12.07.2015 Views

Pro-oxidant activity of vitamin C in drinking water ... - Åbo Akademi

Pro-oxidant activity of vitamin C in drinking water ... - Åbo Akademi

Pro-oxidant activity of vitamin C in drinking water ... - Åbo Akademi

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Pro</strong>-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>:role <strong>of</strong> copper, iron and bicarbonatePatric J. JanssonDepartment <strong>of</strong> Biochemistry and PharmacyÅbo <strong>Akademi</strong> UniversityTurku, F<strong>in</strong>land2006


<strong>Pro</strong>-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>:role <strong>of</strong> copper, iron and bicarbonatePatric J. JanssonDepartment <strong>of</strong> Biochemistry and PharmacyÅbo <strong>Akademi</strong> UniversityTurku, F<strong>in</strong>land2006


Supervised byDocent Tommy NordströmDepartment <strong>of</strong> Biochemistry and PharmacyÅbo <strong>Akademi</strong> UniversityTurku, F<strong>in</strong>landReviewed by<strong>Pro</strong>fessor Mikko Nik<strong>in</strong>maaDepartment <strong>of</strong> BiologyUniversity <strong>of</strong> TurkuTurku, F<strong>in</strong>landandDocent Harri HemiläDepartment <strong>of</strong> Public HealthUniversity <strong>of</strong> Hels<strong>in</strong>kiHels<strong>in</strong>ki, F<strong>in</strong>landOpponent<strong>Pro</strong>fessor Ulf BrunkDivision <strong>of</strong> Pharmacology, Faculty <strong>of</strong> Health SciencesL<strong>in</strong>köp<strong>in</strong>g UniversityL<strong>in</strong>köp<strong>in</strong>g, SwedenCover art: Brian S. Kiss<strong>in</strong>ger, ”Bubbles”, 2006. Copyrighted ©ISBN 952-12-1786-3Pa<strong>in</strong>osalama Oy – Turku, 2006


Everyth<strong>in</strong>g is poison, it just depends on the doseParacelsusTo my familyGabi and Jacob<strong>in</strong>a


ContentsCONTENTSLIST OF ORIGINAL PUBLICATIONS 1CONTRIBUTION OF THE AUTHOR 2ACKNOWLEDGEMENTS 3ABBREVIATIONS 5INTRODUCTION 6REVIEW OF THE LITERATURE 71. Vitam<strong>in</strong> C – ascorbic acid – ascorbate 71.1. Vitam<strong>in</strong> C deficiency and scurvy 71.2. Vitam<strong>in</strong> C - an important enzymatic c<strong>of</strong>actor 81.3. Effects <strong>of</strong> <strong>vitam<strong>in</strong></strong> C supplementation 81.4. Sources and recommended dietary allowance <strong>of</strong> <strong>vitam<strong>in</strong></strong> C 92. Free radicals, reactive oxygen and nitrogen species 112.1. Vitam<strong>in</strong> C – an anti<strong>oxidant</strong> with free radical scaveng<strong>in</strong>g properties 122.2. The role <strong>of</strong> iron and copper <strong>in</strong> human health 162.3. Ascorbic acid as a pro-<strong>oxidant</strong> <strong>in</strong> the Fenton reaction 172.4. The re<strong>activity</strong> <strong>of</strong> hydrogen peroxide and hydroxyl radicals 193. Dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 213.1. Dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> impurities and Maximum Contam<strong>in</strong>ant Level (MCL) 213.2. The role <strong>of</strong> bicarbonate and pH <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 233.3. Copper <strong>in</strong>take from dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 24AIMS OF THE PRESENT STUDY 26EXPERIMENTAL PROCEDURES 271. Materials 272. Hydroxyl radical and hydrogen peroxide detection <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 272.1. Measurement <strong>of</strong> <strong>vitam<strong>in</strong></strong> C-<strong>in</strong>duced hydroxyl radical formation withcoumar<strong>in</strong>-3-carboxylic acid as a detector molecule 272.2. Measurement <strong>of</strong> hydroxyl radical formation us<strong>in</strong>g plasmid DNA 292.3. Measurement <strong>of</strong> hydroxyl radical formation by HPLC analysis 292.4. Measurement <strong>of</strong> <strong>vitam<strong>in</strong></strong> C-<strong>in</strong>duced hydrogen peroxide formation us<strong>in</strong>gthe FOX assay 29


Contents3. Copper, iron and anion measurements <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples 303.1. Measurement <strong>of</strong> copper us<strong>in</strong>g diethyldithiocarbamic acid 303.2. Measurement <strong>of</strong> iron us<strong>in</strong>g ferroz<strong>in</strong>e 303.3. Measurement <strong>of</strong> bicarbonate and chloride us<strong>in</strong>g anion exchange HPLC 314. Detection <strong>of</strong> ascorbic acid and its degradation products <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 314.1. Measurement <strong>of</strong> ascorbic acid and its degradation products us<strong>in</strong>g HPLC 314.2. Measurement <strong>of</strong> dehydroascorbic acid with o-phenylenediam<strong>in</strong>e 32RESULTS 331. Vitam<strong>in</strong> C <strong>in</strong>duces hydroxyl radicals <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [Paper I] 332. Ascorbic acid <strong>in</strong>duced hydroxyl radical formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> is dependenton copper ions and bicarbonate [Paper II] 333. Oxidative decomposition <strong>of</strong> ascorbic acid <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [Paper III] 354. Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxyl radical formation can be <strong>in</strong>hibitedby iron [Paper IV] 365. Ascorbic acid-<strong>in</strong>duced hydrogen peroxide accumulation <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>– <strong>in</strong>teraction between copper, iron and bicarbonate [Paper V] 37DISCUSSION 391. Vitam<strong>in</strong> C (Ascorbic acid) <strong>in</strong>duces hydroxyl radicals and hydrogen peroxide <strong>in</strong>copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 392. The concentration <strong>of</strong> bicarbonate and pH regulate whether <strong>vitam<strong>in</strong></strong> C catalyzeshydroxyl radical or hydrogen peroxide formation <strong>in</strong> copper-contam<strong>in</strong>ateddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 402.1. Vitam<strong>in</strong> C catalyzes the formation <strong>of</strong> hydroxyl radicals <strong>in</strong> stronglybicarbonate-buffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 402.2. Vitam<strong>in</strong> C catalyzes the formation <strong>of</strong> hydrogen peroxide <strong>in</strong> weaklybicarbonate-buffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 423. Iron <strong>in</strong>hibits <strong>vitam<strong>in</strong></strong> C (ascorbic acid) <strong>in</strong>duced hydroxyl radical formation andhydrogen peroxide accumulation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 434. Rapid decomposition <strong>of</strong> <strong>vitam<strong>in</strong></strong> C (ascorbic acid) <strong>in</strong> bicarbonate-bufferedcopper contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 45CONCLUSIONS 47REFERENCES 49


List <strong>of</strong> orig<strong>in</strong>al publicationsLIST OF ORIGINAL PUBLICATIONSThe thesis is based on the follow<strong>in</strong>g orig<strong>in</strong>al publications, which are referred to <strong>in</strong> the textby the Roman numerals I-V.I. Measurement <strong>of</strong> ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced hydroxyl radicalgeneration <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.Asplund, K.U.M., Jansson, P.J., L<strong>in</strong>dqvist, C. and Nordström, T.Free Rad Res. (2002) 36(12), 1271-1276.II.Vitam<strong>in</strong> C (ascorbic acid) <strong>in</strong>duced hydroxyl radical formation <strong>in</strong> coppercontam<strong>in</strong>atedhousehold dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>: Role <strong>of</strong> bicarbonateconcentration.Jansson, P.J., Asplund, K.U.M., Mäkelä, J.C., L<strong>in</strong>dqvist, C. and Nordström, T.Free Rad Res. (2003) 37(8), 901-905.III.Oxidative decomposition <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.Jansson P.J., Jung H.R., L<strong>in</strong>dqvist C. and Nordström T.Free Rad Res. (2004) 38(8), 855-860.IV.Effects <strong>of</strong> iron on <strong>vitam<strong>in</strong></strong> C/copper-<strong>in</strong>duced hydroxyl radical generation<strong>in</strong> bicarbonate-rich <strong>water</strong>.Jansson P.J., Castillo U.D., L<strong>in</strong>dqvist C. and Nordström T.Free Rad Res. (2005) 39(5), 565-570.V. Iron prevents ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced hydrogen peroxideaccumulation <strong>in</strong> copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.Jansson P.J., L<strong>in</strong>dqvist C. and Nordström T.Free Rad Res. (2005) 39(11), 1233-1239.The orig<strong>in</strong>al publications have been repr<strong>in</strong>ted with the k<strong>in</strong>d permission <strong>of</strong> the copyrightholder Taylor & Francis, http://www.tandf.co.uk/journals.1


Contribution <strong>of</strong> the authorCONTRIBUTION OF THE AUTHORThe experimental work <strong>in</strong> the thesis was planned and conducted by the author togetherwith docent Tommy Nordström, with the follow<strong>in</strong>g aid from the co-authors.Klara U. M. Asplund performed most <strong>of</strong> the experiments <strong>in</strong> paper I.In paper II, Johanna C. Mäkelä assisted with the bicarbonate experiments.In paper III, Hye R. Jung measured dehydroascorbic acid formation <strong>in</strong> <strong>vitam<strong>in</strong></strong> Csupplemented dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>s with o-phenylenediam<strong>in</strong>e.In paper IV, Urko del Castillo helped with hydroxyl radical detection <strong>in</strong> <strong>vitam<strong>in</strong></strong>supplemented dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples.2


AcknowledgementsACKNOWLEDGEMENTSThis study was carried out at the Department <strong>of</strong> Biochemistry and Pharmacy at Åbo<strong>Akademi</strong> University, dur<strong>in</strong>g the years 2003-2006. I wish to express my s<strong>in</strong>cere gratitude toall the staff at the department. I would especially like to thank <strong>Pro</strong>fessor J. Peter Slotte and<strong>Pro</strong>fessor Mark Johnson for their positive attitude toward my work dur<strong>in</strong>g my years at thedepartment. Thank you to Jussi Meriluoto, Elsmarie Nyman, Pirkko Luoma and AllanNurmi for help<strong>in</strong>g with problems when needed.I would like to thank my supervisor, Docent Tommy Nordstöm for <strong>in</strong>troduc<strong>in</strong>g me to afield <strong>in</strong> science that I have found very reward<strong>in</strong>g. You have been very positive, <strong>in</strong>spir<strong>in</strong>gand full <strong>of</strong> encouragement. It has been a joy work<strong>in</strong>g with you.<strong>Pro</strong>fessor Mikko Nik<strong>in</strong>maa and Docent Harri Hemilä reviewed this thesis and theirsuggestions and constructive criticism are gratefully acknowledged.I also wish to thank my co-authors Christer L<strong>in</strong>dqvist, Klara Asplund, Hye R. Jung, Urkodel Castillo and others that have contributed to this study. Not only have you been <strong>of</strong> helpwith the work <strong>in</strong> this study, but you have also been very pleasant to work with. In addition,I want to thank Christer L<strong>in</strong>dqvist for tak<strong>in</strong>g the time to give me constructive criticism onthe thesis.Over the years I have also been privileged to work with many other people <strong>in</strong> our researchgroup. There were many, but some <strong>of</strong> you I had more time to get to know: MattiasPyykkönen, Göran Sundblom, Malena Sandberg, Katja Kallio, Pia Varjo and KlaraAsplund, Thank you all for contribut<strong>in</strong>g to a good work<strong>in</strong>g environment and muchlaughter, someth<strong>in</strong>g which I feel is so important for success.I got to know a lot <strong>of</strong> great people dur<strong>in</strong>g my years at the department. It has been apleasure, Katr<strong>in</strong> Hall<strong>in</strong>g, Matts Nylund, Daniel Wiik, Santeri Puranen, Robert Heczko,Bohdana Heczková, Fredrik Ollila, Thomas Nylund, Krister Karlsson, Jessica Tuuf, GunWest, Jeanette Wikman, Monica Essen-Huhtala, Jonas Vähä-Koskela, Sussi Grönberg-Vähä-Koskela, Susanna Repo, Annette Westerlund, Pia Vesterkvist, Benny Björkblom andTomas Blom. We have all been <strong>in</strong> the same boat, struggl<strong>in</strong>g through good and bad times.I want to extend my gratitude to my mother and father, Christ<strong>in</strong>a and Karl Johan. Youhave always been there for me and that is especially important dur<strong>in</strong>g the hard times. I am3


Acknowledgementsalso very grateful to my brother Rasmus and sister L<strong>in</strong>a for all the support you have givenme.Most importantly, I want to thank my wife and daughter, the two angels liv<strong>in</strong>g <strong>in</strong> my home.You Gabi, br<strong>in</strong>g out the best <strong>in</strong> me and that has been important for me dur<strong>in</strong>g this time.Thank you, Jacob<strong>in</strong>a for com<strong>in</strong>g <strong>in</strong>to my life, it has been very reward<strong>in</strong>g to see life throughyour eyes.This study was f<strong>in</strong>anced by the Foundation <strong>of</strong> Åbo <strong>Akademi</strong>, the K. Alb<strong>in</strong> JohanssonFoundation, Magnus Ehrnrooth Foundation, Svenska Kulturfonden, Svenska ÖsterbottensKulturfond, Svensk-Österbottniska Samfundet, Waldemar von Frenkells Foundation, andMedic<strong>in</strong>ska Understödsfören<strong>in</strong>gen Liv och Hälsa, to all <strong>of</strong> which I express my gratitude.4


AbbreviationsABBREVIATIONSAsc ………… AscorbateAsc • ………… Ascorbate radical (protonated)Asc •− ………… Ascorbate radical (deprotonated, semi-dehydroascorbateradical)DHA ………… Dehydroascorbic acidDTT ………… DithiothreitolEDTA ………… Ethylenediam<strong>in</strong>etetraacetic acidFe 2+ ………… Ferrous ironFe 3+ ………… Ferric ironHPLC ………… High-performance liquid chromatographyH 2O 2 ………… Hydrogen peroxideMCL ………… Maximum contam<strong>in</strong>ant levelMilli-Q <strong>water</strong> ………… Distilled <strong>water</strong>, ion-freeNADH ………… Reduced form <strong>of</strong> nicot<strong>in</strong>amide aden<strong>in</strong>e d<strong>in</strong>ucleotide (NAD)NTA ………… Nitrilotriacetic acidOH • ………… Hydroxyl radical7-OHCCA ………… 7-hydroxycoumar<strong>in</strong>-3-carboxylic acidODS rats ………… Osteogenic Disordered Shiongi ratsRNS ………… Reactive nitrogen speciesROS ………… Reactive oxygen speciesSOD ………… Superoxide dismutaseTRIS base ………… Tris (hydroxymethyl)-am<strong>in</strong>omethane5


IntroductionINTRODUCTIONVitam<strong>in</strong> C (ascorbic acid) is a <strong>water</strong>-soluble anti<strong>oxidant</strong> and <strong>vitam<strong>in</strong></strong>, essential for humanhealth. Vitam<strong>in</strong> C is an important c<strong>of</strong>actor for many enzymes and <strong>vitam<strong>in</strong></strong> C also <strong>in</strong>creasesthe absorption <strong>of</strong> iron from the gut. Humans cannot synthesize or store <strong>vitam<strong>in</strong></strong> C and aretherefore dependent on <strong>vitam<strong>in</strong></strong> C through diet. In <strong>vitam<strong>in</strong></strong> C deficiency, collagen is notsynthesized normally, which ultimately leads to the symptoms <strong>of</strong> scurvy. 1The anti<strong>oxidant</strong> effects <strong>of</strong> <strong>vitam<strong>in</strong></strong> C have ma<strong>in</strong>ly been reported <strong>in</strong> <strong>in</strong> vitro studies on cells. 2In these studies, ascorbic acid has been shown to be a potent free radical scavenger that canprotect cells aga<strong>in</strong>st UV- or radiation-<strong>in</strong>duced apoptosis. 3 Despite the claimed positiveeffects <strong>of</strong> <strong>vitam<strong>in</strong></strong> C observed <strong>in</strong> <strong>in</strong> vitro studies, concerns have been raised due to its pro<strong>oxidant</strong>effect <strong>in</strong> the presence <strong>of</strong> transition metals. It has been demonstrated that <strong>vitam<strong>in</strong></strong> C(ascorbic acid) can, <strong>in</strong> the presence <strong>of</strong> transition metal ions such as Cu 2+ and Fe 3+ , functionas a strong pro-<strong>oxidant</strong>. 4-7 Thus, <strong>in</strong> the presence <strong>of</strong> transition metals, <strong>vitam<strong>in</strong></strong> C cangenerate harmful reactive oxygen species (ROS) <strong>in</strong>stead <strong>of</strong> protect<strong>in</strong>g aga<strong>in</strong>st them. Therelevance <strong>of</strong> the pro-<strong>oxidant</strong> activities <strong>of</strong> <strong>vitam<strong>in</strong></strong> C and the safety <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>take forhumans is still a matter for discussion. 6, 8-11Water is necessary for all life and humans must dr<strong>in</strong>k <strong>water</strong> frequently to ma<strong>in</strong>ta<strong>in</strong> theirfluid requirement. However, dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> can conta<strong>in</strong> impurities, such as metal ions,from natural and man-made sources. For this purpose, the pro-oxidative properties <strong>of</strong><strong>vitam<strong>in</strong></strong> C were studied <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. This is <strong>of</strong> importance, as <strong>in</strong>creased consumption<strong>of</strong> <strong>vitam<strong>in</strong></strong> C through <strong>vitam<strong>in</strong></strong> tablets and <strong>vitam<strong>in</strong></strong> supplemented food products might be<strong>in</strong>gested with metal-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The ma<strong>in</strong> focus <strong>of</strong> this study was to lookfor the physiological milieu that might trigger <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced formation <strong>of</strong> ROS(hydroxyl radicals and hydrogen peroxide (H 2O 2)) <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.6


Review <strong>of</strong> the literatureREVIEW OF THE LITERATURE1. Vitam<strong>in</strong> C – ascorbic acid - ascorbateVitam<strong>in</strong> C is a weak acid and a highly <strong>water</strong>-soluble molecule. Ascorbic acid (C 6H 8O 6) isthe trivial name for <strong>vitam<strong>in</strong></strong> C, while the chemical name, very seldom used <strong>in</strong> the literature,is 2-oxo-L-threo-hexono-1,4-lactone-2,3-enediol or 2-(1,2-dihydroxyethyl)-4,5-dihydroxyfuran-3-one(IUPAC). Biologically it is the L-enantiomer <strong>of</strong> ascorbic acid that is active,while the D-enantiomer shows much lower biological <strong>activity</strong>. 12 Ascorbic acid is the acidicform <strong>of</strong> <strong>vitam<strong>in</strong></strong> C hav<strong>in</strong>g two ionizable –OH groups, with pKa values <strong>of</strong> 4.25 and 11.8. Atphysiological pH, the mono-anion is favoured and therefore ascorbic acid is usuallyreferred to as ascorbate (salt) <strong>in</strong> the literature (Figure 1).HOHOOOHOOpKa 1 = 4.25 HOO pKa 2 = 11.8HOHOOOHO OH_O OH_O_OAscorbic acid Ascorbate Ascorbate dianionFigure 1. Forms <strong>of</strong> <strong>vitam<strong>in</strong></strong> C at various pH1.1. Vitam<strong>in</strong> C deficiency and scurvyThe history <strong>of</strong> <strong>vitam<strong>in</strong></strong> C is largely the history <strong>of</strong> the human disease scurvy, one <strong>of</strong> the firstnutritional deficiency diseases recorded. 13-16 The symptoms <strong>of</strong> scurvy were marked byanaemia, weakness, spongy gums, oedema, <strong>of</strong>ten with open sores <strong>in</strong> the mouth, andloosen<strong>in</strong>g <strong>of</strong> the teeth, bleed<strong>in</strong>g <strong>in</strong> the mucous membranes, and hard bumps <strong>in</strong> the muscles<strong>of</strong> the legs. In 1566, the Dutch physician Ronsseus <strong>in</strong>structed sailors to consume oranges toprevent scurvy. In 1639, John Woodall, a lead<strong>in</strong>g physician <strong>in</strong> England, recommendedlemon juice to treat scurvy. Later a Scottish naval surgeon, James L<strong>in</strong>d, conducted acontrolled trial add<strong>in</strong>g oranges and lemons to the sailors’ diet. The positive observed effect<strong>of</strong> lemons and oranges on scurvy <strong>in</strong> L<strong>in</strong>d’s trial led to the <strong>in</strong>creased usage <strong>of</strong> lemons andoranges <strong>in</strong> the diet <strong>of</strong> sailors on Capta<strong>in</strong> James Cook’s second voyage around the world.However, it was not until 1795 that all sailors <strong>in</strong> England were ordered to <strong>in</strong>gest lemon7


Review <strong>of</strong> the literaturejuice daily. It was later found that <strong>vitam<strong>in</strong></strong> C (ascorbic acid) was the active substance <strong>in</strong> theoranges and lemons that prevented scurvy. With scurvy also came the belief that <strong>vitam<strong>in</strong></strong> Ccould function as an anti<strong>oxidant</strong> protect<strong>in</strong>g aga<strong>in</strong>st oxidation, as the name ascorbate(antiscorbutic) implies. Vitam<strong>in</strong> C was first isolated from cabbages, oranges and adrenalglands by Szent-Györgyi <strong>in</strong> 1928. 15, 17, 181.2. Vitam<strong>in</strong> C - an important enzymatic c<strong>of</strong>actorLater it was found that ascorbic acid is a crucial c<strong>of</strong>actor for many enzymes. Withoutascorbic acid, prol<strong>in</strong>e hydroxylase and lys<strong>in</strong>e hydroxylase cannot hydroxylate collagen. 1, 19, 20This leads to reduced formation <strong>of</strong> collagen fibres, which gives rise to poor wound heal<strong>in</strong>gand fragile blood vessels. The collagen fibres strengthen the connective tissues <strong>in</strong> the bloodvessels, sk<strong>in</strong>, teeth and skeleton. Nowadays, scurvy is a very rare condition, as the quality <strong>of</strong>food <strong>in</strong>take has improved, i.e., more fruits and vegetables are consumed. In addition, manyfood products are nowadays fortified with <strong>vitam<strong>in</strong></strong>s and <strong>vitam<strong>in</strong></strong> C is a common dietarysupplement. 16Vitam<strong>in</strong> C is used as c<strong>of</strong>actor <strong>in</strong> the synthesis <strong>of</strong> noradrenal<strong>in</strong>e and carnit<strong>in</strong>e, tyros<strong>in</strong>emetabolism and amidation <strong>of</strong> peptide hormones. 1 In most <strong>of</strong> these <strong>vitam<strong>in</strong></strong> C-dependentenzymes, <strong>vitam<strong>in</strong></strong> C helps to ma<strong>in</strong>ta<strong>in</strong> the enzyme <strong>in</strong> its active form by keep<strong>in</strong>g the metal(copper and iron) <strong>in</strong> the active centre <strong>in</strong> the reduced form. 201.3. Effects <strong>of</strong> <strong>vitam<strong>in</strong></strong> C supplementationThe body has depots <strong>of</strong> <strong>vitam<strong>in</strong></strong> C but the <strong>vitam<strong>in</strong></strong> will eventually be depleted. The averageadult has a body pool <strong>of</strong> 1.0-2.0 grams <strong>of</strong> <strong>vitam<strong>in</strong></strong> C and the average half-life <strong>of</strong> <strong>vitam<strong>in</strong></strong> C isabout 10-20 days. 21, 22 Scurvy can be prevented with a <strong>vitam<strong>in</strong></strong> C <strong>in</strong>take <strong>of</strong> only 10mg/day. 20A high <strong>in</strong>take <strong>of</strong> <strong>vitam<strong>in</strong></strong> C is generally not believed to be harmful s<strong>in</strong>ce <strong>vitam<strong>in</strong></strong> C is a<strong>water</strong>-soluble compound that is not stored <strong>in</strong> the body and the excess <strong>in</strong>gested <strong>vitam<strong>in</strong></strong> isexcreted <strong>in</strong> the ur<strong>in</strong>e. However, diarrhoea is a directly observable symptom <strong>of</strong> overconsumption<strong>of</strong> <strong>vitam<strong>in</strong></strong> C. 11, 23 The Food and Nutrition Board, Institute <strong>of</strong> Medic<strong>in</strong>e, hasset 2000 mg as a tolerable upper limit for <strong>vitam<strong>in</strong></strong> C <strong>in</strong> healthy adults. 10, 118


Review <strong>of</strong> the literatureS<strong>in</strong>ce <strong>vitam<strong>in</strong></strong> C was identified as the antiscorbutic factor, high hopes have been raised forthis compound <strong>in</strong> the treatment <strong>of</strong> a variety <strong>of</strong> diseases, e.g. common colds and cancer.High <strong>in</strong>take doses <strong>of</strong> <strong>vitam<strong>in</strong></strong> C for general good health have historically beenrecommended, but the most attention was drawn to this by L<strong>in</strong>us Paul<strong>in</strong>g . 24 However, <strong>in</strong>the mid 80s researchers started to question Paul<strong>in</strong>g’s claim that <strong>vitam<strong>in</strong></strong> C might curecancer, 25 as cl<strong>in</strong>ical trials by Moertel et al. questioned the beneficial effects <strong>of</strong> <strong>vitam<strong>in</strong></strong> C oncancer treatment. 26 Nevertheless, the validity <strong>of</strong> the cl<strong>in</strong>ical study performed by Moertel etal. was criticized by Paul<strong>in</strong>g. 27 S<strong>in</strong>ce then, the benefits <strong>of</strong> high <strong>vitam<strong>in</strong></strong> C <strong>in</strong>take have beendebated.Many cl<strong>in</strong>ical studies have been undertaken to elucidate whether higher <strong>in</strong>takes <strong>of</strong> <strong>vitam<strong>in</strong></strong>C have a positive effect on different compla<strong>in</strong>ts and diseases. One such disputed topic hasbeen the role <strong>of</strong> <strong>vitam<strong>in</strong></strong> C as an aid <strong>in</strong> prevent<strong>in</strong>g and treat<strong>in</strong>g the “common cold”. So far,no clear-cut conclusion can be made as to whether a higher <strong>vitam<strong>in</strong></strong> C <strong>in</strong>take is favourable<strong>in</strong> prevent<strong>in</strong>g and treat<strong>in</strong>g colds. 28-30 However, studies with higher <strong>vitam<strong>in</strong></strong> C <strong>in</strong>take dur<strong>in</strong>gexercise have po<strong>in</strong>ted to beneficial effects <strong>in</strong> lower<strong>in</strong>g oxidative stress <strong>in</strong>dicators. 31Generally, the protective effect <strong>of</strong> <strong>vitam<strong>in</strong></strong> C has been attributed to its anti<strong>oxidant</strong>properties <strong>in</strong> vitro. Indeed, ascorbic acid has been proposed to have a beneficial effect onmany age-related diseases such as atherosclerosis, cancer, and some neurodegenerative andocular diseases. 32-37Concerns have been raised due to the observed pro-<strong>oxidant</strong> function <strong>of</strong> <strong>vitam<strong>in</strong></strong> C. 6, 8-10, 38-42These studies suggest that <strong>vitam<strong>in</strong></strong> C, <strong>in</strong> some conditions, could expose cells to <strong>in</strong>creasedoxidative stress. Furthermore, there have been reports that higher doses <strong>of</strong> <strong>vitam<strong>in</strong></strong> C could<strong>in</strong>duce haemolysis <strong>in</strong> glucose-6-phosphate dehydrogenase deficient patients. 43-451.4. Sources and recommended dietary allowance <strong>of</strong> <strong>vitam<strong>in</strong></strong> CIn plants and most animals, <strong>vitam<strong>in</strong></strong> C (ascorbic acid) is synthesized from glucose. Humans,gu<strong>in</strong>ea-pigs and other primates, on the other hand, are not able to synthesize <strong>vitam<strong>in</strong></strong> Cbecause the f<strong>in</strong>al enzyme (L-gulonolactone oxidase) <strong>of</strong> the <strong>vitam<strong>in</strong></strong> C synthesis pathway ismiss<strong>in</strong>g. Due to the absence <strong>of</strong> this enzyme, humans are dependent on <strong>vitam<strong>in</strong></strong> C fromtheir diet. 46, 47The best sources <strong>of</strong> <strong>vitam<strong>in</strong></strong> C are foods such as fruits and berries (Table 1). In vegetables,<strong>vitam<strong>in</strong></strong> C is found at high levels <strong>in</strong> cabbages <strong>of</strong> every sort, sweet pepper and parsley.9


Review <strong>of</strong> the literaturePotatoes conta<strong>in</strong> relatively low amounts <strong>of</strong> <strong>vitam<strong>in</strong></strong> C, but s<strong>in</strong>ce humans eat potatoesrelatively <strong>of</strong>ten and <strong>in</strong> large quantities, potatoes are generally classified as a good source <strong>of</strong><strong>vitam<strong>in</strong></strong> C. However, the <strong>vitam<strong>in</strong></strong> C content <strong>of</strong> potatoes will decrease dur<strong>in</strong>g spr<strong>in</strong>gtime dueto the poor storage capability <strong>of</strong> <strong>vitam<strong>in</strong></strong> C.Table 1. Vitam<strong>in</strong> C content <strong>in</strong> selected foodsFoodVitam<strong>in</strong> C (mg)/gram edible portionFruitsBanana 8-16Apple 3-30P<strong>in</strong>eapple 15-25Orange 30-50Grapefruit 30-70Lemon 40-50Blackcurrant 50-200Strawberry 40-70Rosehip 250-800VegetablesOnion 10-15Tomato 10-20Radish 25Sp<strong>in</strong>ach 35-40Cabbage 30-70Cauliflower 50-70Broccoli 80-90Brussels sprout 100-120Sweet pepper 150-200Parsley 200-300Potato 10-12Adapted from Johnson et al.. 48The Recommended Dietary Allowance (RDA) for <strong>vitam<strong>in</strong></strong> C is 75 mg/day <strong>in</strong> the Nordiccountries (F<strong>in</strong>land, Sweden, Norway, Denmark and Iceland) and 90 mg/day for adult menand 75 mg/day for adult women <strong>in</strong> the USA. A balanced diet conta<strong>in</strong>s enough <strong>vitam<strong>in</strong></strong> C toprevent acute scurvy <strong>in</strong> an average healthy adult. Despite this, <strong>vitam<strong>in</strong></strong> C (ascorbic acid) is10


Review <strong>of</strong> the literaturestill added as a <strong>vitam<strong>in</strong></strong> and preservative to a variety <strong>of</strong> food sources (e.g. fruit juices) <strong>in</strong>high quantities. Intake <strong>of</strong> supplemental <strong>vitam<strong>in</strong></strong> C has also <strong>in</strong>creased considerably andsupplements conta<strong>in</strong><strong>in</strong>g up to 0.5 – 1 grams <strong>of</strong> <strong>vitam<strong>in</strong></strong> C/tablet can be purchased withouta prescription. Thus, the mean daily <strong>in</strong>take <strong>of</strong> <strong>vitam<strong>in</strong></strong> C has significantly <strong>in</strong>creased <strong>in</strong> manycountries dur<strong>in</strong>g the past 20 years.2. Free radicals, reactive oxygen and nitrogen speciesReactive oxygen species (ROS) and reactive nitrogen species (RNS) are collective termsused <strong>in</strong> the literature that <strong>in</strong>clude both oxygen radicals and some non-radical derivates <strong>of</strong>oxygen (Table 2). There are several def<strong>in</strong>itions <strong>in</strong> the literature <strong>of</strong> what a free radical is andif “free” is the right term to use. A simple and broad def<strong>in</strong>ition is: a free radical can be <strong>of</strong>any atomic or molecular species, but it has to have an <strong>in</strong>dependent existence and conta<strong>in</strong>one unpaired electron <strong>in</strong> its outer shell. 49 An unpaired electron is one that occupies anatomic or molecular orbital by itself. A radical is <strong>of</strong>ten <strong>in</strong>dicated with a dot after theformula, which <strong>in</strong>dicates that it has one unpaired electron <strong>in</strong> its outer shell. 50Table 2. Examples <strong>of</strong> ROS and RNS (radical/non-radical)Name Formula Radical/non-radicalROSHydroxyl radical OH • radicalSuperoxide O • - 2 radicalPeroxyl radical RO • 2 radicalHydrogen peroxide H 2O 2 non-radicalS<strong>in</strong>glet oxygen 1 O 2 non-radicalHypochlorous acid HOCl non-radicalOzone O 3 non-radicalRNSPeroxynitrite ONOO - non-radicalNitric oxide NO • radicalNitrogen dioxide NO • 2 radicalNitroxide radical RNHO • radical11


Review <strong>of</strong> the literatureROS and RNS are normal by-products from mitochondria, peroxisomes, cytochrome P450metabolism and from activated <strong>in</strong>flammatory cells (macrophages and neutrophils).However, ROS and RNS can also be generated by UV light, X-rays, γ-rays, pollutants <strong>in</strong>the atmosphere and <strong>in</strong> metal catalyzed-reactions.ROS and RNS play a dual role <strong>in</strong> biological systems, as they can be either harmful orbeneficial. 51 High concentration <strong>of</strong> ROS or RNS can <strong>in</strong>duce damage to molecules as well ascell structures, such as lipid membranes, prote<strong>in</strong>s and nucleic acids. ROS and RNS havebeen suggested to be <strong>in</strong>volved <strong>in</strong> several cl<strong>in</strong>ical conditions such as the age<strong>in</strong>g process,<strong>in</strong>flammatory diseases, ischemia, bra<strong>in</strong> and nervous disorders just to name a few. 50, 52-55 Onthe other hand, ROS and RNS can have a beneficial effect <strong>in</strong> the defence aga<strong>in</strong>st <strong>in</strong>fectiousagents and <strong>in</strong> cellular signall<strong>in</strong>g. Furthermore, a low concentration <strong>of</strong> ROS can stimulatethe mitogenic response. 51This dual role <strong>of</strong> ROS has been observed, especially with hydrogen peroxide. Althoughhigh levels <strong>of</strong> hydrogen peroxide have been demonstrated to be toxic to cells, low levels <strong>of</strong>hydrogen peroxide (below or about 20-50 µM) do not affect most cells negatively but<strong>in</strong>stead stimulate cell growth. There is, <strong>in</strong> fact, a grow<strong>in</strong>g body <strong>of</strong> evidence that hydrogenperoxide could function as a signall<strong>in</strong>g molecule between and <strong>in</strong>side cells, regulat<strong>in</strong>g thesignal transduction pathways. Toxic concentration <strong>of</strong> hydrogen peroxide will activate NFκB,lead<strong>in</strong>g to apoptosis or necrosis. 56-61To cope with elevated ROS levels, the human body has non-enzymatic anti<strong>oxidant</strong>s andanti<strong>oxidant</strong> enzymes. The non-enzymatic anti<strong>oxidant</strong>s <strong>in</strong>clude compounds such as <strong>vitam<strong>in</strong></strong>C, <strong>vitam<strong>in</strong></strong> E and reduced glutathione. The enzymatic anti<strong>oxidant</strong> defence systems <strong>in</strong>cludeenzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (one <strong>of</strong>many peroxidases) and thioredox<strong>in</strong>-l<strong>in</strong>ked systems to cope with elevated superoxide,hydrogen peroxide concentrations. 622.1. Vitam<strong>in</strong> C – an anti<strong>oxidant</strong> with free radical scaveng<strong>in</strong>g propertiesAn anti<strong>oxidant</strong> is def<strong>in</strong>ed as ”any substrate that, when present at low concentrationscompared to those <strong>of</strong> an oxidizable substrate (prote<strong>in</strong>s, lipids, carbohydrates and nucleicacids), significantly delays or prevents oxidation <strong>of</strong> that substrate”. 6 Vitam<strong>in</strong> C has beenshown to scavenge ROS and RNS (Table 2), thereby prevent<strong>in</strong>g oxidative damage toimportant biological macromolecules such as DNA, lipids, and prote<strong>in</strong>s. 63-66 The12


Review <strong>of</strong> the literatureanti<strong>oxidant</strong> effect <strong>of</strong> <strong>vitam<strong>in</strong></strong> C is either by regeneration <strong>of</strong> oxidized substrates, alternativelydirectly scaveng<strong>in</strong>g ROS and RNS.Dur<strong>in</strong>g physiological conditions, the anti<strong>oxidant</strong> and pro-<strong>oxidant</strong> properties <strong>of</strong> <strong>vitam<strong>in</strong></strong> Care basically the chemistry <strong>of</strong> ascorbate (Figure 1). The deprotonated ascorbate radical(semi-dehydroascorbate radical) (Asc •− ) alternatively the protonated ascorbate radical (Asc • ),is the first product when ascorbate is oxidized (Figure 2).HOHOOO- e - , - H +HOHOO._O_OAscOH.O- -OAsc - (Semi-dehydroascorbate radical )HOHOOO- e -+ e - , + H + C+ e - COODHA (Dehydroascorbate)+ H 2 OOOHHOHOOHCOOHOOHCCCOHHOHO ODiketo-gulonic acidHOC HCH 2 OHO C OHHO OH C OHHO C HHOCOCH 2 OHThreonic acid Oxalic acidFigure 2. Degradation/oxidation products <strong>of</strong> ascorbate13


Review <strong>of</strong> the literatureAsc • is a poorly reactive radical that can be converted back to ascorbate by other, strongerreduc<strong>in</strong>g agents, such as NADH-dependent enzymes. 67, 68 Alternatively, Asc • can undergodisproportionation to form DHA. 5, 69, 70 The re<strong>activity</strong> <strong>of</strong> Asc • can account for many <strong>of</strong>ascorbate’s anti<strong>oxidant</strong> effects. 70, 71 DHA on the other hand is very unstable, even <strong>in</strong> theabsence <strong>of</strong> oxygen, 72 and the lactone r<strong>in</strong>g <strong>of</strong> DHA can be opened and cleaved <strong>in</strong>to oxalicacid and threonic acid via diketo-gulonic acid (Figure 2).Vitam<strong>in</strong> C can reduce an oxidized substrate if the substrate has a lower reduction potential.One <strong>of</strong> the most well-documented anti<strong>oxidant</strong> effects <strong>of</strong> <strong>vitam<strong>in</strong></strong> C is to regenerate otheroxidized substrates such as <strong>vitam<strong>in</strong></strong> E. Vitam<strong>in</strong> C has been suggested to be beneficial <strong>in</strong>atherosclerosis, due to its ability to regenerate oxidized <strong>vitam<strong>in</strong></strong> E (α-tocopherol) <strong>in</strong>membranes and lipoprote<strong>in</strong>s <strong>in</strong> vitro. 73, 74 The ability <strong>of</strong> <strong>vitam<strong>in</strong></strong> C to regenerate oxidizedsubstrate is not only seen <strong>in</strong> <strong>vitam<strong>in</strong></strong> E, as <strong>vitam<strong>in</strong></strong> C has also been shown to regenerateglutathione, β-carotene and urate from their one electron oxidized form <strong>in</strong> vitro. 6, 75, 76 In thecase <strong>of</strong> <strong>vitam<strong>in</strong></strong> E, <strong>vitam<strong>in</strong></strong> C has the capacity to regenerate <strong>vitam<strong>in</strong></strong> E (α-tocopherol) fromthe α-tocopheryl radical (Figure 3).O 2HO2 OHLLHLIPIDMEMBRANELOOHLOOα-TOα-TOHAscAscFigure 3. A schematic illustration <strong>of</strong> the regeneration <strong>of</strong> <strong>vitam<strong>in</strong></strong> E (α-tocopherol) by <strong>vitam<strong>in</strong></strong> C (ascorbate)<strong>in</strong> the aqueous/lipid <strong>in</strong>ter-phase <strong>of</strong> a lipid bilayer. The illustration also shows a hydroxyl radical(OH • ) attack on a lipid (LH) form<strong>in</strong>g a lipid radical (L • ). The lipid radical will thereafter forma lipid peroxyl radical (LOO • ) <strong>in</strong> the presence <strong>of</strong> oxygen (O 2 ). Vitam<strong>in</strong> E (α-tocopherol (α-TOH)) will remove the lipid peroxyl radical. Ascorbate (Asc) recycle α-tocopherol (α-TOH)from the α-tocopheryl radical (α-TO • ) with the concomitant formation <strong>of</strong> the ascorbate radical(Asc • ). Lipids (LH) are illustrated with grey-coloured circles with two hydrophobic tails and<strong>vitam<strong>in</strong></strong> E with black circles with one hydrophobic tail <strong>in</strong> the schematic picture <strong>of</strong> a lipidmembrane. Note that <strong>in</strong> some lipids and <strong>vitam<strong>in</strong></strong> E molecules, the hydrophobic tails are removedfor clarity.14


