02.12.2012 Views

PiCCO2 Nurse Booklet - PULSION Medical Systems SE

PiCCO2 Nurse Booklet - PULSION Medical Systems SE

PiCCO2 Nurse Booklet - PULSION Medical Systems SE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Get the complete picture ...<br />

TM<br />

<strong>PiCCO2</strong><br />

Advanced Hemodynamic Monitoring<br />

Information for <strong>Nurse</strong>s


TM<br />

<strong>PiCCO2</strong> - A complete hemodynamic picture<br />

• Continuous cardiac output<br />

• Volumetric preload<br />

• Afterload<br />

• Contractility<br />

• Volume responsiveness<br />

• Pulmonary edema / Lung water<br />

TM<br />

<strong>PiCCO2</strong> 2


Table of contents<br />

Overview..................................................................................................................<br />

Fields of Application ................................................................................................<br />

TM<br />

PiCCO Disposables and Set up 2<br />

..........................................................................<br />

TM<br />

Principles of PiCCO Technology 2<br />

..........................................................................<br />

Parameter Overview ................................................................................................<br />

TM<br />

<strong>PiCCO2</strong> Monitor .....................................................................................................<br />

Normal Ranges........................................................................................................<br />

Decision Tree Model ................................................................................................<br />

Summary of Benefits ...............................................................................................<br />

Recommended Literature ........................................................................................<br />

Contact Information ................................................................................................. 32<br />

