13.07.2015 Views

LAI determination in forestry ecosystem by LiDAR data analysis

LAI determination in forestry ecosystem by LiDAR data analysis

LAI determination in forestry ecosystem by LiDAR data analysis

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The study sitePramosioconiferous forest(spuce forest),Alpi Carniche:Lat: 46° 30’Long: 12° 55’Taipana broadleaved forest(beech forest);Prealpi Giulie:Lat: 46° 15’Long: 13° 05’-- Introduction - The <strong>data</strong> -Methodology -- Analysis -- Conclusions --


Laser scann<strong>in</strong>g <strong>data</strong>This work was carried out as part of theresearch activities supported <strong>by</strong> the INTERREGIIIA Italy-Slovenia 2003-2006 2006 project.METADATAPramosio(spruceforest)Taipana(beechforest)With <strong>LiDAR</strong> it is possible to carry out very highdensity survey of 3D po<strong>in</strong>ts of terra<strong>in</strong>, ofvegetation and much more…SurveyperiodSurvey areaLaser po<strong>in</strong>tdensityElevationrangeNumber ofstripOperativealtitude(aboveground)09/2003 07/200421 Km 2 16 Km 2~ 2 pt/m2 ~ 2 pt/m2564 - 2.093m435 - 1.140m11 10~ 1000 m ~ 1000 mScan angle ± 18° ± 18°Beamdivergence0,02 mrad 0,02 mrad-- Introduction - The <strong>data</strong> -Methodology -- Analysis -- Conclusions --


Ground based: sample plot21 Km 2transect_id area (m 2 ) forest_cat avg_ø (cm) avg_height (m) avg_crown_depth (m) n°trees/hectar <strong>LAI</strong>1 400 spruce 41 35 16 550 3,732 400 spruce 36 28 17 600 3,803 400 spruce 35 30 14 500 3,834 400 spruce-fir 40 32 16 400 4,605 400 spruce-fir 43 34 15 450 4,566 400 spruce-fir 35 32 12 700 4,417 400 spruce-fir 34 26 11 625 4,278 400 spruce-fir 34 27 9 700 4,719 400 spruce-fir 33 25 10 550 4,1310 400 spruce 33 26 8 950 4,1811 400 spruce 31 27 9 850 3,5412 400 spruce 27 26 10 1250 3,6413 10.000 spruce-fir na na na 625 4,3014 10.000 spruce na na na na 3,2115 1.000 beech 22 14 7 3830 5,7816 1.000 ash-mixed 15 15 11 1450 5,0017 400 ash-mixed 15 16 11 850 5,4218 400 beech 18 17 8 1525 5,6919 400 beech 26 28 22 775 5,4220 10.000 beech na na na na 5,4950 mtR316 Km 2R2MasterR1-- Introduction - The <strong>data</strong> -Methodology -- Analysis -- Conclusions --


<strong>LAI</strong> detection<strong>LAI</strong> = sum of the projected leaf surface persoil area<strong>LAI</strong> = s/Gwhere: s is the projected leaf area (m 2 )G is the ground area (m 2 )It is a dynamic parameter<strong>LAI</strong> varies with• species composition;• annual mean temperature;• vegetative period length;• plant age;• soil fertility;• season.Control boxIt is used to describe foreststructure, wood biomass andphotosynthesisLeaf area and biomass may beestimated us<strong>in</strong>g diffuse lightaccord<strong>in</strong>g to Beer’s law:I = I 0 e -k k Ldetectorsensorefiltrocampo di vistaspecchiolenti-- Introduction - The <strong>data</strong> -Methodology -- Analysis -- Conclusions --