Review <strong>of</strong> the literatureThe α-tocopheryl radical is produced as a consequence <strong>of</strong> <strong>vitam<strong>in</strong></strong> E scaveng<strong>in</strong>g <strong>of</strong> lipidsolubleradicals. 77 Vitam<strong>in</strong> E is the major cha<strong>in</strong>-break<strong>in</strong>g anti<strong>oxidant</strong> <strong>in</strong> membranes and will<strong>in</strong>hibit lipid peroxidation. Vitam<strong>in</strong> E will consequently counteract membrane damage andmodification <strong>of</strong> low-density lipoprote<strong>in</strong>s. 32 Thus, regeneration <strong>of</strong> <strong>vitam<strong>in</strong></strong> E by <strong>vitam<strong>in</strong></strong> Cwill provide cell membrane stability and protect the cell membrane dur<strong>in</strong>g oxidative <strong>in</strong>sult.Additionally, <strong>vitam<strong>in</strong></strong> C is <strong>of</strong> importance as the α-tocopheryl radical can act as a pro<strong>oxidant</strong>if not reduced to <strong>vitam<strong>in</strong></strong> E. 77-79 Furthermore, an <strong>in</strong>direct anti<strong>oxidant</strong> effect <strong>of</strong><strong>vitam<strong>in</strong></strong> C on <strong>vitam<strong>in</strong></strong> E <strong>in</strong> vivo, was observed <strong>in</strong> gu<strong>in</strong>ea-pigs or ODS rats (OsteogenicDisordered Shiongi rats) fed on a <strong>vitam<strong>in</strong></strong> C restricted diet. The gu<strong>in</strong>ea pigs and ODS ratsdisplayed a decrease <strong>of</strong> <strong>vitam<strong>in</strong></strong> E content <strong>in</strong> tissues. This po<strong>in</strong>ts to an <strong>in</strong>teraction betweenthese two <strong>vitam<strong>in</strong></strong>s <strong>in</strong> vivo. 80, 81As <strong>vitam<strong>in</strong></strong> C reacts with ROS (scaveng<strong>in</strong>g) the ascorbate radical (Asc • ) is formed. Asc • canundergo disproportionation to form DHA. Vitam<strong>in</strong> C depletion dur<strong>in</strong>g a condition <strong>of</strong>oxidative stress could imply the ability <strong>of</strong> <strong>vitam<strong>in</strong></strong> C to act as an anti<strong>oxidant</strong> <strong>in</strong> vivo. 82 DHAcan be measured <strong>in</strong> plasma and the ratio <strong>of</strong> DHA to total ascorbate <strong>in</strong> vivo has beensuggested to be a biomarker <strong>of</strong> oxidative stress. Indeed, oxidative stress <strong>in</strong>duced bysmok<strong>in</strong>g results <strong>in</strong> elevated DHA levels <strong>in</strong> comparison to ascorbate <strong>in</strong> plasma. 83 DHA hasalso attracted attention s<strong>in</strong>ce DHA has been shown to be toxic and to generate oxidativestress <strong>in</strong> various cell systems. 84-86Normally, almost no DHA can be detected <strong>in</strong> body fluids and tissues <strong>in</strong> a healthy person.Thus, the <strong>vitam<strong>in</strong></strong> C to DHA ratio seems to be kept at a high level <strong>in</strong> body fluids andtissues dur<strong>in</strong>g normal health. Interest<strong>in</strong>gly, <strong>vitam<strong>in</strong></strong> C has been shown to stimulate theimmune system dur<strong>in</strong>g <strong>in</strong>fections by enhanc<strong>in</strong>g T-cell proliferation. 87 Vitam<strong>in</strong> C could alsoblock T-cell apoptosis and hence stimulate T-cell proliferation <strong>in</strong> the presence <strong>of</strong>pathogens. 88Although <strong>vitam<strong>in</strong></strong> C has been reported as a ROS scavenger <strong>in</strong> vitro, (accepts electrons fromsuperoxide, hydrogen peroxide, hypochlorite, hydroxyl radicals and peroxyl radicals) it isstill debated whether this is the favoured mechanism <strong>of</strong> ascorbic acid, s<strong>in</strong>ce such highconcentrations might not be present <strong>in</strong> vivo. For example, hydroxyl radicals react veryrapidly with the closest target available. 50 The levels <strong>of</strong> ascorbate <strong>in</strong> human plasma liebetween (30-100 µM). 50, 89 Other compounds, e.g. glucose (~ 4.5 mM, plasma) and am<strong>in</strong>oacids (40-80 mg prote<strong>in</strong>/ml plasma) have about the same rate constants as ascorbate forreaction with hydroxyl radicals. Uric acid (250-450 µM, plasma) has a lower rate constantfor hydroxyl radicals than ascorbate but the concentration <strong>of</strong> uric acid is probably stillhigh enough <strong>in</strong> absolute terms to compete successfully as the ma<strong>in</strong> scavenger <strong>in</strong> most15


Review <strong>of</strong> the literaturetissues. 50 On the other hand, locally <strong>in</strong> cerebrosp<strong>in</strong>al fluid (CSF), the tear fluid <strong>of</strong> the eye,gastric juice and lung l<strong>in</strong><strong>in</strong>g fluid, even millimolar levels <strong>of</strong> <strong>vitam<strong>in</strong></strong> C can be detected. 50, 90-922.2. The role <strong>of</strong> iron and copper <strong>in</strong> human healthIron and copper are highly precious metals for the growth and viability <strong>of</strong> all cells and<strong>in</strong>dispensable for human survival. Iron is primarily required for haemoglob<strong>in</strong> synthesis, butit has also a crucial role <strong>in</strong> e.g. DNA synthesis, electron transport and many enzymaticactivities throughout the body. Low dietary <strong>in</strong>take <strong>of</strong> iron results <strong>in</strong> iron deficiency andanaemia. 93 On the other hand, iron has also been implicated <strong>in</strong> the pathogenesis <strong>of</strong> a variety<strong>of</strong> neurodegenerative disorders, e.g. Park<strong>in</strong>son's disease, Alzheimer’s disease, multiplesclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). 94-96 Furthermore,iron has been implicated <strong>in</strong> diseases such as cancer, 97, 98 diabetes 99, 100 and immuneabnormalities. 101, 102<strong>Pro</strong>per handl<strong>in</strong>g <strong>of</strong> copper is crucial for the central nervous system. Altered copperhomeostasis can be l<strong>in</strong>ked to Wilson’s disease, Alzheimer’s disease, Park<strong>in</strong>son’s disease andamyotrophic lateral sclerosis (ALS), among others. 103-105 Impaired b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> copper orabsence <strong>of</strong> copper <strong>in</strong> the active centres <strong>of</strong> important enzymes leads to oxidative stress <strong>in</strong>neurological diseases. 55, 103-105 It has been suggested that oxidative stress, the alternation <strong>in</strong>copper balance <strong>in</strong> Wilson’s disease, is mediated via mitochondrial copper accumulation.Copper accumulation <strong>in</strong> patients with Wilson’s disease is caused due to a failure <strong>in</strong> aspecific copper pump located <strong>in</strong> the mitochondrial membrane. 106, 107 Indeed, anti-copperdrugs have been tested and suggested for the treatment <strong>of</strong> diseases with impaired handl<strong>in</strong>g<strong>of</strong> copper. 108, 109The toxicity <strong>of</strong> iron and copper has generally been attributed to their ability to reducemolecular oxygen, thus form<strong>in</strong>g reduced oxygen species. Normally, copper and iron arebound to specific prote<strong>in</strong>s that function as transport<strong>in</strong>g or storage prote<strong>in</strong>s <strong>of</strong> these metals.Thus, the redox-<strong>activity</strong> <strong>of</strong> iron and copper is m<strong>in</strong>imized <strong>in</strong> vivo due to the b<strong>in</strong>d<strong>in</strong>g toprote<strong>in</strong>s. Iron enters the circulation bound to the iron transport prote<strong>in</strong> transferr<strong>in</strong>. 110, 111 Inthe cell, iron is stored <strong>in</strong> the ferrit<strong>in</strong> prote<strong>in</strong>. Ferrit<strong>in</strong> can also b<strong>in</strong>d some other metals<strong>in</strong>clud<strong>in</strong>g copper, but only <strong>in</strong> trace amounts. 112 Another iron b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> that resemblestransferr<strong>in</strong> is lact<strong>of</strong>err<strong>in</strong>. Lact<strong>of</strong>err<strong>in</strong> can be found <strong>in</strong> saliva, sem<strong>in</strong>al fluids, bile, tears andmilk (both human and cow). 11316


Review <strong>of</strong> the literatureCopper, will be bound to album<strong>in</strong> as it enters the blood. In the liver most <strong>of</strong> the copper istransferred to the caeruloplasm<strong>in</strong> prote<strong>in</strong>. Caeruloplasm<strong>in</strong> with the bound copper issecreted <strong>in</strong>to plasma and distributes the copper to copper-requir<strong>in</strong>g cells. Caeruloplasm<strong>in</strong>conta<strong>in</strong>s more than 95% <strong>of</strong> the copper found <strong>in</strong> plasma. 114 Caeruloplasm<strong>in</strong> can als<strong>of</strong>unction as a ferroxidase and facilitate the load<strong>in</strong>g <strong>of</strong> iron to transferr<strong>in</strong> as it helps tooxidize iron from Fe 2+ to Fe 3+ . 111, 115, 116Because <strong>of</strong> the normally tight b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> iron and copper to metal b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s, thepro-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> vivo has been doubted. If there are no free catalyticmetals present, the metals should not redox-cycle with <strong>vitam<strong>in</strong></strong> C. 9, 117 , Local acidosis (pH5.5-7.3) has been reported <strong>in</strong> <strong>in</strong>flammation, 118 bone fractures, 119-121 arthritic jo<strong>in</strong>ts, 122 andsurround<strong>in</strong>gs <strong>of</strong> malignant tumours. 123 Dur<strong>in</strong>g acidic conditions, metal ions may be releasedfrom their metal b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s and could consequently <strong>in</strong>teract with a reduc<strong>in</strong>g agent,e.g. <strong>vitam<strong>in</strong></strong> C. 117, 124, 1252.3. Ascorbic acid as a pro-<strong>oxidant</strong> <strong>in</strong> the Fenton reactionSome transitions metals are able to accept and donate s<strong>in</strong>gle electrons and can thereforecatalyze free radical reactions. Metals <strong>in</strong> the first row <strong>of</strong> the D-block <strong>in</strong> the periodic table(iron, copper, chrome, manganese, cobalt, nickel, vanadium, titanium), except z<strong>in</strong>c, canparticipate <strong>in</strong> redox-cycl<strong>in</strong>g and radical reactions. Metals hav<strong>in</strong>g one s<strong>in</strong>gle oxidation state,such as z<strong>in</strong>c, and non-transition metals such as alum<strong>in</strong>ium, calcium and magnesium do notpromote free radical reactions. It has been shown that ascorbic acid can, <strong>in</strong> the presence <strong>of</strong>transition metal ions such as Cu 2+ and Fe 3+ , function as a strong pro-<strong>oxidant</strong> <strong>in</strong> vitro. 4, 5, 7Thus, <strong>vitam<strong>in</strong></strong> C could generate ROS <strong>in</strong>stead <strong>of</strong> protect<strong>in</strong>g aga<strong>in</strong>st them. This pro-<strong>oxidant</strong><strong>activity</strong> <strong>of</strong> ascorbic acid with transition metals has led to discussions whether this mightoccur <strong>in</strong> vivo. 6, 8-10There is conflict<strong>in</strong>g and confus<strong>in</strong>g <strong>in</strong>formation regard<strong>in</strong>g ascorbate and its cytotoxicity <strong>in</strong>the literature. Some reports clearly show that ascorbate <strong>in</strong> the presence <strong>of</strong> copper is highlycytotoxic to cells, 38-42 while others demonstrate that ascorbic acid can protect cells frompro-oxidative <strong>in</strong>sult. 32-36 The toxic effect <strong>of</strong> ascorbic acid <strong>in</strong> cell systems has been attributedto hydrogen peroxide formation <strong>in</strong> the cell culture. 126-128 Hydrogen peroxide triggersapoptosis <strong>in</strong> cells and therefore hydrogen peroxide levels <strong>in</strong> vivo must be strictlycontrolled. 129-13217


Review <strong>of</strong> the literatureThe pro-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> ascorbic acid is due to its ability to redox-cycle with transitionmetal ions such as iron and copper, thereby stimulat<strong>in</strong>g the formation <strong>of</strong> ROS such assuperoxide (O 2•-), hydrogen peroxide (H 2O 2) and hydroxyl radicals (OH • ). Of all the ROS,the cellular damage is mostly caused by the hydroxyl radical. The hydroxyl radical can bedirectly formed from hydrogen peroxide and Fe 2+ through the Fenton reaction (Equation 1). 133-135The Fenton reaction is highly catalyzed if certa<strong>in</strong> metal chelators such as EDTA, NTA anda reduc<strong>in</strong>g substance such as ascorbic acid (<strong>vitam<strong>in</strong></strong> C) are present. 117, 136-138 Ascorbatereduces Fe 3+ back to Fe 2+ , with ascorbate (Asc) be<strong>in</strong>g oxidized to an ascorbate radical(Asc • ) (Equation 2). The ascorbate radical and other products from ascorbate oxidation(DHA and diketo-gulonate) can further be used to reduce Fe 3+ to Fe 2+ .Fe 2+ + H 2O 2 → Fe 3+ + OH − + OH • (Fenton reaction) Eq. 1Fe 3+ + Asc → Fe 2+ + Asc • Eq. 2Fe 3+ may also react with hydrogen peroxide, but this reaction is slower than the reactionbetween Fe 2+ and hydrogen peroxide at physiological pH. Generation <strong>of</strong> hydroxyl radicalsby a reaction between Fe 3+ and hydrogen peroxide (H 2O 2) appears to <strong>in</strong>volve superoxide(O 2• − ). No direct evidence for this chemistry has been obta<strong>in</strong>ed, but s<strong>in</strong>ce SOD can <strong>in</strong>hibitthe reaction between Fe 3+ and hydrogen peroxide, it seems likely that superoxideparticipates <strong>in</strong> this reaction. 139 (Equation 3) .Fe 3+ + H 2O 2 → Fe 2+ + O 2• − + 2H + Eq. 3SOD has no effects on hydroxyl radical production <strong>in</strong> Fe 2+ /hydrogen peroxide mixturess<strong>in</strong>ce SOD catalyzes the dismutation <strong>of</strong> superoxide. The reactants and the products fromthe Fenton reaction can also participate <strong>in</strong> a variety <strong>of</strong> further chemical reactions(Equations 4-8). The reactions will depend on the experimental conditions, such as pH,concentration <strong>of</strong> hydrogen peroxide, metal ions and target molecules present.18


Review <strong>of</strong> the literatureOH • + H 2O 2 → H 2O + H + + O 2• − Eq. 4O 2• − + Fe 3+ → Fe 2+ + O 2 Eq. 5HO 2• + Fe 2+ + H + → Fe 3+ + H 2O 2 Eq. 6OH • + Fe 2+ → Fe 3+ + OH − Eq. 7HO 2• + Fe 3+ → Fe 2+ + H + +O 2 Eq. 8For example, if hydroxyl radicals are formed and they do not have anyth<strong>in</strong>g to react with,they can react with hydrogen peroxide, or alternatively, take one electron from Fe 2+ andoxidize it to Fe 3+ . However, if hydroxyl radicals are formed <strong>in</strong> vivo many target moleculeswill be available.In the laboratory, hydroxyl radicals can be easily generated by UV <strong>in</strong>duced homolyticfission <strong>of</strong> hydrogen peroxide (Equation 9) or by metal-catalyzed (copper or iron) reduction<strong>of</strong> oxygen to superoxide that reacts with hydrogen peroxide (Equation 10). 140, 141UVH 2O 2 −−−→ OH • + OH • Eq. 9H 2O 2 + O 2• − → O 2 + OH • + OH − (Haber-Weiss reaction) Eq. 102.4. The re<strong>activity</strong> <strong>of</strong> hydrogen peroxide and hydroxyl radicalsThe formation <strong>of</strong> hydroxyl radicals has been studied us<strong>in</strong>g the sp<strong>in</strong> trap technique, 142aromatic hydroxylation <strong>of</strong> target molecules 143-145 and by study<strong>in</strong>g radical attacks on targetmolecules such as DNA 4 and deoxyribose 146 . Generally, standards for the f<strong>in</strong>al products(e.g. 8-hydroxyguanos<strong>in</strong>e to demonstrate hydroxyl radical attack on guanos<strong>in</strong>e) have beenused <strong>in</strong> order to identify the radicals (ROS or RNS) that are generated. In addition, radicalscavenger molecules have been used to confirm the presence <strong>of</strong> a specific radical. Thishowever, can sometimes be mislead<strong>in</strong>g, as some hydroxyl radical generat<strong>in</strong>g reactions canbe site-specific. In this case radical scavengers fail to scavenge the radicals, but this doesnot mean that hydroxyl radicals do not form.Of the ROS, hydroxyl radicals are very harmful due to their high re<strong>activity</strong>. 134 Hydroxylradicals are short-lived and extremely reactive and easily attack any nearby molecule by19


Review <strong>of</strong> the literaturetak<strong>in</strong>g or giv<strong>in</strong>g one electron. Once hydroxyl radicals are formed, they will readily react withDNA, prote<strong>in</strong> or lipids and can therefore <strong>in</strong>duce cellular damage if no protect<strong>in</strong>g hydroxylradical scaveng<strong>in</strong>g molecules are present. 4, 141, 147-151 In contrast, <strong>in</strong> the absence <strong>of</strong> metal ionsor tightly bound metals, hydrogen peroxide is not very reactive by itself, but imposes athreat due to its ability to easily diffuse through the cell membrane and then participate <strong>in</strong>metal <strong>in</strong>duced free radical reactions <strong>in</strong>side the cell. 152, 153Generally, the rate constant for a free radical reaction is highly dependent on the radicalspecies and target molecule <strong>in</strong>volved. If two radicals meet and react with each other, acovalent bond will be formed. However, under physiological conditions, the more relevantreaction is that between a free radical and a non-radical target molecule. This occurs <strong>in</strong> fourways (exemplified with OH • radicals): 501. The non-radical forms a new radical adduct as the free radical adds to the non-radical.OH • + molecule → [molecule-OH] • Eq. 11An example <strong>of</strong> this is when OH • adds to guan<strong>in</strong>e <strong>in</strong> DNA, form<strong>in</strong>g an 8-hydroxyguan<strong>in</strong>e radical.2. A free radical can function as a reduc<strong>in</strong>g agent, donat<strong>in</strong>g an electron to a non-radical,thus the recipient will then become a radicalOH • + molecule → OH + + molecule •¯ Eq. 123. A free radical can also function as an oxidiz<strong>in</strong>g agent, accept<strong>in</strong>g an electron from anon-radical. The donation <strong>of</strong> an electron from a non-radical results <strong>in</strong> a free electronon the non-radical, mak<strong>in</strong>g the non-radical a radical.OH • + molecule → molecule • + + OH¯ Eq. 134. Alternatively, a free radical can abstract a hydrogen atom from a C-H bond, result<strong>in</strong>g<strong>in</strong> a free electron on the carbon atom (Figure 3).R-C-H + OH • → R-C • + H 2O Eq. 1420


Review <strong>of</strong> the literatureFormation <strong>of</strong> free radicals dur<strong>in</strong>g physiological conditions, for example OH • radicals, willset <strong>of</strong>f a cha<strong>in</strong> reaction between newly formed radicals and non-radicals. This cha<strong>in</strong>reaction will not stop until two free radicals meet and react with each other.3. Dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Water is necessary for all life and human cells consist <strong>of</strong> 80 percent <strong>water</strong>. Therefore,humans must dr<strong>in</strong>k <strong>water</strong> frequently to ma<strong>in</strong>ta<strong>in</strong> their fluid requirement. Humans need todr<strong>in</strong>k approximately 2 litres (8 glasses) <strong>of</strong> <strong>water</strong> every day to replenish the <strong>water</strong> that is lostfrom the body through ur<strong>in</strong>e, sk<strong>in</strong> and the respiratory tract. However, only 0.3% <strong>of</strong> theEarth’s <strong>water</strong> supply is safe to dr<strong>in</strong>k. Only fresh<strong>water</strong> orig<strong>in</strong>at<strong>in</strong>g from rivers, lakes andunderground sources can be used for human consumption. In addition, fresh<strong>water</strong> frommany <strong>of</strong> these sources is unsuitable for human consumption, because <strong>of</strong> contam<strong>in</strong>ants. Thecontam<strong>in</strong>ants must be removed or adjusted to accepted threshold values.3.1. Dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> impurities and Maximum Contam<strong>in</strong>ant Level (MCL)Dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> conta<strong>in</strong>s impurities from both natural and man-made sources. Gases,m<strong>in</strong>erals, bacteria, metals and chemicals are examples <strong>of</strong> contam<strong>in</strong>ants that have to beadjusted to accepted threshold values. This restriction <strong>of</strong> contam<strong>in</strong>ants <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> isnecessary to protect public health and ensure a uniform standard for <strong>water</strong> qualitynationwide. Private <strong>water</strong> wells, on the other hand, are not regulated by dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>standards. The owner <strong>of</strong> the well is responsible for test<strong>in</strong>g, and if needed, treat<strong>in</strong>g the <strong>water</strong>himself, all to avoid health risks. The Maximum Contam<strong>in</strong>ant Level (MCL) is the highestamount <strong>of</strong> a specific contam<strong>in</strong>ant that is allowed <strong>in</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The MCL isnormally expressed <strong>in</strong> milligrams per litre (mg/l). 154, 155Contam<strong>in</strong>ants fall <strong>in</strong>to two categories, primary and secondary contam<strong>in</strong>ants. The primarystandards serve as threshold value for the contam<strong>in</strong>ant to avoid health problems.Radioactive elements, microbial pathogens and organic/<strong>in</strong>organic chemicals are examples<strong>of</strong> three classes <strong>of</strong> toxic pollutants that are classified as primary contam<strong>in</strong>ants. Water plantsare obliged to follow MCL for primary contam<strong>in</strong>ants.Secondary contam<strong>in</strong>ants are regarded as contam<strong>in</strong>ants that affect the aesthetic quality <strong>of</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, such as taste, colour, odour, pH and appearance. Chloride, sulphate,copper, iron, manganese, z<strong>in</strong>c etc. are all examples <strong>of</strong> secondary contam<strong>in</strong>ants (Table 3).21


Review <strong>of</strong> the literatureWater plants are not forced to fulfil the MCL values for secondary contam<strong>in</strong>ants but serveas guidel<strong>in</strong>es for good-quality dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Thus, if the contam<strong>in</strong>ants <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>are lower than the MCL, it is believed that a person can consume the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> safelyover a lifetime.Table 3. Guidel<strong>in</strong>e values (MCL) for some cations and anions that are <strong>of</strong>health significance <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Guidel<strong>in</strong>e value (MCL) (mg/l)WHO standards EU standardsChemical 1993 1998CationsAlum<strong>in</strong>ium 0.2 0.2Arsenic 0.01 0.01Cadmium 0.003 0.005Calcium not mentioned 100Chromium 0.05 0.05Copper 2.0 2.0Iron not mentioned (1) 0.2Lead 0.01 0.01Nickel 0.0 0.02Magnesium not mentioned 50Manganese 0.5 0.05Z<strong>in</strong>c 3.0 not mentionedAnionsChloride 250 250Cyanide 0.07 0.05Fluoride 1.5 1.5Sulphate 500 250Nitrate 50 50Nitrite 0.5 0.1The WHO guidel<strong>in</strong>e values for cations and anions were adapted from“Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> quality”, Geneva 1993. 154 European guidel<strong>in</strong>evalues were adapted from the Council Directive 98/83/EC on the quality <strong>of</strong><strong>water</strong> <strong>in</strong>tended for human consumption. 155 Remarks: (1) Desirable 0.3 mg/l22


Review <strong>of</strong> the literature3.2. The role <strong>of</strong> bicarbonate and pH <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>To prepare safe dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, the <strong>water</strong> plants have to analyse which ions and chemicalcompounds are present <strong>in</strong> the <strong>water</strong>. The most important parameters for dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> arehardness, pH (alkal<strong>in</strong>ity and acidity) and sal<strong>in</strong>ity. The presence and comb<strong>in</strong>ation <strong>of</strong> anumber <strong>of</strong> ions will determ<strong>in</strong>e these features. Calcium and magnesium ions give thehardness, while bicarbonate, carbonate and hydroxyl ions give the alkal<strong>in</strong>ity <strong>in</strong> <strong>water</strong>.Chloride and sulphate ions (as HCl and H 2SO 4) contribute to the acidity and sal<strong>in</strong>ity <strong>of</strong> the<strong>water</strong> (Table 3, guidel<strong>in</strong>e values). Thus, calcium carbonate (CaCO 3) contributes both tohardness and alkal<strong>in</strong>ity <strong>of</strong> <strong>water</strong>, while calcium chloride (CaCl 2) gives hardness and sal<strong>in</strong>ity.The pH <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> usually orig<strong>in</strong>ates from dissolved carbon dioxide (CO 2), whichforms carbonic acid (H 2CO 3). Humic acids and other organic acids, which orig<strong>in</strong>ate fromdecayed plants, can also make the <strong>water</strong> acidic. Acidification <strong>of</strong> the ground <strong>water</strong> <strong>in</strong>comb<strong>in</strong>ation with a bedrock that cannot counteract or buffer acidic particles will lead toacidic <strong>water</strong>. When the acidity orig<strong>in</strong>ates from natural sources, the pH <strong>of</strong> the <strong>water</strong> isaround 3-4. It is not harmful to dr<strong>in</strong>k such mildly acidic (pH~ 3-4) dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.However, <strong>in</strong>directly, such acidic <strong>water</strong> will cause problems as it can extract metals from thesoil and <strong>water</strong> pipe systems. Acidic <strong>water</strong> can extract iron, manganese, copper, alum<strong>in</strong>iumand heavy metals such as cadmium and lead. Therefore, <strong>water</strong> plants adjust the pH to 6.5-9.5 (European guidel<strong>in</strong>e values, Council Directive 98/83/EC). Contribut<strong>in</strong>g factors <strong>in</strong><strong>in</strong>creased copper corrosion from copper pipes are the concentration <strong>of</strong> sulphate andchloride ions. 156Acidic <strong>water</strong> is usually adjusted to more alkal<strong>in</strong>e pH values with calcium carbonate(CaCO 3). 156-158 Alkal<strong>in</strong>ity is a measure <strong>of</strong> susceptibility for acidification, <strong>in</strong> other wordsbuffer capacity for acid addition. The higher the alkal<strong>in</strong>ity <strong>in</strong> the <strong>water</strong>, the better the <strong>water</strong>can resist acidification. Bicarbonate, carbonate and hydroxyl ions give different alkal<strong>in</strong>ity tothe <strong>water</strong>. If the pH <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> is below 8.3, bicarbonate alkal<strong>in</strong>ity is prevail<strong>in</strong>g. Inmost dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> that has a pH between pH 5 and 8, the alkal<strong>in</strong>ity and pH come frombicarbonate ions (Figure 4). Bicarbonate and carbonate alkal<strong>in</strong>ity will exist <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>with pH values between 8.3 and 9.4. Corrosive alkal<strong>in</strong>ity (hydroxyl alkal<strong>in</strong>ity from sodiumhydroxide, NaOH) can only exist at pH values above 9.4. Furthermore, when <strong>water</strong> istreated for adjustment <strong>in</strong> pH the content <strong>of</strong> other components has to be quantified.23


Review <strong>of</strong> the literatureFigure 4. The distribution <strong>of</strong> carbonate species as a fraction <strong>of</strong> totaldissolved carbonate <strong>in</strong> relation to solution pH.3.3. Copper <strong>in</strong>take from dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>The daily consumption <strong>of</strong> copper through diet lies between 1 and 2 mg/day <strong>in</strong> adults and0.6 to 0.8 mg/day <strong>in</strong> two-year-old children. Copper is present <strong>in</strong> all foods but the highestconcentrations can be found <strong>in</strong> liver, nuts, seeds and chocolate (around 10 mg/kg). 159, 160Dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> is not normally <strong>in</strong>cluded <strong>in</strong> the daily <strong>in</strong>take <strong>of</strong> copper and the total <strong>in</strong>take <strong>of</strong>copper can vary greatly depend<strong>in</strong>g on the copper concentration <strong>in</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>consumed.More than 90 percent <strong>of</strong> the <strong>water</strong> pipe system <strong>in</strong> the USA, Sweden, Great Brita<strong>in</strong> andNorway consists <strong>of</strong> copper pipes. The proportion <strong>of</strong> copper pipes <strong>in</strong> the <strong>water</strong> system is40-60 percent for Germany, Spa<strong>in</strong>, France and Italy but only 12 percent <strong>in</strong> Japan. 161 Asurvey <strong>in</strong> Seattle (USA) estimated that the <strong>in</strong>take <strong>of</strong> copper from dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> wasapproximately 10 times higher among persons with copper pipes (1.3-2.2 mg per day) <strong>in</strong>their homes than for those hav<strong>in</strong>g galvanized pipes. Thus, if copper pipes corrode, theconcentration <strong>of</strong> copper <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> will rise. 162 The corrosion <strong>of</strong> copper pipes is<strong>in</strong>fluenced by the time dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> stays <strong>in</strong> the pipes. Flush<strong>in</strong>g the tap can reduce the24


Review <strong>of</strong> the literaturecopper concentration <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Also the length, dimension and the age <strong>of</strong> thecopper pipes will <strong>in</strong>fluence how much copper is extracted. The pipes will emit the highestcopper concentration <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g, until after some time a protect<strong>in</strong>g sheet is formed<strong>in</strong>side the pipes, m<strong>in</strong>imiz<strong>in</strong>g copper extraction. 163The copper uptake from the gastro<strong>in</strong>test<strong>in</strong>al tract is strictly regulated. 164, 165 Several studieshave shown that short-term <strong>in</strong>take <strong>of</strong> higher amounts <strong>of</strong> copper than usual will not affectthe status <strong>in</strong>dexes <strong>of</strong> copper. 165-170 On the other hand, a recent study observed that <strong>in</strong>take<strong>of</strong> copper for a longer period <strong>of</strong> time (4 months) will eventually <strong>in</strong>crease the uptake <strong>of</strong>copper. 171 Gastro<strong>in</strong>test<strong>in</strong>al symptoms have been associated with high copper <strong>in</strong>take (about4 mg/day). 172-175 This amount <strong>of</strong> copper can be obta<strong>in</strong>ed by consum<strong>in</strong>g 2 litres <strong>of</strong> <strong>water</strong>conta<strong>in</strong><strong>in</strong>g 2.0 mg/l <strong>of</strong> copper (2.0 mg/l is the MCL for copper).25


Aims <strong>of</strong> the present studyAIMS OF THE PRESENT STUDYVitam<strong>in</strong> C is nowadays consumed more than ever before. The <strong>in</strong>creased consumption <strong>of</strong><strong>vitam<strong>in</strong></strong> C is due foremost to the daily consumption <strong>of</strong> <strong>vitam<strong>in</strong></strong> C through <strong>vitam<strong>in</strong></strong> tabletsand <strong>vitam<strong>in</strong></strong> supplemented food products. Concerns have been raised about the prooxidativeproperties that <strong>vitam<strong>in</strong></strong> C displays <strong>in</strong> the presence <strong>of</strong> transition metals. Dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> could be a source <strong>of</strong> transition metals needed for pro-oxidation reactions with<strong>vitam<strong>in</strong></strong> C.The purpose <strong>of</strong> this thesis was to elucidate:1. Can <strong>vitam<strong>in</strong></strong> C (ascorbic acid) <strong>in</strong>duce hydroxyl radical formation or accumulatehydrogen peroxide <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>?2. Is there a special milieu that is optimal for the pro-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>?3. Can a possible pro-<strong>oxidant</strong> effect <strong>of</strong> <strong>vitam<strong>in</strong></strong> C be <strong>in</strong>hibited by ionic species found <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>? If so, which ionic species are needed to make <strong>vitam<strong>in</strong></strong> C less prooxidative?4. To which extent is <strong>vitam<strong>in</strong></strong> C degraded <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> and what are thedegradation products?26


Experimental proceduresEXPERIMENTAL PROCEDURES1. MaterialsStock solutions <strong>of</strong> the chemicals used were prepared <strong>in</strong> Milli-Q <strong>water</strong> (18 MΩ cm) andprotected from light. Coumar<strong>in</strong>-3-carboxylic was also dissolved <strong>in</strong> Milli-Q <strong>water</strong> (18 MΩcm), and adjusted to pH 8.0 with NaOH. All stock solutions <strong>of</strong> the reagents used <strong>in</strong> theexperiments were prepared fresh daily. Samples <strong>of</strong> tap <strong>water</strong> were collected <strong>in</strong> sterile 15 mlpolypropylene test tubes (Gre<strong>in</strong>er) and stored at 4°C <strong>in</strong> the dark until used. Chemicals wereobta<strong>in</strong>ed from different manufacturers <strong>in</strong>dicated separately <strong>in</strong> papers I-V.2. Hydroxyl radical and hydrogen peroxide detection <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>2.1. Measurement <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced hydroxyl radical formation withcoumar<strong>in</strong>-3-carboxylic acid as a detector moleculeHydroxyl radical formation was measured us<strong>in</strong>g coumar<strong>in</strong>-3-carboxylic acid as a detectormolecule (Figure 5). 176, 177 When coumar<strong>in</strong>-3-carboxylic acid is hydroxylated to 7-hydroxycoumar<strong>in</strong>-3-carboxylic acid (7-OHCCA), a fluorescent product is formed that canbe measured with a fluorescence spectrophotometer. The fluorescence <strong>of</strong> 7-OHCCA ishighly pH dependent, show<strong>in</strong>g maximum fluorescence <strong>in</strong>tensity at pH 9.0. 176COO. OHCOOOOHOOOcoumar<strong>in</strong>-3-carboxylic acid(non fluorescent)7-hydroxycoumar<strong>in</strong>-3-carboxylic acid(fluorescent)(ex. 380/em. 460)Figure 5. Hydroxylation <strong>of</strong> coumar<strong>in</strong>-3-carboxylic acid to the fluorescent 7-hydroxycoumar<strong>in</strong>-3-carboxylic acid (7-OHCCA).27


Experimental proceduresFor the assay, 200 µl <strong>of</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples or Milli-Q <strong>water</strong> supplemented withmetals and bicarbonate were pipetted <strong>in</strong> triplicate onto a microplate. After this, 200 µMcoumar<strong>in</strong>-3-carboxylic acid was added to all wells us<strong>in</strong>g an 8-channel multiwell pipettefollowed by 2 mM ascorbic acid that started the reaction. The microplate was then<strong>in</strong>cubated at room temperature <strong>in</strong> the dark for various time periods and the reaction wasthen stopped by pipett<strong>in</strong>g 10 mM TRIS base (pH 9.0) to all wells. Addition <strong>of</strong> TRIS, ahydroxyl radical scavenger, stopped the reaction and adjusted the pH <strong>in</strong> the samples to 9.0.The fluorescence was measured with a spectr<strong>of</strong>luorometer capable <strong>of</strong> read<strong>in</strong>g thefluorescence from microplates. (Fluoroscan II, Lab systems, F<strong>in</strong>land). The optical filter setused was excitation 380 nm and emission 460 nm (Figure 6). The fluorescence values wereconverted <strong>in</strong>to 7-OHCCA formed (nM) from a standard curve where a serial dilution <strong>of</strong> 7-OHCCA standard <strong>in</strong> 10 mM TRIS (pH 9.0) was used. All measurements were performed atroom temperature.1000800Fluorescence6004002000250 300 350 400 450 500 550 600Wavelength (nm)Figure 6. Excitation (380 nm) and emission (460 nm) wavelengths for 7-OHCCA28


Experimental procedures2.2. Measurement <strong>of</strong> hydroxyl radical formation us<strong>in</strong>g plasmid DNAHydroxyl radical formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> was also confirmed us<strong>in</strong>g a plasmid DNAassay. The reactions were carried out <strong>in</strong> a total volume <strong>of</strong> 10 µl conta<strong>in</strong><strong>in</strong>g 0.3 µgpBluescript DNA <strong>in</strong> Milli-Q <strong>water</strong>. After addition <strong>of</strong> 0.5 mM <strong>vitam<strong>in</strong></strong> C the samples were<strong>in</strong>cubated for 45 m<strong>in</strong> at room temperature and the reaction was stopped by addition <strong>of</strong> 4 µlsample buffer (50% glycerol, 0.15% bromphenol blue <strong>in</strong> TRIS-acetate-EDTA buffer (TAEbuffer)). The samples were loaded onto a 1% agarose gel <strong>in</strong> TAE buffer (40 mM TRISbase, 1 mM EDTA, adjusted to pH 7.6 with acetate) and the super coiled (form I) andnicked circular (form II) DNAs were separated at 70 V for 45 m<strong>in</strong>. The gel was thensta<strong>in</strong>ed with ethidium bromide (10 µg/ml) for 45 m<strong>in</strong>. After wash<strong>in</strong>g, the gel wasphotographed with an AlphaDigiDog gel documentation and image analysis system, AlphaInnotech Corporation, CA.2.3. Measurement <strong>of</strong> hydroxyl radical formation by HPLC analysisHydroxyl radical generation was also analysed by HPLC with coumar<strong>in</strong> as a detectormolecule. Coumar<strong>in</strong> readily forms 7-hydroxycoumar<strong>in</strong> (umbelliferon) when attacked byhydroxyl radicals. An isocratic HPLC system (Waters model 1515) equipped with a manualRheodyne <strong>in</strong>jection valve (25 µl loop) and a 2-channel UV/VIS detector (Waters model2487) was used. The column used for the analysis was a Symmetry C18, 250 x 4.6 mm I.D,10 µm particle size column (Waters). Chromatography was performed us<strong>in</strong>g isocraticelution us<strong>in</strong>g 150 mM phosphate buffer (KH 2PO 4) conta<strong>in</strong><strong>in</strong>g 30% methanol, pH 3.0(H 3PO 4). The flow rate was 0.75 ml/m<strong>in</strong>. The peaks were detected at 200 nm and analysedus<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware. For peak identification and calibration we used standards<strong>of</strong> coumar<strong>in</strong>, 7-hydroxycoumar<strong>in</strong> (umbelliferon) <strong>in</strong> Milli-Q <strong>water</strong>. All separations wereperformed at room temperature.2.4. Measurement <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced hydrogen peroxide formation us<strong>in</strong>gthe FOX assayMeasurement <strong>of</strong> hydrogen peroxide <strong>in</strong> metal supplemented Milli-Q <strong>water</strong>, householddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> and domestic bottled <strong>water</strong>s was performed us<strong>in</strong>g the FOX assay. In theFOX assay, Fe 2+ will be oxidized to Fe 3+ by hydrogen peroxide (oxidiz<strong>in</strong>g agent). Fe 3+ canupon oxidation b<strong>in</strong>d to xylenol orange to give a coloured complex with absorptionmaximum at 560 nm. 17829