4 - 6<br />

7<br />

8 - 11<br />

12 - 14<br />

15 - 25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

3


Cardiac Output - Optimizing Oxygen delivery<br />

O 2 uptake O 2 transport O 2 extraction O 2 utilization<br />

Which therapy?<br />

Volume?<br />

PiCCO-Technology<br />

Vasopressors?<br />

Inotropes?<br />

4


Is measuring just the CO enough?<br />

Stroke volume<br />

SV<br />

Preload<br />

GEDV, SVV, PPV<br />

Pulmonary edema<br />

EVLW<br />

Volume?<br />

Cardiac output<br />

CO<br />

Heart rate<br />

HR<br />

Afterload<br />

SVR, MAP<br />

Vasopressors?<br />

Contractility<br />

CFI<br />

Inotropes?<br />

5


TM<br />

<strong>PiCCO2</strong> – See more than others<br />

Optimize CO<br />

• Continuous cardiac output<br />

• Volumetric preload<br />

• Afterload<br />

• Contractility<br />

• Volume responsiveness<br />

Protect the lungs<br />

• Monitor Pulmonary Edema<br />

(lung water) at the bedside.<br />

• Respond quickly<br />

• More reliable than Chest X Ray<br />

6


Fields of Application<br />

Intensive Care<br />

• Septic Shock<br />

• Cardiogenic Shock<br />

• Burns<br />

• Trauma / Hypovolemic Shock<br />

• ARDS / Acute Lung Injury<br />

• Pediatrics<br />

OR/Post surgery<br />

• Cardiac Surgery<br />

• Major Surgery<br />

• Neuro Surgery<br />

• Pediatrics<br />

7


Use your existing CVC and the PiCCO arterial line<br />

Central venous line<br />

(Standard CVC)<br />

Internal jugular, subclavian, femoral<br />

Arterial line<br />

(PiCCO Catheter available in different sizes)<br />

Brachial, axillary or femoral artery<br />

8


PiCCO arterial catheters - The choice is yours<br />

Axillary artery<br />

Adults: 4F 8 cm / 3.15 in<br />

Small adults: 3F 7 cm / 2.76 in<br />

Brachial artery<br />

Adults: 4F 16 cm / 6.29 in<br />

Adults: 4F 22 cm / 8.66 in<br />

Femoral artery<br />

Adults: 5F 20 cm / 7.78 in<br />

Adults: 4F 22 cm / 8.66 in<br />

Small adults: 4F 16 cm / 6.29 in<br />

Children: 3F 7 cm / 2.76 in and 4F 8 cm / 3.15 in<br />

9


TM<br />

<strong>PiCCO2</strong> Setup<br />

Thermodilution<br />

D<br />

F<br />

C<br />

B<br />

CVP line<br />

A G<br />

E<br />

Flush bag<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

Pressure output adapter<br />

PiCCO Catheter<br />

Distal lumen of CVC<br />

Injectate sensor housing<br />

Injectate sensor cable<br />

Arterial connection cable<br />

PiCCO thermistor plug<br />

Pressure connection<br />

cable<br />

10


PiCCO - Two principles for reliable information<br />

Transpulmonary thermodilution Pulse contour analysis<br />

Intermittent parameters from<br />

thermodilution technique<br />

• Thermodilution cardiac output (CO) /<br />

cardiac index (CI)<br />

• Volumetric preload (GEDV/GEDI)<br />

• Contractility (CFI)<br />

• Lung water (EVLW/ELWI)<br />

Calibration<br />

Continuous parameters from analysis of<br />

the arterial waveform (pulse contour)<br />

• Pulse contour cardiac output (PCCO) /<br />

cardiac index (PCCI)<br />

• Afterload (SVR/SVRI)<br />

• Volume responsiveness (SVV, PPV)<br />

• Stroke volume (SV/SVI)<br />

11


PiCCO - Transpulmonary Thermodilution (TD)<br />

Bolus<br />

injection<br />

Bolus<br />

detection<br />

• The bolus injection of cold saline is detected by the temperature sensor attached to the CVC<br />

• The saline bolus passes through the heart and lungs and is detected downstream by the<br />

thermistor on the tip of the PiCCO arterial line<br />

• The change in temperature between the two thermistors provides a TD curve<br />

• Mathematical analysis of the TD curve gives the cardiac output CO<br />

• Further analysis of the TD curve allows determination of preload volumes and lung water<br />

12


PiCCO - Pulse Contour Analysis<br />

• Stroke volume is the area under the systolic part of the pressure curve (red area)<br />

of one heart beat<br />

• Cardiac output is calculated and updated beat-by-beat: stroke volume x heart rate<br />

• In severely “shocked” patients organ perfusion pressure and pulse contour CO is<br />

more reliably represented by central arterial pressure (femoral / brachial / axillary)<br />

than by radial arterial pressure<br />

13


CI<br />

Thermodilution (TD) Cardiac Output / Index<br />

Cardiac Output - Volume of blood pumped by the heart in one minute<br />

- Important determinant for oxygen delivery to the body<br />

TD Results<br />

CI<br />

GEDI<br />

ELWI<br />

T<br />

10:18 am 10:20 am 10:22 am 10:26 am<br />

<strong>SE</strong>P 23 <strong>SE</strong>P 23 <strong>SE</strong>P 23 <strong>SE</strong>P 23<br />

3.47 3.11 3.15 3.76 3.44<br />

705 626 678 764 698<br />

9 9 10 10 9<br />

1.18 1.17 0.30 1.20<br />

Inj. Volume<br />

98.1<br />

10:26 am 15 ml<br />

<strong>SE</strong>P 23<br />

CVP<br />

5 mmHg<br />

START<br />

98.6<br />

READY 0s 10s 20s<br />

30s Exit<br />

Time since TD 0 h 52 min 10:26 am<br />

Flow<br />

PCCI<br />

SVRI 1735<br />

-5 2<br />

5.0<br />

3.0<br />

4.52<br />

l/min/m2 SVI 47<br />

ml/m<br />

Volume<br />

2<br />

l/min/m2 dyn*s*cm m<br />

CO – Cardiac Output<br />

CI – Cardiac Index<br />

The Thermodilution CO is used to “calibrate“ the continuous CO obtained from the arterial waveform<br />

(pulse contour) analysis.<br />

14


Pulse Contour Cardiac Output / Index<br />

Cardiac Output - Following thermodilution a “calibrated” continuous CO can be obtained<br />

