strong>.". ..' ~1 :~' ;"': : ~· t~ ..... ,.~..: ••· '"It was noticed-that the .summer WI was higher thanthe winter level in the period before dehydrati<strong>on</strong>, 2h after rehydrati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> after 24 h by 243%, 98% <str<strong>on</strong>g>and</str<strong>on</strong>g>58% respectively. The excess of WI after rehydrati<strong>on</strong>compared with that before dehydrati<strong>on</strong> could be


129 attributed to the animals dem<str<strong>on</strong>g>and</str<strong>on</strong>g> to compen<strong>sa</strong>te thelost body <str<strong>on</strong>g>water</str<strong>on</strong>g> during dehydrati<strong>on</strong> which was about 14%<str<strong>on</strong>g>and</str<strong>on</strong>g> 17%of the animal's body weight in winter <str<strong>on</strong>g>and</str<strong>on</strong>g>summer, respectively.The excess level of WIin summer compared withwinter WIcould be due to the increased level ofevaporati<strong>on</strong> that increases with the increase intemperature (Taylor ,1972 <str<strong>on</strong>g>and</str<strong>on</strong>g> Jhala et al.,1992) .Theseresults are in agreement with those of Mohamed (1986)<strong>on</strong> Afri gazelle as the WIincreased by 228% when theanimals re<str<strong>on</strong>g>water</str<strong>on</strong>g>ed for 24 h. Similar results wereobtained by Jhala et al. (1992) <strong>on</strong> the blackbuck asthe WI increased by 92% when the animal rehydrated.The amount of <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>sumed by the Idmi gazellesduring the experiment is relatively high, especiallyin summer. The animal usually c<strong>on</strong>sumes 3%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 11% ofits body weight of <str<strong>on</strong>g>water</str<strong>on</strong>g> in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer,respectively. This could be due to temperature factorsespecially in summer. Another factor could be due tothe high crude protein c<strong>on</strong>tent in the food (alfalfahay) which when digested high nitrogenous wasteproducts are released which need large amounts of<str<strong>on</strong>g>water</str<strong>on</strong>g> to be excreted through urine <str<strong>on</strong>g>and</str<strong>on</strong>g>sweating(Abdelatif <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahemd, 1993).


130 6.4.4. Faeces moisture (FM):­Dehydrati<strong>on</strong> of the Idmi gazelles in winter <str<strong>on</strong>g>and</str<strong>on</strong>g>summer led to a decrease in FM by 32% <str<strong>on</strong>g>and</str<strong>on</strong>g> 24%,respectively. On rehydrati<strong>on</strong> the FM was increased by30% <str<strong>on</strong>g>and</str<strong>on</strong>g> 14% in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summer, respectively.The reducti<strong>on</strong> in FM by dehydrati<strong>on</strong> could be dueto the increase in the rate of reabsorpti<strong>on</strong> of <str<strong>on</strong>g>water</str<strong>on</strong>g>in the intestine which was induced by the general body<str<strong>on</strong>g>water</str<strong>on</strong>g> loss. These results are in good agreement withthe findings of Ghobrial <str<strong>on</strong>g>and</str<strong>on</strong>g> Cloudsley-Thomps<strong>on</strong> (1966)<str<strong>on</strong>g>and</str<strong>on</strong>g> Mohamed(1986) <strong>on</strong> the Sudanese Afri gazelle, asthe faeces moisture decreased by 50% <str<strong>on</strong>g>and</str<strong>on</strong>g> 41%,respectively. Similar results were obtained by Mu<strong>sa</strong>(1978) <strong>on</strong> sheep <str<strong>on</strong>g>and</str<strong>on</strong>g> goats, Degen <str<strong>on</strong>g>and</str<strong>on</strong>g> Young (1981) <strong>on</strong>sheep <str<strong>on</strong>g>and</str<strong>on</strong>g> Jhala et a1., (1992) <strong>on</strong> the black-buck asthe decrease in faeces moisture was 14%,when theanimal dehydrated for 3 days.