Experimental proceduresThe FOX reagent was prepared by mix<strong>in</strong>g 9 volumes <strong>of</strong> FOX-1 reagent (4.4 mM 2,6-Ditert-butyl-4-methanol-phenol<strong>in</strong> 100% HPLC grade methanol) with 1 volume <strong>of</strong> FOX-2reagent (1 mM xylenol orange sodium salt and 2.56 mM ammonium ferrous sulphate <strong>in</strong>250 mM sulphuric acid). In the assay, 2 mM <strong>of</strong> ascorbic acid was added to the different<strong>water</strong> samples to <strong>in</strong>itiate the reaction. After various time periods, 25 µl samples werewithdrawn from the tubes and pipetted <strong>in</strong>to an eppendorf tube conta<strong>in</strong><strong>in</strong>g 750 µl FOXreagent.The mixture was vortexed for 5 seconds and <strong>in</strong>cubated at room temperature for 30m<strong>in</strong>utes. After this, 200 µl <strong>of</strong> the mixture was pipetted <strong>in</strong> triplicates onto a 96-wellmicroplate and the absorbance <strong>of</strong> the samples and standards was measured at 560 nm witha Victor plate reader, Wallac. The absorbance values were converted to concentration bycomparison with a standard curve where known concentrations <strong>of</strong> hydrogen peroxide wereused.3. Copper, iron and anion measurements <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples3.1. Measurement <strong>of</strong> copper us<strong>in</strong>g diethyldithiocarbamic acidThe presence <strong>of</strong> trace amounts <strong>of</strong> copper <strong>in</strong> the <strong>water</strong> samples was measured us<strong>in</strong>g thecopper specific reagent diethyldithiocarbamic acid. For the assay, 200 µl aliquots <strong>in</strong>triplicate <strong>of</strong> the <strong>water</strong> samples were pipetted onto a microplate followed by 300 µM <strong>of</strong>diethyldithiocarbamic acid. The absorbance <strong>of</strong> the yellow Cu 2+ -diethyldithiocarbamiccomplex was measured at 450 nm with a Victor plate reader, Wallac. The absorbancevalues were converted to concentration by comparison with a standard curve, generated byadd<strong>in</strong>g known amounts <strong>of</strong> copper chloride to 300 µM diethyldithiocarbamic acid <strong>in</strong> Milli-Q<strong>water</strong>.3.2. Measurement <strong>of</strong> iron us<strong>in</strong>g ferroz<strong>in</strong>eThe iron concentration <strong>in</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples was measured us<strong>in</strong>g the iron-specificreagent ferroz<strong>in</strong>e. 179 For the assay, 200 µl aliquots <strong>in</strong> triplicate <strong>of</strong> the <strong>water</strong> samples werepipetted onto a 96-well microplate followed by 400 µM <strong>of</strong> ferroz<strong>in</strong>e and 100 µM ascorbicacid. Ascorbic acid was used to reduce the Fe 3+ to the Fe 2+ form. The coloured Fe 2+ -ferroz<strong>in</strong>e complex formed was measured at 560 nm us<strong>in</strong>g a Victor plate reader, Wallac. Theabsorbance values were converted to concentration by comparison with a standard curve.The standard curve was generated by add<strong>in</strong>g known amounts <strong>of</strong> ferric chloride30


Experimental procedurestetrahydrate, 100 µM ascorbic acid and 400 µM ferroz<strong>in</strong>e to Milli-Q <strong>water</strong> buffered with100 mg/l bicarbonate.3.3. Measurement <strong>of</strong> bicarbonate and chloride us<strong>in</strong>g anion exchangeHPLCAn anion exchange column PRP-X100, 150 x 4.1 mm I.D, 10 µm particle size anionexchange column (Hamilton) equipped with a PRP-X-100 guard column (25.0 x 2.3 mmI.D) was used to measure the bicarbonate and chloride <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples. Anisocratic HPLC system (Waters model 1515) equipped with a manual Rheodyne <strong>in</strong>jectionvalve (25 µl loop) and a 2-channel UV/VIS detector (Waters model 2487) was used.Chromatography was performed us<strong>in</strong>g isocratic elution with 4.0 mM p-hydroxybenzoicacid conta<strong>in</strong><strong>in</strong>g 2.5% methanol, pH 8.5 (NaOH). The flow rate was 2.0 ml/m<strong>in</strong>. The set-upwe used for the anion analysis could detect fluoride, bicarbonate, chloride, nitrite, bromide,nitrate, phosphate and sulphate ions. The anions were detected by <strong>in</strong>direct UV at 310 nmand analysed us<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware. All separations were performed at roomtemperature.4. Detection <strong>of</strong> ascorbic acid and its degradation products <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>4.1. Measurement <strong>of</strong> ascorbic acid and its degradation products us<strong>in</strong>gHPLCHPLC analysis was used to measure ascorbic acid and its degradation products <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> samples, metal-supplemented Milli-Q <strong>water</strong> and household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Anisocratic HPLC system (Waters model 1515) equipped with a manual Rheodyne <strong>in</strong>jectionvalve (25 µl loop) and a 2-channel UV/VIS detector (Waters model 2487) was used. Thecolumn used for quantization <strong>of</strong> ascorbic acid and oxalic acid was a Nucleosil C18 150 x4.1 mm I.D, 10 µm particle size column (Supelco Inc.). Chromatography was performedwith isocratic elution us<strong>in</strong>g 10 mM phosphate buffer (KH 2PO 4) conta<strong>in</strong><strong>in</strong>g 5% methanol,pH 3.3 (H 3PO 4). The flow rate was 0.5 ml/m<strong>in</strong>. The peaks were detected at 210 nm andanalysed us<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware. For the identification and calibration we usedstandards <strong>of</strong> DHA, threonic-, oxalic- and ascorbic acid <strong>in</strong> Milli-Q <strong>water</strong>. All separationswere performed at room temperature.31


Experimental proceduresUs<strong>in</strong>g these sett<strong>in</strong>gs, the peaks for the threonic acid and hydrogen peroxide standards couldnot be separated with the Nucleosil C18 column. Therefore, to quantitate threonic acid, theanion column PRP-X100 (Hamilton), 150 x 4.1 mm I.D, 10 mm particle size equipped witha PRP-X100 guard column (25.0 x 2.3 mm I.D) was used. Chromatography was performedus<strong>in</strong>g isocratic elution us<strong>in</strong>g 4.0 mM p-hydroxybenzoic acid conta<strong>in</strong><strong>in</strong>g 2.5% methanol, pH8.5 (NaOH). The flow rate was 2.0 ml/m<strong>in</strong>. Threonic acid was detected by <strong>in</strong>direct UV at310 nm and analysed us<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware.4.2. Measurement <strong>of</strong> dehydroascorbic acid with o-phenylenediam<strong>in</strong>eDue to the difficulty <strong>of</strong> measur<strong>in</strong>g DHA with HPLC us<strong>in</strong>g UV-detection, a more sensitivemethod was used. To measure DHA formation we therefore used the reagent o-phenylenediam<strong>in</strong>e, a reagent that forms a fluorescent complex with DHA. 180, 181 For theassay, 2 mM ascorbic acid was added to the <strong>water</strong> samples and <strong>in</strong>cubated at roomtemperature for various time periods. After this, 2 mM <strong>of</strong> o-phenylenediam<strong>in</strong>e was addedto the tubes followed by 8 mM TRIS buffer. The fluorescent complex was excited at 370nm, and the emission at 440 nm was measured by a Hitachi F-2000 fluorescencespectrophotometer. The fluorescence values were converted <strong>in</strong>to concentration DHA froma standard curve where known amounts <strong>of</strong> DHA were used. The actual concentration <strong>of</strong>DHA <strong>in</strong> the prepared standards was controlled by the addition <strong>of</strong> 10 mM dithiothreitol 182-184followed by HPLC analysis on the ascorbic acid formed. All measurements were performedat room temperature.32


ResultsRESULTS1. Vitam<strong>in</strong> C <strong>in</strong>duces hydroxyl radicals <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>[Paper I]Vitam<strong>in</strong> C <strong>in</strong>duced hydroxyl radical generation was studied <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples bymeasur<strong>in</strong>g the formation <strong>of</strong> 7-OHCCA from coumar<strong>in</strong>-3-carboxylic acid. A markeddifference <strong>in</strong> hydroxyl radical formation was observed over time <strong>in</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>samples supplemented with 2 mM <strong>vitam<strong>in</strong></strong> C. The highest value, observed among the 22household tap <strong>water</strong>s that were screened for hydroxyl radical formation, was around 920nM <strong>of</strong> 7-OHCCA as compared to 20 nM <strong>of</strong> 7-OHCCA <strong>in</strong> the <strong>water</strong> sample that gave thelowest signal after a 3 h <strong>in</strong>cubation period with <strong>vitam<strong>in</strong></strong> C. In general, hydroxyl radicalformation was lower <strong>in</strong> <strong>water</strong>s obta<strong>in</strong>ed from private wells as compared to <strong>water</strong>orig<strong>in</strong>at<strong>in</strong>g from public <strong>water</strong> systems. The lowest hydroxyl radical formation was found <strong>in</strong>domestic sold bottled <strong>water</strong>.The hydroxyl radical formation <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> supplemented with <strong>vitam<strong>in</strong></strong> Ccould also be demonstrated us<strong>in</strong>g a DNA nick<strong>in</strong>g assay. The hydroxylation observed <strong>in</strong><strong>vitam<strong>in</strong></strong> C supplemented dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> demonstrated by the coumar<strong>in</strong>-3-carboxylic acidmicroplate assay was <strong>in</strong> good agreement with the DNA nick<strong>in</strong>g assay.The hydroxyl radical formation <strong>in</strong> the tap-<strong>water</strong> samples was strongly dependent on theflush<strong>in</strong>g time before the samples were taken. The formation <strong>of</strong> 7-OHCCA with<strong>in</strong> 3 h wasremarkably decreased when the faucet was flushed for 5 m<strong>in</strong> (from 710 nM to 70 nM). Inthis <strong>water</strong> sample the copper concentration decreased from 1.85 mg/l measured <strong>in</strong> the firstdrawn to 0.07 mg/l by flush<strong>in</strong>g the faucet for 5 m<strong>in</strong>. On the other hand, flush<strong>in</strong>g did notdecrease the formation <strong>of</strong> 7-OHCCA to the same extent <strong>in</strong> another sample orig<strong>in</strong>at<strong>in</strong>gfrom a different public <strong>water</strong> system (from around 760 nM to close to 500 nM). In thissample, the copper concentration decreased from 1.24 mg/l to 0.18 mg/l.2. Ascorbic acid <strong>in</strong>duced hydroxyl radical formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> isdependent on copper ions and bicarbonate [Paper II]In paper I we observed that addition <strong>of</strong> ascorbic acid to some tap <strong>water</strong> samplescontam<strong>in</strong>ated with copper ions could <strong>in</strong>duce hydroxyl radical formation. In paper II it wasobserved that the amount <strong>of</strong> copper ions present <strong>in</strong> the <strong>water</strong> samples did not alwayscorrelate with the amount <strong>of</strong> hydroxyl radicals generated after ascorbic acid addition.33


ResultsTherefore, <strong>in</strong> paper II we wanted to identify the compounds that might be <strong>in</strong>volved <strong>in</strong> theascorbic acid <strong>in</strong>duced hydroxyl radical generat<strong>in</strong>g reaction observed earlier <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>.To achieve this, we cont<strong>in</strong>ued our work on two <strong>water</strong> samples. These samples had beentaken <strong>in</strong> the same way, directly drawn from the tap, but orig<strong>in</strong>at<strong>in</strong>g from two differentmunicipal <strong>water</strong> suppliers. Ascorbic acid supplementation led to high amounts <strong>of</strong>hydroxylated coumar<strong>in</strong>-3-carboxylic acid <strong>in</strong> the first sample (above 800 nM) with<strong>in</strong> 3 h. Inthe other sample, however, hardly any hydroxyl radical formation could be detected afterascorbic acid addition (around 10 nM). When 2 mM ascorbic acid and 200 µM coumar<strong>in</strong>-3-carboxylic acid were added, the pH <strong>in</strong> the first dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sample decreased rapidlyfrom 7.6 to 5.8 and stabilized at a new pH value close to 6.4. In contrast, when ascorbicacid and coumar<strong>in</strong>-3-carboxylic acid were added to the other dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sample, amuch deeper drop <strong>in</strong> the pH value could be seen. Here, the pH decreased rapidly from 7.2to 3.8 and rema<strong>in</strong>ed under pH 4.0.Anion analysis by HPLC revealed that the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sample generat<strong>in</strong>g higheramounts <strong>of</strong> hydroxyl radicals conta<strong>in</strong>ed around 90 mg/l <strong>of</strong> both bicarbonate and chloride.In contrast, the other dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sample showed much lower concentrations <strong>of</strong>bicarbonate and chloride, 30 mg/l and 10 mg/l respectively. No other anions could bedetected <strong>in</strong> the <strong>water</strong> samples tested (fluoride, nitrite, nitrate, bromide, phosphate orsulphate ions).The ascorbic acid <strong>in</strong>duced hydroxyl radical formation was highly dependent on thebicarbonate concentration (buffer capacity) <strong>in</strong> the <strong>water</strong> samples. This could bedemonstrated us<strong>in</strong>g Milli-Q <strong>water</strong> supplemented with 2 mM ascorbic acid, 0.5 mg/l copperand <strong>in</strong>creas<strong>in</strong>g concentrations <strong>of</strong> bicarbonate. At 50 mg/l bicarbonate a prompt <strong>in</strong>crease <strong>in</strong>the hydroxyl radical formation was observed. The highest amount <strong>of</strong> 7-OHCCA wasobta<strong>in</strong>ed when 100 mg/l bicarbonate was added to the copper supplemented Milli-Q <strong>water</strong>sample. In the samples that conta<strong>in</strong>ed 50 mg/l bicarbonate or more, a higher pH valuecould be measured. In contrast to ascorbic acid, the sodium-, calcium-, and magnesiumsalts <strong>of</strong> ascorbic acid could readily trigger hydroxyl radical formation <strong>in</strong> copper conta<strong>in</strong><strong>in</strong>gMilli-Q <strong>water</strong> even <strong>in</strong> the absence <strong>of</strong> bicarbonate. In the presence <strong>of</strong> bicarbonate, sodiumascorbate triggered the highest yield <strong>of</strong> hydroxylated coumar<strong>in</strong>-3-carboxylic acid at pH 5.0.At higher pH values the signal was lower.34


Results3. Oxidative decomposition <strong>of</strong> ascorbic acid <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [Paper III]In paper III we wanted to <strong>in</strong>vestigate to what extent ascorbic acid is degraded <strong>in</strong> copperand bicarbonate conta<strong>in</strong><strong>in</strong>g dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Furthermore, we were <strong>in</strong>terested <strong>in</strong> thedegradation products that are generated from ascorbic acid. In l<strong>in</strong>e with paper II, thepresence <strong>of</strong> both copper ions and bicarbonate was required for the degradation <strong>of</strong> ascorbicacid. This was demonstrated by HPLC analysis on two dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples and a Milli-Q<strong>water</strong> sample supplemented with 100 mg/l HCO 3- and 0.5 mg/l Cu 2+ . As <strong>in</strong> paper II, thetwo dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples had been sampled <strong>in</strong> the same way, directly drawn from thetap, but they orig<strong>in</strong>ated from two different municipal <strong>water</strong> suppliers. In the first sample,which conta<strong>in</strong>ed around 25 mg/l bicarbonate and 0.2 mg/l copper, only about 40% <strong>of</strong> theadded ascorbic acid had been oxidized dur<strong>in</strong>g the 3 h <strong>in</strong>cubation. On the contrary, when 2mM ascorbic acid was added to the <strong>water</strong> sample that conta<strong>in</strong>ed 150 mg/l bicarbonate and0.5 mg/l copper, the <strong>vitam<strong>in</strong></strong> was almost completely (93%) oxidized dur<strong>in</strong>g the 3 h<strong>in</strong>cubation. A similar oxidation process could also be seen when 2 mM <strong>vitam<strong>in</strong></strong> C wasadded to Milli-Q <strong>water</strong> supplemented with 100 mg/l bicarbonate and 0.5 mg/l copper. Theaddition <strong>of</strong> 2 mM ascorbic acid to Milli-Q <strong>water</strong> resulted <strong>in</strong> a very modest oxidation <strong>of</strong> the<strong>vitam<strong>in</strong></strong>.A rapid formation <strong>of</strong> DHA was observed <strong>in</strong> the tap <strong>water</strong> supplemented with ascorbic acidthat conta<strong>in</strong>ed 150 mg/l bicarbonate and 0.5 mg/l copper. About 650 µM <strong>of</strong> DHA wasformed after only 15 m<strong>in</strong> <strong>in</strong>cubation. This rapid formation <strong>of</strong> DHA was also observed <strong>in</strong>Milli-Q <strong>water</strong> supplemented with 2 mM ascorbic acid, 100 mg/l bicarbonate and 0.5 mg/lcopper. However, at 15 m<strong>in</strong>, less than 100 µM <strong>of</strong> DHA had been formed <strong>in</strong> the samplethat conta<strong>in</strong>ed 25 mg/l bicarbonate and 0.2 mg/l copper. In agreement with this, a verylow concentration <strong>of</strong> DHA could be detected <strong>in</strong> pure Milli-Q <strong>water</strong> supplemented withascorbic acid. Almost no DHA was formed <strong>in</strong> 4 commercially sold domestic bottled <strong>water</strong>samples (0-3 µM).To verify that DHA was formed <strong>in</strong> our dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples, we used dithiothreitol, areduc<strong>in</strong>g agent that can turn DHA back <strong>in</strong>to ascorbic acid. When dithiothreitol was addedto copper and bicarbonate supplemented Milli-Q <strong>water</strong> that had been <strong>in</strong>cubated with 2 mMascorbic acid for 3 h, the ascorbic acid peak reappeared <strong>in</strong> the chromatogram(approximately 680 µM ascorbic acid was formed).Further analysis revealed that dur<strong>in</strong>g the 3 h <strong>in</strong>cubation 2 mM ascorbic acid had beenoxidized, <strong>in</strong> bicarbonate-rich and copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, to 710 µM DHA,about 500 µM oxalic acid and 80 µM threonic acid. The oxalic acid and threonic acid were35


Results<strong>in</strong>dicated to be derived from the reaction between DHA and hydrogen peroxide ratherthan the reaction between ascorbic acid and hydrogen peroxide (see paper III for details).When 2 mM <strong>of</strong> DHA was added to Milli-Q <strong>water</strong> supplemented with 4 mM hydrogenperoxide and 100 mg/l bicarbonate, 650 µM oxalic acid and 200 µM threonic acid wereformed with<strong>in</strong> 10 m<strong>in</strong>utes. In the absence <strong>of</strong> hydrogen peroxide, 80% less oxalic acid wasformed <strong>in</strong> a Milli-Q <strong>water</strong> sample conta<strong>in</strong><strong>in</strong>g 2 mM DHA buffered with 100 mg/lbicarbonate. In contrast, 3 hours were required for 2 mM ascorbic acid to be degraded tothe same amount <strong>of</strong> oxalic acid and threonic acid by hydrogen peroxide <strong>in</strong> bicarbonatebufferedMilli-Q <strong>water</strong>.4. Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxyl radical formation can be <strong>in</strong>hibitedby iron [Paper IV]In l<strong>in</strong>e with our earlier f<strong>in</strong>d<strong>in</strong>gs, very low concentrations <strong>of</strong> copper (0.01-0.05 mg/l) weresufficient to give a detectable hydroxyl radical signal <strong>in</strong> an ascorbic acid supplementedbicarbonate buffered Milli-Q <strong>water</strong> sample. On the contrary, neither Fe 2+ nor Fe 3+ couldsupport any hydroxyl radical formation <strong>in</strong> the ascorbic acid supplemented bicarbonatebuffered Milli-Q <strong>water</strong> sample. The same was true for manganese, cadmium, nickel, cobalt,alum<strong>in</strong>um, magnesium, calcium and z<strong>in</strong>c (as chloride salts) or gallium (as nitrate salt), asnone <strong>of</strong> these metals could <strong>in</strong>duce hydroxyl radical formation <strong>in</strong> ascorbic acidsupplemented bicarbonate buffered Milli-Q <strong>water</strong> sample. All these metals were testedus<strong>in</strong>g the highest amounts <strong>of</strong> the contam<strong>in</strong>ants that are allowed <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, MCL(data not shown).HPLC analysis, with coumar<strong>in</strong> as a target molecule, was used to elucidate the effects <strong>of</strong> ironon <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced hydroxyl radical formation <strong>in</strong> the presence <strong>of</strong> copper andbicarbonate. We focused our analysis on one <strong>of</strong> these hydroxylated compounds, namely 7-hydroxycoumar<strong>in</strong>. Once aga<strong>in</strong>, with<strong>in</strong> 3 h one <strong>of</strong> the hydroxylation products <strong>of</strong> coumar<strong>in</strong>,7-hydroxycoumar<strong>in</strong>, could be observed <strong>in</strong> copper and ascorbic acid supplementedbicarbonate-buffered Milli-Q <strong>water</strong>. If 0.1 mg/l copper was substituted with 0.2 mg/l ferriciron (MCL <strong>of</strong> iron <strong>in</strong> EU), no hydroxylation occurred. Furthermore, 48% <strong>in</strong>hibition <strong>of</strong>ascorbic acid/copper-catalyzed hydroxyl radical formation was observed with 0.2 mg/l <strong>of</strong>iron. Manganese, cadmium, nickel, cobalt, gallium, alum<strong>in</strong>um, magnesium, calcium or z<strong>in</strong>chad no <strong>in</strong>hibitory effect on the ascorbic acid/copper-mediated hydroxyl radical formation.This <strong>in</strong>hibitory effect <strong>of</strong> iron on <strong>vitam<strong>in</strong></strong> C/copper-<strong>in</strong>duced hydroxyl radical formation wasalso reflected <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples. The copper concentration <strong>in</strong> the36


Resultsdifferent <strong>water</strong> samples varied from 0.13 to 0.02 mg/l and the bicarbonate concentrationvaried between 80 and 130 mg/l. The <strong>water</strong> samples used <strong>in</strong> the assay did not conta<strong>in</strong> anydetectable iron. Addition <strong>of</strong> 0.2 mg/l ferric iron to the ascorbic acid supplementedhousehold dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples resulted <strong>in</strong> a 36 - 45% <strong>in</strong>hibition <strong>in</strong> the hydroxyl radicalformation. When the household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples were supplemented with 0.8 mg/lferric iron the <strong>in</strong>hibition was even higher, 47 – 60%.5. Ascorbic acid <strong>in</strong>duced hydrogen peroxide accumulation <strong>in</strong> householddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> - <strong>in</strong>teraction between copper, iron and bicarbonate[Paper V]In this study we evaluated whether ascorbic acid can also stimulate hydrogen peroxideformation <strong>in</strong> Cu 2+ contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. To establish this, we aga<strong>in</strong> used Milli-Q<strong>water</strong> as a model solvent for dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The results showed that ascorbic acid <strong>in</strong>duces asubstantial <strong>in</strong>crease <strong>in</strong> the hydrogen peroxide concentration (500 µM) <strong>in</strong> Milli-Q <strong>water</strong>supplemented with 0.1 mg/l <strong>of</strong> Cu 2+ . This Cu 2+ concentration is 20 times below the amount<strong>of</strong> copper that is allowed <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> <strong>in</strong> Europe (MCL). Already after 1-hour<strong>in</strong>cubation, almost 300 µM hydrogen peroxide could be detected. On the contrary, ascorbicacid and Fe 3+ <strong>in</strong>duced very low concentrations <strong>of</strong> hydrogen peroxide (45 µM) after 6 hours<strong>in</strong> Milli-Q <strong>water</strong>. Other metals tested at MCL levels with ascorbic acid (Ca 2+ , Mg 2+ , Zn 2+ ,Mn 2+ , Co 2+ or Al 2+ ) generated between 60 µM and 120 µM <strong>of</strong> hydrogen peroxide after 6hours.Although Fe 3+ did not <strong>in</strong>duce hydrogen peroxide formation <strong>in</strong> ascorbic acid supplementedMilli-Q <strong>water</strong>, the <strong>in</strong>hibitory effect <strong>of</strong> iron on hydrogen peroxide formation could beobserved <strong>in</strong> the ascorbic acid/Cu 2+ supplemented Milli-Q <strong>water</strong>. The <strong>in</strong>hibition by 0.2mg/l ferric iron was very weak dur<strong>in</strong>g the first hour. However, after 2 h <strong>in</strong>cubation, thehydrogen peroxide production stopped, and the concentration started to decl<strong>in</strong>e. After 6 h<strong>in</strong>cubation the hydrogen peroxide level had decreased to about 60 µM as compared toaround 500 µM measured <strong>in</strong> the control sample not conta<strong>in</strong><strong>in</strong>g iron. Other metal ionspecies that might be present <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, Zn 2+ , Co 2+ , Mn 2+ or Al 2+ did not have anyimpact at their MCL levels on the ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogen peroxideformation. A modest <strong>in</strong>hibition <strong>in</strong> hydrogen peroxide formation could be seen when Mg 2+or Ca 2+ were present. However, the concentrations <strong>of</strong> Mg 2+ and Ca 2+ were 250 and 500fold higher than the concentration <strong>of</strong> iron used <strong>in</strong> the assay.37


ResultsOxalic acid was found to be the important factor that assisted the iron <strong>in</strong>hibitory effect onascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogen peroxide formation. Previously, <strong>in</strong> paper III weestablished that oxalic acid is one <strong>of</strong> the degradation products generated when ascorbic acidis oxidatively decomposed <strong>in</strong> copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Furthermore, oxalicacid is known to have a high aff<strong>in</strong>ity for ferric iron even at very low pH. This was verifiedwhen 0.1 mg/l Cu 2+ and 2 mM ascorbic acid were added to Milli-Q <strong>water</strong> supplementedwith both iron and oxalic acid. When 0.2 mg/l Fe 3+ and 50 µM oxalic acid were presentfrom the start <strong>of</strong> the reaction, extremely low concentrations <strong>of</strong> hydrogen peroxide could bedetected <strong>in</strong> the ascorbic acid/Cu 2+ supplemented Milli-Q <strong>water</strong>. Likewise, when 0.2 mg/lFe 3+ and 50 µM oxalic acid were added to the ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogenperoxide generat<strong>in</strong>g reaction after 2 h <strong>in</strong>cubation, the hydrogen peroxide concentration <strong>in</strong>the sample rapidly decreased. Oxalic acid also directly <strong>in</strong>hibited the ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogen peroxide formation.The hydrogen peroxide formation was also demonstrated <strong>in</strong> 40 tap <strong>water</strong> samples and 8domestic bottled <strong>water</strong> samples <strong>in</strong>cubated with ascorbic acid dur<strong>in</strong>g a 6-hour period. When2 mM ascorbic acid was added to the low-buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples that werecontam<strong>in</strong>ated with copper, hydrogen peroxide was generated. The levels <strong>of</strong> hydrogenperoxide generated varied between 0 and 500 µM <strong>in</strong> the <strong>water</strong> samples. However, <strong>in</strong> some<strong>of</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples that were contam<strong>in</strong>ated with copper but showed higherbuffer<strong>in</strong>g capacity, much lower levels <strong>of</strong> hydrogen peroxide was formed <strong>in</strong> the presence <strong>of</strong>ascorbic acid. The impact <strong>of</strong> bicarbonate on the hydrogen peroxide formation was alsodemonstrated <strong>in</strong> ascorbic acid/Cu 2+ supplemented Milli-Q <strong>water</strong> that had beensupplemented with various concentrations <strong>of</strong> bicarbonate. The ascorbic acid <strong>in</strong>ducedaccumulation <strong>of</strong> hydrogen peroxide <strong>in</strong> the presence <strong>of</strong> 0.1 mg/l copper was significantlydecreased when the concentrations <strong>of</strong> bicarbonate was <strong>in</strong>creased.38


DiscussionDISCUSSIONNowadays, ascorbic acid is added to food and health products more than ever before. Thisis based on the fact that ascorbic acid can work as an anti<strong>oxidant</strong>. However, ascorbic acidcan easily redox-cycle with unbound transition metals such as iron and copper and thuswork as a strong pro-<strong>oxidant</strong>. 5, 6The majority <strong>of</strong> the population <strong>of</strong> Europe use tap <strong>water</strong> <strong>in</strong>stead <strong>of</strong> bottled <strong>water</strong> as theirdr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> leav<strong>in</strong>g the <strong>water</strong> plants is normally <strong>of</strong> good quality,rigorously checked for taste and chemical composition. However, the tap <strong>water</strong> reach<strong>in</strong>ghomes through the pipes might be contam<strong>in</strong>ated with m<strong>in</strong>erals such as copper, iron, lead,chromium or arsenic. The degree <strong>of</strong> contam<strong>in</strong>ation is highly dependent on how corrosivethe <strong>water</strong> is, the material used <strong>in</strong> the pipes and fitt<strong>in</strong>gs and the time the <strong>water</strong> has beensitt<strong>in</strong>g <strong>in</strong> the pipes before use. 163 Thus, if a reduc<strong>in</strong>g agent is added to a metal-contam<strong>in</strong>ated<strong>water</strong> <strong>of</strong> this k<strong>in</strong>d, a free radical generat<strong>in</strong>g reaction might occur.In view <strong>of</strong> this and the fact that dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> can be contam<strong>in</strong>ated with copper, wedecided to study whether <strong>vitam<strong>in</strong></strong> C can <strong>in</strong>duce hydroxyl radical formation or hydrogenperoxide accumulation <strong>in</strong> tap <strong>water</strong> samples. In our studies, 2 mM <strong>of</strong> <strong>vitam<strong>in</strong></strong> C was used.This equals 70 mg <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> a 2 dl glass <strong>of</strong> <strong>water</strong>, and thus the concentration used isbiologically relevant.1. Vitam<strong>in</strong> C (Ascorbic acid) <strong>in</strong>duces hydroxyl radicals and hydrogenperoxide <strong>in</strong> copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Hydroxyl radical and hydrogen peroxide is formed <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> if ascorbic acid isadded (Paper I, II, IV and V). The pro-oxidative function <strong>of</strong> ascorbic acid <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>is primarily dependent on trace amounts <strong>of</strong> copper ions present. None <strong>of</strong> the other metalstested (iron, manganese, cadmium, nickel, cobalt, alum<strong>in</strong>ium, magnesium, calcium or z<strong>in</strong>c)could not significantly support ascorbic acid <strong>in</strong>duced hydroxyl radical or hydrogen peroxideformation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (Paper IV and V).Our results <strong>in</strong>dicated that there was a large variability <strong>in</strong> hydroxyl radical and hydrogenperoxide formation <strong>in</strong> the <strong>water</strong> samples orig<strong>in</strong>at<strong>in</strong>g from various municipal <strong>water</strong>suppliers. In general, hydroxyl radical formation was most evident <strong>in</strong> household tap <strong>water</strong>samples as compared to the hydroxyl radical formation <strong>in</strong> tap <strong>water</strong> orig<strong>in</strong>at<strong>in</strong>g fromprivate wells or commercially sold bottled spr<strong>in</strong>g <strong>water</strong>.39


DiscussionFurthermore, we found that the hydroxyl radical and hydrogen peroxide formation <strong>in</strong> some<strong>of</strong> the ascorbic acid supplemented tap-<strong>water</strong> samples was strongly dependent on theflush<strong>in</strong>g time before the samples were taken. The explanation for this is that the first drawnsample can be contam<strong>in</strong>ated with copper from the pipes with<strong>in</strong> the apartment (build<strong>in</strong>g). 172, 173Indeed, the copper concentration <strong>in</strong> one <strong>of</strong> the tap-<strong>water</strong> samples decreased from 1.85mg/l (measured <strong>in</strong> the first-drawn sample) to 0.07 mg/l after flush<strong>in</strong>g the tap for 5 m<strong>in</strong>(Paper I).2. The concentration <strong>of</strong> bicarbonate and pH regulate whether <strong>vitam<strong>in</strong></strong> Ccatalyzes hydroxyl radical or hydrogen peroxide formation <strong>in</strong> coppercontam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Anion analysis by HPLC <strong>in</strong>dicated that a buffer<strong>in</strong>g anion such as bicarbonate was requiredfor ascorbic acid to redox-cycle copper and generate hydroxyl radicals <strong>in</strong> the tap <strong>water</strong>samples. Ascorbic acid stimulated hydroxyl radical formation <strong>in</strong> a copper-contam<strong>in</strong>ateddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> buffered with high amounts <strong>of</strong> bicarbonate (Paper II), and hydrogenperoxide formation <strong>in</strong> weakly bicarbonate-buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (Paper IV).2.1. Vitam<strong>in</strong> C catalyzes the formation <strong>of</strong> hydroxyl radicals <strong>in</strong> stronglybicarbonate-buffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>The importance <strong>of</strong> bicarbonate and copper ions for the ascorbic acid <strong>in</strong>duced hydroxylradical formation was studied <strong>in</strong> detail <strong>in</strong> a controlled Milli-Q <strong>water</strong> system (Paper II). Aslittle as 50 mg/l bicarbonate was enough to buffer the pH <strong>in</strong> Milli-Q <strong>water</strong> and keep thepH above 4.25 after ascorbic acid addition. The pKa 1 <strong>of</strong> ascorbic acid is 4.25. When the pHis above 4.25, the ascorbate mono-anion will dom<strong>in</strong>ate and this form can be furtheroxidized with concomitant reduction <strong>of</strong> Cu 2+ to Cu + . The reduced copper (Cu + ) can <strong>in</strong> turnreact with oxygen and generate superoxide. At higher pH values rapid redox-cycl<strong>in</strong>g <strong>of</strong>copper will generate superoxide, peroxide and hydroxyl radicals via a copper-assistedFenton reaction (see below: Equation 15-18). At lower pH, the percentage <strong>of</strong> superoxide <strong>in</strong>the <strong>water</strong> also decreases when superoxide anion reacts with a hydrogen proton to form thehydroperoxyl radical (HO 2•).40


DiscussionCu 2+ + Asc → Cu + + Asc • Eq. 15Cu + + O 2 → Cu 2+ + O 2• - Eq. 16Cu + + O 2• − + 2H + → Cu 2+ + H 2O 2 Eq. 17Cu + + H 2O 2 → Cu 2+ + OH − + OH • Eq. 18Our results <strong>in</strong> paper II stress the importance <strong>of</strong> the buffer<strong>in</strong>g capacity <strong>in</strong> the <strong>water</strong> samplefor ascorbic acid to stimulate hydroxyl radical formation. Anion analyses by HPLC alsodetected chloride ions, but the amounts detected <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, as well as the highestamount <strong>of</strong> chloride ions that is allowed <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, (MCL <strong>in</strong> Europe) did not affecthydroxyl radical formation. In the presence <strong>of</strong> bicarbonate, ascorbic acid <strong>in</strong>duced thestrongest signal as compared to the sodium-, calcium-, or magnesium salts <strong>of</strong> ascorbic acid.When the salts <strong>of</strong> ascorbate were used, the pH <strong>in</strong> the solution was 7.5 and the hydroxylradical signal was 35-40% lower. At this pH, the bicarbonate ions (HCO 3 − ) are thedom<strong>in</strong>at<strong>in</strong>g species <strong>in</strong> the buffer (Figure 4). Bicarbonate ions present <strong>in</strong> the solution canrapidly react with the hydroxyl radicals and form bicarbonate- or carbonate radicals. 185Vitam<strong>in</strong> C is one <strong>of</strong> the most studied anti<strong>oxidant</strong>s and it has previously been suggested that<strong>vitam<strong>in</strong></strong> C might <strong>in</strong>hibit N-nitroso compound-<strong>in</strong>duced gastric carc<strong>in</strong>oma. 186-189 In thiscondition, <strong>vitam<strong>in</strong></strong> C has been studied <strong>in</strong> the absence <strong>of</strong> transition metals, such as copperions, and should thus function as an anti<strong>oxidant</strong>. However, one could speculate thatbicarbonate <strong>in</strong> vivo <strong>in</strong> some special compartments, e.g. <strong>in</strong> the stomach or ur<strong>in</strong>ary bladder,could locally <strong>in</strong>crease the pH and thereby assist <strong>vitam<strong>in</strong></strong> C <strong>in</strong> stimulat<strong>in</strong>g hydroxyl radicalformation <strong>in</strong> the presence <strong>of</strong> transition metals. ROS have been documented as be<strong>in</strong>g<strong>in</strong>volved <strong>in</strong> gastric ulceration and cancer. 153, 190-192 Kadiiska et al. reported that <strong>in</strong>stallation <strong>of</strong>high levels <strong>of</strong> ascorbate with copper ions <strong>in</strong>to the stomach <strong>of</strong> animals leads to hydroxylradical formation. 193 Hydroxyl radicals have also been measured <strong>in</strong> human gastric juice. 194Thus, bicarbonate and copper could <strong>in</strong> fact, turn <strong>vitam<strong>in</strong></strong> C (ascorbic acid) <strong>in</strong>to a strongpro-<strong>oxidant</strong>. In l<strong>in</strong>e with this assumption, bicarbonate and <strong>vitam<strong>in</strong></strong> C has been shown topromote (N-butyl-N-(4-hydroxybutyl) nitrosam<strong>in</strong>e) <strong>in</strong>duced bladder carc<strong>in</strong>ogenesis <strong>in</strong>rats. 195-197 Moreover, it has been shown that alkal<strong>in</strong>e ur<strong>in</strong>ary pH promotes bladdercarc<strong>in</strong>ogenesis <strong>in</strong> rat model systems. 198, 199 Interest<strong>in</strong>gly, ascorbic acid <strong>in</strong> the presence <strong>of</strong>bicarbonate, 195, 196 or sodium ascorbate, 200, 201 was used <strong>in</strong> these studies.The <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced hydroxyl radical formation that takes place <strong>in</strong> copper-contam<strong>in</strong>ateddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> might also expla<strong>in</strong> the recently observed occurrence <strong>of</strong> benzene <strong>in</strong>carbonated s<strong>of</strong>t dr<strong>in</strong>ks supplemented with <strong>vitam<strong>in</strong></strong> C and benzoic acid. It has been shownthat hydroxyl radicals can catalyze decarboxylation reactions and therefore hydroxyl radicals41


Discussionmight turn the preservative benzoic acid <strong>in</strong>to the highly carc<strong>in</strong>ogenic benzene <strong>in</strong>beverages. 2022.2. Vitam<strong>in</strong> C catalyzes the formation <strong>of</strong> hydrogen peroxide <strong>in</strong> weaklybicarbonate-buffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Paper V shows that ascorbic acid can <strong>in</strong>itiate a time-dependent accumulation <strong>of</strong> hydrogenperoxide <strong>in</strong> copper-contam<strong>in</strong>ated poorly buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Ascorbic acid <strong>in</strong>duces asubstantial <strong>in</strong>crease <strong>in</strong> the hydrogen peroxide concentration (about 500 µM) <strong>in</strong> Milli-Q<strong>water</strong> (bicarbonate free) supplemented with copper ions after 6 hours <strong>in</strong>cubation. Somedr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>s generated close to 500 µM <strong>of</strong> hydrogen peroxide with<strong>in</strong> 6 hours, reach<strong>in</strong>gclose to 300 µM hydrogen peroxide <strong>in</strong> only 2 hours. Hydrogen peroxide formationoccurred at very low concentration <strong>of</strong> Cu 2+ ions (0.1 mg/l) (20 times below the amount <strong>of</strong>copper that is allowed <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, MCL <strong>in</strong> Europe). Only cobalt (II) generated smallamounts <strong>of</strong> hydrogen peroxide (around 120 µM) dur<strong>in</strong>g acidic conditions with <strong>vitam<strong>in</strong></strong> Cafter 6 hours <strong>in</strong>cubation.The ascorbic acid <strong>in</strong>duced hydrogen peroxide formation was particularly evident <strong>in</strong> poorlybuffered (low bicarbonate concentration) copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples.When bicarbonate was added to Milli-Q <strong>water</strong> supplemented with copper, the hydrogenperoxide accumulation was much lower. These results were consistent with the results fromstudy <strong>in</strong> paper II, where hydrogen peroxide is converted to hydroxyl radicals.The ascorbic acid <strong>in</strong>duced hydrogen peroxide accumulation <strong>in</strong> copper supplemented Milli-Q <strong>water</strong> (bicarbonate free) was significantly higher than the ascorbic acid <strong>in</strong>duced hydrogenperoxide formation earlier observed <strong>in</strong> cell culture and cell culture medium. 203, 204 However,our experiments were carried out <strong>in</strong> a much more acidic milieu (pH 3.5) compared to theexperiments <strong>in</strong> the buffered cell culture medium. Furthermore, the copper concentration <strong>in</strong>our experiments was much higher as compared to the trace amount <strong>of</strong> copper thatnormally is present <strong>in</strong> cell culture medium supplemented with serum. Also, the pH <strong>in</strong> our<strong>vitam<strong>in</strong></strong> C supplemented dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples was close to or below the pKa 1 value <strong>of</strong>ascorbic acid (4.25). In more neutral conditions (pH 6-6.5) that were obta<strong>in</strong>ed whenmagnesium ascorbate, calcium ascorbate or sodium ascorbate were added to Cu 2+supplemented Milli-Q <strong>water</strong>, less hydrogen peroxide was generated with<strong>in</strong> 6 hours (data notshown). The results obta<strong>in</strong>ed from these experiments are <strong>in</strong> better agreement with theamounts <strong>of</strong> hydrogen peroxide that have been reported to accumulate <strong>in</strong> cell cultures andcell culture medium. 203, 20442