Time since TD 0 h 52 min 10:26 am<br />

PCCI<br />

Flow<br />

PCCI<br />

SVRI 1735<br />

PCCO – Pulse Contour Cardiac Output<br />

PCCI – Pulse Contour Cardiac Index<br />

Volume<br />

• Product of stroke volume and heart rate<br />

• Determination beat-by-beat MAP<br />

• Reliability and patient safety possible due to calibration technique<br />

-5 2<br />

dyn*s*cm m<br />

5.0<br />

3.0<br />

4.52<br />

l/min/m2 SVI 47<br />

ml/m 2<br />

l/min/m 2<br />

ml/m 2<br />

15


Preload Volume instead of filling SVRI pressures 1735<br />

PCCI<br />

MAP<br />

Volume<br />

SVV 9<br />

-5 2<br />

dyn*s*cm m<br />

Preload - Volume of blood in the heart, available to be pumped<br />

l/min/m 2<br />

SVI 47<br />

ml/m 2<br />

l/min/m2 Volumetric preload parameters are superior to filling pressures (CVP / PCWP) Michard, YICM 2004<br />

ml/m 2<br />

GEDV – Global End-Diastolic Volume / GEDI – Global Organ End-Diastolic Function Volume Index<br />

• Combined diastolic volume of all four heart chambers<br />

• Adequate preload is an important prerequisite for adequate cardiac output (Frank-Starling curve)<br />

• GEDI is indexed to “predicted body surface area” *<br />

* Indexing particular SVRI parameters i.g. to the predicted body weight (EVLW) or predicted body surface area (GEDV) rather<br />

than the actual body weight or body surface area is more accurate particularly in overweight patients.<br />

ml/kg<br />

%<br />

16


Lung Water – Pulmonary MAP edema assessment at the bedside<br />

SVRI<br />

Volume<br />

EVLW – Extravascular Lung Water reflects pulmonary edema<br />

SVV 9<br />

Organ Function<br />

ml/m 2<br />

ml/kg<br />

AP/CVP<br />

EVLW – Extravascular Lung Water / ELWI – Extravascular Lung Water 1/min Index<br />

• Extravascular lung water (EVLW) represents the extravascular water content of the lung tissue<br />

• Includes intra-cellular, interstitial and intra-alveolar water (not pleural effusion)<br />

• ELWI is indexed to “Predicted Body Weight”<br />

*Predicted body weight is determined from the body height, gender and age<br />

%<br />

17


Fluid management using lung water (ELWI)<br />

Improved patient outcomes<br />

Organ function - Lung water<br />

Days<br />

Control group<br />

PCWP<br />

Ventilation days<br />

reduced by<br />

59%<br />

Protocol group<br />

EVLW<br />

Comparison of fluid therapy targeting lung water (protocol<br />

group) or wedge pressure (standard group)<br />

Control group<br />

PCWP<br />

ICU days<br />

reduced by<br />

53%<br />

Protocol group<br />

EVLW<br />

Source: Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization<br />

Mitchell JP, Schuller D, Calandrino FS, Schuster DP, Am Rev Respir Dis 1992; 145(5): 990-8<br />

18


Afterload - the systemic vascular Flow resistance<br />

PCCI<br />

MAP<br />

Volume<br />

Time since TD 0 h 52 min 10:26 am<br />

PCCI 4.52<br />

l/min/m2 Systemic vascular resistance - Represents the vascular “tone” of the blood vessels.<br />

SVR - Systemic Vascular Resistance<br />

SVRI - Systemic Vascular Resistance Index<br />

• Helps to determine levels of vasodilation or vasoconstriction<br />

• Useful for guiding vasopressor management.<br />

SVRI 1735<br />

-5 2<br />

dyn*s*cm m<br />

5.0<br />

3.0<br />

SVI 47<br />

ml/m 2<br />

l/min/m 2<br />

ml/m 2<br />

19


Heart Contractility<br />

SVRI<br />

AP/CVP<br />

SVV 9<br />

Contractility – describes the performance of the cardiac muscle<br />

Organ Function<br />

CFI - Cardiac Function Index<br />

• Parameter of the global cardiac contractility<br />

• The cardiac function index is the ratio of flow and preload<br />

• CFI = CO (Cardiac Output) / GEDV (Global End-Diastolic Volume)<br />

%<br />

1/min<br />

ml/m 2<br />

ml/kg<br />

20


Balance fluid and inotrope therapy correctly<br />

SV (ml)<br />

80<br />

40<br />

600 800<br />

Inotropic drugs<br />

preload<br />

GEDI (ml/m 2 )<br />

The Frank-Starling curve reflects the interaction between preload and stroke volume<br />