CHAprrER SEVEN GENERAL DISCUSSION


132GENERAL DISCUSSIONCl are the major factors influencedesert animals distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 (Louw <str<strong>on</strong>g>and</str<strong>on</strong>g>Seely, 1982, <str<strong>on</strong>g>and</str<strong>on</strong>g> Dix<strong>on</strong> J<strong>on</strong>es, 1988) .The <str<strong>on</strong>g>effect</str<strong>on</strong>g> of in larare main problems these animals (Louw,1993 ) lly wh can not avosolar rad i<strong>on</strong> (Abdelat <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahmed, 1993) .In the some iolog 1are investaiming to know some of thelIe adaptati<strong>on</strong>s to the arid envir<strong>on</strong>ments.It appears that when G.should have free <str<strong>on</strong>g>water</str<strong>on</strong>g> to drink.was given dry foodIt couldabsence dr 8 days in winter <str<strong>on</strong>g>and</str<strong>on</strong>g> 3in summer whenof <str<strong>on</strong>g>water</str<strong>on</strong>g>.Gazelle'si<strong>on</strong> during winter <str<strong>on</strong>g>and</str<strong>on</strong>g> summerreflected some physio ical as bodyincreased in summer durdehydrati<strong>on</strong> by2.1 °C. s of the the rate ofti<strong>on</strong> to minimizeloss. Similar resultswere obtained by Taylor (1970a) <strong>on</strong> the Afrungulates <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 (1970b) <strong>on</strong> s gazelle. Ita be an to ze difbetween the air<str<strong>on</strong>g>and</str<strong>on</strong>g> body temperature.


133 The difference in body temperature was accompanied byseveral changes in the blood parameters, urine volume~nd its c<strong>on</strong>tent, faeces <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g> foodintake. These changes are aiming to reduce the <str<strong>on</strong>g>water</str<strong>on</strong>g>loss via urinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> defecati<strong>on</strong> (Louw, 1993).Dehydrati<strong>on</strong> lead to a reducti<strong>on</strong> in the level of plasmavolume, extracelluar fluids <str<strong>on</strong>g>and</str<strong>on</strong>g> all body parts(Choshniak et al., 1984, Mohammed et al., 1988 <str<strong>on</strong>g>and</str<strong>on</strong>g>Snedd<strong>on</strong> et al., 1993).The decrease in plasma volume is the main <str<strong>on</strong>g>effect</str<strong>on</strong>g>ivefactor that determines survival of the animals(Macfarlane et al., 1961 <str<strong>on</strong>g>and</str<strong>on</strong>g> Gauthier-Pilters <str<strong>on</strong>g>and</str<strong>on</strong>g>Oagg, 1981). As the decrease of plasma volume wouldlead to an increase in the level of blood viscosity<str<strong>on</strong>g>and</str<strong>on</strong>g> hence this may affect the heart adversely(Mohamed, 1986). This would explain the adaptati<strong>on</strong> ofthe desert mammals in general, <str<strong>on</strong>g>and</str<strong>on</strong>g> the camel inparticular for maintaining the plasma volume (Wils<strong>on</strong>,1984) . The level of blood comp<strong>on</strong>ents duringdehydrati<strong>on</strong> show that the shortage of <str<strong>on</strong>g>water</str<strong>on</strong>g> had causeda haemoc<strong>on</strong>centrati<strong>on</strong> in additi<strong>on</strong> to a remarkableincrease in the serum osmolality, BUN, totalprotein <str<strong>on</strong>g>and</str<strong>on</strong>g> albumin. This was accompanied by anextreme decrease in the level of food intake. It wasnoticed that there is aproporti<strong>on</strong>al relati<strong>on</strong>shipbetween the level of food intake <str<strong>on</strong>g>and</str<strong>on</strong>g> some of the serumc<strong>on</strong>tents such as Na+, K+, CI- in additi<strong>on</strong> to the totalprotein. This relati<strong>on</strong>ship could be explained since