Discussion3. Iron <strong>in</strong>hibits <strong>vitam<strong>in</strong></strong> C (ascorbic acid) <strong>in</strong>duced hydroxyl radicalformation and hydrogen peroxide accumulation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Iron displays an <strong>in</strong>hibitory effect on the ascorbic acid <strong>in</strong>duced hydroxyl radical formationand hydrogen peroxide accumulation when copper ions are present <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>(Paper IV and V). The study <strong>in</strong> paper V demonstrates that ascorbic acid-derived oxalic acidis necessary for the <strong>in</strong>hibitory effect <strong>of</strong> iron on ascorbic acid/Cu 2+ <strong>in</strong>duced hydrogenperoxide accumulation. It was confirmed that none <strong>of</strong> the other metals (manganese,cadmium, nickel, cobalt, alum<strong>in</strong>ium magnesium, calcium or z<strong>in</strong>c) could <strong>in</strong>hibit the <strong>vitam<strong>in</strong></strong>C and copper-driven hydroxyl radical and hydrogen peroxide formation. All these metalswere tested at MCL.An <strong>in</strong>teraction between oxalic acid and copper was also observed as oxalic acid decreasedthe ascorbic acid/Cu 2+ <strong>in</strong>duced hydrogen peroxide formation <strong>in</strong> Milli-Q <strong>water</strong>. Indeed,oxalic acid has a high aff<strong>in</strong>ity for Cu 2+ and forms metal complexes with Cu 2+ ions as well aswith Fe 3+ ions even at very low pH. 205 The <strong>in</strong>hibitory effect <strong>of</strong> oxalic acid on ascorbicacid/Cu 2+ <strong>in</strong>duced hydrogen peroxide formation <strong>in</strong> Milli-Q <strong>water</strong> was confirmed not to bedue to Cu 2+ /oxalic acid catalyz<strong>in</strong>g hydrogen peroxide to hydroxyl radicals. Instead, the<strong>in</strong>hibitory effect <strong>of</strong> oxalic acid on ascorbic acid/copper <strong>in</strong>duced hydrogen peroxideformation was implied to orig<strong>in</strong>ate from oxalic acid’s ability to <strong>in</strong>terfere with copper redoxcycl<strong>in</strong>g.Interest<strong>in</strong>gly, it has been suggested that oxalic acid could act as an anti<strong>oxidant</strong> <strong>in</strong>plants, because oxalic acid reduces the rate <strong>of</strong> ascorbic acid oxidation <strong>in</strong> the presence <strong>of</strong>hydrogen peroxide and Cu 2+ . 206The results <strong>of</strong> the study <strong>in</strong> paper IV are <strong>in</strong> agreement with the recent report by White et al.,demonstrat<strong>in</strong>g that iron can <strong>in</strong>hibit reductant-mediated copper and hydrogen peroxidegeneration and neurotoxicity. 207 Moreover, our results are <strong>in</strong> l<strong>in</strong>e with the recent f<strong>in</strong>d<strong>in</strong>gs byMunday et al. show<strong>in</strong>g that copper-catalyzed cyste<strong>in</strong>e oxidation can be partly <strong>in</strong>hibited bylow concentrations <strong>of</strong> iron salts. 208 In this context, it can also be mentioned that Mendittoet al. showed that load<strong>in</strong>g sem<strong>in</strong>al plasma with either ferrous or ferric iron up to aconcentration <strong>of</strong> 50 µM only modestly affected the rate <strong>of</strong> ascorbic acid oxidation. 209 Thelow oxidation rate <strong>of</strong> ascorbic acid by iron was also seen <strong>in</strong> our <strong>in</strong> vitro experiments (datanot shown). However, low concentrations <strong>of</strong> copper, as shown <strong>in</strong> the study <strong>in</strong> paper IIIand IV, <strong>in</strong>duce rapid oxidation <strong>of</strong> ascorbic acid. 209 One question to be addressed is thuswhether simultaneous adm<strong>in</strong>istration <strong>of</strong> iron could slow down copper/ascorbic acidmediatedprocesses.43


DiscussionThe <strong>in</strong>hibition is unlikely to result from an experimental artefact s<strong>in</strong>ce it is well known thatcoumar<strong>in</strong>-3-carboxylic acid can be used to detect iron driven hydroxyl radical reactions. 138, 210, 211Moreover, our HPLC experiments us<strong>in</strong>g coumar<strong>in</strong> as the target molecule gave the sameresults. A plausible explanation for the iron-<strong>in</strong>duced <strong>in</strong>hibition could be that Fe 3+ reactswith the superoxide generated from the copper/ascorbate redox reaction (Equation 5).Fe 2+ might also react with hydrogen peroxide and generate <strong>water</strong> and ferryl ions accord<strong>in</strong>gto the Bray-Gor<strong>in</strong> reaction (Equation 19). 212Fe 2+ + H 2O 2 → [Fe 4+ O] 2+ + H 2O (Bray-Gor<strong>in</strong>) Eq. 19The ability <strong>of</strong> Fe 3+ and oxalic acid to regulate ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogenperoxide formation dur<strong>in</strong>g acidic conditions (Paper V), could be <strong>of</strong> importance <strong>in</strong> vivo whenacidic conditions prevail. Thus, when Cu 2+ ions and <strong>vitam<strong>in</strong></strong> C are present at acidicconditions, the presence or absence <strong>of</strong> free redox-active iron and oxalic acid will determ<strong>in</strong>ehow much hydrogen peroxide will be accumulated. In particular, dur<strong>in</strong>g conditions wherecatalase is not present or not function<strong>in</strong>g properly (e.g. <strong>in</strong> the presence <strong>of</strong> ascorbic acid andcopper), 213, 214 the iron/oxalic acid complex could be <strong>of</strong> importance <strong>in</strong> regulat<strong>in</strong>g hydrogenperoxide toxicity dur<strong>in</strong>g acidic conditions <strong>in</strong> various biological systems <strong>in</strong> vivo. Overall, ourresults support earlier reports demonstrat<strong>in</strong>g that Fe 3+ can <strong>in</strong>hibit the cytotoxic effect <strong>of</strong>hydrogen peroxide <strong>in</strong> cell systems <strong>in</strong>duced by ascorbic acid. 39, 42, 207Hydrogen peroxide has been shown to have strong antibacterial effects. 215 One mightspeculate whether the ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogen peroxide formation and theability <strong>of</strong> Fe 3+ and oxalic acid to regulate hydrogen peroxide formation, as demonstratedhere <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, could be <strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g the survival <strong>of</strong> pathogenic bacteria<strong>in</strong> the human gastro<strong>in</strong>test<strong>in</strong>al tract. Higher <strong>in</strong>take <strong>of</strong> <strong>vitam<strong>in</strong></strong> C has been associated withlower <strong>in</strong>cidence <strong>of</strong> gastric cancer, for which H. pylori is a significant risk factor. 216Normally, catalase will catalyze hydrogen peroxide <strong>in</strong>to <strong>water</strong> and oxygen. However,substantial quantities <strong>of</strong> hydrogen peroxide (>100 µM), can be detected <strong>in</strong> freshly voidedhuman ur<strong>in</strong>e. 217, 218 For <strong>in</strong>stance, hydrogen peroxide is surpris<strong>in</strong>gly rapidly formed <strong>in</strong> freshlyprepared c<strong>of</strong>fee and <strong>in</strong>gestion <strong>of</strong> c<strong>of</strong>fee conta<strong>in</strong><strong>in</strong>g hydrogen peroxide has been shown to<strong>in</strong>crease the hydrogen peroxide concentration <strong>in</strong> ur<strong>in</strong>e. 219 Thus, a question to be addressedis whether hydrogen peroxide formation <strong>in</strong> copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, asobserved <strong>in</strong> our study with <strong>vitam<strong>in</strong></strong> C, could result <strong>in</strong> <strong>in</strong>creased hydrogen peroxide load.Hydrogen peroxide is diffusible with<strong>in</strong> and between cells, 152, 153 and therefore hydrogen44


Discussionperoxide might have an impact on the ur<strong>in</strong>ary tract. 152, 220-222 Interest<strong>in</strong>gly, there have beensuggestions that ur<strong>in</strong>ary hydrogen peroxide can be a marker <strong>of</strong> oxidative stress <strong>in</strong>malignancies. 152, 217, 218, 223, 224 In particular, <strong>in</strong> the absence <strong>of</strong> Fe 3+ ions, ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogen peroxide formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> as demonstrated <strong>in</strong> our study <strong>in</strong>paper V, might enhance the total hydrogen peroxide load and hydrogen peroxide <strong>in</strong>ducedoxidative stress <strong>in</strong> some <strong>in</strong>dividuals.4. Rapid decomposition <strong>of</strong> <strong>vitam<strong>in</strong></strong> C (ascorbic acid) <strong>in</strong> bicarbonatebuffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>In paper III we wanted to see how rapidly and to what extent ascorbic acid can be oxidized<strong>in</strong> a copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sample. In l<strong>in</strong>e with paper II, the presence <strong>of</strong>both copper ions and bicarbonate was required for the degradation <strong>of</strong> ascorbic acid.Ascorbic acid degradation by copper as a catalyst has been well documented <strong>in</strong> parenteralmixtures and cook<strong>in</strong>g <strong>of</strong> vegetables <strong>in</strong> copper-contam<strong>in</strong>ated <strong>water</strong>. 225 In our study,approximately one-third <strong>of</strong> the ascorbic acid added (2 mM) to a sample that conta<strong>in</strong>ed 150mg/l bicarbonate and 0.5 mg/l copper had been oxidized after 15 m<strong>in</strong>utes and the <strong>vitam<strong>in</strong></strong>was almost completely (93%) oxidized with<strong>in</strong> 3 hours. On the contrary, <strong>in</strong> another samplethat conta<strong>in</strong>ed 26 mg/l bicarbonate and 0.2 mg/l copper, only 39% <strong>of</strong> the added ascorbicacid had been oxidized dur<strong>in</strong>g the 3 h <strong>in</strong>cubation.Low concentrations <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> gastric juice have been associated with Helicobacter pylori<strong>in</strong>fection. The Helicobacter pylori <strong>in</strong>fection is the ma<strong>in</strong> cause <strong>of</strong> chronic gastritis and <strong>in</strong>creasesthe risk <strong>of</strong> gastric cancer. 226-228 Inflammation <strong>in</strong> the stomach <strong>in</strong>duced by H. pylori causessignificantly enhanced depletion <strong>of</strong> <strong>vitam<strong>in</strong></strong> C, but also reduces secretion <strong>of</strong> the <strong>vitam<strong>in</strong></strong><strong>in</strong>to the gastric lumen. 229-231 On the other hand, it has not been studied whether <strong>vitam<strong>in</strong></strong> Cconsumed with a copper/bicarbonate-rich <strong>water</strong> could be l<strong>in</strong>ked to low gastricconcentration <strong>of</strong> <strong>vitam<strong>in</strong></strong> C, and <strong>in</strong>creased susceptibility to H. pylori <strong>in</strong>fection.When ascorbic acid was oxidized <strong>in</strong> the presence <strong>of</strong> copper ions, DHA was formed. Toverify that DHA was formed <strong>in</strong> our dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples, we used dithiothreitol as areduc<strong>in</strong>g agent. 183, 184 Dithiothreitol turned DHA <strong>in</strong> the samples back <strong>in</strong>to ascorbic acid.DHA has previously been shown to be spontaneously decomposed <strong>in</strong>to L-diketogulonate(2,3-DKG) or erythroascorbate. 72, 232, 233 Our results <strong>in</strong>dicated that DHA, and notdiketogulonate, was present <strong>in</strong> the sample. The DHA formation <strong>in</strong> the bicarbonate-rich<strong>water</strong> sample contam<strong>in</strong>ated with copper was very rapid, as up to 650 µM DHA was formedwith<strong>in</strong> 15 m<strong>in</strong>. The amount <strong>of</strong> DHA formed with<strong>in</strong> 15 m<strong>in</strong>utes <strong>in</strong> the various tap <strong>water</strong>45


Discussionsamples tested was <strong>in</strong> the range <strong>of</strong> 100-650 µM. On the contrary, if commercially solddomestic bottled <strong>water</strong> was used <strong>in</strong> the assay, a very modest degradation <strong>of</strong> ascorbic acidtook place. Thus, people consum<strong>in</strong>g copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> with ascorbicacid will most likely <strong>in</strong>gest, or generate more DHA <strong>in</strong> their stomach than people us<strong>in</strong>gbottled <strong>water</strong>.The impact <strong>of</strong> long-term <strong>in</strong>take <strong>of</strong> DHA on human health has not yet been elucidated.DHA can enter cells via the GLUT glucose transporter. 234 Intracellular reduction <strong>of</strong> DHAto ascorbic acid by NADPH- and glutathione-dependent reactions decreases the cellularconcentrations <strong>of</strong> NADPH and glutathione <strong>in</strong> some celltypes. 235-237 In l<strong>in</strong>e with thesef<strong>in</strong>d<strong>in</strong>gs, DHA has been shown to cause oxidative stress and apoptosis <strong>in</strong> pancreatic andneural cells by deplet<strong>in</strong>g their <strong>in</strong>tracellular store <strong>of</strong> reduced glutathione. 238, 239In the <strong>water</strong> samples, DHA was further decomposed <strong>in</strong>to two major metabolites, oxalicacid and threonic acid. Our results <strong>in</strong>dicated that the hydrogen peroxide formed, and notthe hydroxyl radicals generated dur<strong>in</strong>g the reaction, was responsible for the DHAdecomposition <strong>in</strong> the <strong>water</strong> samples. This is <strong>in</strong> l<strong>in</strong>e with a report by Isbell et al. show<strong>in</strong>g thathydrogen peroxide and DHA can react directly at pH 7 to produce oxalic acid and threonicacid. 240It has been proposed that high concentrations <strong>of</strong> oxalic acid (calcium oxalate) can promotethe formation <strong>of</strong> kidney stones. 241-243 It has also been suggested that <strong>vitam<strong>in</strong></strong> C could be asource <strong>of</strong> oxalic acid <strong>in</strong> kidney stones, 241 but no reasonable support for such a proposal hasbeen published. 10 One criticism has been that <strong>in</strong>creased oxalate excretion <strong>in</strong> ur<strong>in</strong>e might bean artefact result<strong>in</strong>g from the spontaneous degradation <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>to oxalate <strong>in</strong> theur<strong>in</strong>e samples. 244 Oxalate formation dur<strong>in</strong>g <strong>in</strong>gestion <strong>of</strong> <strong>vitam<strong>in</strong></strong> C and coppercontam<strong>in</strong>ated<strong>water</strong> has not yet been studied, but the results presented <strong>in</strong> our study (PaperIII) might <strong>in</strong>dicate that substantial amounts <strong>of</strong> oxalic acid could be generated if ascorbicacid is consumed with copper-contam<strong>in</strong>ated bicarbonate-buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.Excess <strong>in</strong>take <strong>of</strong> <strong>vitam<strong>in</strong></strong> C is regarded as safe s<strong>in</strong>ce <strong>vitam<strong>in</strong></strong> C is known to be excreted <strong>in</strong>ur<strong>in</strong>e due to its <strong>water</strong> solubility. 10, 11 Interest<strong>in</strong>gly, our results show substantial DHA andoxalic acid accumulation from <strong>vitam<strong>in</strong></strong> C <strong>in</strong> copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Aquestion that would need to be addressed is whether copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>can deplete <strong>vitam<strong>in</strong></strong> C and hence <strong>in</strong>terfere with <strong>vitam<strong>in</strong></strong> C uptake from the stomach and<strong>in</strong>test<strong>in</strong>e, lead<strong>in</strong>g to <strong>vitam<strong>in</strong></strong> C deficiencies. Thus, could our copper pipes, like the copperpans once used <strong>in</strong> cook<strong>in</strong>g, be l<strong>in</strong>ked to <strong>vitam<strong>in</strong></strong> C deficiencies?46


ConclusionsCONCLUSIONSThe ma<strong>in</strong> focus <strong>of</strong> this thesis was to study the pro-<strong>oxidant</strong> effect <strong>of</strong> <strong>vitam<strong>in</strong></strong> C (ascorbicacid) <strong>in</strong> metal contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this study are:1. Bicarbonate and pH regulate the pro-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> ascorbic acid <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> contam<strong>in</strong>ated with trace amounts <strong>of</strong> copper. Ascorbic acid will <strong>in</strong>duce hydroxylradicals <strong>in</strong> copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> buffered with high amounts <strong>of</strong> bicarbonate(II), and hydrogen peroxide <strong>in</strong> weakly bicarbonate-buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (IV). Of theother metals tested (iron, manganese, cadmium, nickel, cobalt, alum<strong>in</strong>ium, magnesium,calcium or z<strong>in</strong>c), none could significantly support ascorbic acid <strong>in</strong>duced hydroxyl radicalsor hydrogen peroxide formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (IV, V).Ascorbic acid and copper <strong>in</strong>duced hydroxyl radical formation and hydrogen peroxideaccumulation could be important modulators <strong>of</strong> various molecules. The pro-<strong>oxidant</strong><strong>activity</strong> <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> the presence <strong>of</strong> copper ions as observed <strong>in</strong> the bicarbonatebuffereddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> might be l<strong>in</strong>ked to the reported occurrence <strong>of</strong> benzene <strong>in</strong>beverages supplemented with <strong>vitam<strong>in</strong></strong> C and benzoic acid. 202 Furthermore, the <strong>vitam<strong>in</strong></strong>C/Cu 2+ -<strong>in</strong>duced hydrogen peroxide formation dur<strong>in</strong>g acidic conditions, as demonstrated <strong>in</strong>poorly buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, could be <strong>of</strong> importance <strong>in</strong> host defence aga<strong>in</strong>st bacterial<strong>in</strong>fections. On the other hand, excessive production <strong>of</strong> hydrogen peroxide could <strong>in</strong>duce<strong>in</strong>creased oxidative stress on tissues, or alternatively be <strong>in</strong>volved <strong>in</strong> cell activation.2. Iron displays an <strong>in</strong>hibitory effect on the ascorbic acid/copper <strong>in</strong>duced hydroxylradical formation, as well as on hydrogen peroxide accumulation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (IV, V).Paper V demonstrates that ascorbic acid-derived oxalic acid is necessary for the <strong>in</strong>hibitoryeffect <strong>of</strong> iron on ascorbic acid/Cu 2+ -<strong>in</strong>duced hydrogen peroxide accumulation.Bicarbonate and iron might function as important regulators <strong>of</strong> copper/reductant-<strong>in</strong>ducedhydroxyl radical/hydrogen peroxide formation and copper mediated tissue damage. Theiron/oxalic acid <strong>in</strong>duced <strong>in</strong>hibition <strong>of</strong> hydrogen peroxide formation as demonstrated here<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> might also be l<strong>in</strong>ked to the protective effect <strong>of</strong> iron aga<strong>in</strong>st ascorbic acid(<strong>vitam<strong>in</strong></strong> C) and copper-<strong>in</strong>duced cell toxicity <strong>in</strong> cell cultures. Our results <strong>in</strong> paper IV and Valso <strong>in</strong>dicate that complete removal <strong>of</strong> iron from the raw <strong>water</strong> <strong>of</strong> the <strong>water</strong> plants can tosome extent <strong>in</strong>crease the redox <strong>activity</strong> <strong>of</strong> copper, and the formation <strong>of</strong> ROS <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>.47


Conclusions3. Significant amounts <strong>of</strong> ascorbic acid are rapidly oxidized <strong>in</strong>to DHA when added to astrongly bicarbonate-buffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (III). The results alsodemonstrate that DHA is further decomposed <strong>in</strong>to oxalic- and threonic acid <strong>in</strong>bicarbonate-buffered copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Thus, copper-contam<strong>in</strong>ateddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> could possibly deplete <strong>vitam<strong>in</strong></strong> C and hence <strong>in</strong>terfere with <strong>vitam<strong>in</strong></strong> C uptakefrom the stomach and <strong>in</strong>test<strong>in</strong>e, lead<strong>in</strong>g to <strong>vitam<strong>in</strong></strong> C deficiencies. Furthermore, peopleconsum<strong>in</strong>g this type <strong>of</strong> <strong>water</strong> will most likely <strong>in</strong>gest, or generate more DHA <strong>in</strong> theirstomachs than people us<strong>in</strong>g bottled <strong>water</strong>. The impact <strong>of</strong> long-term <strong>in</strong>take <strong>of</strong> DHA andoxalic acid obta<strong>in</strong>ed from <strong>vitam<strong>in</strong></strong> C supplemented copper-contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> isnot known.48


ReferencesREFERENCES1. Arrigoni O, De Tullio MC. Ascorbic acid: Much more than just an anti<strong>oxidant</strong>. BiochimBiophys Acta. 2002;1569:1-92. Naidu KA. Vitam<strong>in</strong> C <strong>in</strong> human health and disease is still a mystery? An overview. Nutr J.2003;2:73. D'Agost<strong>in</strong>i F, Izzotti A, Balansky RM, Bennicelli C, De Flora S. Modulation <strong>of</strong> apoptosisby cancer chemopreventive agents. Mutat Res. 2005;591:173-1864. Schneider JE, Brown<strong>in</strong>g MM, Floyd RA. Ascorbate/iron mediation <strong>of</strong> hydroxyl free radicaldamage to P322 plasmid DNA. Free Radic Biol Med. 1988;5:287-2955. Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: Comb<strong>in</strong>ations toavoid. Radiat Res. 1996;145:532-5416. Halliwell B. Vitam<strong>in</strong> C: Anti<strong>oxidant</strong> or pro-<strong>oxidant</strong> <strong>in</strong> vivo? Free Radic Res. 1996;25:439-4547. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J. Vitam<strong>in</strong> C exhibitspro-<strong>oxidant</strong> properties. Nature. 1998;392:5598. Carr AC, Frei B. Toward a new recommended dietary allowance for <strong>vitam<strong>in</strong></strong> C based onanti<strong>oxidant</strong> and health effects <strong>in</strong> humans. Am J Cl<strong>in</strong> Nutr. 1999;69:1086-11079. Carr A, Frei B. Does <strong>vitam<strong>in</strong></strong> C act as a pro-<strong>oxidant</strong> under physiological conditions? Faseb J.1999;13:1007-102410. Hathcock JN, Azzi A, Blumberg J, Bray T, Dick<strong>in</strong>son A, Frei B, Jialal I, Johnston CS, KellyFJ, Kraemer K, Packer L, Parthasarathy S, Sies H, Traber MG. Vitam<strong>in</strong>s E and C are safeacross a broad range <strong>of</strong> <strong>in</strong>takes. Am J Cl<strong>in</strong> Nutr. 2005;81:736-74511. Rivers JM. Safety <strong>of</strong> high-level <strong>vitam<strong>in</strong></strong> C <strong>in</strong>gestion. Int J Vitam Nutr Res Suppl. 1989;30:95-10212. Goldman HM, Gould BS, Munro HN. The antiscorbutic action <strong>of</strong> L-ascorbic acid and D-isoascorbic acid (erythorbic acid) <strong>in</strong> the gu<strong>in</strong>ea pig. Am J Cl<strong>in</strong> Nutr. 1981;34:24-3313. Pimentel L. Scurvy: Historical review and current diagnostic approach. Am J Emerg Med.2003;21:328-33214. Jacob RA. Three eras <strong>of</strong> <strong>vitam<strong>in</strong></strong> C discovery. Subcell Biochem. 1996;25:1-1615. Manchester KL. An orange a day keeps the scurvy away. Trends Pharmacol Sci. 1998;19:167-17016. Oeff<strong>in</strong>ger KC. Scurvy: More than historical relevance. Am Fam Physician. 1993;48:609-61317. Szent-Gyorgyi A. Observation <strong>of</strong> the functions <strong>of</strong> peroxidase systems and the chemistry <strong>of</strong>the adrenal cortex. Biochem J. 1928;22:1387-140949


References18. Svirbely J, Szent-Gyorgyi A. The chemical nature <strong>of</strong> <strong>vitam<strong>in</strong></strong> C. The Biochemical Journal.1932;26:865-87019. Stone N, Meister A. Function <strong>of</strong> ascorbic acid <strong>in</strong> the conversion <strong>of</strong> prol<strong>in</strong>e to collagenhydroxyprol<strong>in</strong>e. Nature. 1962;194:555–55720. Lev<strong>in</strong>e M. New concepts <strong>in</strong> the biology and biochemistry <strong>of</strong> ascorbic acid. N Engl J Med.1986;314:892-90221. Kallner AB, Hartmann D, Hornig DH. On the requirements <strong>of</strong> ascorbic acid <strong>in</strong> man:Steady-state turnover and body pool <strong>in</strong> smokers. Am J Cl<strong>in</strong> Nutr. 1981;34:1347-135522. Hornig D. Metabolism and requirements <strong>of</strong> ascorbic acid <strong>in</strong> man. S Afr Med J. 1981;60:818-82323. Johnston CS. Biomarkers for establish<strong>in</strong>g a tolerable upper <strong>in</strong>take level for <strong>vitam<strong>in</strong></strong> C. NutrRev. 1999;57:71-7724. Paul<strong>in</strong>g L. Are recommended daily allowances for <strong>vitam<strong>in</strong></strong> C adequate? <strong>Pro</strong>c Natl Acad Sci US A. 1974;71:4442-444625. Paul<strong>in</strong>g L. Vitam<strong>in</strong> C therapy <strong>of</strong> advanced cancer. N Engl J Med. 1980;302:694-69526. Moertel CG, Flem<strong>in</strong>g TR, Creagan ET, Rub<strong>in</strong> J, O'Connell MJ, Ames MM. High-dose<strong>vitam<strong>in</strong></strong> C versus placebo <strong>in</strong> the treatment <strong>of</strong> patients with advanced cancer who have hadno prior chemotherapy. A randomized double-bl<strong>in</strong>d comparison. N Engl J Med.1985;312:137-14127. Paul<strong>in</strong>g L, Herman ZS. Criteria for the validity <strong>of</strong> cl<strong>in</strong>ical trials <strong>of</strong> treatments <strong>of</strong> cohorts <strong>of</strong>cancer patients based on the Hard<strong>in</strong> Jones pr<strong>in</strong>ciple. <strong>Pro</strong>c Natl Acad Sci U S A.1989;86:6835-683728. Hemila H. Vitam<strong>in</strong> C supplementation and common cold symptoms: Factors affect<strong>in</strong>g themagnitude <strong>of</strong> the benefit. Med Hypotheses. 1999;52:171-17829. Douglas RM, Hemila H, D'Souza R, Chalker EB, Treacy B. Vitam<strong>in</strong> C for prevent<strong>in</strong>g andtreat<strong>in</strong>g the common cold. Cochrane Database Syst Rev. 2004:CD00098030. Douglas RM, Hemila H. Vitam<strong>in</strong> C for prevent<strong>in</strong>g and treat<strong>in</strong>g the common cold. PLoSMed. 2005;2:e168; quiz e21731. Machefer G, Groussard C, Rannou-Bekono F, Zouhal H, Faure H, V<strong>in</strong>cent S, Cillard J,Gratas-Delamarche A. Extreme runn<strong>in</strong>g competition decreases blood anti<strong>oxidant</strong> defensecapacity. J Am Coll Nutr. 2004;23:358-36432. Stahl W, Sies H. Anti<strong>oxidant</strong> defense: Vitam<strong>in</strong>s E and C and carotenoids. Diabetes. 1997;46Suppl 2:S14-1833. Frei B. On the role <strong>of</strong> <strong>vitam<strong>in</strong></strong> C and other anti<strong>oxidant</strong>s <strong>in</strong> atherogenesis and vasculardysfunction. <strong>Pro</strong>c Soc Exp Biol Med. 1999;222:196-20450


References34. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, DuttaSK, Lev<strong>in</strong>e M. Vitam<strong>in</strong> C as an anti<strong>oxidant</strong>: Evaluation <strong>of</strong> its role <strong>in</strong> disease prevention. JAm Coll Nutr. 2003;22:18-3535. Mart<strong>in</strong> A. Anti<strong>oxidant</strong> <strong>vitam<strong>in</strong></strong>s E and C and risk <strong>of</strong> Alzheimer's disease. Nutr Rev.2003;61:69-7336. Rose RC, Richer SP, Bode AM. Ocular <strong>oxidant</strong>s and anti<strong>oxidant</strong> protection. <strong>Pro</strong>c Soc ExpBiol Med. 1998;217:397-40737. Fernandez-Robredo P, Moya D, Rodriguez JA, Garcia-Layana A. Vitam<strong>in</strong>s C and E reduceret<strong>in</strong>al oxidative stress and nitric oxide metabolites and prevent ultrastructural alterations <strong>in</strong>porc<strong>in</strong>e hypercholesterolemia. Invest Ophthalmol Vis Sci. 2005;46:1140-114638. De Pauw-Gillet MC, Siwek B, Pozzi G, Sabbioni E, Bassleer RJ. Effects <strong>of</strong> FeSO 4 on B16melanoma cells differentiation and proliferation. Anticancer Res. 1990;10:1029-103339. Satoh K, Kad<strong>of</strong>uku T, Sakagami H. Copper, but not iron, enhances apoptosis-<strong>in</strong>duc<strong>in</strong>g<strong>activity</strong> <strong>of</strong> anti<strong>oxidant</strong>s. Anticancer Res. 1997;17:2487-249040. Satoh K, Sakagami H. Effect <strong>of</strong> metal ions on radical <strong>in</strong>tensity and cytotoxic <strong>activity</strong> <strong>of</strong>ascorbate. Anticancer Res. 1997;17:1125-112941. Malicev E, Woyniak G, Knezevic M, Radosavljevic D, Jeras M. Vitam<strong>in</strong> C <strong>in</strong>ducedapoptosis <strong>in</strong> human articular chondrocytes. Pflugers Arch. 2000;440:R46-4842. Marczewska J, Koziorowska JH, Anuszewska EL. Influence <strong>of</strong> ascorbic acid on cytotoxic<strong>activity</strong> <strong>of</strong> copper and iron ions <strong>in</strong> vitro. Acta Pol Pharm. 2000;57:415-41843. Campbell GD, Jr., Ste<strong>in</strong>berg MH, Bower JD. Letter: Ascorbic acid-<strong>in</strong>duced hemolysis <strong>in</strong>G-6-PD deficiency. Ann Intern Med. 1975;82:81044. Mehta JB, S<strong>in</strong>ghal SB, Mehta BC. Ascorbic-acid-<strong>in</strong>duced haemolysis <strong>in</strong> G-6-PD deficiency.Lancet. 1990;336:94445. Mengel CE, Greene HL, Jr. Letter: Ascorbic acid effects on erythrocytes. Ann Intern Med.1976;84:49046. Nishikimi M, Yagi K. Molecular basis for the deficiency <strong>in</strong> humans <strong>of</strong> gulonolactoneoxidase, a key enzyme for ascorbic acid biosynthesis. Am J Cl<strong>in</strong> Nutr. 1991;54:1203S-1208S47. Nishikimi M, Yagi K. Biochemistry and molecular biology <strong>of</strong> ascorbic acid biosynthesis.Subcell Biochem. 1996;25:17-3948. Johnson CS, Ste<strong>in</strong>berg FM, Rucker RB. Ascorbic acid. Handbook <strong>of</strong> Vitam<strong>in</strong>s, Third EditionEdited by Rucker, RB, Suttie, JW, McCormick, DB Machl<strong>in</strong> lJ Marcel Dekker Inc, New York.1998:529-58549. Davies KJ. Oxidative stress: The paradox <strong>of</strong> aerobic life. Biochem Soc Symp. 1995;61:1-3151


References50. Halliwell B, Gutteridge JM. Free radicals <strong>in</strong> biology and medic<strong>in</strong>e, 3rd ed. Oxford UniversityPress, Oxford. 199951. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signall<strong>in</strong>g. Curr MedChem. 2004;11:1163-118252. Florence TM. The role <strong>of</strong> free radicals <strong>in</strong> disease. Aust N Z J Ophthalmol. 1995;23:3-753. Halliwell B. Oxidants and the central nervous system: Some fundamental questions. Is<strong>oxidant</strong> damage relevant to Park<strong>in</strong>son's disease, Alzheimer's disease, traumatic <strong>in</strong>jury orstroke? Acta Neurol Scand Suppl. 1989;126:23-3354. Knight JA. Reactive oxygen species and the neurodegenerative disorders. Ann Cl<strong>in</strong> Lab Sci.1997;27:11-2555. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem.1992;59:1609-162356. Wang X, Mart<strong>in</strong>dale JL, Liu Y, Holbrook NJ. The cellular response to oxidative stress:Influences <strong>of</strong> mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase signall<strong>in</strong>g pathways on cell survival. BiochemJ. 1998;333 ( Pt 2):291-30057. Dalton TP, Shertzer HG, Puga A. Regulation <strong>of</strong> gene expression by reactive oxygen. AnnuRev Pharmacol Toxicol. 1999;39:67-10158. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen <strong>in</strong>termediates as apparently widely usedmessengers <strong>in</strong> the activation <strong>of</strong> the NF-kappa B transcription factor and HIV-1. Embo J.1991;10:2247-225859. Sen CK, Packer L. Anti<strong>oxidant</strong> and redox regulation <strong>of</strong> gene transcription. Faseb J.1996;10:709-72060. Abe J, Berk BC. Fyn and JAK2 mediate Ras activation by reactive oxygen species. J BiolChem. 1999;274:21003-2101061. Griendl<strong>in</strong>g KK, Harrison DG. Dual role <strong>of</strong> reactive oxygen species <strong>in</strong> vascular growth. CircRes. 1999;85:562-56362. Halliwell B. Anti<strong>oxidant</strong>s <strong>in</strong> human health and disease. Annu Rev Nutr. 1996;16:33-5063. Whiteman M, Halliwell B. <strong>Pro</strong>tection aga<strong>in</strong>st peroxynitrite-dependent tyros<strong>in</strong>e nitration andalpha 1-antiprote<strong>in</strong>ase <strong>in</strong>activation by ascorbic acid. A comparison with other biologicalanti<strong>oxidant</strong>s. Free Radic Res. 1996;25:275-28364. Jialal I, Vega GL, Grundy SM. Physiologic levels <strong>of</strong> ascorbate <strong>in</strong>hibit the oxidativemodification <strong>of</strong> low density lipoprote<strong>in</strong>. Atherosclerosis. 1990;82:185-19165. Chakraborty S, Nandi A, Mukhopadhyay M, Mukhopadhyay CK, Chatterjee IB. Ascorbateprotects gu<strong>in</strong>ea pig tissues aga<strong>in</strong>st lipid peroxidation. Free Radic Biol Med. 1994;16:417-42652


References66. Sies H, Stahl W, Sundquist AR. Anti<strong>oxidant</strong> functions <strong>of</strong> <strong>vitam<strong>in</strong></strong>s. Vitam<strong>in</strong>s E and C, betacarotene,and other carotenoids. Ann N Y Acad Sci. 1992;669:7-2067. May JM, Cobb CE, Mendiratta S, Hill KE, Burk RF. Reduction <strong>of</strong> the ascorbyl free radicalto ascorbate by thioredox<strong>in</strong> reductase. J Biol Chem. 1998;273:23039-2304568. Khatami M, Roel LE, Li W, Rockey JH. Ascorbate regeneration <strong>in</strong> bov<strong>in</strong>e ocular tissues byNADH-dependent semidehydroascorbate reductase. Exp Eye Res. 1986;43:167-17569. Buettner GR, Jurkiewicz BA. Ascorbate free radical as a marker <strong>of</strong> oxidative stress: AnEPR study. Free Radic Biol Med. 1993;14:49-5570. Mukai K, Nishimura M, Kikuchi S. Stopped-flow <strong>in</strong>vestigation <strong>of</strong> the reaction <strong>of</strong> <strong>vitam<strong>in</strong></strong> Cwith tocopheroxyl radical <strong>in</strong> aqueous triton x-100 micellar solutions. The structure-<strong>activity</strong>relationship <strong>of</strong> the regeneration reaction <strong>of</strong> tocopherol by <strong>vitam<strong>in</strong></strong> C. J Biol Chem.1991;266:274-27871. Kasparova S, Brezova V, Valko M, Horecky J, Mlynarik V, Liptaj T, Vancova O, Ulicna O,Dobrota D. Study <strong>of</strong> the oxidative stress <strong>in</strong> a rat model <strong>of</strong> chronic bra<strong>in</strong> hypoperfusion.Neurochem Int. 2005;46:601-61172. Bode AM, Cunn<strong>in</strong>gham L, Rose RC. Spontaneous decay <strong>of</strong> oxidized ascorbic acid(dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. Cl<strong>in</strong> Chem.1990;36:1807-180973. Reaven PD, Witztum JL. Oxidized low density lipoprote<strong>in</strong>s <strong>in</strong> atherogenesis: Role <strong>of</strong>dietary modification. Annu Rev Nutr. 1996;16:51-7174. Neuzil J, Weber C, Kontush A. The role <strong>of</strong> <strong>vitam<strong>in</strong></strong> E <strong>in</strong> atherogenesis: L<strong>in</strong>k<strong>in</strong>g thechemical, biological and cl<strong>in</strong>ical aspects <strong>of</strong> the disease. Atherosclerosis. 2001;157:257-28375. Edge R, Truscott TG. <strong>Pro</strong>-<strong>oxidant</strong> and anti<strong>oxidant</strong> reaction mechanisms <strong>of</strong> carotene andradical <strong>in</strong>teractions with <strong>vitam<strong>in</strong></strong>s E and C. Nutrition. 1997;13:992-99476. Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett WC, Ascherio A. Intakes <strong>of</strong><strong>vitam<strong>in</strong></strong>s E and C, carotenoids, <strong>vitam<strong>in</strong></strong> supplements, and PD risk. Neurology. 2002;59:1161-116977. Bowry VW, Mohr D, Cleary J, Stocker R. Prevention <strong>of</strong> tocopherol-mediated peroxidation<strong>in</strong> ubiqu<strong>in</strong>ol-10-free human low density lipoprote<strong>in</strong>. J Biol Chem. 1995;270:5756-576378. Kagan VE, Kuzmenko AI, Shvedova AA, Kis<strong>in</strong> ER, Li R, Mart<strong>in</strong> I, Qu<strong>in</strong>n PJ, Tyur<strong>in</strong> VA,Tyur<strong>in</strong>a YY, Yalowich JC. Direct evidence for recycl<strong>in</strong>g <strong>of</strong> myeloperoxidase-catalyzedphenoxyl radicals <strong>of</strong> a <strong>vitam<strong>in</strong></strong> E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane,by ascorbate/dihydrolipoate <strong>in</strong> liv<strong>in</strong>g HL-60 cells. Biochim Biophys Acta. 2003;1620:72-8479. Neuzil J, Thomas SR, Stocker R. Requirement for, promotion, or <strong>in</strong>hibition by alphatocopherol<strong>of</strong> radical-<strong>in</strong>duced <strong>in</strong>itiation <strong>of</strong> plasma lipoprote<strong>in</strong> lipid peroxidation. Free RadicBiol Med. 1997;22:57-7153


