13.07.2015 Views

Ising model and auxiliary fields

Ising model and auxiliary fields

Ising model and auxiliary fields

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lattice systems IAt each site x n = an we haveH(φ) = tφ n−1 + µBφ n + tφ n+1Introducing normal coordinates (periodic: x N+1 = x 1 )φ n = √ 1 ∑e iqan φ(q)NThis diagonalizes the HamiltonianHφ(q) =q≡ǫ(q){ }} {(2t cos(qa) + µB)φ(q)⎛⎜⎝On matrix form:⎞µB t 0 0 ...⎛t µB t 0 ...0 t µB t ... ⎟⎠ → ⎜⎝.... ..ǫ(q 1 ) 00 ǫ(q 2 ) 00 0 ǫ(q 3 ) 00 0 0 ǫ(q 3 )⎞⎟⎠


Lattice systems IISame applies in two dimensionsNormal coordinatesφ n,m = 1 √N∑The “eigenenergies”q x,q ye ia(qxn+qym) φ(q x ,q y )Hφ(q) = ( 2t(cos(q x a) + cos(q y a)) + µB ) φ(q)Note that the dispersion is not parabolic⇒ Free particle at qa ≪ 1


1D <strong>Ising</strong> <strong>model</strong>We first consider the 1D <strong>Ising</strong> as an “exercise” (no phase transition )The HamiltonianH = −N∑( J2 (S m−1 + S m+1 )S m + µBS m ))m=1Two methods possible1 Introduce “spin-wave” variables (Fourier transformation)2 Introduce a gaussian integration <strong>auxiliary</strong> fieldWe choose nr. 2: Multidimensional Gaussian integrationWe write the partition function asZ(β) ==∑e β P Nm=1( J 2 (S m−1+S m+1 )S m+µBS m))S 1 ,...,S N∑S 1 ,...,S Ne P m,n SmJm,nSn+H P n Sn


Gaussian integration IHow do we h<strong>and</strong>le I = e P m,n SmJm,nSn ?J is a symmetic matrix: J = U † diag(J )UI= e P m SmJm,mSm= ∏ ∫ dφm√ e − P (φm−Sm √ 2Jmm) 2m+ P 2 m SmJm,mSmm 2π= ∏ m«∫ P √dφm m„− φ2 m2 +φ m 2Jm,mSm √2πIntroduce a change of variables˜ φ m = √ 2J m,m φ m


Gaussian integration IIIn the new integration variablesI= ∏ m„∫ √Jmm d√ ˜φPm − ˜m2πφmJmm −1«φm ˜ √+ φ˜2 m 2Sm= det(J) ∏ m∫ dφm√2πe − P m,nφmJ −1 mn φn2 + √ 2 P m φmSmHere we used:1 det(U) = 12 ˜φT J −1 ˜φ = φ T J −1 φ3 ˜φT · S = φ · SWe are left with linear in S m terms⇒ trace out S m = ±1


1D <strong>Ising</strong> <strong>model</strong>The “new” partition function:Z(β) =∑S 1 ,...,S Ndet(J) ∏ m= det(J) ∏ m∫ dφm√2πe − P m,n∫ dφm√2πe − P m,nφmJ −1 mn φn2 + P m (√ 2φ m+H)S mφmJ −1 mn φn2 + P m ln(2 cosh(√ 2φ m+H))This is an EXACT resultHow can we proceed?Remember that the sum is over position∑f m ≈ 1 ∫dxf (x)amHow do we h<strong>and</strong>le J −1mn(inverse coupling of neighbours)?


1D <strong>Ising</strong> <strong>model</strong>Normal mode dispersion1J(q)=βJ1( ) ≈ 1 ) (1 + a21 − (qa)22+ ... βJ 2 q2 + h.o.t.Remember that F −1 (q 2 ) = − d2dx 2Exp<strong>and</strong>ing the ln(cosh(φ)) = 1 2 φ2 − 1 12 φ4Z= N ∏ m∫≡∫ dψm√2πe β R dx( 1 2 ψ(x)(∇2 ψ(x))−˜r 0 ψ 2 (x)−ũ 0 ψ 4 (x))Dψe −β R “dx 12 (∇ψ(x))2 +˜r 02 ψ 2 (x)+ ũ04 ψ (x)”4All constants a,J,β,... are absorbed in ψ,˜r 0 ,ũ 0Solving this beast :Stationary phase approximationIn field theory called saddle point approx.