134 the food (alfalfa hay) is the main source of theseparameters, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the increase or decrease of foodintake would affect the level of these items.The decrease in the level of food intake is associatedwith a decrease in the level of total crude protein.This could be an adaptati<strong>on</strong> to reduce the nitrogenouswaste <str<strong>on</strong>g>and</str<strong>on</strong>g> hence urine volume (Mohamed, 1986). Theproporti<strong>on</strong>al relati<strong>on</strong>ship between the level of foodintake <str<strong>on</strong>g>and</str<strong>on</strong>g> urine volume support that.Due to the decrease in the level of food intake(especially in summer), some of the serum parameterswere decrease, d sueh as Na, + K + ,C 1­ , serum osmolality<str<strong>on</strong>g>and</str<strong>on</strong>g> BUN.This could be explained as the food is themain source of those items. Similar relati<strong>on</strong>ship wasnoticed between the level of food intake <str<strong>on</strong>g>and</str<strong>on</strong>g> urineNa+, K+,Cl-<str<strong>on</strong>g>and</str<strong>on</strong>g> urine osmolality. This could be due tothe <strong>sa</strong>me reas<strong>on</strong>.The kidney of the desert mammals plays a major role inc<strong>on</strong>serving <str<strong>on</strong>g>water</str<strong>on</strong>g> (Gauthier-pilters <str<strong>on</strong>g>and</str<strong>on</strong>g> Dagg, 1981).The structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong> of <str<strong>on</strong>g>their</str<strong>on</strong>g> kidneys haddeveloped to enable them to cope with desertc<strong>on</strong>diti<strong>on</strong>s (Ghobrial, 1976, wils<strong>on</strong>, 1984 <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>bol,1988). Louw <str<strong>on</strong>g>and</str<strong>on</strong>g> Seely (1982) <str<strong>on</strong>g>and</str<strong>on</strong>g> Grenot (1992)reported that the Henle loops are the main part thathelp these animals to resist drought. They play amajor role in reabsorpti<strong>on</strong> of <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Na+. Kidney's


135 functi<strong>on</strong> is c<strong>on</strong>trolled by two horm<strong>on</strong>es <strong>on</strong>e of them isthe antidiuretic horm<strong>on</strong>e (ADH)which is produced bythe hypothalamus <str<strong>on</strong>g>and</str<strong>on</strong>g> stored in the posterior part ofpituitary gl<str<strong>on</strong>g>and</str<strong>on</strong>g> . When the osmotic pressure increasesdue to shortage of <str<strong>on</strong>g>water</str<strong>on</strong>g>, ADH is released <str<strong>on</strong>g>and</str<strong>on</strong>g>stimulate the distal c<strong>on</strong>voluted tubules <str<strong>on</strong>g>and</str<strong>on</strong>g> collectingtubules to increase the rate of reabsorpti<strong>on</strong> of <str<strong>on</strong>g>water</str<strong>on</strong>g>.The other horm<strong>on</strong>e is aldoster<strong>on</strong>e which is secreted bythe cortex of the adrenal gl<str<strong>on</strong>g>and</str<strong>on</strong>g>. It affects the distalc<strong>on</strong>voluted tubules <str<strong>on</strong>g>and</str<strong>on</strong>g> stimulates them to increasereabsorpti<strong>on</strong> of Na+. This is followed by <str<strong>on</strong>g>water</str<strong>on</strong>g>, due tothe change in the osmotic pressure (Haggag <str<strong>on</strong>g>and</str<strong>on</strong>g> EI­Husseini, 1974, Yagil <str<strong>on</strong>g>and</str<strong>on</strong>g> Etzi<strong>on</strong>, 1979, Gau<str<strong>on</strong>g>their</str<strong>on</strong>g>pilters<str<strong>on</strong>g>and</str<strong>on</strong>g> Dagg, 1981 <str<strong>on</strong>g>and</str<strong>on</strong>g> s<strong>on</strong>bol, 1988).In general, it could be c<strong>on</strong>cluded that <str<strong>on</strong>g>water</str<strong>on</strong>g><str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> of the mountain gazelle during winter <str<strong>on</strong>g>and</str<strong>on</strong>g>summer produced some reversible physiological <str<strong>on</strong>g>and</str<strong>on</strong>g>biochemical changes. It seems that this species mightwithst<str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrati<strong>on</strong> for relatively l<strong>on</strong>g periods in<str<strong>on</strong>g>their</str<strong>on</strong>g> natural habitat. This perhaps explains thepresence of Idmi gazelle <strong>on</strong> the periphery of thedeserts of northern Saudi Arabia in the NCWCD reservesAI-Harrah <str<strong>on</strong>g>and</str<strong>on</strong>g> Al Khunfah, where no trees <str<strong>on</strong>g>and</str<strong>on</strong>g> permanent<str<strong>on</strong>g>water</str<strong>on</strong>g> (Thouless et al., 1991) <str<strong>on</strong>g>and</str<strong>on</strong>g> in Fara<strong>sa</strong>n isl<str<strong>on</strong>g>and</str<strong>on</strong>g>swhere no fresh <str<strong>on</strong>g>water</str<strong>on</strong>g> is available (Habibi,1992).Previous findings agree with those of Dunham et al.(1993) who noticed that the Idmi reintroduced in the