References80. Burton GW, Traber MG. Vitam<strong>in</strong> E: Anti<strong>oxidant</strong> <strong>activity</strong>, biok<strong>in</strong>etics, and bioavailability.Annu Rev Nutr. 1990;10:357-38281. Tanaka K, Hashimoto T, Tokumaru S, Iguchi H, Kojo S. Interactions between <strong>vitam<strong>in</strong></strong> Cand <strong>vitam<strong>in</strong></strong> E are observed <strong>in</strong> tissues <strong>of</strong> <strong>in</strong>herently scorbutic rats. J Nutr. 1997;127:2060-206482. Schorah CJ, Down<strong>in</strong>g C, Piripitsi A, Gallivan L, Al-Hazaa AH, Sanderson MJ, BodenhamA. Total <strong>vitam<strong>in</strong></strong> C, ascorbic acid, and dehydroascorbic acid concentrations <strong>in</strong> plasma <strong>of</strong>critically ill patients. Am J Cl<strong>in</strong> Nutr. 1996;63:760-76583. Lykkesfeldt J, L<strong>of</strong>t S, Nielsen JB, Poulsen HE. Ascorbic acid and dehydroascorbic acid asbiomarkers <strong>of</strong> oxidative stress caused by smok<strong>in</strong>g. Am J Cl<strong>in</strong> Nutr. 1997;65:959-96384. Koch CJ, Biaglow JE. Toxicity, radiation sensitivity modification, and metabolic effects <strong>of</strong>dehydroascorbate and ascorbate <strong>in</strong> mammalian cells. J Cell Physiol. 1978;94:299-30685. Rose RC, Choi JL, Bode AM. Short term effects <strong>of</strong> oxidized ascorbic acid on bov<strong>in</strong>ecorneal endothelium and human placenta. Life Sci. 1992;50:1543-154986. Song JH, Sh<strong>in</strong> SH, Wang W, Ross GM. Involvement <strong>of</strong> oxidative stress <strong>in</strong> ascorbate<strong>in</strong>ducedproapoptotic death <strong>of</strong> PC12 cells. Exp Neurol. 2001;169:425-43787. Bhaskaram P. Micronutrient malnutrition, <strong>in</strong>fection, and immunity: An overview. Nutr Rev.2002;60:S40-4588. Campbell JD, Cole M, Bunditrutavorn B, Vella AT. Ascorbic acid is a potent <strong>in</strong>hibitor <strong>of</strong>various forms <strong>of</strong> T cell apoptosis. Cell Immunol. 1999;194:1-589. Evans RM, Currie L, Campbell A. The distribution <strong>of</strong> ascorbic acid between variouscellular components <strong>of</strong> blood, <strong>in</strong> normal <strong>in</strong>dividuals, and its relation to the plasmaconcentration. Br J Nutr. 1982;47:473-48290. Reiber H, Ruff M, Uhr M. Ascorbate concentration <strong>in</strong> human cerebrosp<strong>in</strong>al fluid (CSF)and serum. Intrathecal accumulation and CSF flow rate. Cl<strong>in</strong> Chim Acta. 1993;217:163-17391. Shang F, Lu M, Dudek E, Reddan J, Taylor A. Vitam<strong>in</strong> C and <strong>vitam<strong>in</strong></strong> E restore theresistance <strong>of</strong> GSH-depleted lens cells to H 2O 2. Free Radic Biol Med. 2003;34:521-53092. van der Vliet A, O'Neill CA, Cross CE, Koostra JM, Volz WG, Halliwell B, Louie S.Determ<strong>in</strong>ation <strong>of</strong> low-molecular-mass anti<strong>oxidant</strong> concentrations <strong>in</strong> human respiratorytract l<strong>in</strong><strong>in</strong>g fluids. Am J Physiol. 1999;276:L289-29693. Loz<strong>of</strong>f B, Jimenez E, Wolf AW. Long-term developmental outcome <strong>of</strong> <strong>in</strong>fants with irondeficiency. N Engl J Med. 1991;325:687-69494. Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G. Bra<strong>in</strong> ironpathways and their relevance to Park<strong>in</strong>son's disease. J Neurochem. 2001;79:225-23654


References95. Halliwell B. Role <strong>of</strong> free radicals <strong>in</strong> the neurodegenerative diseases: Therapeuticimplications for anti<strong>oxidant</strong> treatment. Drugs Ag<strong>in</strong>g. 2001;18:685-71696. Sayre LM, Perry G, Atwood CS, Smith MA. The role <strong>of</strong> metals <strong>in</strong> neurodegenerativediseases. Cell Mol Biol (Noisy-le-grand). 2000;46:731-74197. Stevens RG. Iron and the risk <strong>of</strong> cancer. Med Oncol Tumor Pharmacother. 1990;7:177-18198. Okada S. Iron-<strong>in</strong>duced tissue damage and cancer: The role <strong>of</strong> reactive oxygen species-freeradicals. Pathol Int. 1996;46:311-33299. Thomas MC, MacIsaac RJ, Tsalamandris C, Jerums G. Elevated iron <strong>in</strong>dices <strong>in</strong> patientswith diabetes. Diabet Med. 2004;21:798-802100. Perez de Nanclares G, Castano L, Gaztambide S, Bilbao JR, Pi J, Gonzalez ML, VazquezJA. Excess iron storage <strong>in</strong> patients with type 2 diabetes unrelated to primaryhemochromatosis. N Engl J Med. 2000;343:890-891101. Walker EM, Jr., Walker SM. Effects <strong>of</strong> iron overload on the immune system. Ann Cl<strong>in</strong> LabSci. 2000;30:354-365102. Li J, Zhu Y, S<strong>in</strong>gal DP. HFE gene mutations <strong>in</strong> patients with rheumatoid arthritis. JRheumatol. 2000;27:2074-2077103. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. NatRev Drug Discov. 2004;3:205-214104. Tatton WG, Olanow CW. Apoptosis <strong>in</strong> neurodegenerative diseases: The role <strong>of</strong>mitochondria. Biochim Biophys Acta. 1999;1410:195-213105. Waggoner DJ, Bartnikas TB, Gitl<strong>in</strong> JD. The role <strong>of</strong> copper <strong>in</strong> neurodegenerative disease.Neurobiol Dis. 1999;6:221-230106. Arciello M, Rotilio G, Rossi L. Copper-dependent toxicity <strong>in</strong> SH-SY5Y neuroblastomacells <strong>in</strong>volves mitochondrial damage. Biochem Biophys Res Commun. 2005;327:454-459107. Gu M, Cooper JM, Butler P, Walker AP, Mistry PK, Dooley JS, Schapira AH. Oxidativephosphorylationdefects <strong>in</strong> liver <strong>of</strong> patients with Wilson's disease. Lancet. 2000;356:469-474108. Brewer GJ. Anticopper therapy aga<strong>in</strong>st cancer and diseases <strong>of</strong> <strong>in</strong>flammation and fibrosis.Drug Discov Today. 2005;10:1103-1109109. Bush AI. Metal complex<strong>in</strong>g agents as therapies for Alzheimer's disease. Neurobiol Ag<strong>in</strong>g.2002;23:1031-1038110. Conrad ME, Umbreit JN, Moore EG. Iron absorption and transport. Am J Med Sci.1999;318:213-229111. Harris ED. The iron-copper connection: The l<strong>in</strong>k to ceruloplasm<strong>in</strong> grows stronger. NutrRev. 1995;53:170-17355


References112. Bolann BJ, Ulvik RJ. Stimulated decay <strong>of</strong> superoxide caused by ferrit<strong>in</strong>-bound copper.FEBS Lett. 1993;328:263-267113. Crichton RR, Charloteaux-Wauters M. Iron transport and storage. Eur J Biochem.1987;164:485-506114. Hellman NE, Gitl<strong>in</strong> JD. Ceruloplasm<strong>in</strong> metabolism and function. Annu Rev Nutr.2002;22:439-458115. Mukhopadhyay CK, Attieh ZK, Fox PL. Role <strong>of</strong> ceruloplasm<strong>in</strong> <strong>in</strong> cellular iron uptake.Science. 1998;279:714-717116. Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasm<strong>in</strong> regulates ironlevels <strong>in</strong> the CNS and prevents free radical <strong>in</strong>jury. J Neurosci. 2002;22:6578-6586117. Halliwell B, Gutteridge JM. Oxygen free radicals and iron <strong>in</strong> relation to biology andmedic<strong>in</strong>e: Some problems and concepts. Arch Biochem Biophys. 1986;246:501-514118. Hutch<strong>in</strong>s GM, Sheldon WH. The pH <strong>of</strong> <strong>in</strong>flammatory exudates <strong>in</strong> acidotic diabeticrabbits. <strong>Pro</strong>c Soc Exp Biol Med. 1972;140:623-627119. Laurnen EL, Kelly PJ. Blood flow, oxygen consumption, carbon-dioxide production, andblood-calcium and pH changes <strong>in</strong> tibial fractures <strong>in</strong> dogs. J Bone Jo<strong>in</strong>t Surg Am.1969;51:298-308120. Brookes M, Richards DJ, S<strong>in</strong>gh M. Vascular sequelae <strong>of</strong> experimental osteotomy.Angiology. 1970;21:355-367121. Pennig D. [The biology <strong>of</strong> bones and <strong>of</strong> bone fracture heal<strong>in</strong>g]. Unfallchirurg. 1990;93:488-491122. Andersson SE, Lexmuller K, Johansson A, Ekstrom GM. Tissue and <strong>in</strong>tracellular pH <strong>in</strong>normal periarticular s<strong>of</strong>t tissue and dur<strong>in</strong>g different phases <strong>of</strong> antigen <strong>in</strong>duced arthritis <strong>in</strong>the rat. J Rheumatol. 1999;26:2018-2024123. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP. Molecular mechanisms <strong>of</strong> cancerpa<strong>in</strong>. Nat Rev Cancer. 2002;2:201-209124. Childs A, Jacobs C, Kam<strong>in</strong>ski T, Halliwell B, Leeuwenburgh C. Supplementation with<strong>vitam<strong>in</strong></strong> C and n-acetyl-cyste<strong>in</strong>e <strong>in</strong>creases oxidative stress <strong>in</strong> humans after an acute muscle<strong>in</strong>jury <strong>in</strong>duced by eccentric exercise. Free Radic Biol Med. 2001;31:745-753125. Biemond P, van Eijk HG, Swaak AJ, Koster JF. Iron mobilization from ferrit<strong>in</strong> bysuperoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism<strong>in</strong> <strong>in</strong>flammation diseases. J Cl<strong>in</strong> Invest. 1984;73:1576-1579126. Arakawa N, Nemoto S, Suzuki E, Otsuka M. Role <strong>of</strong> hydrogen peroxide <strong>in</strong> the <strong>in</strong>hibitoryeffect <strong>of</strong> ascorbate on cell growth. J Nutr Sci Vitam<strong>in</strong>ol (Tokyo). 1994;40:219-22756


References127. Park S, Han SS, Park CH, Hahm ER, Lee SJ, Park HK, Lee SH, Kim WS, Jung CW, ParkK, Riordan HD, Kimler BF, Kim K, Lee JH. L-ascorbic acid <strong>in</strong>duces apoptosis <strong>in</strong> acutemyeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol.2004;36:2180-2195128. Iwasaka K, Koyama N, Nogaki A, Maruyama S, Tamura A, Takano H, Takahama M,Kochi M, Satoh K, Sakagami H. Role <strong>of</strong> hydrogen peroxide <strong>in</strong> cytotoxicity <strong>in</strong>duction byascorbates and other redox compounds. Anticancer Res. 1998;18:4333-4337129. Gechev TS, Hille J. Hydrogen peroxide as a signal controll<strong>in</strong>g plant programmed celldeath. J Cell Biol. 2005;168:17-20130. Clement MV, Ponton A, Pervaiz S. Apoptosis <strong>in</strong>duced by hydrogen peroxide is mediatedby decreased superoxide anion concentration and reduction <strong>of</strong> <strong>in</strong>tracellular milieu. FEBSLett. 1998;440:13-18131. Hampton MB, Orrenius S. Dual regulation <strong>of</strong> caspase <strong>activity</strong> by hydrogen peroxide:Implications for apoptosis. FEBS Lett. 1997;414:552-556132. Gonzalez-Flecha B, Demple B. Homeostatic regulation <strong>of</strong> <strong>in</strong>tracellular hydrogen peroxideconcentration <strong>in</strong> aerobically grow<strong>in</strong>g Escherichia coli. J Bacteriol. 1997;179:382-388133. Fenton HJH. On a new reaction <strong>of</strong> tartaric acid. Chem News. 1876;33:190134. Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radicalgeneration. An update. FEBS Lett. 1992;307:108-112135. Wardman P, Candeias LP. Fenton chemistry: An <strong>in</strong>troduction. Radiat Res. 1996;145:523-531136. Burkitt MJ, Gilbert BC. Model studies <strong>of</strong> the iron-catalysed Haber-Weiss cycle and theascorbate-driven Fenton reaction. Free Radic Res Commun. 1990;10:265-280137. Prabhu HR, Krishnamurthy S. Ascorbate-dependent formation <strong>of</strong> hydroxyl radicals <strong>in</strong> thepresence <strong>of</strong> iron chelates. Indian J Biochem Biophys. 1993;30:289-292138. L<strong>in</strong>dqvist C, Nordstrom T. Generation <strong>of</strong> hydroxyl radicals by the antiviral compoundphosphon<strong>of</strong>ormic acid (foscarnet). Pharmacol Toxicol. 2001;89:49-55139. Gutteridge JM. Superoxide-dependent formation <strong>of</strong> hydroxyl radicals from ferriccomplexesand hydrogen peroxide: An evaluation <strong>of</strong> fourteen iron chelators. Free Radic ResCommun. 1990;9:119-125140. Haber F, Weiss J. The catalytic decomposition <strong>of</strong> hydrogen peroxide by iron salts. <strong>Pro</strong>c RoySoc. 1934;A147:332-351141. Kehrer JP. The Haber-Weiss reaction and mechanisms <strong>of</strong> toxicity. Toxicology. 2000;149:43-5057


References142. Rosen GM, Rauckman EJ. Sp<strong>in</strong> trapp<strong>in</strong>g <strong>of</strong> superoxide and hydroxyl radicals. MethodsEnzymol. 1984;105:198-209143. Halliwell B, Grootveld M, Gutteridge JM. Methods for the measurement <strong>of</strong> hydroxylradicals <strong>in</strong> biomedical systems: Deoxyribose degradation and aromatic hydroxylation.Methods Biochem Anal. 1988;33:59-90144. Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxide-dependent formation <strong>of</strong>hydroxyl radicals: Detection <strong>of</strong> hydroxyl radicals by the hydroxylation <strong>of</strong> aromaticcompounds. Anal. Biochem. 1981;118:328-335145. S<strong>in</strong>gh S, Hider RC. Colorimetric detection <strong>of</strong> the hydroxyl radical: Comparison <strong>of</strong> thehydroxyl-radical-generat<strong>in</strong>g ability <strong>of</strong> various iron complexes. Anal. Biochem. 1988;171:47-54146. Halliwell B, Gutteridge JM, Aruoma OI. The deoxyribose method: A simple "test-tube"assay for determ<strong>in</strong>ation <strong>of</strong> rate constants for reactions <strong>of</strong> hydroxyl radicals. Anal. Biochem.1987;165:215-219147. Rowley DA, Halliwell B. Superoxide-dependent and ascorbate-dependent formation <strong>of</strong>hydroxyl radicals <strong>in</strong> the presence <strong>of</strong> copper salts: A physiologically significant reaction?Arch Biochem Biophys. 1983;225:279-284148. Hertzberg RP, Dervan PB. Cleavage <strong>of</strong> DNA with methidiumpropyl-EDTA-iron(II):Reaction conditions and product analyses. Biochemistry. 1984;23:3934-3945149. Rollet-Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerot-Pocidalo MA, Pasquier C.Hydroxyl radical as a potential <strong>in</strong>tracellular mediator <strong>of</strong> polymorphonuclear neutrophilapoptosis. Free Radic Biol Med. 1998;24:563-572150. Ikeda K, Kajiwara K, Tanabe E, Tokumaru S, Kishida E, Masuzawa Y, Kojo S.Involvement <strong>of</strong> hydrogen peroxide and hydroxyl radical <strong>in</strong> chemically <strong>in</strong>duced apoptosis <strong>of</strong>HL-60 cells. Biochem Pharmacol. 1999;57:1361-1365151. Gutteridge JM, Wilk<strong>in</strong>s S. Copper salt-dependent hydroxyl radical formation. Damage toprote<strong>in</strong>s act<strong>in</strong>g as anti<strong>oxidant</strong>s. Biochim Biophys Acta. 1983;759:38-41152. Halliwell B, Clement MV, Long LH. Hydrogen peroxide <strong>in</strong> the human body. FEBS Lett.2000;486:10-13153. Halliwell B, Gutteridge JM. Role <strong>of</strong> free radicals and catalytic metal ions <strong>in</strong> human disease:An overview. Methods Enzymol. 1990;186:1-85154. World Health Organization (WHO), Geneva, 2004. Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality,third edition. 2004155. The Council <strong>of</strong> the European Union. Council directive 98/83/ec on the quality <strong>of</strong> <strong>water</strong><strong>in</strong>tended for human consumption. Official Journal <strong>of</strong> the European Communities. 1998156. Boulay N, Edwards M. Role <strong>of</strong> temperature, chlor<strong>in</strong>e, and organic matter <strong>in</strong> coppercorrosion by-product release <strong>in</strong> s<strong>of</strong>t <strong>water</strong>. Water Res. 2001;35:683-69058


References157. Critchley MM, Cromar NJ, McClure NC, Fallowfield HJ. The <strong>in</strong>fluence <strong>of</strong> the chemicalcomposition <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> on cuprosolvency by bi<strong>of</strong>ilm bacteria. J Appl Microbiol.2003;94:501-507158. Merkel TH, Gross HJ, Werner W, Dahlke T, Reicherter S, Beuchle G, Eberle SH. Coppercorrosion by-product release <strong>in</strong> long-term stagnation experiments. Water Res. 2002;36:1547-1555159. Penn<strong>in</strong>gton JA, Schoen SA. Total diet study: Estimated dietary <strong>in</strong>takes <strong>of</strong> nutritionalelements, 1982-1991. Int J Vitam Nutr Res. 1996;66:350-362160. Penn<strong>in</strong>gton JA. Intakes <strong>of</strong> m<strong>in</strong>erals from diets and foods: Is there a need for concern? JNutr. 1996;126:2304S-2308S161. Oskarsson A, Norrgren L. Copper pipes as a source <strong>of</strong> copper exposure <strong>in</strong> man andenvironment. Environ Rev/Dossiers environ. 1998;6(3-4):139-150162. Sharrett AR, Carter AP, Orheim RM, Fe<strong>in</strong>leib M. Daily <strong>in</strong>take <strong>of</strong> lead, cadmium, copper,and z<strong>in</strong>c from dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>: The Seattle study <strong>of</strong> trace metal exposure. Environ Res.1982;28:456-475163. Murphy EA. Effectiveness <strong>of</strong> flush<strong>in</strong>g on reduc<strong>in</strong>g lead and copper levels <strong>in</strong> schooldr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Environ Health Perspect. 1993;101:240-241164. Milne DB. Assessment <strong>of</strong> copper nutritional status. Cl<strong>in</strong> Chem. 1994;40:1479-1484165. Turnlund JR, Keen CL, Smith RG. Copper status and ur<strong>in</strong>ary and salivary copper <strong>in</strong> youngmen at three levels <strong>of</strong> dietary copper. Am J Cl<strong>in</strong> Nutr. 1990;51:658-664166. Jones AA, DiSilvestro RA, Coleman M, Wagner TL. Copper supplementation <strong>of</strong> adultmen: Effects on blood copper enzyme activities and <strong>in</strong>dicators <strong>of</strong> cardiovascular diseaserisk. Metabolism. 1997;46:1380-1383167. Kehoe CA, Turley E, Bonham MP, O'Connor JM, McKeown A, Faughnan MS, Coulter JS,Gilmore WS, Howard AN, Stra<strong>in</strong> JJ. Response <strong>of</strong> putative <strong>in</strong>dices <strong>of</strong> copper status tocopper supplementation <strong>in</strong> human subjects. Br J Nutr. 2000;84:151-156168. Pratt WB, Omdahl JL, Sorenson JR. Lack <strong>of</strong> effects <strong>of</strong> copper gluconate supplementation.Am J Cl<strong>in</strong> Nutr. 1985;42:681-682169. Medeiros DM, Milton A, Brunett E, Stacy L. Copper supplementation effects on <strong>in</strong>dicators<strong>of</strong> copper status and serum cholesterol <strong>in</strong> adult males. Biol Trace Elem Res. 1991;30:19-35170. Harvey LJ, Majsak-Newman G, Da<strong>in</strong>ty JR, Lewis DJ, Langford NJ, Crews HM,Fairweather-Tait SJ. Adaptive responses <strong>in</strong> men fed low- and high-copper diets. Br J Nutr.2003;90:161-16859


References171. Turnlund JR, Jacob RA, Keen CL, Stra<strong>in</strong> JJ, Kelley DS, Domek JM, Keyes WR, EnsunsaJL, Lykkesfeldt J, Coulter J. Long-term high copper <strong>in</strong>take: Effects on <strong>in</strong>dexes <strong>of</strong> copperstatus, anti<strong>oxidant</strong> status, and immune function <strong>in</strong> young men. Am J Cl<strong>in</strong> Nutr.2004;79:1037-1044172. Pizarro F, Olivares M, Uauy R, Contreras P, Rebelo A, Gidi V. Acute gastro<strong>in</strong>test<strong>in</strong>aleffects <strong>of</strong> graded levels <strong>of</strong> copper <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Environ Health Perspect. 1999;107:117-121173. Knobeloch L, Ziarnik M, Howard J, Theis B, Farmer D, Anderson H, <strong>Pro</strong>ctor M.Gastro<strong>in</strong>test<strong>in</strong>al upsets associated with <strong>in</strong>gestion <strong>of</strong> copper-contam<strong>in</strong>ated <strong>water</strong>. EnvironHealth Perspect. 1994;102:958-961174. Pizarro F, Olivares M, Araya M, Gidi V, Uauy R. Gastro<strong>in</strong>test<strong>in</strong>al effects associated withsoluble and <strong>in</strong>soluble copper <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Environ Health Perspect. 2001;109:949-952175. Eife R, Weiss M, Barros V, Sigmund B, Goriup U, Komb D, Wolf W, Kittel J, Schramel P,Reiter K. Chronic poison<strong>in</strong>g by copper <strong>in</strong> tap <strong>water</strong>: I. Copper <strong>in</strong>toxications withpredom<strong>in</strong>antly gastro<strong>in</strong>test<strong>in</strong>al symptoms. Eur J Med Res. 1999;4:219-223176. Manevich Y, Held KD, Biaglow JE. Coumar<strong>in</strong>-3-carboxylic acid as a detector for hydroxylradicals generated chemically and by gamma radiation. Radiat Res. 1997;148:580-591177. Biaglow JE, Kachur AV. The generation <strong>of</strong> hydroxyl radicals <strong>in</strong> the reaction <strong>of</strong> molecularoxygen with polyphosphate complexes <strong>of</strong> ferrous ion. Radiat Res. 1997;148:181-187178. Nourooz-Zadeh J, Tajadd<strong>in</strong>i-Sarmadi J, Wolff SP. Measurement <strong>of</strong> plasma hydroperoxideconcentrations by the ferrous oxidation-xylenol orange assay <strong>in</strong> conjunction withtriphenylphosph<strong>in</strong>e. Anal Biochem. 1994;220:403-409179. Boyer RF, Grabill TW, Petrovich RM. Reductive release <strong>of</strong> ferrit<strong>in</strong> iron: A k<strong>in</strong>etic assay.Anal Biochem. 1988;174:17-22180. Ihara H, Sh<strong>in</strong>o Y, Aoki Y, Hashizume N, M<strong>in</strong>egishi N. A simple and rapid method for therout<strong>in</strong>e assay <strong>of</strong> total ascorbic acid <strong>in</strong> serum and plasma us<strong>in</strong>g ascorbate oxidase and o-phenylenediam<strong>in</strong>e. J Nutr Sci Vitam<strong>in</strong>ol (Tokyo). 2000;46:321-324181. Lee W, Roberts SM, Labbe RF. Ascorbic acid determ<strong>in</strong>ation with an automated enzymaticprocedure. Cl<strong>in</strong> Chem. 1997;43:154-157182. Margolis SA, Paule RC, Ziegler RG. Ascorbic and dehydroascorbic acids measured <strong>in</strong>plasma preserved with dithiothreitol or metaphosphoric acid. Cl<strong>in</strong> Chem. 1990;36:1750-1755183. Odum L. pH optimum <strong>of</strong> the reduction <strong>of</strong> dehydroascorbic acid by dithioerytritol. Scand JCl<strong>in</strong> Lab Invest. 1993;53:367-371184. Okamura M. An improved method for determ<strong>in</strong>ation <strong>of</strong> L-ascorbic acid and L-dehydroascorbic acid <strong>in</strong> blood plasma. Cl<strong>in</strong> Chim Acta. 1980;103:259-26860


References185. Liao CH, Kang SF, Wu FA. Hydroxyl radical scaveng<strong>in</strong>g role <strong>of</strong> chloride and bicarbonateions <strong>in</strong> the H 2O 2/UV process. Chemosphere. 2001;44:1193-1200186. Schorah CJ, Sobala GM, Sanderson M, Collis N, Primrose JN. Gastric juice ascorbic acid:Effects <strong>of</strong> disease and implications for gastric carc<strong>in</strong>ogenesis. Am J Cl<strong>in</strong> Nutr.1991;53:287S-293S187. Schorah CJ. Ascorbic acid metabolism and cancer <strong>in</strong> the human stomach. Acta GastroenterolBelg. 1997;60:217-219188. Correa P. The role <strong>of</strong> anti<strong>oxidant</strong>s <strong>in</strong> gastric carc<strong>in</strong>ogenesis. Crit Rev Food Sci Nutr.1995;35:59-64189. Drake IM, Davies MJ, Mapstone NP, Dixon MF, Schorah CJ, White KL, Chalmers DM,Axon AT. Ascorbic acid may protect aga<strong>in</strong>st human gastric cancer by scaveng<strong>in</strong>g mucosaloxygen radicals. Carc<strong>in</strong>ogenesis. 1996;17:559-562190. Das D, Bandyopadhyay D, Banerjee RK. Oxidative <strong>in</strong>activation <strong>of</strong> gastric peroxidase bysite-specific generation <strong>of</strong> hydroxyl radical and its role <strong>in</strong> stress-<strong>in</strong>duced gastric ulceration.Free Radic Biol Med. 1998;24:460-469191. Pryor WA. Cancer and free radicals. Basic Life Sci. 1986;39:45-59192. Halliwell B. Oxygen and nitrogen are pro-carc<strong>in</strong>ogens. Damage to DNA by reactiveoxygen, chlor<strong>in</strong>e and nitrogen species: Measurement, mechanism and the effects <strong>of</strong>nutrition. Mutat Res. 1999;443:37-52193. Kadiiska MB, Hanna PM, Hernandez L, Mason RP. In vivo evidence <strong>of</strong> hydroxyl radicalformation after acute copper and ascorbic acid <strong>in</strong>take: Electron sp<strong>in</strong> resonance sp<strong>in</strong>trapp<strong>in</strong>g<strong>in</strong>vestigation. Mol Pharmacol. 1992;42:723-729194. Nal<strong>in</strong>i S, Ramakrishna BS, Mohanty A, Balasubramanian KA. Hydroxyl radical formation<strong>in</strong> human gastric juice. J Gastroenterol Hepatol. 1992;7:497-501195. Fukushima S, Imaida K, Shibata MA, Tamano S, Kurata Y, Shirai T. L-ascorbic acidamplification <strong>of</strong> second-stage bladder carc<strong>in</strong>ogenesis promotion by NaHCO 3. Cancer Res.1988;48:6317-6320196. Iwata H, Yamamoto S, Yano Y, Ohtani S, Fukushima S. Dose-dependent amplification byL-ascorbic acid <strong>of</strong> NaHCO 3 promotion <strong>of</strong> rat ur<strong>in</strong>ary bladder carc<strong>in</strong>ogenesis. Toxicol Pathol.1997;25:284-290197. Fukushima S, Kurata Y, Hasegawa R, Asamoto M, Shibata MA, Tamano S. L-ascorbic acidamplification <strong>of</strong> bladder carc<strong>in</strong>ogenesis promotion by K 2CO 3. Cancer Res. 1991;51:2548-2551198. L<strong>in</strong>a BA, Hollanders VM, Kuijpers MH. The role <strong>of</strong> alkaliz<strong>in</strong>g and neutral potassium salts<strong>in</strong> ur<strong>in</strong>ary bladder carc<strong>in</strong>ogenesis <strong>in</strong> rats. Carc<strong>in</strong>ogenesis. 1994;15:523-52761


References199. L<strong>in</strong>a BA, van Garderen-Hoetmer A. Effect <strong>of</strong> ur<strong>in</strong>ary pH on the progression <strong>of</strong> ur<strong>in</strong>arybladder tumours. Food Chem Toxicol. 1999;37:1159-1166200. Fukushima S, Shibata MA, Shirai T, Tamano S, Ito N. Roles <strong>of</strong> ur<strong>in</strong>ary sodium ionconcentration and pH <strong>in</strong> promotion by ascorbic acid <strong>of</strong> ur<strong>in</strong>ary bladder carc<strong>in</strong>ogenesis <strong>in</strong>rats. Cancer Res. 1986;46:1623-1626201. Cohen SM, Anderson TA, de Oliveira LM, Arnold LL. Tumorigenicity <strong>of</strong> sodiumascorbate <strong>in</strong> male rats. Cancer Res. 1998;58:2557-2561202. Gardner LK, Lawrence GD. Benzene production from decarboxylation <strong>of</strong> benzoic acid <strong>in</strong>the presence <strong>of</strong> ascorbic acid and a transition metal catalyst. J Agric Food Chem. 1993;40:693-695203. Halliwell B, Clement MV, Ramal<strong>in</strong>gam J, Long LH. Hydrogen peroxide. Ubiquitous <strong>in</strong> cellculture and <strong>in</strong> vivo? IUBMB Life. 2000;50:251-257204. Clement MV, Ramal<strong>in</strong>gam J, Long LH, Halliwell B. The <strong>in</strong> vitro cytotoxicity <strong>of</strong> ascorbatedepends on the culture medium used to perform the assay and <strong>in</strong>volves hydrogen peroxide.Antioxid Redox Signal. 2001;3:157-163205. Son SM, Moon KD, Lee CY. K<strong>in</strong>etic study <strong>of</strong> oxalic acid <strong>in</strong>hibition on enzymaticbrown<strong>in</strong>g. J Agric Food Chem. 2000;48:2071-2074206. Kayashima T, Katayama T. Oxalic acid is available as a natural anti<strong>oxidant</strong> <strong>in</strong> somesystems. Biochim Biophys Acta. 2002;1573:1-3207. White AR, Barnham KJ, Huang X, Voltakis I, Beyreuther K, Masters CL, Cherny RA,Bush AI, Cappai R. Iron <strong>in</strong>hibits neurotoxicity <strong>in</strong>duced by trace copper and biologicalreductants. J Biol Inorg Chem. 2004;9:269-280208. Munday R, Munday CM, W<strong>in</strong>terbourn CC. Inhibition <strong>of</strong> copper-catalyzed cyste<strong>in</strong>eoxidation by nanomolar concentrations <strong>of</strong> iron salts. Free Radic Biol Med. 2004;36:757-764209. Menditto A, Pietraforte D, M<strong>in</strong>etti M. Ascorbic acid <strong>in</strong> human sem<strong>in</strong>al plasma is protectedfrom iron-mediated oxidation, but is potentially exposed to copper-<strong>in</strong>duced damage. HumReprod. 1997;12:1699-1705210. Kachur AV, Manevich Y, Biaglow JE. Effect <strong>of</strong> pur<strong>in</strong>e nucleoside phosphates on OHradicalgeneration by reaction <strong>of</strong> Fe 2+ with oxygen. Free Radic Res. 1997;26:399-408211. Kachur AV, Tuttle SW, Biaglow JE. Autoxidation <strong>of</strong> ferrous ion complexes: A method forthe generation <strong>of</strong> hydroxyl radicals. Radiat Res. 1998;150:475-482212. Bray WC, Gor<strong>in</strong> MH. Ferryl ion, a compound <strong>of</strong> tetravalent iron. Am Chem Soc. 1932;542124-2125:2124-2125213. Orr CW. Studies on ascorbic acid. I. Factors <strong>in</strong>fluenc<strong>in</strong>g the ascorbate-mediated <strong>in</strong>hibition<strong>of</strong> catalase. Biochemistry. 1967;6:2995-300062


References214. Orr CW. Studies on ascorbic acid. II. Physical changes <strong>in</strong> catalase follow<strong>in</strong>g <strong>in</strong>cubationwith ascorbate or ascorbate and copper (II). Biochemistry. 1967;6:3000-3006215. Hyslop PA, H<strong>in</strong>shaw DB, Scraufstatter IU, Cochrane CG, Kunz S, Vosbeck K. Hydrogenperoxide as a potent bacteriostatic antibiotic: Implications for host defense. Free Radic BiolMed. 1995;19:31-37216. Feiz HR, Mobarhan S. Does <strong>vitam<strong>in</strong></strong> C <strong>in</strong>take slow the progression <strong>of</strong> gastric cancer <strong>in</strong>Helicobacter pylori-<strong>in</strong>fected populations? Nutr Rev. 2002;60:34-36217. Varma SD, Devamanoharan PS. Excretion <strong>of</strong> hydrogen peroxide <strong>in</strong> human ur<strong>in</strong>e. FreeRadic Res Commun. 1990;8:73-78218. Long LAHR, Evans PJ, Halliwell B. Hydrogen peroxide <strong>in</strong> human ur<strong>in</strong>e: Implications foranti<strong>oxidant</strong> defense and redox regulation. Biochem Biophys Res Commun. 1999;262:605-609219. Hiramoto K, Kida T, Kikugawa K. Increased ur<strong>in</strong>ary hydrogen peroxide levels caused byc<strong>of</strong>fee dr<strong>in</strong>k<strong>in</strong>g. Biol Pharm Bull. 2002;25:1467-1471220. Zhou X, Yang G, Davis CA, Doi SQ, Hirszel P, W<strong>in</strong>go CS, Agarwal A. Hydrogen peroxidemediates FK506-<strong>in</strong>duced cytotoxicity <strong>in</strong> renal cells. Kidney Int. 2004;65:139-147221. Strange RC, Hiley C, Roberts C, Jones PW, Bell J, Hume R. Studies on copper-z<strong>in</strong>csuperoxide dismutase expression <strong>in</strong> develop<strong>in</strong>g human liver and kidney. Free Radic ResCommun. 1989;7:105-112222. Nath KA, Croatt AJ, Haggard JJ, Grande JP. Renal response to repetitive exposure toheme prote<strong>in</strong>s: Chronic <strong>in</strong>jury <strong>in</strong>duced by an acute <strong>in</strong>sult. Kidney Int. 2000;57:2423-2433223. Kuge N, Kohzuki M, Sato T. Relation between natriuresis and ur<strong>in</strong>ary excretion <strong>of</strong>hydrogen peroxide. Free Radic Res. 1999;30:119-123224. Banerjee D, Madhusoodanan UK, Nayak S, Jacob J. Ur<strong>in</strong>ary hydrogen peroxide: Aprobable marker <strong>of</strong> oxidative stress <strong>in</strong> malignancy. Cl<strong>in</strong> Chim Acta. 2003;334:205-209225. Allwood MC. Factors <strong>in</strong>fluenc<strong>in</strong>g the stability <strong>of</strong> ascorbic acid <strong>in</strong> total parenteral nutrition<strong>in</strong>fusions. J Cl<strong>in</strong> Hosp Pharm. 1984;9:75-85226. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N,Sibley RK. Helicobacter pylori <strong>in</strong>fection and the risk <strong>of</strong> gastric carc<strong>in</strong>oma. N Engl J Med.1991;325:1127-1131227. Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ.Helicobacter pylori <strong>in</strong>fection and gastric carc<strong>in</strong>oma among Japanese Americans <strong>in</strong> Hawaii.N Engl J Med. 1991;325:1132-1136228. The EUROGAST Study Group. Epidemiology <strong>of</strong>, and risk factors for, Helicobacter pylori<strong>in</strong>fection among 3194 asymptomatic subjects <strong>in</strong> 17 populations. The eurogast study group.Gut. 1993;34:1672-167663


References229. Zhang ZW, Farth<strong>in</strong>g MJ. The roles <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> Helicobacter pylori associated gastriccarc<strong>in</strong>ogenesis. Ch<strong>in</strong> J Dig Dis. 2005;6:53-58230. Rood JC, Ruiz B, Fontham ET, Malcom GT, Hunter FM, Sobhan M, Johnson WD,Correa P. Helicobacter pylori-associated gastritis and the ascorbic acid concentration <strong>in</strong>gastric juice. Nutr Cancer. 1994;22:65-72231. Sobala GM, Schorah CJ, Sanderson M, Dixon MF, Tompk<strong>in</strong>s DS, Godw<strong>in</strong> P, Axon AT.Ascorbic acid <strong>in</strong> the human stomach. Gastroenterology. 1989;97:357-363232. Koshiishi I, Mamura Y, Imanari T. Bicarbonate promotes a cleavage <strong>of</strong> lactone r<strong>in</strong>g <strong>of</strong>dehydroascorbate. Biochim Biophys Acta. 1998;1379:257-263233. Jung CH, Wells WW. Spontaneous conversion <strong>of</strong> L-dehydroascorbic acid to L-ascorbicacid and L-erythroascorbic acid. Arch Biochem Biophys. 1998;355:9-14234. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Lev<strong>in</strong>e M. Glucose transporteris<strong>of</strong>orms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem.1997;272:18982-18989235. Fiorani M, De Sanctis R, Scarlatti F, Stocchi V. Substrates <strong>of</strong> hexok<strong>in</strong>ase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase prevent the<strong>in</strong>hibitory response <strong>in</strong>duced by ascorbic acid/iron and dehydroascorbic acid <strong>in</strong> rabbiterythrocytes. Arch Biochem Biophys. 1998;356:159-166236. May JM, Qu Z, Morrow JD. Mechanisms <strong>of</strong> ascorbic acid recycl<strong>in</strong>g <strong>in</strong> human erythrocytes.Biochim Biophys Acta. 2001;1528:159-166237. Siushansian R, Tao L, Dixon SJ, Wilson JX. Cerebral astrocytes transport ascorbic acid anddehydroascorbic acid through dist<strong>in</strong>ct mechanisms regulated by cyclic AMP. J Neurochem.1997;68:2378-2385238. Brown S, Georgatos M, Reifel C, Song JH, Sh<strong>in</strong> SH, Hong M. Recycl<strong>in</strong>g processes <strong>of</strong>cellular ascorbate generate oxidative stress <strong>in</strong> pancreatic tissues <strong>in</strong> <strong>in</strong> vitro system. Endocr<strong>in</strong>e.2002;18:91-96239. Song JH, Sh<strong>in</strong> SH, Ross GM. Oxidative stress <strong>in</strong>duced by ascorbate causes neuronaldamage <strong>in</strong> an <strong>in</strong> vitro system. Bra<strong>in</strong> Res. 2001;895:66-72240. Isbell HS, Frush HL. Oxidation <strong>of</strong> L-ascorbic acid by hydrogen peroxide: Preparation <strong>of</strong> L-threonic acid. Carbohyr Res. 1979241. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study <strong>of</strong> the <strong>in</strong>take <strong>of</strong><strong>vitam<strong>in</strong></strong>s C and B6, and the risk <strong>of</strong> kidney stones <strong>in</strong> men. J Urol. 1996;155:1847-1851242. Hackett RL, Shevock PN, Khan SR. Mad<strong>in</strong>-darby can<strong>in</strong>e kidney cells are <strong>in</strong>jured byexposure to oxalate and to calcium oxalate crystals. Urol Res. 1994;22:197-20364


References243. Miller C, Kenn<strong>in</strong>gton L, Cooney R, Kohjimoto Y, Cao LC, Honeyman T, Pullman J,Jonassen J, Scheid C. Oxalate toxicity <strong>in</strong> renal epithelial cells: Characteristics <strong>of</strong> apoptosisand necrosis. Toxicol Appl Pharmacol. 2000;162:132-141244. H<strong>of</strong>fer A. Ascorbic acid and kidney stones. Can Med Assoc J. 1985;132:32065