Airborne laser scann<strong>in</strong>g<strong>LiDAR</strong> <strong>data</strong> were processed us<strong>in</strong>g Terrascansoftware ©Terrasolid, F<strong>in</strong>land. Ground po<strong>in</strong>tswere filtered <strong>by</strong> an automatic procedure(Axelsson, 2000).Vegetation po<strong>in</strong>ts were divided <strong>in</strong> two classes:- low vegetation (h ≤ 1 m above the ground);- high vegetation (h >1 m above the ground).g/v = 0.084 (spruce(forest)g/v = 0.035 (beech(forest)Indirect <strong>LAI</strong> measurements are based on solar lighttransmission or reflectance through vegetation.This can be assumed to be similar to the transmissionof the laser beam through the canopy.On the basis of this assumption, a Laser PenetrationIndex (LPI) was def<strong>in</strong>ed as follow:g ij = ground po<strong>in</strong>ts densityLPI ij = g ij / (g(ij + v ij )v ij = high vegetation po<strong>in</strong>ts density-- Introduction -- The <strong>data</strong> - Methodology - Analysis -- Conclusions --


<strong>LiDAR</strong> penetration <strong>in</strong>dex (LPI)g ijLPI ij= g ij/ (g ij+ v ij)• non-homogenous distribution of <strong>LiDAR</strong> sampl<strong>in</strong>gpo<strong>in</strong>ts <strong>in</strong> the areas studied;v ij5 m, appropriate for a 2 pts/m 2 sampl<strong>in</strong>g density.• g ij and v ij were assigned to each cell accord<strong>in</strong>g to aneighbourhood statistical <strong>analysis</strong> us<strong>in</strong>g a radius of• g ij <strong>in</strong> the denom<strong>in</strong>ator allows the normalization oflocal variations of the sampl<strong>in</strong>g density due to<strong>LiDAR</strong> strips overlapp<strong>in</strong>g and variation of thehelicopter speed.-- Introduction -- The <strong>data</strong> - Methodology - Analysis -- Conclusions --


<strong>LiDAR</strong> penetration <strong>in</strong>dex (LPI)g ijLPI ij= g ij/ (g ij+ v ij)• non-homogenous distribution of <strong>LiDAR</strong> sampl<strong>in</strong>gpo<strong>in</strong>ts <strong>in</strong> the areas studied;v ij5 m, appropriate for a 2 pts/m 2 sampl<strong>in</strong>g density.• g ij and v ij were assigned to each cell accord<strong>in</strong>g to aneighbourhood statistical <strong>analysis</strong> us<strong>in</strong>g a radius of• g ij <strong>in</strong> the denom<strong>in</strong>ator allows the normalization oflocal variations of the sampl<strong>in</strong>g density due to<strong>LiDAR</strong> strips overlapp<strong>in</strong>g and variation of thehelicopter speed.100 m-- Introduction -- The <strong>data</strong> - Methodology - Analysis -- Conclusions --


<strong>LiDAR</strong> penetration <strong>in</strong>dexLPI values close to 0 describe a dense vegetationwhile values close to 1 are characteristic of an openstand or a clear ground.Automatic classification forest – non forest areas100 m-- Introduction -- The <strong>data</strong> --Methodology - Analysis - Conclusions --


<strong>LiDAR</strong> penetration <strong>in</strong>dex<strong>LAI</strong> and LPI values for each plotTransect area m 2 forest_cat <strong>LAI</strong> mean_LPI1 400 spruce 3,73 0,162 400 spruce 3,8 0,133 400 spruce 3,83 0,134 400 spruce-fir 4,6 0,055 400 spruce-fir 4,56 0,066 400 spruce-fir 4,41 0,087 400 spruce-fir 4,27 0,078 400 spruce-fir 4,71 0,109 400 spruce-fir 4,13 0,1410 400 spruce 4,18 0,1411 400 spruce 3,54 0,1612 400 spruce 3,64 0,1513 10.000 spruce-fir 4,3 0,1314 10.000 spruce 3,21 0,1915 1.000 beech 5,78 0,0116 1.000 ash-mixed 5 0,0317 400 ash-mixed 5,42 0,0218 400 beech 5,69 0,0219 400 beech 5,42 0,0220 10.000 beech 5,49 0,02LPI values close to 0 describe a dense vegetationwhile values close to 1 are characteristic of an openstand or a clear ground.Automatic classification forest – non forest areas<strong>LAI</strong> = -12.86 * LPI + 5.59L<strong>in</strong>ear regression <strong>analysis</strong>7,006,005,00Broaded leaf foresty = -12,863x + 5,5919R 2 = 0,89<strong>LAI</strong>4,003,002,00Coniferous forest1,000,000 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2mean LPI100 m-- Introduction -- The <strong>data</strong> --Methodology - Analysis - Conclusions --