136 Ibex reserve (180 km south west of Riyadh) are welladapted to the new habitat <str<strong>on</strong>g>and</str<strong>on</strong>g> have reduced <str<strong>on</strong>g>their</str<strong>on</strong>g>visits to the source of <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> food supplies.Beside the abovementi<strong>on</strong>ed physiologicaladaptati<strong>on</strong>s that Idmi gazelle has, there are severalbehavioral adaptati<strong>on</strong>s that help the animal inresisting thirst. Habibi (1992) reported that Fara<strong>sa</strong>ngazelle c<strong>on</strong>serves <str<strong>on</strong>g>water</str<strong>on</strong>g> by resorting to crepuscularactivity patterns especially in summer, <str<strong>on</strong>g>and</str<strong>on</strong>g> also bygaining <str<strong>on</strong>g>water</str<strong>on</strong>g> through c<strong>on</strong>suming hygroscopic plants intimes of moderate heat when plant leaves are humid.Similar observati<strong>on</strong>s were reported by Ghobrial (1974)<strong>on</strong> Afri gazelle as it selects the cooler hours of theday <str<strong>on</strong>g>and</str<strong>on</strong>g> retreats to the shade when air temperature iselevated in order to reduce <str<strong>on</strong>g>water</str<strong>on</strong>g> loss. Also, similarobservati<strong>on</strong>s were reported by Grenot (1992) <str<strong>on</strong>g>and</str<strong>on</strong>g> Daws<strong>on</strong>et al. (984) <strong>on</strong> desert ungulates.It should be menti<strong>on</strong>ed that the populati<strong>on</strong> ofthis species,in additi<strong>on</strong> to the other Arabiangazelles, have declined in recent years (Groves, 1988<str<strong>on</strong>g>and</str<strong>on</strong>g> Habibi, 1989).Thouless et al. (1991) <str<strong>on</strong>g>and</str<strong>on</strong>g> Greth<str<strong>on</strong>g>and</str<strong>on</strong>g> Williams<strong>on</strong>, (1994) reported that unc<strong>on</strong>trolledhunting is the main factor that threatened survival ofthese animalsin additi<strong>on</strong> to other factors e.g.Habitat destructi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the unc<strong>on</strong>trolled development.


137 C<strong>on</strong>clUB1- The shows that the Idmi gazellecan w i<strong>on</strong> 8 inwinter <str<strong>on</strong>g>and</str<strong>on</strong>g> for 3 days in summer.s wa<strong>sa</strong>scerta by the when the animalwas deprived of <str<strong>on</strong>g>water</str<strong>on</strong>g> <strong>on</strong> dryalfalfa when was under normalweather c2- zelle res thirst by manyphys log 1 adaptati<strong>on</strong>s, such as:a) the of therespiratory system <str<strong>on</strong>g>and</str<strong>on</strong>g> skin.b) This was lowed by thetemperature.c) Reduc urine volume <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centratd) the volume in the3 Beside the physiologicalgazelle also benef from the ial


138 Recommendati<strong>on</strong>s:To improve measures <str<strong>on</strong>g>and</str<strong>on</strong>g>re for Idmi zelle, folare recommended:1) The areas for ofgazelle should a source of <str<strong>on</strong>g>water</str<strong>on</strong>g>a ial trees (such as acacia .) .Sucharegazel r as the <str<strong>on</strong>g>water</str<strong>on</strong>g> would regulate the an l's body<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> ba<str<strong>on</strong>g>and</str<strong>on</strong>g> the trees wouldprovide food <str<strong>on</strong>g>and</str<strong>on</strong>g> shelters.2) Ana ing the f I thenutrvalue in Idmi3) Assessing ityareas.4) Studying food <str<strong>on</strong>g>and</str<strong>on</strong>g> feeding behaviour Idmi, into the other of iour.The above stud the basi re zelawould help inIn this study<str<strong>on</strong>g>and</str<strong>on</strong>g>zelle iswere not measured. A study all bloodincluding these two horm<strong>on</strong>es in Idmi