ORIGINAL PUBLICATIONS


Free Radical Research, Volume 38 Number 8 (August 2004), pp. 855–860Oxidative Decomposition <strong>of</strong> Vitam<strong>in</strong> C <strong>in</strong> Dr<strong>in</strong>k<strong>in</strong>g WaterPATRIC J. JANSSON a , HYE R. JUNG a , CHRISTER LINDQVIST b and TOMMY NORDSTRÖM a, *a Department <strong>of</strong> Biochemistry and Pharmacy, Åbo <strong>Akademi</strong> University, BioCity, P.O. Box 66, 20521 Turku, F<strong>in</strong>land; b Department <strong>of</strong> Biology,Åbo <strong>Akademi</strong> University, BioCity, Turku, F<strong>in</strong>landAccepted by <strong>Pro</strong>fessor B. Halliwell(Received 11 February 2004; In revised form 18 March 2004)We have previously shown that <strong>vitam<strong>in</strong></strong> C (ascorbic acid)can <strong>in</strong>itiate hydroxyl radical formation <strong>in</strong> coppercontam<strong>in</strong>ated household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. In the presentstudy, we have exam<strong>in</strong>ed the stability <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>copper and bicarbonate conta<strong>in</strong><strong>in</strong>g household dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>. In dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples, contam<strong>in</strong>ated withcopper from the pipes and buffered with bicarbonate, 35%<strong>of</strong> the added <strong>vitam<strong>in</strong></strong> C was oxidized to dehydroascorbicacid with<strong>in</strong> 15 m<strong>in</strong>. After 3 h <strong>in</strong>cubation at roomtemperature, 93% <strong>of</strong> the added (2 mM) ascorbic acid hadbeen oxidized. The dehydroascorbic acid formed wasfurther decomposed to oxalic acid and threonic acid bythe hydrogen peroxide generated from the copper (I)autooxidation <strong>in</strong> the presence <strong>of</strong> oxygen. A very modestoxidation <strong>of</strong> <strong>vitam<strong>in</strong></strong> C occurred <strong>in</strong> Milli-Q <strong>water</strong> and <strong>in</strong>household <strong>water</strong> samples not contam<strong>in</strong>ated by copperions. Moreover, addition <strong>of</strong> <strong>vitam<strong>in</strong></strong> C to commerciallysold domestic bottled <strong>water</strong> samples did not result <strong>in</strong><strong>vitam<strong>in</strong></strong> C oxidation. Our results demonstrate thatascorbic acid is rapidly oxidized to dehydroascorbic acidand further decomposed to oxalic- and threonic acid <strong>in</strong>copper contam<strong>in</strong>ated household tap <strong>water</strong> that is bufferedwith bicarbonate. The impact <strong>of</strong> consum<strong>in</strong>g ascorbic acidtogether with copper and bicarbonate conta<strong>in</strong><strong>in</strong>g dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> on human health is discussed.Keywords: Vitam<strong>in</strong> C; Dehydroascorbic acid; Oxalic acid; Threonicacid; Water; CopperINTRODUCTIONAscorbic acid (<strong>vitam<strong>in</strong></strong> C) is a natural anti<strong>oxidant</strong>that is nowadays added as a <strong>vitam<strong>in</strong></strong> andpreservative to a variety <strong>of</strong> food sources, e.g. fruitjuices <strong>in</strong> high quantities. The <strong>in</strong>take <strong>of</strong> supplemental<strong>vitam<strong>in</strong></strong> C has also <strong>in</strong>creased considerablyand supplements conta<strong>in</strong><strong>in</strong>g up to 1–2 g <strong>of</strong><strong>vitam<strong>in</strong></strong> C/tablet can be found <strong>in</strong> any grocerystore. This amount <strong>of</strong> ascorbic acid is well abovethe recommended daily <strong>in</strong>take (RDI) that is60 mg/day for adult women or men. Thus, themean daily <strong>in</strong>take <strong>of</strong> <strong>vitam<strong>in</strong></strong> C has significantly<strong>in</strong>creased <strong>in</strong> many countries dur<strong>in</strong>g the past20 years. High <strong>in</strong>take is generally not believed tobe harmful s<strong>in</strong>ce <strong>vitam<strong>in</strong></strong> C is a <strong>water</strong>-solublecompound that is not stored <strong>in</strong> the body and theexcess <strong>in</strong>gested <strong>vitam<strong>in</strong></strong> is excreted <strong>in</strong> the ur<strong>in</strong>e.Numerous studies have shown that the anti<strong>oxidant</strong>,ascorbic acid, has beneficial effect on manyage-related diseases such as: atherosclerosis, cancer,[1 – 7]some neurodegenerative and ocular diseases.However, it has also been shown that, <strong>in</strong> the presence<strong>of</strong> transition metals such as copper and iron, ascorbic[8 – 10]acid can <strong>in</strong> fact function as a strong pro-<strong>oxidant</strong>.In l<strong>in</strong>e with this, we have recently demonstrated byus<strong>in</strong>g coumar<strong>in</strong>-3-carboxylic acid that ascorbic acidcan <strong>in</strong>duce hydroxyl radical formation <strong>in</strong> coppercontam<strong>in</strong>ated, bicarbonate buffered householddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. [11] Dur<strong>in</strong>g this process, ascorbicacid is oxidized to dehydroascorbic acid by thecopper ions present <strong>in</strong> the <strong>water</strong> sample.S<strong>in</strong>ce the oxidized form <strong>of</strong> ascorbic acid,dehydroascorbic acid, has been shown to be toxicand to generate oxidative stress <strong>in</strong> various cellsystems [12 – 14] we have here studied the formationand the stability <strong>of</strong> this compound <strong>in</strong> tap <strong>water</strong>samples. We demonstrate here, that ascorbic acidis very rapidly oxidized to dehydroascorbicacid and further decomposed to oxalic and threonicacid <strong>in</strong> copper contam<strong>in</strong>ated bicarbonate-buffereddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.*Correspond<strong>in</strong>g author. Tel.: þ358-2-2154004. Fax: þ358-2-2154745. E-mail: tomnords@abo.fiISSN 1071-5762 pr<strong>in</strong>t/ISSN 1029-2470 onl<strong>in</strong>e q 2004 Taylor & Francis LtdDOI: 10.1080/10715760410001700497


856P.J. JANSSON et al.MATERIALS AND METHODSChemicalsAscorbic acid, threonic acid and cupricchloride dihydrate were purchased from Fluka,Riedel-deHaen, Germany. Tris[hydroxymethyl]-am<strong>in</strong>omethane (Tris base) and o-phenylenediam<strong>in</strong>edihydrochloride (OPD), oxalic acid, diethyldithiocarbamicacid, dithiothreitol (DTT), p-hydroxybenzoicacid, sodium bicarbonate and dehydroascorbicacid were from Sigma, St Louis, USA. Stock solutions<strong>of</strong> the chemicals used were prepared <strong>in</strong> Milli-Q <strong>water</strong>(18 MV cm) and protected from light. Samples <strong>of</strong> tap<strong>water</strong> were collected <strong>in</strong> sterile 15 ml polypropylene testtubes (Gre<strong>in</strong>er) and stored at 48C <strong>in</strong> the dark until used.All stock solutions <strong>of</strong> the reagents used <strong>in</strong> the assaywere prepared fresh daily.Measurement <strong>of</strong> Copper and BicarbonateConcentration <strong>in</strong> the Water SamplesThe copper and bicarbonate concentration <strong>in</strong> the<strong>water</strong> samples were measured as previouslydescribed. [11,15]Measurement <strong>of</strong> Dehydroascorbic Acid witho-phenylenediam<strong>in</strong>eIn contrast to ascorbic acid, dehydroascorbic acidabsorb UV light very poorly. To measure dehydroascorbicacid formation we therefore used thereagent o-phenylenediam<strong>in</strong>e, a reagent that form afluorescent complex with dehydroascorbic acid. [16,17]For the assay, 2 mM ascorbic acid was added to the<strong>water</strong> samples and <strong>in</strong>cubated at room temperature forvarious time periods. After this, 2 mM <strong>of</strong> o-phenylenediam<strong>in</strong>ewas added to the tubes followed by 8 mMTris buffer. The fluorescent complex was excited at370 nm, and the emission at 440 nm was measured bya Hitachi F-2000 fluorescence spectrophotometer. Thefluorescence values were converted <strong>in</strong>to dehydroascorbicacid concentration from a standard curve,where known amounts <strong>of</strong> dehydroascorbic acid wasused. The actual concentration <strong>of</strong> dehydroascorbicacid <strong>in</strong> the prepared standards was controlled byaddition <strong>of</strong> 10 mM DTT followed by HPLC analysison the ascorbic acid formed. All measurements weredone at room temperature.Measurement <strong>of</strong> Ascorbic Acid Metabolites byUs<strong>in</strong>g HPLCAn isocratic HPLC system (Waters model 1515)equipped with a manual Rheodyne <strong>in</strong>jection valve(25 ml loop) and a 2-channel UV/VIS detector(Waters model 2487) was used. The column usedfor quantitation <strong>of</strong> ascorbic acid and oxalic acid wasa Nucleosil C18 150 £ 4:1mmI:D; 10 mm particle sizecolumn (Supelco Inc.). Chromatography was performedus<strong>in</strong>g isocratic elution us<strong>in</strong>g 10 mM phosphatebuffer (KH 2 PO 4 ) conta<strong>in</strong><strong>in</strong>g 5% methanol,pH 3.3 (H 3 PO 4 ). The flow rate was 0.5 ml/m<strong>in</strong>.The peaks were detected at 210 nm and analyzedby us<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware. For theidentification and calibration we used standards <strong>of</strong>threonic-, oxalic-, dehydroascorbic- and ascorbicacid<strong>in</strong> Milli-Q <strong>water</strong>. All separations were performedat room temperature.When the Nucleosil C18 column was used, thepeaks for the threonic acid and hydrogen peroxidestandards overlapped <strong>in</strong> the chromatogram. Therefore,to quantitate threonic acid, an anion columnPRP-X100 (Hamilton), 150 £ 4:1mmI:D; 10 mm particlesize equipped with a PRP-X100 guard columnð25:0 £ 2:3mmI:DÞ was also used. Chromatographywas performed us<strong>in</strong>g isocratic elution us<strong>in</strong>g 4.0 mMp-hydroxybenzoic acid conta<strong>in</strong><strong>in</strong>g 2.5% methanol,pH 8.5 (NaOH). The flow rate was 2.0 ml/m<strong>in</strong>.The peaks were detected by <strong>in</strong>direct UV at 310 nmand analyzed by us<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware.RESULTSAscorbic Acid Oxidation <strong>in</strong> Dr<strong>in</strong>k<strong>in</strong>g WaterAscorbic acid oxidation <strong>in</strong> two tap <strong>water</strong> samples(sample 1 and 2), a Milli-Q <strong>water</strong> sample supplementedwith 100 mg/l HCO 2 3 and 0.5 mg/l Cu2þand a control Milli-Q <strong>water</strong> sample were followed for3 h by HPLC analysis (Fig. 1A). The two <strong>water</strong>samples had been sampled <strong>in</strong> the same way, directlydrawn from the tap, but they orig<strong>in</strong>ated from twodifferent municipal <strong>water</strong> suppliers. When 2 mMascorbic acid was added to sample 1, that conta<strong>in</strong>ed25.9 mg/l bicarbonate and 0.19 mg/l copper, a verymodest degradation <strong>of</strong> the <strong>vitam<strong>in</strong></strong> occurred withtime. In this <strong>water</strong> sample 38.6% <strong>of</strong> the addedascorbic acid had been oxidized dur<strong>in</strong>g the 3 h<strong>in</strong>cubation. On the contrary, when 2 mM ascorbicacid was added to the <strong>water</strong> sample 2, that conta<strong>in</strong>ed150.4 mg/l bicarbonate and 0.53 mg/l copper, the<strong>vitam<strong>in</strong></strong> was almost completely (92.6%) oxidizeddur<strong>in</strong>g the 3 h <strong>in</strong>cubation. A similar oxidationprocess could be seen when 2 mM <strong>vitam<strong>in</strong></strong> C wasadded to Milli-Q <strong>water</strong> supplemented with 100 mg/lbicarbonate and 0.5 mg/l copper. Addition <strong>of</strong> 2 mMascorbic acid to Milli-Q <strong>water</strong> resulted <strong>in</strong> a verymodest oxidation <strong>of</strong> the <strong>vitam<strong>in</strong></strong> with time.Dehydroascorbic Acid Formation <strong>in</strong> Dr<strong>in</strong>k<strong>in</strong>gWaterThe formation <strong>of</strong> dehydroascorbic acid, wasmeasured by us<strong>in</strong>g o-phenylenediam<strong>in</strong>e. As can


VITAMIN C OXIDATION IN DRINKING WATER 857formation <strong>of</strong> dehydroascorbic acid. In the controlsample where ascorbic acid had been added toMilli-Q <strong>water</strong>, very low concentrations <strong>of</strong> dehydroascorbicacid could be detected. The amount <strong>of</strong>dehydroascorbic acid formed <strong>in</strong> four commerciallysold domestic bottled <strong>water</strong> samples, after ascorbicacid addition (15 m<strong>in</strong> <strong>in</strong>cubation), was <strong>in</strong> the range<strong>of</strong> 0–3 mM.FIGURE 1 Ascorbic acid degradation (A), and dehydroascorbicacid formation (B), <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 2 mM ascorbicacid was added to two household tap <strong>water</strong> samples; sample 1 (A)and sample 2 (O), a Milli-Q <strong>water</strong> sample (X) and a Milli-Q <strong>water</strong>sample supplemented with 100 mg/l bicarbonate and 0.5 mg/lcopper (W). The concentration <strong>of</strong> ascorbic acid was measured at<strong>in</strong>dicated time po<strong>in</strong>ts by us<strong>in</strong>g HPLC analysis. Dehydroascorbicacid was measured by us<strong>in</strong>g the reagent o-phenylenediam<strong>in</strong>e.Data shown are mean ^ SD <strong>of</strong> triplicates from one representativeexperiment out <strong>of</strong> three conducted.be seen <strong>in</strong> Fig. 1B, dehydroascorbic acid wasrapidly formed <strong>in</strong> the tap <strong>water</strong> sample 2. After15 m<strong>in</strong> <strong>in</strong>cubation, 638 ^ 33 mM <strong>of</strong> dehydroascorbicacid had been formed. However, at 15 m<strong>in</strong>, only87 ^ 26 mM <strong>of</strong> dehydroascorbic acid had beenformed <strong>in</strong> sample 1. Addition <strong>of</strong> 2 mM ascorbicacid to Milli-Q <strong>water</strong> supplemented with 100 mg/lbicarbonate and 0.5 mg/l copper resulted <strong>in</strong> rapidDehydroascorbic Acid Reacts with HydrogenPeroxide and Generate Oxalic Acid and ThreonicAcidA typical chromatogram <strong>of</strong> a catalytic dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> sample <strong>in</strong>cubated with 2 mM ascorbic acidfor 3 h is shown <strong>in</strong> Fig. 2A. In this chromatogram,based on retention time, the peak that appeared at5.6 m<strong>in</strong> was identified as oxalic acid (peak 1).At 5.9 m<strong>in</strong>, a peak appeared that had a retentiontime similar to the hydrogen peroxide- andthreonic acid standards (peak 2). Dur<strong>in</strong>g the 3 h<strong>in</strong>cubation 2 mM ascorbic acid (rentention time7.9 m<strong>in</strong>, peak 4) had been oxidized, <strong>in</strong> thisbicarbonate rich and copper contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> sample to 713 ^ 63 mM dehydroascorbicacid (o-phenylenediam<strong>in</strong>e assay), 488 ^ 28 mMoxalic acid and 77 ^ 14 mM threonic acid(quantitated by us<strong>in</strong>g an anion column). Thepeak for dehydroascorbic acid (peak 3) appeared<strong>in</strong> the chromatogram at 6.8 m<strong>in</strong> together with anunknown metabolite that had a retention time <strong>of</strong>7.1 m<strong>in</strong>. In a similar way, addition <strong>of</strong> 4 mMhydrogen peroxide to 2 mM ascorbic acid <strong>in</strong>Milli-Q <strong>water</strong> supplemented with 100 mg/lbicarbonate resulted <strong>in</strong> 839 ^ 72 mM oxalic acidand 192 ^ 24 mM threonic acid with<strong>in</strong> 3 h (Fig. 2B).Moreover, very rapid formation <strong>of</strong> oxalic acid andthreonic acid could be obta<strong>in</strong>ed when 4 mMhydrogen peroxide was added to 2 mM dehydroascorbicacid <strong>in</strong> Milli-Q <strong>water</strong> supplemented with100 mg/l bicarbonate. A 10-m<strong>in</strong> <strong>in</strong>cubation at roomtemperature resulted <strong>in</strong> 640 ^ 24 mM oxalic acidand 181 ^ 24 mM threonic acid (Fig. 2C). In controlexperiments, 2 mM dehydroascorbic acidwas added to Milli-Q <strong>water</strong> supplementedwith 100 mg/l bicarbonate. In the absence <strong>of</strong>hydrogen peroxide, 79% less oxalic acid wasformed (Fig. 2D).To verify that dehydroascorbic was formed <strong>in</strong> ourdr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples, we used DTT, a reduc<strong>in</strong>gagent that can turn dehydroascorbic acid back <strong>in</strong>toascorbic acid. When DTT was added to copper andbicarbonate supplemented Milli-Q <strong>water</strong> that hadbeen <strong>in</strong>cubated with 2 mM ascorbic acid for 3 h, theascorbic acid peak reappeared <strong>in</strong> the chromatogram(approximately 680 mM ascorbic acid was formed).Dehydroascorbic acid has previously been shown tobe spontaneously decomposed to L-diketogulonate


858P.J. JANSSON et al.[18 – 20](2,3-DKG) or erythroascorbate. Our results<strong>in</strong>dicated that dehydroascorbic acid and not DKGwas present <strong>in</strong> the sample.DISCUSSIONFIGURE 2 HPLC analysis <strong>of</strong> ascorbic acid metabolites <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. (A) 2 mM ascorbic acid was added to a dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> sample and <strong>in</strong>cubated at room temperature for 3 h. (B) 2 mMascorbic acid and 4 mM hydrogen peroxide was added to a Milli-Q<strong>water</strong> sample supplemented with 100 mg/l bicarbonate and<strong>in</strong>cubated for 3 h at room temperature. (C) 2 mM dehydroascorbicacid and 4 mM hydrogen peroxide was added to a Milli-Q<strong>water</strong> sample supplemented with 100 mg/l bicarbonate and<strong>in</strong>cubated for 10 m<strong>in</strong> at room temperature. The <strong>in</strong>set show thepeaks for dehydroascorbic acid (at 6.8 m<strong>in</strong>) and an unknowncompound (at 7.1 m<strong>in</strong>). (D) 2 mM dehydroascorbic acid was addedto a Milli-Q <strong>water</strong> sample supplemented with 100 mg/lbicarbonate and <strong>in</strong>cubated for 10 m<strong>in</strong> at room temperature.(E) Oxalic acid standard (0.6 mM) <strong>in</strong> Milli-Q <strong>water</strong>. (F) Ascorbicacid standard (2 mM) <strong>in</strong> Milli-Q <strong>water</strong>. Please note the differentscal<strong>in</strong>g <strong>in</strong> chromatogram F.The dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> reach<strong>in</strong>g the consumer at theirhomes can easily be contam<strong>in</strong>ated by copper ionsdue to corrosion <strong>in</strong> the copper pipes <strong>in</strong> the house(build<strong>in</strong>g). Especially, the first-draw <strong>water</strong> used <strong>in</strong>the morn<strong>in</strong>g can readily be contam<strong>in</strong>ated by copperions. [21,22] In light <strong>of</strong> these facts, and our previousstudies show<strong>in</strong>g that ascorbic acid can drive ahydroxyl radical generat<strong>in</strong>g process <strong>in</strong> copper andbicarbonate conta<strong>in</strong><strong>in</strong>g dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [11,15] wedecided to study how fast and to what extentascorbic acid is oxidized <strong>in</strong> a copper contam<strong>in</strong>ateddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sample. Our results show thatascorbic acid is oxidized relatively fast <strong>in</strong> bicarbonaterich <strong>water</strong> samples that are contam<strong>in</strong>ated by copperions. Approximately 32% <strong>of</strong> the <strong>vitam<strong>in</strong></strong> C had beenoxidized after 15 m<strong>in</strong> and the <strong>vitam<strong>in</strong></strong> was almostcompletely oxidized with<strong>in</strong> 3 h (Fig. 1A and B). Theoxidation process could easily be mimicked byadd<strong>in</strong>g <strong>vitam<strong>in</strong></strong> C to Milli-Q <strong>water</strong> supplementedwith 100 mg/l HCO 2 3 and 0.5 mg/l Cu 2þ because,the oxidation process require copper ions and apH around 4–5. [15]When ascorbic acid is oxidized <strong>in</strong> the presence <strong>of</strong>copper ions, dehydroascorbic acid is formed (Fig. 1B).The dehydroascorbic acid formation, <strong>in</strong> the bicarbonaterich <strong>water</strong> sample contam<strong>in</strong>ated with copper,was very rapid and up to 650 mM dehydroascorbicacid could be formed with<strong>in</strong> 15 m<strong>in</strong>. The amount <strong>of</strong>dehydroascorbic acid formed with<strong>in</strong> 15 m<strong>in</strong> <strong>in</strong> thevarious tap <strong>water</strong> samples tested were <strong>in</strong> the range <strong>of</strong>100–650 mM. On the contrary, when commerciallysold domestic bottled <strong>water</strong> was used <strong>in</strong> the assayvery modest degradation <strong>of</strong> ascorbic acid took place.Some <strong>of</strong> the bottled <strong>water</strong> samples tested (m<strong>in</strong>eral<strong>water</strong>s) were buffered with bicarbonate. However, <strong>in</strong>the absence <strong>of</strong> copper ions, oxidation <strong>of</strong> <strong>vitam<strong>in</strong></strong> Ccannot take place. This reflects the importance <strong>of</strong>copper ions <strong>in</strong> the oxidation process.HPLC analysis, performed on the <strong>water</strong> samplesthat had been <strong>in</strong>cubated with 2 mM ascorbic acid for3 h at room temperature, clearly <strong>in</strong>dicated that the<strong>vitam<strong>in</strong></strong> had been oxidized <strong>in</strong>to dehydroascorbicacid and further decomposed <strong>in</strong>to two majormetabolites, oxalic acid and threonic acid. In the<strong>water</strong> sample 2, that was contam<strong>in</strong>ated with copperions and had high concentration <strong>of</strong> bicarbonate,only 131 ^ 13 mM <strong>of</strong> the added 2 mM ascorbic acidwas left after a 3 h <strong>in</strong>cubation. Dur<strong>in</strong>g the 3 h<strong>in</strong>cubation period, the added ascorbic acid had beenoxidized to 488 ^ 28 mM oxalic acid. High concentrations<strong>of</strong> oxalic acid (calcium oxalate) are toxic and


VITAMIN C OXIDATION IN DRINKING WATER 859can promote the formation <strong>of</strong> kidney stones. [23,24]Interest<strong>in</strong>gly, calcium oxalate microcalcification hasalso been observed <strong>in</strong> benign and malignantbreast biopsy specimens. [25,26] Whether the oxalicacid present <strong>in</strong> the breast tissue orig<strong>in</strong>ate fromthe ascorbic acid- or am<strong>in</strong>o acid metabolism iscurrently not known.When ascorbic acid is oxidized <strong>in</strong> the presence<strong>of</strong> divalent copper, monovalent copper is formed.When the reduced copper is re-oxidized <strong>in</strong> thepresence <strong>of</strong> oxygen, superoxide is generated. In thepresence <strong>of</strong> a proton donor, the superoxide is furtherreduced to hydrogen peroxide. Most likely, thehydrogen peroxide formed <strong>in</strong> the reaction, whenascorbic acid is oxidized by copper, promote thecleavage <strong>of</strong> dehydroascorbic acid to oxalic acid andthreonic acid. In l<strong>in</strong>e with this assumption we foundthat addition <strong>of</strong> hydrogen peroxide directly toascorbic acid, <strong>in</strong> the presence <strong>of</strong> 100 mg/l bicarbonate,resulted <strong>in</strong> the formation <strong>of</strong> oxalic acid and threonicacid dur<strong>in</strong>g the 3 h <strong>in</strong>cubation (Fig. 2B). However,when hydrogen peroxide was added directly todehydroascorbic acid <strong>in</strong> the presence <strong>of</strong> 100 mg/lbicarbonate, the same amount <strong>of</strong> oxalic acid andthreonic acid could be obta<strong>in</strong>ed with<strong>in</strong> 10 m<strong>in</strong><strong>in</strong>cubation (Fig. 2C). Our results <strong>in</strong>dicate that thehydrogen peroxide formed, and not the hydroxylradicals generated dur<strong>in</strong>g the reaction, is responsiblefor the dehydroascorbic acid decomposition <strong>in</strong> the<strong>water</strong> samples.In conclusion, our results show that significantamounts <strong>of</strong> either dietary or supplementary ascorbicacid can be rapidly oxidized to dehydroascorbicacid when added to bicarbonate rich (buffered)copper contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Thus peopleconsum<strong>in</strong>g this type <strong>of</strong> <strong>water</strong> will most likely <strong>in</strong>gest, orgenerate more dehydroascorbic acid <strong>in</strong> their stomach,than people us<strong>in</strong>g bottled <strong>water</strong>. Dehydroascorbic acidcan enter cells via the GLUT glucose transporter. [27]Intracellular reduction <strong>of</strong> large amounts <strong>of</strong> dehydroascorbicacid to ascorbic acid by NADPH- andglutathione-dependent reactions may markedlydecrease the cellular concentrations <strong>of</strong> NADPH andglutathione <strong>in</strong> some celltypes. [28–30] In l<strong>in</strong>e with thesef<strong>in</strong>d<strong>in</strong>gs, dehydroascorbic acid has been shown tocause oxidative stress and apoptosis <strong>in</strong> pancreaticand neural cells by deplet<strong>in</strong>g their <strong>in</strong>tracellularstore <strong>of</strong> reduced glutathione. [14,31,32] Theimpact <strong>of</strong> long-term <strong>in</strong>take <strong>of</strong> dehydroascorbic acid,the oxidized form <strong>of</strong> ascorbic acid, on human health,rema<strong>in</strong>s to be studied.AcknowledgementsThis work was supported by Magnus Ehrnroothfoundation, Paulon Säätiö, K. Alb<strong>in</strong> JohanssonsStiftelse, Svenska Kulturfonden and The Academy<strong>of</strong> F<strong>in</strong>land.References[1] Stahl, W. and Sies, H. (1997) “Anti<strong>oxidant</strong> defense: <strong>vitam<strong>in</strong></strong>s Eand C and carotenoids”, Diabetes 46(Suppl. 2), S14–S18.[2] Frei, B. (1999) “On the role <strong>of</strong> <strong>vitam<strong>in</strong></strong> C and otheranti<strong>oxidant</strong>s <strong>in</strong> atherogenesis and vascular dysfunction”,<strong>Pro</strong>c. Soc. Exp. Biol. Med. 222, 196–204.[3] Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H.,Chen, S., Corpe, C., Dutta, A., Dutta, S.K. and Lev<strong>in</strong>e, M.(2003) “Vitam<strong>in</strong> C as an anti<strong>oxidant</strong>: evaluation <strong>of</strong> its role <strong>in</strong>disease prevention”, J. Am. Coll. Nutr. 22, 18–35.[4] Block, G. (1991) “Vitam<strong>in</strong> C and cancer prevention: theepidemiologic evidence”, Am. J. Cl<strong>in</strong>. Nutr. 53, 270S–282S.[5] Block, G. (1991) “Epidemiologic evidence regard<strong>in</strong>g <strong>vitam<strong>in</strong></strong> Cand cancer”, Am. J. Cl<strong>in</strong>. Nutr. 54, 1310S–1314S.[6] Mart<strong>in</strong>, A. (2003) “Anti<strong>oxidant</strong> <strong>vitam<strong>in</strong></strong>s E and C and risk <strong>of</strong>Alzheimer’s disease”, Nutr. Rev. 61, 69–73.[7] Rose, R.C., Richer, S.P. and Bode, A.M. (1998) “Ocular<strong>oxidant</strong>s and anti<strong>oxidant</strong> protection”, <strong>Pro</strong>c. Soc. Exp. Biol. Med.217, 397–407.[8] Buettner, G.R. and Jurkiewicz, B.A. (1996) “Catalytic metals,ascorbate and free radicals: comb<strong>in</strong>ations to avoid”, Radiat.Res. 145, 532–541.[9] Halliwell, B. (1996) “Vitam<strong>in</strong> C anti<strong>oxidant</strong> or pro-<strong>oxidant</strong><strong>in</strong> vivo?”, Free Radic. Res. 25, 439–454.[10] Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N.,Mistry, P. and Lunec, J. (1998) “Vitam<strong>in</strong> C exhibits pro-<strong>oxidant</strong>properties”, Nature 392, 559.[11] Asplund, K.U., Jansson, P.J., L<strong>in</strong>dqvist, C. and Nordstrom, T.(2002) “Measurement <strong>of</strong> ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>ducedhydroxyl radical generation <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>”,Free Radic. Res. 36, 1271–1276.[12] Koch, C.J. and Biaglow, J.E. (1978) “Toxicity, radiationsensitivity modification, and metabolic effects <strong>of</strong> dehydroascorbateand ascorbate <strong>in</strong> mammalian cells”, J. Cell. Physiol.94, 299–306.[13] Rose, R.C., Choi, J.L. and Bode, A.M. (1992) “Short termeffects <strong>of</strong> oxidized ascorbic acid on bov<strong>in</strong>e corneal endotheliumand human placenta”, Life Sci. 50, 1543–1549.[14] Song, J.H., Sh<strong>in</strong>, S.H., Wang, W. and Ross, G.M. (2001)“Involvement <strong>of</strong> oxidative stress <strong>in</strong> ascorbate<strong>in</strong>ducedproapoptotic death <strong>of</strong> PC12 cells”, Exp. Neurol. 169,425–437.[15] Jansson, P.J., Asplund, K.U., Makela, J.C., L<strong>in</strong>dqvist, C. andNordstrom, T. (2003) “Vitam<strong>in</strong> C (ascorbic acid) <strong>in</strong>ducedhydroxyl radical formation <strong>in</strong> copper contam<strong>in</strong>ated householddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>: role <strong>of</strong> bicarbonate concentration”,Free Radic. Res. 37, 901–905.[16] Ihara, H., Sh<strong>in</strong>o, Y., Aoki, Y., Hashizume, N. and M<strong>in</strong>egishi, N.(2000) “A simple and rapid method for the rout<strong>in</strong>e assay <strong>of</strong>total ascorbic acid <strong>in</strong> serum and plasma us<strong>in</strong>g ascorbate oxidaseand o-phenylenediam<strong>in</strong>e”, J. Nutr. Sci. Vitam<strong>in</strong>ol. (Tokyo) 46,321–324.[17] Lee, W., Roberts, S.M. and Labbe, R.F. (1997) “Ascorbic aciddeterm<strong>in</strong>ation with an automated enzymatic procedure”,Cl<strong>in</strong>. Chem. 43, 154–157.[18] Bode, A.M., Cunn<strong>in</strong>gham, L. and Rose, R.C. (1990)“Spontaneous decay <strong>of</strong> oxidized ascorbic acid (dehydro-Lascorbicacid) evaluated by high-pressure liquid chromatography”,Cl<strong>in</strong>. Chem. 36, 1807–1809.[19] Koshiishi, I., Mamura, Y. and Imanari, T. (1998) “Bicarbonatepromotes a cleavage <strong>of</strong> lactone r<strong>in</strong>g <strong>of</strong> dehydroascorbate”,Biochim. Biophys. Acta 1379, 257–263.[20] Jung, C.H. and Wells, W.W. (1998) “Spontaneous conversion<strong>of</strong> L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbicacid”, Arch. Biochem. Biophys. 355, 9–14.[21] Murphy, E.A. (1993) “Effectiveness <strong>of</strong> flush<strong>in</strong>g on reduc<strong>in</strong>glead and copper levels <strong>in</strong> school dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>”, Environ.Health Perspect. 101, 240–241.[22] Pettersson, R. and Rasmussen, F. (1999) “Daily <strong>in</strong>take <strong>of</strong>copper from dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> among young children <strong>in</strong>Sweden”, Environ. Health Perspect. 107, 441–446.[23] Hackett, R.L., Shevock, P.N. and Khan, S.R. (1994) “Mad<strong>in</strong>–Darby can<strong>in</strong>e kidney cells are <strong>in</strong>jured by exposure to oxalateand to calcium oxalate crystals”, Urol. Res. 22, 197–203.[24] Miller, C., Kenn<strong>in</strong>gton, L., Cooney, R., Kohjimoto, Y., Cao, L.C.,Honeyman, T., Pullman, J., Jonassen, J. and Scheid, C. (2000)


860P.J. JANSSON et al.“Oxalate toxicity <strong>in</strong> renal epithelial cells: characteristics <strong>of</strong>apoptosis and necrosis”, Toxicol. Appl. Pharmacol. 162, 132–141.[25] Fandos-Morera, A., Prats-Esteve, M., Tura-Soteras, J.M. andTraveria-Cros, A. (1988) “Breast tumors: composition <strong>of</strong>microcalcifications”, Radiology 169, 325–327.[26] Haka, A.S., Shafer-Peltier, K.E., Fitzmaurice, M., Crowe, J.,Dasari, R.R. and Feld, M.S. (2002) “Identify<strong>in</strong>g microcalcifications<strong>in</strong> benign and malignant breast lesions by prob<strong>in</strong>gdifferences <strong>in</strong> their chemical composition us<strong>in</strong>g Ramanspectroscopy”, Cancer Res. 62, 5375–5380.[27] Rumsey, S.C., Kwon, O., Xu, G.W., Burant, C.F., Simpson, I.and Lev<strong>in</strong>e, M. (1997) “Glucose transporter is<strong>of</strong>orms GLUT1and GLUT3 transport dehydroascorbic acid”, J. Biol. Chem.272, 18982–18989.[28] Fiorani, M., De Sanctis, R., Scarlatti, F. and Stocchi, V. (1998)“Substrates <strong>of</strong> hexok<strong>in</strong>ase, glucose-6-phosphate dehydrogenase,and glyceraldehyde-3-phosphate dehydrogenaseprevent the <strong>in</strong>hibitory response <strong>in</strong>duced by ascorbicacid/iron and dehydroascorbic acid <strong>in</strong> rabbit erythrocytes”,Arch. Biochem. Biophys. 356, 159–166.[29] May, J.M., Qu, Z. and Morrow, J.D. (2001) “Mechanisms <strong>of</strong>ascorbic acid recycl<strong>in</strong>g <strong>in</strong> human erythrocytes”, Biochim.Biophys. Acta 1528, 159–166.[30] Siushansian, R., Tao, L., Dixon, S.J. and Wilson, J.X. (1997)“Cerebral astrocytes transport ascorbic acid and dehydroascorbicacid through dist<strong>in</strong>ct mechanisms regulated bycyclic AMP”, J. Neurochem. 68, 2378–2385.[31] Brown, S., Georgatos, M., Reifel, C., Song, J.H., Sh<strong>in</strong>, S.H. andHong, M. (2002) “Recycl<strong>in</strong>g processes <strong>of</strong> cellular ascorbategenerate oxidative stress <strong>in</strong> pancreatic tissues <strong>in</strong> <strong>in</strong> vitrosystem”, Endocr<strong>in</strong>e 18, 91–96.[32] Song, J.H., Sh<strong>in</strong>, S.H. and Ross, G.M. (2001) “Oxidative stress<strong>in</strong>duced by ascorbate causes neuronal damage <strong>in</strong> an <strong>in</strong> vitrosystem”, Bra<strong>in</strong> Res. 895, 66–72.