1. Increase preload volume to its optimum<br />

2. Increased contractility shifts the curve upwards (see graphic)<br />

2<br />

1 increase preload<br />

Frank-Starling<br />

curve<br />

21


Volume Responsiveness<br />

Volume<br />

Volume<br />

Volume<br />

Volume Responsiveness - predicts MAPwhether<br />

cardiac output will improve with volume resuscitation<br />

SVRI SVRI<br />

SVRI<br />

MAP MAP<br />

SVV SVV 9<br />

SVV 9 9 %<br />

%<br />

%<br />

Organ Function<br />

Organ Function<br />

Organ Function<br />

l/min/m2 l/min/m2 l/min/m2 ml/m 2<br />

ml/m 2<br />

ml/m 2<br />

SVV – Stroke Volume Variation<br />

ml/kg<br />

• Variation in stroke volume over the breathing cycle during positive pressure ventilation ml/kg<br />

ml/kg<br />

PPV – Pulse Pressure Variation<br />

• Variation in pulse pressure over the breathing cycle during positive pressure ventilation<br />

AP/CVP<br />

1/min<br />

Limitations: Only applicable in fully<br />

AP/CVP<br />

AP/CVP mechanically ventilated 1/min patients<br />

1/min<br />

in sinus rhythm<br />

22


Determination of Volume Responsiveness<br />

SVmax<br />

inspiration<br />

Mechanical Ventilation<br />

SVmin<br />

expiration<br />

PPmax<br />

inspiration<br />

PPmin<br />

expiration<br />

Intrathoracic pressure fluctuations<br />

Changes in intrathoracic blood volume<br />

Preload changes<br />

Fluctuations in stroke volume<br />

and pulse pressure<br />

23


Different views - Early warning, details, response to treatment<br />

Overview<br />

SVI<br />

SVV<br />

PCCI<br />

SVRI<br />

MAP<br />

’SpiderVision TM ’ screen<br />

Dynamic status indicator<br />

Height 70 inch Weight 182 lbs Time since TD 0 h 52 min 10:26 am<br />

HR 86<br />

Basic<br />

140<br />

AP 132/71<br />

AP<br />

MAP 91<br />

(CVP 9) Details<br />

70<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

CI l/min/m2 2.86<br />

Flow Volume Organ Function<br />

900<br />

850<br />

800<br />

750<br />

700<br />

650<br />

600<br />

550<br />

815<br />

ml/m 2<br />

Values at time of TD, 0 h 52 min ago<br />

11<br />

TD AP/CVP<br />

9<br />

7<br />

5<br />

3<br />

1<br />

0<br />

14<br />

ELWI ml/kg<br />

’Profiles’ screen<br />

Detailed insight at parameter<br />

level<br />

Flow<br />

PCCI 4.52<br />

Volume<br />

Organ Function 90<br />

Trends<br />

120<br />

AP<br />

60<br />

9.0<br />

PCCI/CI<br />

5.0<br />

1.0<br />

2800<br />

SVRI<br />

2100<br />

1400<br />

x<br />

xxx<br />

-6h -5h -4h<br />

-3h -2h<br />

-1h 10:26 am<br />

’Trends’ screen<br />

Clinical trends and therapy results<br />

24


Innovative operation - via touch-screen or navigation dial<br />

Real-time<br />

pressure curve<br />

Innovative<br />

data<br />

visualization<br />

Information bar<br />

Direct access buttons<br />

Parameter<br />

fields<br />

25


PiCCO Catheter codes and descriptions<br />

Application Artery Article No. Diameter Usable length<br />

Adults Femoral PV2015L20N 5F / (~14G) / 1,7 mm 20 cm / 7.78 in<br />

Adults Brachial Cubital PV2014L22N 4F / (~16G) / 1,3 mm 22 cm / 8.66 in<br />

Adults Femoral PV2014L22N 4F / (~16G) / 1,3 mm 22 cm / 8.66 in<br />

Adults Brachial Proximal PV2014L16N 4F / (~16G) / 1,3 mm 16 cm / 6.29 in<br />

Small adults Femoral PV2014L16N 4F / (~16G) / 1,3 mm 16 cm / 6.29 in<br />