139REFERENCESAbdelatif, A.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahmed, M.M.M. (1993).,..., .... ·0("'{1 lati<strong>on</strong> I <str<strong>on</strong>g>water</str<strong>on</strong>g> lancec<strong>on</strong>stituents in Sudanese desert: resp<strong>on</strong>sesto <str<strong>on</strong>g>and</str<strong>on</strong>g> solar i<strong>on</strong>. of Arid,25:387-395.Abdelatif,A.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> ,M.M. (1994) Waterrestr i<strong>on</strong> f, bloodc<strong>on</strong>stituents <str<strong>on</strong>g>and</str<strong>on</strong>g> endocrinein Sudanesedesert sheep.of Arid Envir<strong>on</strong>ments,26:171-180.Al ,K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Thou I C.R.(1988). Tax<strong>on</strong>omy ofzelles at Thumamah . Unpubllid wildliCentre, Riyadh.pp:25-39.Ali, K.E., Mu<strong>sa</strong>, H.M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Dume, I. D., (1982). Totalbody <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ec<strong>on</strong>omy camels,<str<strong>on</strong>g>and</str<strong>on</strong>g> desert sheep during <str<strong>on</strong>g>water</str<strong>on</strong>g><strong>sa</strong>v.. Pharmac.18: 229-236.D. (1974) .Notes <strong>on</strong> the lati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> biomass mounta Ie, Ga lagazella la. Israel Zool , 23:39-44., D. (1983). Observat <strong>on</strong> ecolmountain zelle in the Galilee, Israel.Mammal I 47:59-69.


140 Brown, G.D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Lynch, J.J. (1972). Some aspects ofthe <str<strong>on</strong>g>water</str<strong>on</strong>g> balance of sheep at pasture whendeprived of drinking <str<strong>on</strong>g>water</str<strong>on</strong>g>.Aust. J. Agric. Res.23:669-684.Choshniak, 1., <str<strong>on</strong>g>and</str<strong>on</strong>g> Shkolnik, A. (1977). Rapidrehydrati<strong>on</strong> in the black bedouin goats: red bloodcells fragility <str<strong>on</strong>g>and</str<strong>on</strong>g> role of the rumen.CompoBiochem. Physiol. 56A:581-583.Choshniak,I., Wittenberg, C., Rosenfeld, J., <str<strong>on</strong>g>and</str<strong>on</strong>g>Shkolnik, A. (1984). Rapid rehydrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> kidneyfuncti<strong>on</strong> in the black bedouin goat. Physiol.Zool. 57(5) :573-579.Cloudsley-Thomps<strong>on</strong> , J. L. (1969). Adaptati<strong>on</strong> to dryheat: vertebrates. Zoology of Tropical Africa.Weidenfeld <str<strong>on</strong>g>and</str<strong>on</strong>g> Nicols<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>, pp:289-290.Daws<strong>on</strong>, R.W., Pinshow, B., Bartholomow, G.A., Seely,M.K., Shkolnik, A., Shoemaker, V.H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Teeri,J.A. (1989). What's special about thephysiOlogical ecology of desert organisms.Journal of Arid Envir<strong>on</strong>ments, 17: 131-143.Degen, A.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Young, B.A. (1981). Effect of airtemperature <str<strong>on</strong>g>and</str<strong>on</strong>g> feed intake of live weight <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>water</str<strong>on</strong>g> balance in sheep. J. Agri. sci., Camb.96:493-496.Dunham ,K. , Kichsnside, T. ,Lind<strong>sa</strong>y, N ,Rietkerk , F.<str<strong>on</strong>g>and</str<strong>on</strong>g> Williams<strong>on</strong>, D. (1993). The reintroducti<strong>on</strong> ofmountain gazelle Gazella gazella in Saudi Arabia .