Free Radical Research, May 2005; 39(5): 565–570Effects <strong>of</strong> iron on Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxyl radical generation<strong>in</strong> bicarbonate-rich <strong>water</strong>PATRIC J. JANSSON 1 , URKO DEL CASTILLO 2 , CHRISTER LINDQVIST 3 ,& TOMMY NORDSTRÖM 11 Department <strong>of</strong> Biochemistry and Pharmacy, Åbo <strong>Akademi</strong> University, BioCity, P.O. Box 66, 20521 Turku, F<strong>in</strong>land,2 University <strong>of</strong> Basque Country, Spa<strong>in</strong>, and 3 Department <strong>of</strong> Biology, Åbo <strong>Akademi</strong> University, BioCity, P.O. Box 66, 20521Turku, F<strong>in</strong>landAccepted by <strong>Pro</strong>fessor B. Halliwell(Received 29 June 2004; <strong>in</strong> revised form 4 August 2004)AbstractThe aim <strong>of</strong> this study was to evaluate whether iron, like copper, could support Vitam<strong>in</strong> C mediated hydroxyl radical formation<strong>in</strong> bicarbonate-rich <strong>water</strong>. By us<strong>in</strong>g the hydroxyl radical <strong>in</strong>dicator coumar<strong>in</strong>-3-carboxylic acid, we found that iron, <strong>in</strong> contrastto copper, was not capable to support Vitam<strong>in</strong> C <strong>in</strong>duced hydroxyl radical formation. However, when 0.2 mg/l iron and0.1 mg/l copper were both added to bicarbonate supplemented Milli-Q <strong>water</strong>, the Vitam<strong>in</strong> C <strong>in</strong>duced formation <strong>of</strong> 7-hydroxycoumar<strong>in</strong>, as measured by HPLC analysis, was <strong>in</strong>hibited by 47.5%. The <strong>in</strong>hibition <strong>of</strong> hydroxyl radical formation byiron was also evident <strong>in</strong> the experiments performed on copper contam<strong>in</strong>ated bicarbonate-rich household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>samples. In the presence <strong>of</strong> 0.2 mg/l <strong>of</strong> ferric iron the ascorbic acid <strong>in</strong>duced hydroxyl radical formation was <strong>in</strong>hibited by 36.0–44.6%. This <strong>in</strong>hibition was even more significant, 47.0–59.2%, when 0.8 mg/l <strong>of</strong> ferric iron was present. None <strong>of</strong> the otherredox-active metals, e.g. manganese, nickel or cobalt, could support ascorbic acid <strong>in</strong>duced hydroxyl radical formation and didnot have any impact on the ascorbic acid/copper-<strong>in</strong>duced hydroxyl radical generation. Our results show, that iron cannot byitself produce hydroxyl radicals <strong>in</strong> bicarbonate rich <strong>water</strong> but can significantly reduce Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxylradical formation. These f<strong>in</strong>d<strong>in</strong>gs might partly expla<strong>in</strong> the mechanism for the iron-<strong>in</strong>duced protective effect on various copperrelated degenerative disorders that earlier has been observed <strong>in</strong> animal model systems.Keywords: Vitam<strong>in</strong> C, <strong>water</strong>, iron, copper, bicarbonateIntroductionThe structure <strong>of</strong> iron and its capacity to vary its oxidationstate and b<strong>in</strong>d to different ligands gives iron a uniquebiochemical role. Iron is a highly precious metal for thegrowth and viability <strong>of</strong> all cells and <strong>in</strong>dispensable forhuman survival. It is primarily required for hemoglob<strong>in</strong>synthesis, but it has also a crucial role <strong>in</strong> e.g. DNAsynthesis, electron transport and many enzymaticalactivities throughout the body. Low dietary <strong>in</strong>take <strong>of</strong>iron, results <strong>in</strong> iron deficiency and anemia [1–3].Iron has also been implicated <strong>in</strong> the pathogenesis <strong>of</strong>a variety <strong>of</strong> neurodegenerative disorders e.g.Park<strong>in</strong>son’s disease, Alzheimer disease MS and EAE[4–6], liver and heart disease [7–9], cancer [10,11],diabetes [12–13] and immune abnormalities [14,15].The toxicity <strong>of</strong> iron has generally been attributed to itsability to reduce molecular oxygen, thus form<strong>in</strong>greduced oxygen species. One <strong>of</strong> the most acceptedmechanisms by which iron is <strong>in</strong>volved <strong>in</strong> free radicalproduction is the Fenton/Haber-Weiss reaction cycle.In this reaction, hydroxyl radicals can be easilyCorrespondence: T. Nordström, Department <strong>of</strong> Biochemistry and Pharmacy, Åbo <strong>Akademi</strong> University, BioCity, P.O. Box 66, 20521 Turku,F<strong>in</strong>land. Tel: þ358-2-2154004. Fax: þ358-2-2154745. E-mail: tomnords@abo.fiISSN 1071-5762 pr<strong>in</strong>t/ISSN 1029-2470 onl<strong>in</strong>e q 2005 Taylor & Francis LtdDOI: 10.1080/10715760400009233


566P.J. Jansson et al.generated by iron-catalyzed reduction <strong>of</strong> oxygen tosuperoxide that <strong>in</strong> turn can react with hydrogenperoxide [16]. Hydroxyl radicals can also directly begenerated from hydrogen peroxide by the Fentonreaction: Fe 2þ þ H 2 O 2 ! Fe 3þ þ OH 2 þ OH z[17,18]. Various iron chelators, such as EDTA andNTA, have also been shown to promote hydroxylradical generation very effectively via the Haber-Weisscycle <strong>in</strong> an ascorbate-driven Fenton reaction [19–22].Ascorbate (Vitam<strong>in</strong> C) has been reported, <strong>in</strong> vitro,to mediate hydroxyl radical formation <strong>in</strong> the presence<strong>of</strong> iron [23–25]. Based on this, and the known factthat ascorbic acid can redox-cycle with iron, we havehere evaluated whether iron, like copper, could havehydroxyl radical formation properties <strong>in</strong> a dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> environment. We demonstrate here, that ironcannot by itself produce hydroxyl radicals <strong>in</strong> such anenvironment but it has an <strong>in</strong>hibitory effect on Vitam<strong>in</strong>C <strong>in</strong>duced hydroxyl radical formation <strong>in</strong> coppercontam<strong>in</strong>ated bicarbonate-rich household dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>.Materials and methodsChemicalsCoumar<strong>in</strong>-3-carboxylic acid, 7-hydroxycoumar<strong>in</strong>-3-carboxylic acid (7-OHCCA), coumar<strong>in</strong> and 7-hydroxycoumar<strong>in</strong>(umbelliferone) were from Fluka,Switzerland. Ascorbic acid, ferric chloride tetrahydrate,ferrous chloride hexahydrate, calcium chloride dihydrateand cupric chloride dihydrate were purchasedfrom Fluka, Riedel-deHaen, Germany. Tris[hydroxymethyl]am<strong>in</strong>omethane(TRIS base), manganese chloridetetrahydrate, nickel chloride hexahydrate, cadmiumchloride anhydrous, gallium nitrate hydrate, z<strong>in</strong>cchloride, alum<strong>in</strong>ium chloride hexahydrate, cobaltchloride hexahydrate, diethyldithiocarbamic acid, ferroz<strong>in</strong>e(3-(2-pyridyl)-5,6-bis(4-phenyl-sulfonic acid)-1,2,4-triaz<strong>in</strong>e) and sodium bicarbonate were fromSigma, St. Louis, USA. Magnesium chloride hexahydratewere purchased from J.T. Baker, Denventer,Holland. Stock solutions <strong>of</strong> the chemicals used wereprepared <strong>in</strong> Milli-Q <strong>water</strong> (18 MV cm) and protectedfrom light. Samples <strong>of</strong> tap <strong>water</strong> were collected <strong>in</strong> sterile15 ml polypropylene test tubes (Gre<strong>in</strong>er) and stored at48C <strong>in</strong> the dark until used. All stock solutions <strong>of</strong> thereagents used <strong>in</strong> the assay were prepared fresh daily.Measurement <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced hydroxyl radicalformation by us<strong>in</strong>g coumar<strong>in</strong>-3-carboxylic acidTo measure hydroxyl radical formation <strong>in</strong> householddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> or bicarbonate supplemented Milli-Q<strong>water</strong>, 200 ml <strong>of</strong> the <strong>water</strong> samples were pipetted <strong>in</strong>triplicate onto a 96 well microtiter plate. After this,200 mM coumar<strong>in</strong>-3-carboxylic acid was added to allwells by us<strong>in</strong>g a 8 channel multiwell pipett followed by2 mM ascorbic acid that started the reaction. Themicrotiter plate was <strong>in</strong>cubated at room temperature <strong>in</strong>dark for 3 h and the reaction was stopped by pipett<strong>in</strong>g10 mM TRIS base to all wells. Addition <strong>of</strong> TRISbuffer adjusted the pH <strong>in</strong> the samples to 9.0 thatmaximized the pH dependent fluorescence signal <strong>of</strong> 7-hydroxycoumar<strong>in</strong>-3-carboxylic acid. The fluorescencewas measured and the fluorescence values wereconverted <strong>in</strong>to 7-OHCCA formed (nM) from thestandard curve. All measurements were done at roomtemperature. The fluorescence <strong>of</strong> the samples andstandards were measured with a Victor plate reader,Wallac, F<strong>in</strong>land. The optical filter set used wasexcitation 380 nm and emission 460 nm.Measurement <strong>of</strong> iron, copper and bicarbonateconcentration <strong>in</strong> the <strong>water</strong> samplesThe iron concentration <strong>in</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> sampleswas measured by us<strong>in</strong>g the iron specific reagentferroz<strong>in</strong>e [26]. For the assay, 200 ml aliquots <strong>in</strong>triplicate <strong>of</strong> the <strong>water</strong> samples were pipetted onto a 96well microtiter plate followed by 400 mM <strong>of</strong> ferroz<strong>in</strong>eand 100 mM ascorbic acid. Ascorbic acid was used toreduce the Fe(III) to the Fe(II) form. The coloredFe(II)-ferroz<strong>in</strong>e complex formed was measured at560 nm by us<strong>in</strong>g a Victor plate reader, Wallac,F<strong>in</strong>land. The absorbance values were converted toconcentration by comparison with a standard curve.The standard curve was generated by add<strong>in</strong>g knownamounts <strong>of</strong> ferric chloride tetrahydrate, 100 mMascorbic acid and 400 mM ferroz<strong>in</strong>e to Milli-Q <strong>water</strong>buffered with 100 mg/l bicarbonate. The copper andbicarbonate concentration <strong>in</strong> the <strong>water</strong> samples weremeasured as previously described [27,28].Measurement <strong>of</strong> hydroxyl radical formation by HPLCanalysisAn isocratic HPLC system (Waters model 1515)equipped with a manual Rheodyne <strong>in</strong>jection valve(25 ml loop) and a 2-channel UV/VIS detector (Watersmodel 2487) was used. The column used for theanalysis was a Symmetry C18, 250 £ 4:6 mm I.D,10 mm particle size column (Waters). Chromatographywas performed us<strong>in</strong>g isocratic elution us<strong>in</strong>g150 mM phosphate buffer (KH 2 PO 4 ) conta<strong>in</strong><strong>in</strong>g 30%methanol, pH 3.0 (H 3 PO 4 ). The flow rate was0.75 ml/m<strong>in</strong>. The <strong>in</strong>dicator molecule used <strong>in</strong> theassay was coumar<strong>in</strong> that readily forms 7-hydroxycoumar<strong>in</strong>(umbelliferone) when attacked by hydroxylradicals. The peaks were detected at 200 nm andanalyzed by us<strong>in</strong>g the Waters Breeze s<strong>of</strong>tware. Forpeak identification and calibration we used standards<strong>of</strong> coumar<strong>in</strong>, 7-hydroxycoumar<strong>in</strong> (umbelliferone) <strong>in</strong>Milli-Q <strong>water</strong>. All separations were performed at roomtemperature.


Iron <strong>in</strong>hibits Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxyl radical formation 567ResultsCopper, but not iron, can support ascorbic acid <strong>in</strong>ducedhydroxyl radical formation <strong>in</strong> bicarbonate-rich <strong>water</strong>We have earlier shown that addition <strong>of</strong> ascorbic acid totap <strong>water</strong> samples contam<strong>in</strong>ated with copper ions cantrigger an ongo<strong>in</strong>g production <strong>of</strong> hydroxyl radicals thatcan be detected by us<strong>in</strong>g coumar<strong>in</strong>-3-carboxylic acid[27,28]. In Figure 1, ascorbic acid (2 mM) was addedto bicarbonate buffered Milli-Q <strong>water</strong> supplementedwith different concentrations <strong>of</strong> either copper or iron.Even very low concentrations <strong>of</strong> copperð0:01–0:05 mg=lÞ were sufficient to give a detectablehydroxyl radical signal. On the contrary, when ironwas used <strong>in</strong> the assay, no hydroxyl radical formationcould be detected. Neither ferrous nor ferric ironcould support any hydroxyl radical formation.Manganese, cadmium, nickel, cobalt, alum<strong>in</strong>um,magnesium, calcium and z<strong>in</strong>c (as chloride salts) orgallium (as nitrate salt) did not result <strong>in</strong> any detectablehydroxyl radical formation (tested by us<strong>in</strong>g the highestamount <strong>of</strong> the contam<strong>in</strong>ants that is allowed <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, Maximum Contam<strong>in</strong>ant Level,MCL, data not shown).Figure 1. Ascorbic acid <strong>in</strong>duced hydroxyl radical formation <strong>in</strong>bicarbonate buffered Milli-Q <strong>water</strong> supplemented with copper oriron. 200 mM coumar<strong>in</strong>-3-carboxylic acid followed by 2 mMascorbic acid were added to Milli-Q <strong>water</strong> samples buffered with100 mg/l bicarbonate and various concentrations <strong>of</strong> copper (O),ferrous iron (†) or ferric iron (W). After 3 h <strong>in</strong>cubation <strong>in</strong> dark atroom temperature, the reaction was stopped by addition <strong>of</strong> 10 mMTRIS base. The fluorescence was measured and the fluorescencevalues were converted <strong>in</strong>to 7-OHCCA formed (nM) from thestandard curve. Data po<strong>in</strong>ts are mean ^ SD <strong>of</strong> triplicates from onerepresentative experiment out <strong>of</strong> three conducted. Where absent,error bars were smaller than the symbol.Inhibition <strong>of</strong> ascorbic acid/copper-catalyzed hydroxylradical formation by ironTo further elucidate the effects <strong>of</strong> iron on Vitam<strong>in</strong> C<strong>in</strong>duced hydroxyl radical formation <strong>in</strong> the presence <strong>of</strong>copper and bicarbonate, we used HPLC analysis. Forthe assay, coumar<strong>in</strong> was chosen as the target molecule.As shown <strong>in</strong> Figure 2A, 2 mM ascorbic acid, <strong>in</strong> thepresence <strong>of</strong> 0.1 mg/l copper and 100 mg/l bicarbonate,promoted the formation <strong>of</strong> a family <strong>of</strong> hydroxylatedcoumar<strong>in</strong> compounds. We focused our analysis on one<strong>of</strong> these hydroxylated compounds, namely 7-hydroxycoumar<strong>in</strong>.With<strong>in</strong> 3 h, 5.5 mM <strong>of</strong> 7-hydroxycoumar<strong>in</strong>was formed. When the copper ion wassubstituted with 0.2 mg/l ferric iron, no hydroxylatedcoumar<strong>in</strong> compounds appeared <strong>in</strong> the chromatogram(Figure 2B). In our experiments, 0.2 mg/l iron wasused s<strong>in</strong>ce this is the MCL for iron <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> <strong>in</strong>F<strong>in</strong>land. When 2 mM ascorbic acid was added toMilli-Q <strong>water</strong> that has been supplemented with0.2 mg/l iron, 100 mg/l bicarbonate and 0.1 mg/lcopper, a 47.5% reduction <strong>in</strong> the 7-hydroxycoumar<strong>in</strong>formation was observed (Figure 2C). In thesechromatograms, based on the retention time for thestandard, the peak that appeared at 22.5 m<strong>in</strong> wasidentified as 7-hydroxycoumar<strong>in</strong> (Figure 2D). Whenmanganese, cadmium, nickel, cobalt, gallium, alum<strong>in</strong>um,magnesium, calcium and z<strong>in</strong>c salts (chloridesalt) were tested at their MCLs no <strong>in</strong>hibitory effect <strong>of</strong>the ascorbic acid/copper-mediated hydroxyl radicalformation could be seen (data not shown).Effects <strong>of</strong> iron on Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxylradical formation <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samplesNext we evaluated whether iron has any impact onascorbic acid <strong>in</strong>duced hydroxyl radical formation <strong>in</strong>copper contam<strong>in</strong>ated bicarbonate-rich dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>samples. The copper concentration <strong>in</strong> the different<strong>water</strong> samples varied from 0.13 to 0.02 mg/l. Thebicarbonate concentration varied between 77.6 and130.1 mg/l. The dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples had beensampled <strong>in</strong> the same way, directly drawn from the tap,but they orig<strong>in</strong>ated from four different municipal <strong>water</strong>suppliers. The <strong>water</strong> samples used <strong>in</strong> the assay did notconta<strong>in</strong> any detectable iron. When Vitam<strong>in</strong> C was addedto these samples more than 900 nM <strong>of</strong> 7-hydroxycoumar<strong>in</strong>-3-carboxylicacid was formed (Table I). When0.2 mg/l ferric iron was added to the tap <strong>water</strong> samplesthe ascorbic acid <strong>in</strong>duced hydroxyl radical formationwas <strong>in</strong>hibited by 36.0–44.6%. When the <strong>water</strong> sampleswere supplemented with 0.8 mg/l ferric iron the<strong>in</strong>hibition was significantly higher, 47.0–59.2%.DiscussionWe have previously shown that ascorbic acid can drive ahydroxyl radical generat<strong>in</strong>g process <strong>in</strong> copper andbicarbonate conta<strong>in</strong><strong>in</strong>g household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>


568P.J. Jansson et al.Figure 2. HPLC analysis <strong>of</strong> ascorbic acid <strong>in</strong>duced hydroxylation <strong>of</strong> coumar<strong>in</strong> (100 mM) <strong>in</strong> the presence <strong>of</strong> copper or iron. 2 mM ascorbicacid was added to Milli-Q <strong>water</strong> buffered with 100 mg/l bicarbonate conta<strong>in</strong><strong>in</strong>g (A) 0.1 mg/l copper (B) 0.2 mg/l ferric iron. (C) Both 0.1 mg/lcopper and 0.2 mg/l ferric iron present. (D) Ascorbic acid standard (2 mM), 7-hydroxycoumar<strong>in</strong> standard (7 mM) and coumar<strong>in</strong> standard(100 mM) <strong>in</strong> Milli-Q <strong>water</strong>. Reaction time was 3 h.[27,28]. Here we show, by us<strong>in</strong>g coumar<strong>in</strong>-3-carboxylicacid as a fluorescent probe for detection <strong>of</strong> hydroxylradical formation, that even very low concentrations <strong>of</strong>copper (#0.1 mg/l) are sufficient to give a significanthydroxyl radical signal. However, when copper wassubstituted by iron, ascorbic acid was not capable tostimulate hydroxyl radical formation (Figure 1). Thiswas also demonstrated by us<strong>in</strong>g HPLC analysis. TheHPLC data clearly showed that coumar<strong>in</strong>, <strong>in</strong> Milli-Q<strong>water</strong> supplemented with 100 mg/l bicarbonate, wasstrongly hydroxylated by ascorbic acid <strong>in</strong> the presence <strong>of</strong>copper ions but not <strong>in</strong> the presence <strong>of</strong> 0.2 mg/l iron alone(Figure 2A and B).Our results demonstrate that iron partly can <strong>in</strong>hibitthe ascorbic acid/copper driven hydroxyl radicalformation <strong>in</strong> a dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> environment. When0.2 mg/l iron was added to the Milli-Q <strong>water</strong> that hadbeen supplemented with 100 mg/l bicarbonate and0.1 mg/l copper, the ascorbic acid <strong>in</strong>duced formation<strong>of</strong> 7-hydroxycoumar<strong>in</strong> was <strong>in</strong>hibited by 47.5%(Figure 2C). Our results are <strong>in</strong> agreement with therecent report by White et al., demonstrat<strong>in</strong>g that ironcan impair reductant-mediated copper and H 2 O 2generation and neurotoxicity [29]. Moreover, ourresults are <strong>in</strong> l<strong>in</strong>e with the recent f<strong>in</strong>d<strong>in</strong>gs by Mundayet al. show<strong>in</strong>g that copper-catalyzed cyste<strong>in</strong>e oxidation


Iron <strong>in</strong>hibits Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxyl radical formation 569Table I.Effects <strong>of</strong> iron on Vitam<strong>in</strong> C/copper <strong>in</strong>duced hydroxyl radical formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.Iron supplementation7-OHCCA formed (nM) Percentage <strong>in</strong>hibition (%)Sample No. Copper (mg/l) Bicarbonate (mg/l) 0.0 (mg/l) 0.2 (mg/l) 0.8 (mg/l) 0.2 (mg/l) 0.8 (mg/l)1 0.15 ^ 0.00 92.2 ^ 2.6 965.8 ^ 7.2 593.4 ^ 3.6 454.3 ^ 9.8 38.6 ^ 0.4 52.9 ^ 1.02 0.20 ^ 0.02 130.1 ^ 5.7 990.2 ^ 58.9 575.5 ^ 53.9 428.1 ^ 16.4 41.9 ^ 5.6 56.8 ^ 1.73 0.15 ^ 0.01 77.6 ^ 4.3 1093.8 ^ 94.7 699.6 ^ 19.6 579.8 ^ 4.7 36.0 ^ 1.8 47.0 ^ 0.44 0.13 ^ 0.01 101.4 ^ 2.1 904.6 ^ 20.9 501.2 ^ 51.6 369.2 ^ 6.8 44.6 ^ 5.7 59.2 ^ 0.8Vitam<strong>in</strong> C (2 mM) <strong>in</strong>duced hydroxyl radical formation was measured <strong>in</strong> tap <strong>water</strong> samples (numbered 1–4) supplemented with either 0.2 or0.8 mg/l <strong>of</strong> ferric iron by us<strong>in</strong>g the coumar<strong>in</strong>-3-carboxylic acid assay. The values shown are the concentration <strong>of</strong> 7-hydroxycoumar<strong>in</strong>-3-carboxylic acid formed after 3 h <strong>in</strong>cubation <strong>in</strong> dark at room temperature. Data are expressed as means ^ SD <strong>of</strong> triplicates <strong>of</strong> one representativeexperiment out <strong>of</strong> three conducted.can be partly <strong>in</strong>hibited by low concentrations <strong>of</strong> ironsalts [30]. In this context, it can also be mentionedthat Menditto et al. showed that load<strong>in</strong>g <strong>of</strong> sem<strong>in</strong>alplasma with either ferrous or ferric iron up to aconcentration <strong>of</strong> 50 mM only modestly affected therate <strong>of</strong> ascorbic acid oxidation [31]. The low oxidationrate <strong>of</strong> ascorbic acid by iron was also seen <strong>in</strong> our <strong>in</strong>vitro experiments. Low concentrations <strong>of</strong> copper,however, as shown here, <strong>in</strong>duces rapid oxidation <strong>of</strong>ascorbic acid [31,32]. Interest<strong>in</strong>gly, it was recentlyreported that, feed<strong>in</strong>g trace amounts <strong>of</strong> copperð0:12 mg=lÞ <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> to cholesterol-fedrabbits could <strong>in</strong>duce signs <strong>of</strong> Alzheimer’s disease[33]. Moreover, <strong>in</strong>jection <strong>of</strong> iron <strong>in</strong>to cholesterol-fedrabbits has recently been reported to cause ironaccumulation <strong>in</strong> the cerebral cortex [34]. Onequestion to be addressed is then whether simultaneousadm<strong>in</strong>istration <strong>of</strong> iron could slow down the coppermediated degenerative process.The data shown <strong>in</strong> Table I, clearly demonstrate howiron can affect hydroxyl radical formation <strong>in</strong> coppercontam<strong>in</strong>ated, bicarbonate rich household dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> samples. The formation <strong>of</strong> hydroxyl radicals <strong>in</strong>the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples, <strong>in</strong> the presence <strong>of</strong> ascorbicacid, was <strong>in</strong>hibited by 36.0–44.6% when 0.2 mg/l <strong>of</strong>ferric iron was present. This <strong>in</strong>hibition was even moresignificant, 47.0–59.2%, when 0.8 mg/l <strong>of</strong> ferric ironwas present dur<strong>in</strong>g the 3 h <strong>in</strong>cubation period withascorbic acid. Thus, as shown here, iron can to someextent prevent copper/reductant-<strong>in</strong>duced formation <strong>of</strong>harmful hydroxyl radicals. The exact mechanism bywhich iron <strong>in</strong>hibits ascorbic acid/copper-<strong>in</strong>ducedhydroxyl radical formation <strong>in</strong> our <strong>water</strong> samples isnot clear. The <strong>in</strong>hibition is unlikely to result from anexperimental artifact s<strong>in</strong>ce it is well known thatcoumar<strong>in</strong>-3-carboxylic acid can be used to detect irondriven hydroxyl radical reactions. [22,35,36] Moreover,our HPLC experiments us<strong>in</strong>g coumar<strong>in</strong> as thetarget molecule gave similar results. A plausibleexplanation for the iron-<strong>in</strong>duced <strong>in</strong>hibition could bethat ferric iron reacts with the superoxide generatedfrom the copper/ascorbate redox reaction. Ferrousiron might also react with hydrogen peroxide andgenerate <strong>water</strong> and ferryl ions accord<strong>in</strong>g to the Bray-Gor<strong>in</strong> reaction [37].Iron is an essential micronutrient and the presence<strong>of</strong> iron <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> is therefore notconsidered to be harmful. In fact, the <strong>in</strong>take <strong>of</strong> ironfrom dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, partly contributes to our dailyiron <strong>in</strong>take. However, due to its <strong>of</strong>fensive taste, color,foam<strong>in</strong>g, odor, corrosion and sta<strong>in</strong><strong>in</strong>g <strong>of</strong> the dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>, iron is considered by the <strong>water</strong> plants as asecondary contam<strong>in</strong>ant. These characteristics are alsothe reason why excess iron <strong>in</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> isnormally removed or adjusted to very low levels. Ourresults, however, <strong>in</strong>dicate that complete removal <strong>of</strong>iron from the raw <strong>water</strong> <strong>in</strong> the <strong>water</strong> plants can tosome extent <strong>in</strong>crease the redox <strong>activity</strong> <strong>of</strong> copper, andthe formation <strong>of</strong> reactive oxygen species <strong>in</strong>the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Moreover, iron deficiency canalso <strong>in</strong>crease the <strong>in</strong>test<strong>in</strong>al absorption <strong>of</strong> moreharmful metals such as cadmium, lead, andalum<strong>in</strong>um [38].In conclusion, our results demonstrate that ironcannot support ascorbic acid <strong>in</strong>duced hydroxyl radicalformation <strong>in</strong> a simple bicarbonate environment butunexpectedly displayed an <strong>in</strong>hibitory effect on theascorbic acid <strong>in</strong>duced hydroxyl radical formationprocess when copper was present. This phenomenonwas also evident <strong>in</strong> our experiments performed <strong>in</strong>household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples. Thus, <strong>in</strong> thepresence <strong>of</strong> bicarbonate, iron might function as animportant regulator <strong>of</strong> copper/reductant-<strong>in</strong>ducedhydroxyl radical formation and copper mediatedtissue damage. Our results might, to some extent,expla<strong>in</strong> the mechanism for the iron <strong>in</strong>duced protectiveeffect that earlier has been seen <strong>in</strong> animal modelsystems.AcknowledgementsThis work was supported by Magnus Ehrnroothfoundation, Paulon Säätiö, K. Alb<strong>in</strong> JohanssonsStiftelse, Stiftelsen för Åbo <strong>Akademi</strong>, Academy <strong>of</strong>F<strong>in</strong>land and Svenska Kulturfonden.


570P.J. Jansson et al.References[1] Loz<strong>of</strong>f B, Brittenham GM, Viteri FE, Wolf AW, Urrutia JJ. Theeffects <strong>of</strong> short-term oral iron therapy on developmentaldeficits <strong>in</strong> iron-deficient anemic <strong>in</strong>fants. J Pediatr1982;100:351–357.[2] Aukett MA, Parks YA, Scott PH, Wharton BA. Treatmentwith iron <strong>in</strong>creases weight ga<strong>in</strong> and psychomotor development.Arch Dis Child 1986;61:849–857.[3] Loz<strong>of</strong>f B, Jimenez E, Wolf AW. Long-term developmentaloutcome <strong>of</strong> <strong>in</strong>fants with iron deficiency. N Engl J Med1991;325:687–694.[4] Sayre LM, Perry G, Atwood CS, Smith MA. The role <strong>of</strong>metals <strong>in</strong> neurodegenerative diseases. Cell Mol Biol (Noisy-legrand)2000;46:731–741.[5] Halliwell B. Role <strong>of</strong> free radicals <strong>in</strong> the neurodegenerativediseases: Therapeutic implications for anti<strong>oxidant</strong> treatment.Drugs Ag<strong>in</strong>g 2001;18:685–716.[6] Berg D, Gerlach M, Youdim MB, Double KL, Zecca L,Riederer P, Becker G. Bra<strong>in</strong> iron pathways and their relevanceto Park<strong>in</strong>son’s disease. J Neurochem 2001;79:225–236.[7] Liu P, Olivieri N. Iron overload cardiomyopathies: New <strong>in</strong>sights<strong>in</strong>to an old disease. Cardiovasc Drugs Ther 1994;8:101–110.[8] Rasmussen ML, Folsom AR, Catellier DJ, Tsai MY, Garg U,Eckfeldt JH. A prospective study <strong>of</strong> coronary heart disease andthe hemochromatosis gene (HFE) C282Y mutation: TheAtherosclerosis Risk <strong>in</strong> Communities (ARIC) study. Atherosclerosis2001;154:739–746.[9] Britton RS, Leicester KL, Bacon BR. Iron toxicity andchelation theraphy. Int J Hematol 2002;76:219–228.[10] Okada S. Iron-<strong>in</strong>duced tissue damage and cancer: The role <strong>of</strong>reactive oxygen species-free radicals. Pathol Int 1996;46:311–332.[11] Stevens RG. Iron and the risk <strong>of</strong> cancer. Med Oncol TumorPharmacother 1990;7:177–181.[12] Perez de Nanclares G, Castano L, Gaztambide S, Bilbao JR, PiJ, Gonzalez ML, Vazquez JA. Excess iron storage <strong>in</strong> patientswith type 2 diabetes unrelated to primary hemochromatosis.N Engl J Med 2000;343:890–891.[13] Thomas MC, MacIsaac RJ, Tsalamandris C, Jerums G.Elevated iron <strong>in</strong>dices <strong>in</strong> patients with diabetes. Diabet Med2004;7:798–802.[14] Li J, Zhu Y, S<strong>in</strong>gal DP. HFE gene mutations <strong>in</strong> patients withrheumatoid arthritis. J Rheumatol 2000;27:2074–2077.[15] Walker EM, Jr, Walker SM. Effects <strong>of</strong> iron overload on theimmune system. Ann Cl<strong>in</strong> Lab Sci 2000;30:354–365.[16] Haber F, Weiss J. The catalytic decomposition <strong>of</strong> hydrogenperoxide by iron salts. <strong>Pro</strong>c Roy Soc 1934;147:332–351.[17] Fenton HJH. On a new reaction <strong>of</strong> tartaric acid. Chem News1876;33:190.[18] Halliwell B, Gutteridge JM. Biologically relevant metal iondependent hydroxyl radical generation. An update. FEBS Lett1992;307:108–112.[19] Halliwell B, Gutteridge JM. Oxygen free radicals and iron <strong>in</strong>relation to biology and medic<strong>in</strong>e: Some problems andconcepts. Arch Biochem Biophys 1986;246:501–514.[20] Burkitt MJ, Gilbert BC. Model studies <strong>of</strong> the iron-catalysedHaber-Weiss cycle and the ascorbate-driven Fenton reaction.Free Radic Res Commun 1990;10:265–280.[21] Prabhu HR, Krishnamurthy S. Ascorbate-dependent formation<strong>of</strong> hydroxyl radicals <strong>in</strong> the presence <strong>of</strong> iron chelates.Indian J Biochem Biophys 1993;30:289–292.[22] L<strong>in</strong>dqvist C, Nordstrom T. Generation <strong>of</strong> hydroxyl radicals bythe antiviral compound phosphon<strong>of</strong>ormic acid (foscarnet).Pharmacol Toxicol 2001;89:49–55.[23] Higson FK, Kohen R, Chevion M. Iron enhancement <strong>of</strong>ascorbate toxicity. Free Radic Res Commun 1988;5:107–115.[24] Schneider JE, Brown<strong>in</strong>g MM, Floyd RA. Ascorbate/ironmediation <strong>of</strong> hydroxyl free radical damage to PBR322 plasmidDNA. Free Radic Biol Med 1988;5:287–295.[25] Toyokuni S, Sagripanti JL. Iron-mediated DNA damage:Sensitive detection <strong>of</strong> DNA strand breakage catalyzed by iron.J Inorg Biochem 1992;47:241–248.[26] Boyer RF, Grabill TW, Petrovich RM. Reductive release <strong>of</strong>ferrit<strong>in</strong> iron: A k<strong>in</strong>etic assay. Anal. Biochem. 1988;174:17–22.[27] Asplund KU, Jansson PJ, L<strong>in</strong>dqvist C, Nordstrom T.Measurement <strong>of</strong> ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced hydroxylradical generation <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Free RadicRes 2002;36:1271–1276.[28] Jansson PJ, Asplund KU, Makela JC, L<strong>in</strong>dqvist C, NordstromT. Vitam<strong>in</strong> C (ascorbic acid) <strong>in</strong>duced hydroxyl radicalformation <strong>in</strong> copper contam<strong>in</strong>ated household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>:Role <strong>of</strong> bicarbonate concentration. Free Radic Res2003;37:901–905.[29] White AR, Barnham KJ, Huang X, Voltakis I, Beyreuther K,Masters CL, Cherny RA, Bush AI, Cappai R. Iron <strong>in</strong>hibitsneurotoxicity <strong>in</strong>duced by trace copper and biologicalreductants. J Biol Inorg Chem 2004;9:269–280.[30] Munday R, Munday CM, W<strong>in</strong>terbourn CC. Inhibition <strong>of</strong>copper-catalyzed cyste<strong>in</strong>e oxidation by nanomolar concentrations<strong>of</strong> iron salts. Free Radic Biol Med 2004;36:757–764.[31] Menditto A, Pietraforte D, M<strong>in</strong>etti M. Ascorbic acid <strong>in</strong> humansem<strong>in</strong>al plasma is protected from iron-mediated oxidation, butis potentially exposed to copper-<strong>in</strong>duced damage. HumReprod 1997;12:1699–1705.[32] Jansson PJ, Jung HR, L<strong>in</strong>dqvist C, Nordstrom T. Oxidativedecomposition <strong>of</strong> Vitam<strong>in</strong> C <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Free Radic Res2004;38:855–860.[33] Sparks DL, Schreurs BG. Trace amounts <strong>of</strong> copper <strong>in</strong> <strong>water</strong><strong>in</strong>duce beta-amyloid plaques and learn<strong>in</strong>g deficits <strong>in</strong> a rabbitmodel <strong>of</strong> Alzheimer’s disease. <strong>Pro</strong>c Natl Acad Sci USA2003;100:11065–11069.[34] Ong WY, Tan B, Pan N, Jenner A, Whiteman M, Ong CN,Watt F, Halliwell B. Increased iron sta<strong>in</strong><strong>in</strong>g <strong>in</strong> the cerebralcortex <strong>of</strong> cholesterol fed rabbits. Mech Age<strong>in</strong>g Dev2004;125:305–313.[35] Kachur AV, Manevich Y, Biaglow JE. Effect <strong>of</strong> pur<strong>in</strong>enucleoside phosphates on OH-radical generation by reaction<strong>of</strong> Fe2+with oxygen. Free Radic Res 1997;26:399–408.[36] Kachur AV, Tuttle SW, Biaglow JE. Autoxidation <strong>of</strong> ferrous ioncomplexes: A method for the generation <strong>of</strong> hydroxyl radicals.Radiat Res 1998;150:475–482.[37] Bray WC, Gor<strong>in</strong> MH. Ferryl ion, a compound <strong>of</strong> tetravalentiron. Am Chem Soc 1932;54:2124–2125.[38] Goyer RA. Toxic and essential metal <strong>in</strong>teractions. Annu RevNutr 1997;17:37–50.


Free Radical Research, November 2005; 39(11): 1233–1239Iron prevents ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced hydrogen peroxideaccumulation <strong>in</strong> copper contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>PATRIC J. JANSSON 1 , CHRISTER LINDQVIST 2 , & TOMMY NORDSTRÖM 11 Department <strong>of</strong> Biochemistry and Pharmacy, Åbo <strong>Akademi</strong> University, BioCity, Tykistönkatu 6, FIN 20520 Turku, F<strong>in</strong>land,and 2 Department <strong>of</strong> Biology, Åbo <strong>Akademi</strong> University, BioCity, Tykistönkatu 6, FIN 20520 Turku, F<strong>in</strong>landAccepted by <strong>Pro</strong>fessor B. Halliwell(Received 8 April 2005; <strong>in</strong> revised form 29 June 2005)AbstractAscorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced hydrogen peroxide (H 2 O 2 ) formation was measured <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> and metalsupplemented Milli-Q <strong>water</strong> by us<strong>in</strong>g the FOX assay. Here we show that ascorbic acid readily <strong>in</strong>duces H 2 O 2 formation <strong>in</strong>Cu(II) supplemented Milli-Q <strong>water</strong> and poorly buffered household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. In contrast to Cu(II), iron was not capableto support ascorbic acid <strong>in</strong>duced H 2 O 2 formation dur<strong>in</strong>g acidic conditions (pH: 3.5–5). In 12 out <strong>of</strong> the 48 dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>samples <strong>in</strong>cubated with 2 mM ascorbic acid, the H 2 O 2 concentration exceeded 400 mM. However, when trace amounts <strong>of</strong>Fe(III) (0.2 mg/l) was present dur<strong>in</strong>g <strong>in</strong>cubation, the ascorbic acid/Cu(II)-<strong>in</strong>duced H 2 O 2 accumulation was totally blocked.Of the other common divalent or trivalent metal ions tested, that are normally present <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (calcium, magnesium,z<strong>in</strong>c, cobalt, manganese or alum<strong>in</strong>um), only calcium and magnesium displayed a modest <strong>in</strong>hibitory <strong>activity</strong> on the ascorbicacid/Cu(II)-<strong>in</strong>duced H 2 O 2 formation. Oxalic acid, one <strong>of</strong> the degradation products from ascorbic acid, was confirmed toactively participate <strong>in</strong> the iron <strong>in</strong>duced degradation <strong>of</strong> H 2 O 2 . Ascorbic acid/Cu(II)-<strong>in</strong>duced H 2 O 2 formation dur<strong>in</strong>g acidicconditions, as demonstrated here <strong>in</strong> poorly buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, could be <strong>of</strong> importance <strong>in</strong> host defense aga<strong>in</strong>st bacterial<strong>in</strong>fections. In addition, our f<strong>in</strong>d<strong>in</strong>gs might expla<strong>in</strong> the mechanism for the protective effect <strong>of</strong> iron aga<strong>in</strong>st <strong>vitam<strong>in</strong></strong> C <strong>in</strong>ducedcell toxicity.Keywords: Vitam<strong>in</strong> C, <strong>water</strong>, iron, copper, oxalic acidIntroductionAscorbic acid (Vitam<strong>in</strong> C) is a <strong>water</strong>-soluble naturalanti<strong>oxidant</strong> that has been proposed to have beneficialeffects on many age-related diseases such as atherosclerosis,cancer, neurodegenerative and ocular diseases[1–7]. It is believed that ascorbic acid canscavenge reactive oxygen- and nitrogen species andthereby prevent oxidative damage to importantbiological macromolecules such as DNA, lipids andprote<strong>in</strong>s [8–11]. On the other hand, it has also beenshown that ascorbic acid can, <strong>in</strong> the presence <strong>of</strong>transition metal ions such as Cu(II) and Fe(III),function as a strong pro-<strong>oxidant</strong> [12–15].The pro-<strong>oxidant</strong> <strong>activity</strong> <strong>of</strong> ascorbic acid is due to itsability to redox-cycle with transition metal ions, andthereby stimulate the formation <strong>of</strong> reactive oxygenspecies (ROS) such as superoxide ðOz 2 2 Þ; hydrogenperoxide (H 2 O 2 ) and hydroxyl radicals ðOHzÞ: It isgenerally believed, that the cellular damage is causedby the hydroxyl radical ðOHzÞ: The hydroxyl radicalcan be directly formed from H 2 O 2 and Fe(II) throughthe Fenton reaction: Fe 2þ þ H 2 O 2 ! Fe 3þ þ OH 2 þOHz [16,17]. This reaction can be strongly catalyzed ifcerta<strong>in</strong> metal chelators such as EDTA and NTA and areduc<strong>in</strong>g agent such as ascorbic acid are present [18–21]. Thus, <strong>in</strong> the absence <strong>of</strong> metal ions, H 2 O 2 is notCorrespondence: T. Nordström, Department <strong>of</strong> Biochemistry and Pharmacy, Åbo <strong>Akademi</strong> University, BioCity, Tykistönkatu. 6, FIN 20520Turku, F<strong>in</strong>land. Tel: 358 2 2154004. Fax: 358 2 2154745. E-mail: tomnords@abo.fiISSN 1071-5762 pr<strong>in</strong>t/ISSN 1029-2470 onl<strong>in</strong>e q 2005 Taylor & FrancisDOI: 10.1080/10715760500249861