Adults Axillary PV2014L08N 4F / (~16G) / 1,3 mm 8 cm / 3.15 in<br />

Children Femoral PV2014L08N 4F / (~16G) / 1,3 mm 8 cm / 3.15 in<br />

Children Femoral PV2013L07N 3F / (~18G) / 1,0 mm 7 cm / 2.76 in<br />

Small adults Axillary PV2013L07N 3F / (~18G) / 1,0 mm 7 cm / 2.76 in<br />

26


Hemodynamic Measurement Guide - Normal Values<br />

Cardiac Index<br />

CI<br />

3.0 – 5.0<br />

I/min/m<br />

Stroke Volume Index<br />

SVI<br />

40 – 60<br />

Global End-Diastolic Volume Index GEDI<br />

680 – 800<br />

Stroke Volume Variation<br />

SVV<br />

< 10<br />

Pulse Pressure Variation<br />

PPV<br />

< 10<br />

Systemic Vascular Resistance Index SVRI<br />

1970 - 2390<br />

Cardiac Function Index<br />

CFI<br />

4.5 – 6.5<br />

Mean Arterial Pressure<br />

MAP<br />

70 – 90<br />

Extravascular Lung Water Index ELWI<br />

< 10<br />

2<br />

ml/m2 ml/m2 %<br />

%<br />

dyn*s*cm-5 *m2 Parameter Abbreviation Range Unit<br />

1/min<br />

mmHg<br />

ml/kg<br />

WARNING: <strong>PULSION</strong> <strong>Medical</strong> <strong>Systems</strong> is a medical device manufacturer and does not practice medicine.<br />

<strong>PULSION</strong> does not recommend these normal values for a specific patient. The treating physician is responsible<br />

for determining and utilizing the appropriate diagnostic and therapeutic measures for each individual patient.<br />

27


Hemodynamic Measurement Guide<br />

This decision model is not obligatory. It cannot replace the individual therapeutic decisions of the treating physician.<br />

CI (l/min/m<br />

Measured Values<br />

2)<br />

GEDI (ml/m2) ELWI (ml/kg)<br />

Therapy Options<br />

Targeted Values<br />

1. GEDI (ml/m2) 2. Optimise SVV (%)*<br />

CFI (1/min)<br />

ELWI (ml/kg)<br />

(slow response)<br />

< 10<br />

V+?<br />

> 700<br />

< 10<br />

> 4.5<br />

< 3.0<br />

< 700 > 700<br />

> 10<br />

V+?<br />

Cat?<br />

700-800<br />

< 10<br />

> 5.5<br />

< – 10<br />

< 10<br />

Cat?<br />

> 700<br />

< 10<br />

> 4.5<br />

> 10<br />

Cat?<br />

V-?<br />

700-800<br />

< 10<br />

> 5.5<br />

< – 10<br />

< 10<br />

V+?<br />

> 700<br />

< 10<br />

> 3.0<br />

< 700 > 700<br />

> 10<br />

V+?<br />

700-800<br />

< 10<br />

< 10<br />

OK!<br />

> 10<br />

V-?<br />

700-800<br />

V+ = volume loading V- = volume reduction Cat = catecholamine / cardiovascular agents *SVV is only applicable in fully ventilated patients without cardiac arrhythmia<br />

< 10<br />

< – 10<br />

< 10<br />

< – 10<br />

28


The benefits of PiCCO-Technology<br />

• Reliable information from a calibrated system<br />

• A Cardiac Ouput/Index that is more reliable for organ perfusion<br />

• Protect the lungs with lung water assessment at the bedside<br />

• Patient volume status using volumes not filling pressures<br />

• Accurate information means increased patient safety<br />

• Gain a better understanding of your patients’ condition<br />

TM • Simple step by step set up of the <strong>PiCCO2</strong> system<br />

29


Recommended Literature<br />

Outcome Papers<br />

• Performance of Bedside Transpulmonary Thermodilution Monitoring for Goal-Directed HemodynamicManagement After Subarachnoid<br />

Hemorrhage; Mutoh T, Kazumata K, Ishikawa T, Terasaka S Stroke 2009; 40(7): 2368 – 74<br />

• Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary<br />

surgery; Smetkin AA, Kirov M, Kuzkov VV, Lenkin AI, Eremeev AV, Slastilin VY, Borodin VV, Bjertnaes LJ. Acta Anaesthesiol<br />

Scand 2009; 53: 505-14<br />

• Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation; Csontos C, Foldi V,<br />

Fischer T, Bogar L. Acta Anaesthesiol Scand 2008; 52(6): 742-9<br />

• Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients; Goepfert M, Reuter D,<br />

Akyol D, Lamm P, Kilger E, Goetz A. Intensive Care Medicine 2007; 33: 96-103<br />

• Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization; Mitchell JP,<br />

Schuller D, Calandrino FS, Schuster DP. Am Rev Respir Dis 1992; 145(5): 990-8<br />

30


Recommended Literature<br />

Guidelines and Standard Operating Procedures<br />

• Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients; Goepfert M, Reuter D,<br />

Akyol D, Lamm P, Kilger E, Goetz A. Intensive Care Medicine 2007; 33: 96-103<br />

• Influence of extravascular lung water determination in fluid and vasoactive therapy; Pino-Sanchez F, Lara-Rosales R, Guerrero-<br />

Lopez F, Chamorro-Marin V, Navarrete-Navarro P, Carazo-de la Fuente E, Fernandez-Mondejar E. J Trauma 2009; 67(6): 1220-4<br />

• 2007 American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal<br />

septic shock; Brierley J, Choong K, Cornell T, Decaen A,Deymann A, Doctor A, Davis A, Duff J, Dugas MA et al. Crit Care Med 2009;<br />

37(2): 666 – 688<br />

• Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008; Dellinger RP, Levy<br />

MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach<br />

H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL,<br />

Vincent JL. Intensive Care Med 2008; 34(1): 17-60<br />

• Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock; kortgen A, Niederprün P, Bauer<br />

M. Crit Care Med 2006; 34(4): 939-9<br />

31


Recommended Literature<br />

Cardiac Output – Flow<br />

• Where do we go from here? Cardiac output determination in pediatrics; Hanna BD. Childrens Hospital of Philadelphia Crit Care Med<br />

2008; 36: 1377-8<br />

• Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse<br />

contour, analysis; Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE. J Clin Anesth 2005; 17(4):241-8<br />

Preload (Global Enddiastolic Volume)<br />

• Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography; Hofer CK, Furrer L,<br />

Matter-Ensner S, Maloigne M, Klaghofer R, Genoni M, Zollinger A. Br J Anaesth 2005; 94(6):748-55<br />

• Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock; Michard F, Alaya S, Zarka V, Bahloul M,<br />

Richard C, Teboul JL.; Chest 2003 124(5):1900-8<br />

Lung Water<br />

• Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves<br />

correlation with severity of illness and survival. Phillips C, Chesnutt M, Smith M. Crit Care Med 2008; 36: 69-73<br />

• Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery<br />

catheter. Isakow W, Schuster DP. ; Am J Physiol Lung Cell Mol Physiol 2006 291: 1118 – 33<br />

• Extravascular lung water in patients with severe sepsis: a prospective cohort study; Martin GS, Eaton S, Mealer M, Moss M. Crit<br />

Care 2005; 9: R74-82<br />

• Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization; Mitchell JP, Schuller<br />

D, Calandrino FS, Schuster DP. Am Rev Respir Dis 1992; 145: 990-8<br />

32


Contact<br />

For further information on:<br />

• Literature for specific fields of application<br />

• Case studies<br />

• Product information<br />

• Educational material<br />

visit www.<strong>PULSION</strong>.com or contact us toll free 877.655.8844<br />

See instructions for use and package insert for full prescribing information. Technical specifications are subject to change without further notice.<br />

© 2010 <strong>PULSION</strong> <strong>Medical</strong> <strong>Systems</strong> AG all rights reserved.<br />

<strong>PULSION</strong> <strong>Medical</strong> Inc. • 2445 Gateway • Drive Suite 110 • Irving, Texas 75063<br />

Toll free 877.655.8844 • Phone 214.446.8500 • Fax 214.446.6702<br />

info@pulsion.com • www.<strong>PULSION</strong>.com<br />

MPI851805US_R00 © <strong>PULSION</strong> ® 05/2010<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!