L<strong>and</strong>au Theory IRemember that :e −βG = ZLev L<strong>and</strong>au’s hypothesis:For the ordered phase an order parameter φ can be definedT ≤ T C : φ is small quantityExp<strong>and</strong> the thermodynamic potential (energy) in φG(T, P, φ) = G 1 (T, P)φ+G 2 (T, P)φ 2 +G 3 (T, P)φ 3 +G 4 (T, P)φ 4 +h.o.t.= G 2 (T, P)φ 2 + G 4 (T, P)φ 4 (symmetry !!)


L<strong>and</strong>au Theory IIThe critical behavior is determined by G 2 (T,P)By definition we haveG 2 (T,P) = 0,if T = T cAgain, we exp<strong>and</strong> ...G 2 (T,P) = g 2 (P)(T − T c ) + h.o.t.,<strong>and</strong> put G 4 (T,P) ≈ G(T c ,P) = g 4 (P)L<strong>and</strong>au function with “magnetic field” HG(T,P,φ) = g 2 (P)(T − T c )φ 2 + g 4 (P)φ 4 + HφThe phase is determined by the minimum conditiondGdφ = 0


Field theory primer: Saddle point approximationThe complete version of the stationary phaseSaddle point approximationThe partition function∫Z = Dψe −βS(ψ(x),∇ψ) ≈ e −βS(ψ 0)ψ 0 (r): Saddle point approximationDetermined by the Euler-Lagrange equationdLdψ − d dLdx d(∂ x ψ(x)) = 0The saddle point solution (classical solution)− d2 ψ(x)dx 2 + ˜r 0 ψ(x) + ũ 0 (ψ 2 (x))ψ(x) = 0Extension to d-dimension is just the same−∇ 2 ψ(r) + r 0 ψ(r) + u 0 ψ(r) 3 = 0


Ginzberg-L<strong>and</strong>au functionalLets consider a superconductor:The amount particles in the superconducting stateOrder parameter n(r) = |Ψ(r)|The equation describing the order parameter12m ∗(−i∇ − eA)2 Ψ(r) + α 1 Ψ(r) + α 2 |Ψ(r)| 2 Ψ(r) = 0Gauge invariant formCan be derived from the microscopicBardeen-Cooper-Schrieffer theoryUseful to study macroscopic effects (Meissner effect)


Gross-PitaevskiiA cloud of bosons form a condensate:Bose-Einstein condensationWhat are the effects of1 External potentials (“all “of potential)2 Interation of particlesThis is included in the Gross-Pitaevskii equationCloud of trapped bosons (trapping potential V trap )Bose-Einstein condensationThe order parameter equation n(r) = |Ψ(r)| 2(− 22m ∇2 + V trap (r) + 4π2 am |Ψ(r)|2 )Ψ(r) = µΨ(r)The strength of the particle interactions a :scattering length


FluctuationsGoing beyond the saddle pointS(Ψ) = S(ψ 0 ) + ∂2 S∂ψ2δψδψ + h.o.t.Higher order terms do NOT have to vanish in thethermodynamic limitGive corrections to critical exponentsm ∝ |T − T c | βSaddle point gave β = 1/2 (exact β = 1/8)This story is beyond our scope . ..


SummaryLecture I:We transformed the infinite range <strong>Ising</strong> <strong>model</strong> into a GaussianintegralWe discussed the stationary phase approximation for theinfinite range <strong>Ising</strong> <strong>model</strong>Lecture I:Gives same result as the mean fieldSt<strong>and</strong>ard <strong>Ising</strong> <strong>model</strong> in d dimension using Gaussian integralsAuxiliary <strong>fields</strong>Saddle point approximation/Field theoryFluctuations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!