1234P. J. Jansson et al.very reactive by itself, but imposes a threat due to itsability to easily diffuse through the cell membrane andthen participate <strong>in</strong> metal <strong>in</strong>duced free radical reactions<strong>in</strong>side the cell [22,23].There are conflict<strong>in</strong>g and confus<strong>in</strong>g <strong>in</strong>formationregard<strong>in</strong>g ascorbate and its cytotoxicity <strong>in</strong> theliterature. Some reports clearly show that ascorbateis highly cytotoxic to cells [24–28], while othersdemonstrate that ascorbic acid can protect cells frompro-oxidative <strong>in</strong>sult [1–7]. The toxic effect <strong>of</strong> ascorbicacid <strong>in</strong> cell systems has been attributed to H 2 O 2formation <strong>in</strong> the cell culture [29–31].We have previously shown that ascorbic acid cantrigger a pH dependent hydroxyl radical generat<strong>in</strong>gprocess <strong>in</strong> Cu(II) contam<strong>in</strong>ated bicarbonate-buffereddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [32]. We found that this reaction couldtake place at pH levels above the pK al value 4.25 <strong>of</strong>ascorbic acid. Here we have studied the chemicalreactions that take place when ascorbic acid is addedto either Cu(II) supplemented Milli-Q <strong>water</strong> or Cu(II)contam<strong>in</strong>ated poorly buffered household dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>s. We have addressed the question whetherascorbic acid can <strong>in</strong>itiate a H 2 O 2 accumulationprocess dur<strong>in</strong>g acidic conditions (pH below 4.25)that do not support hydroxyl radical formation. Theimpact <strong>of</strong> iron on this process is studied <strong>in</strong> detail.Materials and methodsChemicalsAscorbic acid, oxalic acid, ferrous chloride hexahydrate,ammonium ferrous sulfate, calcium chloridedihydrate and cupric chloride dihydrate were purchasedfrom Fluka, Riedel-deHaen, Germany.Manganese chloride tetrahydrate, z<strong>in</strong>c chloride, cobaltchloride hexahydrate, xylenol orange sodium salt and2,6-Di-tert-butyl-4-methanol-phenol were fromSigma, St. Louis, USA. Magnesium chloride hexahydratewas purchased from J.T. Baker, Denventer,Holland. Stock solutions <strong>of</strong> the chemicals used wereprepared <strong>in</strong> Milli-Q <strong>water</strong> (18 MV cm) and protectedfrom light. Samples <strong>of</strong> tap <strong>water</strong> were collected <strong>in</strong>sterile 15 mL polypropylene test tubes (Gre<strong>in</strong>er)and stored at 48C <strong>in</strong> the dark until used. All stocksolutions <strong>of</strong> the reagents used <strong>in</strong> the assay wereprepared fresh daily.Measurement <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced H 2 O 2 formation<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>Measurement <strong>of</strong> H 2 O 2 <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> anddomestic bottled <strong>water</strong>s was performed by us<strong>in</strong>g theFOX assay as described earlier [33]. Briefly, the FOXreagent was prepared by mix<strong>in</strong>g 9 volumes <strong>of</strong> FOX-1reagent (4.4 mM 2,6-Di-tert-butyl-4-methanol-phenol<strong>in</strong> 100% HPLC grade methanol) with 1 volume <strong>of</strong>FOX-2 reagent (1 mM xylenol orange sodium salt and2.56 mM ammonium ferrous sulfate <strong>in</strong> 250 mMsulfuric acid). In the assay, 2 mM <strong>of</strong> ascorbic acid wasadded to the different <strong>water</strong> samples to <strong>in</strong>itiate thereaction. After various time periods, 25 mlsampleswerewithdrawn from the tubes and pipetted <strong>in</strong>to aneppendorf tube conta<strong>in</strong><strong>in</strong>g 750 ml FOX-reagent.Themixture was vortexed for 5 s and <strong>in</strong>cubated at roomtemperature for 30 m<strong>in</strong>. After this, 200 ml <strong>of</strong> the mixturewas pipetted <strong>in</strong> triplicates onto a 96 well microtiter plateand the absorbance <strong>of</strong> the samples and standards weremeasured at 560 nm with a Victor plate reader, Wallac,F<strong>in</strong>land. The absorbance values were converted toconcentration by comparison with a standard curvewhere known concentrations <strong>of</strong> H 2 O 2 were used.ResultsCopper, but not iron, can support ascorbic acid <strong>in</strong>ducedH 2 O 2 formation <strong>in</strong> Milli-Q <strong>water</strong>We have previously shown that addition <strong>of</strong> ascorbicacid to bicarbonate buffered tap <strong>water</strong> samplescontam<strong>in</strong>ated with Cu(II) ions can generate hydroxylradicals [34–35]. In this study, we have evaluatedwhether ascorbic acid has the ability to <strong>in</strong>duce H 2 O 2formation <strong>in</strong> Cu(II) contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Tostudy this, we first used Milli-Q <strong>water</strong> as a modelsystem. As can be seen <strong>in</strong> Table I, ascorbic acid <strong>in</strong>duceda substantial <strong>in</strong>crease <strong>in</strong> the H 2 O 2 concentration(499.2 ^ 5.5 mM) <strong>in</strong> Milli-Q <strong>water</strong> supplemented with0.1 mg/l <strong>of</strong> Cu(II). This concentration <strong>of</strong> Cu(II) is 20times below the amount <strong>of</strong> copper that is allowed <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> <strong>in</strong> Europe (Maximum Contam<strong>in</strong>antLevel, MCL). The H 2 O 2 formation was very rapid and293.7 ^ 5.5 mMH 2 O 2 could already be detected after1 h <strong>in</strong>cubation (Figure 1). On the contrary, whenFe(III), was used <strong>in</strong> the assay, low concentrations45.3 ^ 8.9 mM <strong>of</strong>H 2 O 2 could be detected after 6 h.When Ca(II), Mg(II), Zn(II), Mn(II), Co(II) or Al(III)were used <strong>in</strong> the assay, the concentration <strong>of</strong> H 2 O 2varied between 57.6 ^ 3.1 and 120.9 ^ 4.7 mM.(Table I). These metal ions were tested by us<strong>in</strong>g theirhighest concentration that is allowed <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>(MCL <strong>in</strong> Europe).Effects <strong>of</strong> ferric iron on ascorbic acid/copper-<strong>in</strong>duced H 2 O 2formation <strong>in</strong> Milli-Q <strong>water</strong>We have recently shown that ferric iron can <strong>in</strong>terferewith ascorbic acid/Cu(II)-<strong>in</strong>duced hydroxyl radicalformation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [35]. To exam<strong>in</strong>e whetherferric iron also affects ascorbic acid/Cu(II)-<strong>in</strong>ducedH 2 O 2 formation <strong>in</strong> Milli-Q <strong>water</strong>, we next measuredH 2 O 2 formation <strong>in</strong> the presence <strong>of</strong> various divalentand trivalent cations (Table II). When ferric iron,0.2 mg/l, was present <strong>in</strong> the assay, a very weak<strong>in</strong>hibition could be observed dur<strong>in</strong>g the first hour(Table II). After 2 h <strong>in</strong>cubation the concentration <strong>of</strong>


Hydrogen peroxide formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 1235Table I. Vitam<strong>in</strong> C <strong>in</strong>duced H2O2 formation <strong>in</strong> Milli-Q <strong>water</strong> <strong>in</strong> the presence <strong>of</strong> various metal ions.H 2 O 2 (mM) formationMetal ion added (mg/l)Ca(II)(100 mg/l)Mg(II)(50 mg/l)Zn(II)(0.5 mg/l)Al(III)(0.2 mg/l)Co(II)(0.2 mg/l)Mn(II)(0.5 mg/l)Fe(III)(0.2 mg/l)Cu(II)(0.1 mg/l)Time (h) None0.25 7.1 ^ 0.1 139.4 ^ 4.0 17.6 ^ 0.1 6.4 ^ 0.1 8.7 ^ 0.1 25.0 ^ 2.3 0.9 ^ 3.1 6.4 ^ 1.6 6.4 ^ 0.11 18.1 ^ 2.4 293.7 ^ 5.5 18.4 ^ 1.9 10.4 ^ 1.4 21.4 ^ 0.8 29.0 ^ 1.7 12.0 ^ 3.1 9.8 ^ 1.5 14.8 ^ 0.82 27.6 ^ 1.6 402.6 ^ 3.9 27.8 ^ 4.9 19.2 ^ 0.8 37.6 ^ 0.1 32.7 ^ 0.6 24.2 ^ 1.6 21.4 ^ 0.8 23.7 ^ 0.83 35.9 ^ 3.9 455.9 ^ 0.8 34.5 ^ 1.4 30.3 ^ 0.8 57.0 ^ 0.8 45.3 ^ 1.1 40.3 ^ 0.8 28.1 ^ 0.8 34.8 ^ 2.44 50.3 ^ 3.9 486.4 ^ 3.1 47.3 ^ 4.2 40.9 ^ 1.6 84.8 ^ 2.4 49.4 ^ 1.7 55.9 ^ 2.4 40.3 ^ 2.4 50.3 ^ 0.85 47.6 ^ 6.3 497.0 ^ 3.9 45.6 ^ 3.2 52.0 ^ 1.6 96.4 ^ 0.1 60.1 ^ 1.3 66.4 ^ 6.2 51.4 ^ 2.4 49.8 ^ 0.16 52.0 ^ 9.4 499.2 ^ 5.5 45.3 ^ 8.9 63.1 ^ 0.1 120.9 ^ 4.7 71.3 ^ 0.6 81.4 ^ 3.9 57.6 ^ 3.1 68.7 ^ 3.1Time dependent formation <strong>of</strong> H2O2 by ascorbic acid (2 mM) <strong>in</strong> Milli-Q <strong>water</strong> supplemented with 0.1 mg/l Cu(II). The concentrations <strong>of</strong> the other metal species used are MCL <strong>of</strong> the metals that is allowed<strong>in</strong> European dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The values shown are the concentration <strong>of</strong> H2O2 formed dur<strong>in</strong>g the <strong>in</strong>cubation <strong>in</strong> dark at room temperature. Data are expressed as mean ^ SD <strong>of</strong> triplicates <strong>of</strong> onerepresentative experiment out <strong>of</strong> three conducted.Figure 1. Effects <strong>of</strong> Iron/oxalic acid on ascorbic acid/Cu(II)-<strong>in</strong>duced hydrogen peroxide accumulation <strong>in</strong> Milli-Q <strong>water</strong>. (A)2 mM ascorbic acid was added to Milli-Q <strong>water</strong> samples conta<strong>in</strong><strong>in</strong>geither 0.1 mg/l Cu(II) (†); 0.1 mg/l Cu(II) and 0.2 mg/l Fe(III) (O);50 mM oxalic acid, 0.2 mg/l Fe(III) and 0.1 mg/l copper (K) or50 mM oxalic acid and 0.1 mg/l copper (A). Where <strong>in</strong>dicated by anarrow, 50 mM oxalic acid and 0.2 mg/l Fe(III) were added to asample <strong>in</strong>cubated for 2 h with 2 mM ascorbic acid and 0.1 mg/lCu(II) (W). Data po<strong>in</strong>ts are mean ^ SD <strong>of</strong> three experiments.If absent, error bars are smaller than the symbols.H 2 O 2 reached 300.9 ^ 10.5 mM and after thisthe concentration <strong>of</strong> H 2 O 2 started to decrease <strong>in</strong> the<strong>water</strong> sample. After 6 h <strong>in</strong>cubation, the H 2 O 2 level haddecreased to 57.0 ^ 10.4 mM as compared to509.5 ^ 14.8 mM measured <strong>in</strong> the control samplenot conta<strong>in</strong><strong>in</strong>g iron. Other metal ion species thatmight be present <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, Zn(II), Co(II),Mn(II) or Al(III) did not have any impact on theascorbic acid/(CuII)-<strong>in</strong>duced H 2 O 2 formation.A modest <strong>in</strong>hibition <strong>in</strong> H 2 O 2 formation could beseen when Mg(II) or Ca(II) were present. However,the concentrations <strong>of</strong> Mg(II) and Ca(II) were 250-and 500-fold higher than the concentration <strong>of</strong> ironused <strong>in</strong> the assay. This is because the concentration <strong>of</strong>all the metal ions used <strong>in</strong> the assay are the amounts <strong>of</strong>these contam<strong>in</strong>ants that are currently allowed <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (MCL <strong>in</strong> Europe).Iron/oxalic acid <strong>in</strong>hibits ascorbic acid/copper-catalyzedH 2 O 2 formationIn our previous work, we have established that oxalicacid is one <strong>of</strong> the degradation products generatedwhen ascorbic acid is oxidatively decomposed <strong>in</strong>copper contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [36]. Thisimplies that oxalic acid might participate <strong>in</strong> the ironcatalyzed H 2 O 2 decomposition, s<strong>in</strong>ce oxalic acid isknown to have high aff<strong>in</strong>ity for ferric iron even at verylow pH. To verify this, 0.1 mg/l Cu(II) and 2 mM


1236P. J. Jansson et al.Table II. Effects <strong>of</strong> metal ions on ascorbic acid/copper <strong>in</strong>duced H 2 O 2 formation <strong>in</strong> MQ-<strong>water</strong>.H2O2 formation (mM)Metal ions (mg/l) present <strong>in</strong> copper supplemented MQ-<strong>water</strong>Ca(II)(100 mg/l)Mg(II)(50 mg/l)Zn(II)(0.5 mg/l)Al(III)(0.2 mg/l)Co(II)(0.2 mg/l)Mn(II)(0.5 mg/l)Fe(III)(0.2 mg/l)Only Cu(II)(0.1 mg/l)Time (h)0.25 141.4 ^ 3.9 131.4 ^ 2.4 144.8 ^ 0.8 135.3 ^ 1.6 133.9 ^ 0.6 119.2 ^ 3.9 132.6 ^ 2.4 137.0 ^ 0.81 308.4 ^ 17.9 282.8 ^ 11.6 320.9 ^ 7.9 325.3 ^ 6.3 310.5 ^ 5.6 300.9 ^ 11.0 282.0 ^ 12.6 294.8 ^ 5.52 413.1 ^ 12.8 300.9 ^ 10.5 399.8 ^ 3.1 410.3 ^ 5.5 402.0 ^ 5.1 385.3 ^ 6.3 358.7 ^ 4.7 347.6 ^ 4.73 457.0 ^ 8.7 245.6 ^ 27.4 440.3 ^ 0.8 445.3 ^ 3.1 459.0 ^ 6.8 439.2 ^ 7.1 387.6 ^ 1.6 373.1 ^ 4.74 492.8 ^ 11.5 175.9 ^ 18.9 471.4 ^ 2.4 485.3 ^ 4.7 459.8 ^ 7.7 466.4 ^ 3.1 407.0 ^ 0.8 404.2 ^ 1.65 501.7 ^ 8.6 102.3 ^ 18.4 493.7 ^ 0.8 508.7 ^ 3.1 486.4 ^ 8.7 488.7 ^ 14.1 433.1 ^ 7.9 409.2 ^ 2.46 509.5 ^ 14.8 57.0 ^ 10.4 502.0 ^ 9.4 511.4 ^ 5.5 502.0 ^ 1.1 500.9 ^ 6.3 434.2 ^ 0.1 420.3 ^ 2.4Time dependent formation <strong>of</strong> H2O2 by ascorbic acid (2 mM) <strong>in</strong> Milli-Q <strong>water</strong> supplemented with 0.1 mg/l Cu(II) and various ion species (concentrations used are their MCL <strong>in</strong> Europe). The valuesshown are the concentration <strong>of</strong> H 2 O 2 formed dur<strong>in</strong>g the <strong>in</strong>cubation <strong>in</strong> dark at room temperature. Data are expressed as means ^ SD <strong>of</strong> triplicates <strong>of</strong> one representative experiment out <strong>of</strong> three conducted.ascorbic acid were added to Milli-Q <strong>water</strong>supplemented with both iron and oxalic acid. When0.2 mg/l Fe(III) and 50 mM oxalic acid were presentfrom the start <strong>of</strong> the reaction, extremely lowconcentrations <strong>of</strong> H 2 O 2 could be detected <strong>in</strong> theMilli-Q <strong>water</strong> (Figure 1). Likewise, when 0.2 mg/lFe(III) and 50 mM oxalic acid were added to theascorbic/Cu(II) <strong>in</strong>duced H 2 O 2 generat<strong>in</strong>g reactionafter 2 h <strong>in</strong>cubation, the H 2 O 2 concentration <strong>in</strong> thesample rapidly decreased. Furthermore, when oxalicacid alone was present <strong>in</strong> the assay from the beg<strong>in</strong>n<strong>in</strong>g,the ascorbic acid/Cu(II)-<strong>in</strong>duced H 2 O 2 formation wasalso affected.Ascorbic acid <strong>in</strong>duced H 2 O 2 accumulation <strong>in</strong> householddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>–The relationship between copper, iron andbicarbonateNext, we measured the amount <strong>of</strong> H 2 O 2 that wasformed dur<strong>in</strong>g a 6-h <strong>in</strong>cubation when 2 mM ascorbicacid was added to 40 tap <strong>water</strong> samples and 8domestic bottled <strong>water</strong> samples (Table III). Thedr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples tested had been sampled <strong>in</strong> thesame way (directly drawn from the tap) but theyorig<strong>in</strong>ated from different municipal <strong>water</strong> suppliers.The observed levels <strong>of</strong> H 2 O 2 generated variedbetween 0 and 488.4 mM.When ascorbic acid was added to the low buffereddr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples that were contam<strong>in</strong>ated withcopper, H 2 O 2 was generated. However, <strong>in</strong> some <strong>of</strong> thedr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples that were contam<strong>in</strong>ated withcopper but showed higher buffer<strong>in</strong>g capacity, muchlower levels <strong>of</strong> H 2 O 2 was formed <strong>in</strong> the presence <strong>of</strong>ascorbic acid. Therefore, to study the impact <strong>of</strong>bicarbonate on the H 2 O 2 formation, we nextperformed experiments <strong>in</strong> Milli-Q <strong>water</strong> supplementedwith various concentrations <strong>of</strong> bicarbonate.As shown <strong>in</strong> Figure 2, the ascorbic acid <strong>in</strong>ducedaccumulation <strong>of</strong> H 2 O 2 <strong>in</strong> the presence <strong>of</strong> 0.1 mg/lcopper was significantly decreased when the concentrations<strong>of</strong> bicarbonate was <strong>in</strong>creased. Consequently,<strong>in</strong> the presence <strong>of</strong> bicarbonate, lower concentrations<strong>of</strong> ferric iron was required to <strong>in</strong>hibit the hydrogenperoxide accumulation.DiscussionWe have previously shown that addition <strong>of</strong> ascorbicacid (<strong>vitam<strong>in</strong></strong> C) to tap <strong>water</strong> samples contam<strong>in</strong>atedwith Cu(II) ions can generate hydroxyl radicals[32,34,35]. Here, we have studied whether ascorbicacid can <strong>in</strong>itiate a H 2 O 2 accumulat<strong>in</strong>g reaction <strong>in</strong>Cu(II) contam<strong>in</strong>ated poorly buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>or Cu(II) supplemented Milli-Q <strong>water</strong>. Our resultsshow that ascorbic acid can <strong>in</strong>itiate a time dependentaccumulation <strong>of</strong> H 2 O 2 <strong>in</strong> copper contam<strong>in</strong>ated poorlybuffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. The H 2 O 2 formationoccurred at very low concentration <strong>of</strong> Cu(II) ions


Hydrogen peroxide formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 1237Table III. Vitam<strong>in</strong> C <strong>in</strong>duced H 2 O 2 formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>.Household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (from taps) Bottled <strong>water</strong>H 2 O 2 (mM)formationSamplenumberH 2 O 2 (mM)formationSamplenumberH 2 O 2 (mM)formationSamplenumberH 2 O 2 (mM)formationSamplenumberH 2 O 2 (mM)formationSamplenumberH 2 O 2 (mM)formationSamplenumber1 417.3 ^ 17.4 9 219.5 ^ 8.2 17 0 25 282.8 ^ 20.3 33 106.7 ^ 27.4 41 43.7 ^ 12.82 20.1 ^ 13.2 10 92.0 ^ 13.1 18 396.4 ^ 7.1 26 62.6 ^ 3.5 34 294.5 ^ 19.0 42 123.9 ^ 2.53 252.6 ^ 22.9 11 96.4 ^ 20.6 19 408.1 ^ 10.8 27 398.9 ^ 9.2 35 175.9 ^ 8.2 43 97.3 ^ 13.44 85.6 ^ 4.3 12 482.0 ^ 19.0 20 426.7 ^ 16.2 28 361.7 ^ 3.9 36 175.9 ^ 4.9 44 71.2 ^ 42.75 481.7 ^ 13.6 13 115.9 ^ 7.8 21 160.3 ^ 3.8 29 142.8 ^ 8.8 37 356.7 ^ 12.3 45 226.2 ^ 11.76 488.4 ^ 8.8 14 177.6 ^ 32.2 22 476.4 ^ 30.2 30 440.3 ^ 8.7 38 188.9 ^ 6.8 46 44.2 ^ 8.57 488.4 ^ 16.6 15 454.2 ^ 9.1 23 121.4 ^ 5.9 31 252.6 ^ 3.9 39 375.9 ^ 8.6 47 457.8 ^ 12.58 219.2 ^ 7.1 16 326.4 ^ 12.8 24 67.3 ^ 6.9 32 305.1 ^ 7.4 40 135.6 ^ 42.7 48 474.2 ^ 4.4Vitam<strong>in</strong> C (2 mM) <strong>in</strong>duced H2O2 formation <strong>in</strong> tap <strong>water</strong> samples (numbered 1–40) and domestic bottle <strong>water</strong> samples (numbered 41–48). The values shown are the concentration <strong>of</strong> H2O2 formeddur<strong>in</strong>g a 6-h <strong>in</strong>cubation <strong>in</strong> dark at room temperature. Data are expressed as means ^ SD <strong>of</strong> triplicates <strong>of</strong> one representative experiment out <strong>of</strong> three conducted.Figure 2. Effect <strong>of</strong> bicarbonate and iron on ascorbic acid <strong>in</strong>ducedhydrogen peroxide accumulation. Ascorbic acid (2 mM) and variousconcentrations <strong>of</strong> Fe(III) were added to Milli-Q <strong>water</strong>supplemented with 0.1 mg/l Cu(II) and 0 mg/l (†); 25 mg/l (W);50 mg/l (O) and 100 mg/l (K) HCO 3 . The H 2 O 2 concentration wasmeasured <strong>in</strong> the samples after a 6 h <strong>in</strong>cubation at room temperature.Data po<strong>in</strong>ts are mean ^ SD <strong>of</strong> three experiments.(20 times below the amount <strong>of</strong> copper that is allowed<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> (MCL <strong>in</strong> Europe)). Of the othermetals tested, only Co(II) generated significantamounts <strong>of</strong> H 2 O 2 (Table I).The ascorbic acid <strong>in</strong>duced H 2 O 2 accumulation <strong>in</strong>copper supplemented Milli-Q <strong>water</strong> was significantlyhigher than the H 2 O 2 formation observed earlier <strong>in</strong>cell culture and cell culture medium [37,38].However, addition <strong>of</strong> ascorbic acid to the Milli-Q<strong>water</strong> model system used <strong>in</strong> our experiments, resulted<strong>in</strong> a much more acidic milieu (pH 3.5) than the onenormally seen <strong>in</strong> buffered cell culture medium. Alsothe pH <strong>in</strong> our dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples were close to orunder the pK al value <strong>of</strong> ascorbic acid (4.25). Dur<strong>in</strong>gmore neutral conditions (pH 6–6.5) that was obta<strong>in</strong>edwhen magnesium ascorbate, calcium ascorbate orsodium ascorbate were added to Cu(II) supplementedMilli-Q <strong>water</strong>, less amount <strong>of</strong> H 2 O 2 was generatedwith<strong>in</strong> 6 h (data not shown). These results are <strong>in</strong> betteragreement with the amounts <strong>of</strong> H 2 O 2 generated <strong>in</strong> cellcultures and cell culture medium [37,38]. Thisemphasizes the importance <strong>of</strong> pH <strong>in</strong> the ability <strong>of</strong>ascorbic acid to <strong>in</strong>duce H 2 O 2 accumulation <strong>in</strong> thepresence <strong>of</strong> Cu(II) ions.In our hands, <strong>of</strong> the metal ions tested, only Fe(III)was found to strongly affect the ascorbic acid/Cu(II)<strong>in</strong>duced H 2 O 2 formation <strong>in</strong> Milli-Q <strong>water</strong> dur<strong>in</strong>gacidic conditions (pH 3.5) (Table II). The <strong>in</strong>hibition<strong>of</strong> the H 2 O 2 accumulation could be observed after 2 h<strong>in</strong>cubation, and after 6 h <strong>in</strong>cubation the majority <strong>of</strong>the H 2 O 2 formed had been elim<strong>in</strong>ated from the <strong>water</strong>


1238P. J. Jansson et al.sample (Table II, Figure 1). The shape <strong>of</strong> the ascorbicacid/Cu(II) <strong>in</strong>duced H 2 O 2 curve, obta<strong>in</strong>ed <strong>in</strong> thepresence <strong>of</strong> ferric iron, strongly <strong>in</strong>dicated that ametabolite from ascorbic acid might be <strong>in</strong>volved <strong>in</strong> theH 2 O 2 decomposition reaction. Consistent with thisassumption, we found that oxalic acid, together withFe(III) <strong>in</strong>duced a prompt <strong>in</strong>hibition <strong>of</strong> ascorbicacid/Cu(II) <strong>in</strong>duced H 2 O 2 formation <strong>in</strong> Milli-Q<strong>water</strong> (Figure 1). The reason why we used oxalicacid was because we have previously demonstratedthat oxalic acid is one <strong>of</strong> the degradation productswhen ascorbic acid is oxidatively decomposed <strong>in</strong>Cu(II) contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> [36].Oxalic acid also decreased the ascorbic acid/Cu(II)<strong>in</strong>duced H 2 O 2 formation <strong>in</strong> Milli-Q <strong>water</strong>, imply<strong>in</strong>gdirect <strong>in</strong>teraction between Cu(II) and oxalic acid. Themechanism for the oxalic acid mediated <strong>in</strong>hibitoryeffect on ascorbic acid/copper <strong>in</strong>duced H 2 O 2 formation<strong>in</strong> Milli-Q <strong>water</strong> might be due to its ability to<strong>in</strong>terfere with copper redox-cycl<strong>in</strong>g. This is becauseoxalic acid is known to have aff<strong>in</strong>ity for both Fe(III)and Cu(II), even at very low pH. Alternatively,copper/oxalic acid could catalyze H 2 O 2 to hydroxylradicals. However, we could not detect any ascorbicacid <strong>in</strong>duced hydroxyl radical formation when oxalicacid was added to copper supplemented <strong>water</strong> (datanot shown), imply<strong>in</strong>g reduced copper redox-<strong>activity</strong>when oxalic acid was present. Interest<strong>in</strong>gly, it has beensuggested that oxalic acid could act as an anti<strong>oxidant</strong><strong>in</strong> some systems, because oxalic acid reduces the rate<strong>of</strong> ascorbic acid oxidation <strong>in</strong> the presence <strong>of</strong> H 2 O 2 andCu(II) [39].The ability <strong>of</strong> Fe(III) and oxalic to regulate ascorbicacid/Cu(II)-<strong>in</strong>duced H 2 O 2 formation dur<strong>in</strong>g acidicconditions as shown <strong>in</strong> our experiments could be <strong>of</strong>importance <strong>in</strong> vivo when acidic conditions prevail.This could emphasize the importance <strong>of</strong> <strong>vitam<strong>in</strong></strong> C,oxalic acid and iron dur<strong>in</strong>g certa<strong>in</strong> conditions such asthe <strong>in</strong>flammatory process. Thus, when Cu(II) ionsand Vitam<strong>in</strong> C are present dur<strong>in</strong>g acidic conditions,the presence or absence <strong>of</strong> free redox-active iron andoxalic acid will determ<strong>in</strong>e the amount <strong>of</strong> H 2 O 2 thatwill be accumulated. In particular, dur<strong>in</strong>g conditionswhere catalase is not present or not function<strong>in</strong>gproperly e.g. <strong>in</strong> the presence <strong>of</strong> ascorbic acid andcopper [40,41], the iron/oxalic acid complex could be<strong>of</strong> importance <strong>in</strong> regulat<strong>in</strong>g H 2 O 2 toxicity dur<strong>in</strong>gacidic conditions <strong>in</strong> various biological systems <strong>in</strong> vivo.The <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced accumulation <strong>of</strong> H 2 O 2could also be demonstrated <strong>in</strong> 40 household tap <strong>water</strong>samples and 8 domestic bottled <strong>water</strong> samples. In25% <strong>of</strong> the dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> samples tested, over400 mM <strong>of</strong> H 2 O 2 was formed dur<strong>in</strong>g the 6 h<strong>in</strong>cubation and some dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>s generated closeto 500 mM<strong>of</strong>H 2 O 2 with<strong>in</strong> 6 h (Table III). The k<strong>in</strong>eticsfor the H 2 O 2 formation <strong>in</strong> these dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>s wasrelative fast, reach<strong>in</strong>g close to 300 mM H 2 O 2 <strong>in</strong> only2 h (data not shown). The ascorbic acid <strong>in</strong>ducedhydrogen peroxide formation was particularly evident<strong>in</strong> the poorly buffered copper contam<strong>in</strong>ated dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> samples. When bicarbonate was added to Milli-Q <strong>water</strong> supplemented with copper, the hydrogenperoxide accumulation was much lower (Figure 2).Dur<strong>in</strong>g these conditions the hydrogen peroxide isconverted to hydroxyl radicals [32].Hydrogen peroxide has been shown to have strongantibacterial effects [42]. One might speculate,whether the ascorbic acid/Cu(II)-<strong>in</strong>duced H 2 O 2formation and the ability <strong>of</strong> Fe(III) and oxalic acidto regulate H 2 O 2 formation, as demonstrated here <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, could be <strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g thesurvival <strong>of</strong> pathogenic bacteria <strong>in</strong> the humangastro<strong>in</strong>test<strong>in</strong>al tract. On the other hand, our resultsdemonstrat<strong>in</strong>g that <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duces H 2 O 2 formation<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> could, <strong>in</strong> fact, result <strong>in</strong><strong>in</strong>creased oxidative stress <strong>in</strong> vivo. In particular, <strong>in</strong> theabsence <strong>of</strong> Fe (III) ions, ascorbic acid/Cu(II)-<strong>in</strong>ducedH 2 O 2 formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>, as demonstratedhere, could strongly enhance the total H 2 O 2 load andH 2 O 2 <strong>in</strong>duced oxidative stress <strong>in</strong> some <strong>in</strong>dividuals.In conclusion, our results show that copper, but notiron, can support <strong>vitam<strong>in</strong></strong> C <strong>in</strong>duced H 2 O 2 formation<strong>in</strong> weakly buffered dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Moreover, we showthat iron, together with ascorbic acid-derived oxalicacid prevents ascorbic acid/Cu(II) <strong>in</strong>duced H 2 O 2accumulation. Our results strongly <strong>in</strong>dicate that theiron oxalic acid complex might function as animportant regulator <strong>of</strong> ascorbic acid/copper-<strong>in</strong>ducedH 2 O 2 formation and copper mediated tissue damage.The iron/oxalic acid <strong>in</strong>duced <strong>in</strong>hibition <strong>of</strong> H 2 O 2formation, as demonstrated here <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>s,might expla<strong>in</strong> the mechanism for the protective effect<strong>of</strong> iron aga<strong>in</strong>st ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced celltoxicity <strong>in</strong> cell cultures.AcknowledgementsThis work was supported by Magnus Ehrnroothfoundation, Paulon Säätiö, K. Alb<strong>in</strong> JohanssonsStiftelse, Stiftelsen för Åbo <strong>Akademi</strong>, Academy <strong>of</strong>F<strong>in</strong>land and Svenska Kulturfonden.References[1] Stahl W, Sies H. Anti<strong>oxidant</strong> defense: Vitam<strong>in</strong>s E and C andcarotenoids. Diabetes 1997;46:S14–S18.[2] Frei B. On the role <strong>of</strong> <strong>vitam<strong>in</strong></strong> C and other anti<strong>oxidant</strong>s <strong>in</strong>atherogenesis and vascular dysfunction. <strong>Pro</strong>c Soc Exp BiolMed 1999;222:196–204.[3] Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, ChenS, Corpe C, Dutta A, Dutta SK, Lev<strong>in</strong>e M. Vitam<strong>in</strong> C as ananti<strong>oxidant</strong>: Evaluation <strong>of</strong> its role <strong>in</strong> disease prevention. J AmColl Nutr 2003;22:18–35.[4] Block G. Vitam<strong>in</strong> C and cancer prevention: The epidemiologicevidence. Am J Cl<strong>in</strong> Nutr 1991;53:270S–282S.


Hydrogen peroxide formation <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> 1239[5] Block G. Epidemiologic evidence regard<strong>in</strong>g <strong>vitam<strong>in</strong></strong> C andcancer. Am J Cl<strong>in</strong> Nutr 1991;54:1310S–1314S.[6] Mart<strong>in</strong> A. Anti<strong>oxidant</strong> <strong>vitam<strong>in</strong></strong>s E and C and risk <strong>of</strong>Alzheimer’s disease. Nutr Rev 2003;61:69–73.[7] Rose RC, Richer SP, Bode AM. Ocular <strong>oxidant</strong>s andanti<strong>oxidant</strong> protection. <strong>Pro</strong>c Soc Exp Biol Med 1998;217:397–407.[8] Whiteman M, Halliwell B. <strong>Pro</strong>tection aga<strong>in</strong>st peroxynitritedependenttyros<strong>in</strong>e nitration and alpha 1-antiprote<strong>in</strong>ase<strong>in</strong>activation by ascorbic acid. A comparison with otherbiological anti<strong>oxidant</strong>s. Free Radic Res 1996;3:275–283.[9] Jialal I, Vega GL, Grundy SM. Physiologic levels <strong>of</strong> ascorbate<strong>in</strong>hibit the oxidative modification <strong>of</strong> low density lipoprote<strong>in</strong>.Atherosclerosis 1990;3:185–191.[10] Chakraborty S, Nandi A, Mukhopadadhyay M, MukhopadadhyayCK, Chatterjee IB. Ascorbate protects gu<strong>in</strong>ea pigtissue aga<strong>in</strong>st lipid peroxidation. Free Radic Biol Med1994;4:417–426.[11] Sies H, Stahl W, Sundquist AR. Anti<strong>oxidant</strong> functions <strong>of</strong><strong>vitam<strong>in</strong></strong>s. Vitam<strong>in</strong> E and C, beta-carotene, and othercarotenoids. Ann NY Acad Sci 1992;669:7–20.[12] Schneider JE, Brown<strong>in</strong>g MM, Floyd RA. Ascorbate/ironmediation <strong>of</strong> hydroxyl free radical damage to PBR322 plasmidDNA. Free Radic Biol Med 1988;5:287–295.[13] Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate andfree radicals: Comb<strong>in</strong>ations to avoid. Radiat Res1996;145:532–541.[14] Halliwell B. Vitam<strong>in</strong> C: Anti<strong>oxidant</strong> or pro-<strong>oxidant</strong> <strong>in</strong> vivo?Free Radic Res 1996;25:439–454.[15] Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P,Lunec J. Vitam<strong>in</strong> C exhibits pro-<strong>oxidant</strong> properties. Nature1998;392:559.[16] Fenton HJH. On a new reaction <strong>of</strong> tartaric acid. Chem News1876;33:190.[17] Halliwell B, Gutteridge JM. Biologically relevant metal iondependent hydroxyl radical generation. An update. FEBS Lett1992;307:108–112.[18] Halliwell B, Gutteridge JM. Oxygen free radicals and iron <strong>in</strong>relation to biology and medic<strong>in</strong>e: Some problems andconcepts. Arch Biochem Biophys 1986;246:501–514.[19] Burkitt MJ, Gilbert BC. Model studies <strong>of</strong> the iron-catalysedHaber-Weiss cycle and the ascorbate-driven Fenton reaction.Free Radic Res Commun 1990;10:265–280.[20] Prabhu HR, Krishnamurthy S. Ascorbate-dependent formation<strong>of</strong> hydroxyl radicals <strong>in</strong> the presence <strong>of</strong> iron chelates.Indian J Biochem Biophys 1993;30:289–292.[21] L<strong>in</strong>dqvist C, Nordstrom T. Generation <strong>of</strong> hydroxyl radicals bythe antiviral compound phosphon<strong>of</strong>ormic acid (foscarnet).Pharmacol Toxicol 2001;89:49–55.[22] Halliwell B, Clement MV, Long LH. Hydrogen peroxide <strong>in</strong> thehuman body. FEBS Lett 2000;486:10–13.[23] Halliwell B, Gutteridge JM. Role <strong>of</strong> free radicals and catalyticmetal ions <strong>in</strong> human disease: An overview. Methods Enzymol1990;186:1–85.[24] De Pauw-Gillet MC, Siwek B, Pozzi G, Sabbioni E, BassleerRJ. Effects <strong>of</strong> FeSO 4 on B16 melanoma cells differentiationand proliferation. Anticancer Res 1990;10:1029–1033.[25] Satoh K, Kad<strong>of</strong>uku T, Sakagami H. Copper, but not iron,enhances apoptosis-<strong>in</strong>duc<strong>in</strong>g <strong>activity</strong> <strong>of</strong> anti<strong>oxidant</strong>s. AnticancerRes 1997;17:2487–2490.[26] Satoh K, Sakagami H. Effect <strong>of</strong> metal ions on radical <strong>in</strong>tensityand cytotoxic <strong>activity</strong> <strong>of</strong> ascorbate. Anticancer Res 1997;17:1125–1129.[27] Malicev E, Woyniak G, Knezevic M, Radosavljevic D, Jeras M.Vitam<strong>in</strong> C <strong>in</strong>duced apoptosis <strong>in</strong> human articular chondrocytes.Pflugers Arch 2000;440:46–48.[28] Marczewska J, Koziorowska JH, Anuszewska EL. Influence <strong>of</strong>ascorbic acid on cytotoxic <strong>activity</strong> <strong>of</strong> copper and iron ions<strong>in</strong> vitro. Acta Pol Pharm 2000;57:415–418.[29] Arakawa N, Nemoto S, Suzuki E, Otsuka M. Role <strong>of</strong> hydrogenperoxide <strong>in</strong> the <strong>in</strong>hibitory effect <strong>of</strong> ascorbate on cell growth.J Nutr Sci Vitam<strong>in</strong>ol (Tokyo) 1994;40:219–227.[30] Park S, Han SS, Park CH, Hahm ER, Lee SJ, Park HK, LeeSH, Kim WS, Jung CW, Park K, Riordan HD, Kimler BF,Kim K, Lee JH. L-Ascorbic acid <strong>in</strong>duces apoptosis <strong>in</strong> acutemyeloid leukemia cells via hydrogen peroxide-mediatedmechanisms. Int J Biochem Cell Biol 2004;36:2180–2195.[31] Iwasaka K, Koyama N, Nogaki A, Maruyama S, Tamura A,Takano H, Takahama M, Kochi M, Satoh K, Sakagami H.Role <strong>of</strong> hydrogen peroxide <strong>in</strong> cytotoxicity <strong>in</strong>duction byascorbates and other redox compounds. Anticancer Res1998;18:4333–4337.[32] Jansson PJ, Asplund KU, Makela JC, L<strong>in</strong>dqvist C, NordstromT. Vitam<strong>in</strong> C (ascorbic acid) <strong>in</strong>duced hydroxyl radicalformation <strong>in</strong> copper contam<strong>in</strong>ated household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>:Role <strong>of</strong> bicarbonate concentration. Free Radic Res2003;37:901–905.[33] Nourooz-Zadeh J, Tajadd<strong>in</strong>i-Sarmadi J, Wolff SP. Measurement<strong>of</strong> plasma hydroperoxide concentrations by the ferrousoxidation-xylenol orange assay <strong>in</strong> conjunction with triphenylphosph<strong>in</strong>e.Anal Biochem 1994;220:403–409.[34] Asplund KU, Jansson PJ, L<strong>in</strong>dqvist C, Nordstrom T.Measurement <strong>of</strong> ascorbic acid (<strong>vitam<strong>in</strong></strong> C) <strong>in</strong>duced hydroxylradical generation <strong>in</strong> household dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Free RadicRes 2002;36:1271–1276.[35] Jansson PJ, Castillo UD, L<strong>in</strong>dqvist C, Nordström T. Effects <strong>of</strong>iron on Vitam<strong>in</strong> C/copper-<strong>in</strong>duced hydroxyl radical generation<strong>in</strong> bicarbonate-rich <strong>water</strong>. Free Radic Res 2005; 39:565–570.[36] Jansson PJ, Jung HR, L<strong>in</strong>dqvist C, Nordstrom T. Oxidativedecomposition <strong>of</strong> <strong>vitam<strong>in</strong></strong> C <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong>. Free Radic Res2004;38:855–860.[37] Halliwell B, Clement MV, Ramal<strong>in</strong>gam J, Long LH. Hydrogenperoxide. Ubiquitous <strong>in</strong> cell culture and <strong>in</strong> vivo? IUBMB Life2000;50:251–257.[38] Clement MV, Ramal<strong>in</strong>gam J, Long LH, Halliwell B. The <strong>in</strong>vitro cytotoxicity <strong>of</strong> ascorbate depends on the culture mediumused to perform the assay and <strong>in</strong>volves hydrogen peroxide.Antioxid Redox Signal 2001;3:157–163.[39] Kayashima T, Katayama T. Oxalic acid is available as a naturalanti<strong>oxidant</strong> <strong>in</strong> some systems. Biochim Biophys Acta2002;1573:1–3.[40] Orr CW. Studies on ascorbic acid. I. Factors <strong>in</strong>fluenc<strong>in</strong>g theascorbate-mediated <strong>in</strong>hibition <strong>of</strong> catalase. Biochemistry1967;6:2995–3000.[41] Orr CW. Studies on ascorbic acid. II. Physical changes <strong>in</strong>catalase follow<strong>in</strong>g <strong>in</strong>cubation with ascorbate or ascorbate andcopper (II). Biochemistry 1967;6:3000–3006.[42] Hyslop PA, H<strong>in</strong>shaw DB, Scraufstatter IU, Cochrane CG,Kunz S, Vosbeck K. Hydrogen peroxide as a potentbacteriostatic antibiotic: Implications for host defense. FreeRadic Biol Med 1995;19:31–37.


ISBN 952-12-1786-3Pa<strong>in</strong>osalama Oy – Turku, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!