141 Unpubl. NCWCD,Gary, P,C' I , E.R., <str<strong>on</strong>g>and</str<strong>on</strong>g> Dorsi, H. (1979).Physiolog 1 a i<strong>on</strong>s in the horsefood <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g>ng perofenvir<strong>on</strong>mental temperatures. Am. JournalVet. Res. 40:982-985.Gauthier-Pilters, H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Dagg, A.I., (1981). Thecamel,<str<strong>on</strong>g>and</str<strong>on</strong>g>relati<strong>on</strong>sh to man. ity of Chicagopress ChicagoL<strong>on</strong>d<strong>on</strong>.pp:50-76.Ghobrial, L.T. (1967). Physiolog 1 adaptati<strong>on</strong> ofdesert mammals. Ph.D. dissertati<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>.ial, L.T. (1970a). A study <strong>on</strong>of jerboa, dorcas gazelle, <str<strong>on</strong>g>and</str<strong>on</strong>g> thecamel in re to desert 1 Soc.L<strong>on</strong>d<strong>on</strong>, Proc.160:509-521.I, L.T. (1970b). reladorcas.Zool., 43:249-256.Ghobrial, L,T. (1974). Water<str<strong>on</strong>g>and</str<strong>on</strong>g> requirementof the dorcas zel in Sudan. ia,38 (1):88-10l.I, L.r. {1976}. <strong>on</strong> iSea <str<strong>on</strong>g>water</str<strong>on</strong>g> by the dorcas ga Ie. Mammalia, 40(3): 489-494.Ghobr 1, L.I. Clouds J.L. (1966).fect of <str<strong>on</strong>g>deprivati<strong>on</strong></str<strong>on</strong>g> of <str<strong>on</strong>g>water</str<strong>on</strong>g> <strong>on</strong> thezelle. Na ,212:306.


142 Gowenlock, A.H. (1988). Practical clinicalbiochemistry. Heinemann Medical Books, L<strong>on</strong>d<strong>on</strong>,6th. ed.Grenot, C.J. (1992). Ecophysiological characteristicsof large herbivorous mammals in arid Africa <str<strong>on</strong>g>and</str<strong>on</strong>g>the Middle East. Journal of Arid Envir<strong>on</strong>ments.23:125-155.Greth, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Williams<strong>on</strong>, D.(1994). Gazellec<strong>on</strong>servati<strong>on</strong> in the Arabian peninsula. Proceedingof the symposium "Establishing priorities forgazelle c<strong>on</strong>servati<strong>on</strong> in the Arabian peninsula"NCWCD Riyadh. pp:27.Greth, A., williams<strong>on</strong>, D., Groves, C., Schwede, G.,<str<strong>on</strong>g>and</str<strong>on</strong>g> Vas<strong>sa</strong>rt, M., (1993). Bilkis gazelle in Yemen- status <str<strong>on</strong>g>and</str<strong>on</strong>g> tax<strong>on</strong>omic relati<strong>on</strong>ships. Oryx , 27(4): 239-244.Groves, C.P. (1988). A catalogue of the genus Gazella.In c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> biology of desert antelopes.Christopher Helm, L<strong>on</strong>d<strong>on</strong>. pp: 193-198.Gr.OVGS,C.P. (1989). 'l'he Gazelles of the l\rabiilllpeninsula. wildlife c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> developmentin Saudi Arabia. NCWCD.Publ. No.3:237-248.Groves, C.P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Harris<strong>on</strong>, D.L. (1967). The tax<strong>on</strong>omyof the gazelles (Genus Gazella) of Arabia.J. Zool.152:381-387.Groves, C.P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Lay, D.M.(1985). A new species ofthe genus Gazella (Mammalia: Artiodactyla:Bovidae) from the Arabian peninsula. Mammalia 49:


143 27-36.Ha if K. (1989). am<strong>on</strong>g threezel s in captivity.Fauna of Saudi 10:449-454.Hab , K. (1992). ive of theFara<strong>sa</strong>n gazelle Gazella gazella. Journalof d Envir<strong>on</strong>ments, '23: 351-353.I G., <str<strong>on</strong>g>and</str<strong>on</strong>g> El-Husse i, M., (1974). The adrenalcortex <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> in desert rodents .Compo • 47(1):351. , D. L.<str<strong>on</strong>g>and</str<strong>on</strong>g> Bates, P.J. (1991). The mammals ofa.Sec<strong>on</strong>d it I Museumi<strong>on</strong>. pp: 193-203., R.J. (1974). in 1 <str<strong>on</strong>g>and</str<strong>on</strong>g>techn I MD: <str<strong>on</strong>g>and</str<strong>on</strong>g> Row. 2nd Ed.Ja N.C. (1986). schalm's veterinary haematology.Lea <str<strong>on</strong>g>and</str<strong>on</strong>g> Fbe4th ed:20-86.la, Y.V., Gi I R.H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bhagwat, A.M. (1992).<str<strong>on</strong>g>water</str<strong>on</strong>g> in the ecologyblackbuck. Journal ofts, 22:261-269./ W. Sansom, B.F., Manst<strong>on</strong>, R Al , W.M.(1976). Ef idairy cows up<strong>on</strong> <str<strong>on</strong>g>their</str<strong>on</strong>g> milk yield, body weblood compos i<strong>on</strong>. Anim. Prod. 22:329-339.Livi , H.G., W.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fri I M.T. (1962).Urea excret . Nature, 194: 1057­1058.Louw, G. (1993). Phys log 1 animal ecology. L<strong>on</strong>gman


144(;l-Ollp ltd. mc pp: 1-20,91-93 <str<strong>on</strong>g>and</str<strong>on</strong>g> 17.3 JAO.Louw, G.N., <str<strong>on</strong>g>and</str<strong>on</strong>g> , M.K. (1982). Eco of desertisms.L<strong>on</strong>d<strong>on</strong>:L<strong>on</strong>gman group Ltd.pp:6-22 <str<strong>on</strong>g>and</str<strong>on</strong>g>56-84.Macfarlane, W. V. I R.J.H" B. IMacd<strong>on</strong>ald, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Budtz-Olsen, O.E. (1961). Water<str<strong>on</strong>g>and</str<strong>on</strong>g> e in 1 merinoexposed to dehydrati<strong>on</strong> during summer. • J.c. Res. ,12:880-912.Maltz, E. f Olss<strong>on</strong>, K., Glick, M., Fyhrquist, F"Shan , N. I Choshniak, L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Shkolink, A.(1984) . to <str<strong>on</strong>g>water</str<strong>on</strong>g>depr i<strong>on</strong> or haemorrhage in lactat <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>lactatbedouin . Compo Biochem. 01.77A., 1:79-84.Minitab l Inc. (1989). Data ana software release7.2 - st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard versi<strong>on</strong>.Southampt<strong>on</strong> University,1 # 711-0043-011758.Mohamed, M.(1986).Some <str<strong>on</strong>g>effect</str<strong>on</strong>g>s of <str<strong>on</strong>g>water</str<strong>on</strong>g> deprivat<strong>on</strong> dorcas gazelSudan. M.V.Sc.la dorcasity of Khartoum.Mohamed, S.A., Abbas, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Saleh, M.(1991). Naturald of the Arabian zel ,Gazellasubgutturo<strong>sa</strong>ca. Journal ofEnvir<strong>on</strong>men 20: 371-374.Mohammed, S.M., Ali, B.H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Has<strong>sa</strong>n, T. (1988). Somefects i<strong>on</strong> <strong>on</strong> gazel ( ladorcas). in the Sudan. Compo