Data <strong>analysis</strong>• A random re-sampl<strong>in</strong>g procedure of <strong>LiDAR</strong> <strong>data</strong> to estimate different laser po<strong>in</strong>ts densitieswas performed (from a density of 2 pts/m 2 to 1 pts/100 m 2 ).R 2 1,000,890,900,850,890,790,800,840,700,710,680,700,650,730,57 0,610,600,530,500,550,490,400,410,30Constant radius (5 m)0,20Variable radius0,260,27Polynomial <strong>in</strong>terpolation0,210,100,110,002 1 0,5 0,25 0,12 0,05 0,028 0,02 0,013 0,01Po<strong>in</strong>ts density (pts/m2)The pattern of correlation coefficient(R 2 ) between measured <strong>LAI</strong> and LPIcalculated on the basis ofneighbourhood <strong>analysis</strong> performedus<strong>in</strong>g a fixed radius (5 m) is reported<strong>in</strong> blue.In this case, R 2 decreases very fast <strong>by</strong>reduc<strong>in</strong>g laser po<strong>in</strong>ts density.To have a constant number of sampl<strong>in</strong>g po<strong>in</strong>ts, a variable radius for each re-sampl<strong>in</strong>g wasused apply<strong>in</strong>g the equation:r = (150/πρπρ) ½where r is <strong>in</strong> meters, ρ is the po<strong>in</strong>ts density (pts/m 2 ) and 150 is the number of po<strong>in</strong>ts with aradius of 5 m and a po<strong>in</strong>ts density of 2 pts/m 2 .-- Introduction -- The <strong>data</strong> --Methodology - Analysis - Conclusions --


Data <strong>analysis</strong>• The variation of R 2 for the correlation between LPI and <strong>LAI</strong> at different po<strong>in</strong>ts densities.7,007,007,006,00y = -12,863x + 5,5919R 2 = 0,896,00y = -10,927x + 5,5815R 2 = 0,856,00y = -9,4221x + 5,5271R 2 = 0,795,005,005,00<strong>LAI</strong>4,003,00<strong>LAI</strong>4,003,00<strong>LAI</strong>4,003,002,001,00LPI = 0.192,001,00LPI = 0.242,001,00LPI = 0.290,000 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2mean LPI0,000,00 0,05 0,10 0,15 0,20 0,25 0,30mean LPI0,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35mean LPI7,006,00y = -8,3121x + 5,4366R 2 = 0,707,006,00y = -7,5172x + 5,3531R 2 = 0,657,006,00y = -6,1567x + 5,3615R 2 = 0,685,005,005,00<strong>LAI</strong>4,003,00<strong>LAI</strong>4,003,00<strong>LAI</strong>4,003,002,001,00LPI = 0.332,001,00LPI = 0.382,001,00LPI = 0.450,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35mean LPI0,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40meanLPI0,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50mean LPI7,006,005,00y = -5,5628x + 5,2786R 2 = 0,537,006,005,00y = -7,3055x + 5,6896R 2 = 0,717,006,005,00y = -7,2738x + 5,6629R 2 = 0,57<strong>LAI</strong>4,003,00<strong>LAI</strong>4,003,00<strong>LAI</strong>4,003,002,001,00LPI = 0.452,001,00LPI = 0.412,001,00LPI = 0.370,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50mean LPI0,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45mean LPI0,000,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40mean LPI-- Introduction -- The <strong>data</strong> --Methodology - Analysis - Conclusions --


Data <strong>analysis</strong>Pts/m2 2 – 1 – 0.5 – 0.25 – 0.12 – 0.05 – 0.028 – 0.02 – 0.013 – 0.01The variation of the spatial values of Laser Penetration Index us<strong>in</strong>gdifferent sample density-- Introduction -- The <strong>data</strong> --Methodology - Analysis - Conclusions --


Conclusion• The significant l<strong>in</strong>ear correlationbetween field <strong>LAI</strong> values and LPI(R 2 =0.89, P


Thank you for yourattentionhttp://geomatica.uniud.ite.mail: : andrea.barilotti@uniud.it

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!