145 90A (2): 225-228.Mu<strong>sa</strong>, H.M. (1978). Some biochemical ofin camels, desert<str<strong>on</strong>g>and</str<strong>on</strong>g> desert. M.V.Sc.D i<strong>on</strong>, L<strong>on</strong>d<strong>on</strong> .Nader, I,A. (1989). Rare <str<strong>on</strong>g>and</str<strong>on</strong>g> endangered mammals ofSaudi Arabia.wildlife c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>deve t in Saudi . NCWCD. Pub. No.3.:220-233.Osman, H.L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fadlalla, B.(1974). The <str<strong>on</strong>g>effect</str<strong>on</strong>g> oflevel of <str<strong>on</strong>g>water</str<strong>on</strong>g> intake <strong>on</strong> someofdigest <str<strong>on</strong>g>and</str<strong>on</strong>g> n metabolism of the desertof the Sudan. J. c. ., Camb., 82:61-69.Roperts<strong>on</strong>, G., Shelr<strong>on</strong>, R., <str<strong>on</strong>g>and</str<strong>on</strong>g> Athar, S. (1976).in. Kidney .,10:25-37.Isen, K., Crawford, E.C., Newsome,A.E.,Raws<strong>on</strong>, K.S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Hammel, H.T. (1967). Metabolrate of Camels: <str<strong>on</strong>g>effect</str<strong>on</strong>g> body <str<strong>on</strong>g>and</str<strong>on</strong>g>dehydrati<strong>on</strong>. Am. J. Physial., 212(2): 341-346., J.c., Walt, I.V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mitchell, G. (1993).Efaf dehydrati<strong>on</strong> <strong>on</strong> theflu in of AridEnvir<strong>on</strong>men . 24: 397 08.1, R.i H. (1988). Functi<strong>on</strong>al 1<strong>on</strong> some . M.Sc. , KAU,pp:152- 3 ,196-211 236.lor, C.R. (1970a). ef <strong>on</strong>


146 regulati<strong>on</strong> of eastungulates.Am. J. Physio., 218 (4): 1136-1139.Taylor, C.R. (1970b). strategies ofi<strong>on</strong>; <strong>on</strong> <strong>on</strong> east Afrungulates. Am. J. Physio., 219:1131 1135.C.R.(1972). The desert gazelle: aresolved. um the ogi Society ofL<strong>on</strong>d<strong>on</strong>, 31:215-227., C. R., Sp , C.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> I C.P. (1969).Water relati<strong>on</strong>s of <str<strong>on</strong>g>water</str<strong>on</strong>g>buck, an east Africanantelope. Am. J. Physio., 217(2): 630-634.Thouless, C.H. <str<strong>on</strong>g>and</str<strong>on</strong>g> AI-Basri, K. (1991). 'l'ax<strong>on</strong>omicstatus of the Fara<strong>sa</strong>nzelle. J. Zool.. 151-159.Thouless, C.R., J .G. , M" <str<strong>on</strong>g>and</str<strong>on</strong>g>i , K. (1991). C<strong>on</strong>servat status ofzelles in Saudiological C<strong>on</strong>servati<strong>on</strong>58: 85-98. IN., W.(1987). of cl 1 chemistry. W.B. Saunders company, Harcourt Brace Jovanovich, Inc.:450-451. Umunna, N.N; Chineme, C.N; Saror, D.T., Ahmed, A. <str<strong>on</strong>g>and</str<strong>on</strong>g>Abed, S. (1981). tovar of <str<strong>on</strong>g>water</str<strong>on</strong>g> . J. c.sci. Camb. 96: 619-622.lliams<strong>on</strong>, D.T. <str<strong>on</strong>g>and</str<strong>on</strong>g> ima, E. (1990). Water intakeof Arabian gazelles. Journal of Aridts I 21: 371-378.


147 Williams<strong>on</strong>, D.T., Tatwany, H., Rietkerk, F.E., Delima,E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Lind<strong>sa</strong>y, N. (1992). <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> liabilityi.nthe Arabian s<str<strong>on</strong>g>and</str<strong>on</strong>g> gazelle. "ONGULESjUNGULl\.TES91" Proceeding of the Internati<strong>on</strong>al Symposium.Toulouse univ. pp: 349-352.Wils<strong>on</strong>, R.T. (1984). The camel. L<strong>on</strong>gman Group Ltd.pp:69-82.Yagil, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Etzi<strong>on</strong>, Z.(1979). The role ofantidiuretic horm<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> aldoster<strong>on</strong>e in thedehydrated <str<strong>on</strong>g>and</str<strong>on</strong>g> rehydrated camel. Comp o Biochem.PhysioI., 63:275.Zari, T. <str<strong>on</strong>g>and</str<strong>on</strong>g> Al-Hazmi, M.(1993). The body temperature<str<strong>on</strong>g>and</str<strong>on</strong>g> behaviour of the Arabian camel, CameIusdromedarius 1. in Jeddah, Saudi Arabia. BioI.Sci., 2:3-12.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!