13.07.2015 Views

Evaluation of Australian RDX in PBXN-109 - Defence Science and ...

Evaluation of Australian RDX in PBXN-109 - Defence Science and ...

Evaluation of Australian RDX in PBXN-109 - Defence Science and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REGULATED RELEASE<strong>Evaluation</strong> <strong>of</strong> <strong>Australian</strong> <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>Ian J. Lochert, Richard M. Dexter <strong>and</strong> Brian L. HamshereWeapons Systems DivisionSystems <strong>Science</strong>s LaboratoryDSTO-TN-0440ABSTRACT<strong>PBXN</strong>-<strong>109</strong> is the explosive fill for a number <strong>of</strong> munitions <strong>in</strong>clud<strong>in</strong>g the Pengu<strong>in</strong> ASM warheadwhich is be<strong>in</strong>g filled by ADI Limited as part <strong>of</strong> project SEA 1414. In support <strong>of</strong> this project anexam<strong>in</strong>ation <strong>of</strong> the replacement <strong>of</strong> the energetic material (<strong>RDX</strong>) with <strong>in</strong>digenous <strong>RDX</strong> wasundertaken. This work <strong>in</strong>cluded performance <strong>and</strong> hazard assessment, with a focus onpotential improvements <strong>in</strong> Insensitive Munition (IM) properties through reduction <strong>in</strong> shocksensitivity <strong>of</strong> the PBX fill.RELEASE LIMITATIONDowngraded to Public Release June 2003Distribution additional to the <strong>in</strong>itial list is limited to <strong>Australian</strong> Department <strong>of</strong> <strong>Defence</strong> <strong>and</strong> <strong>Defence</strong>Force personnel <strong>and</strong> employees <strong>of</strong> ADI Limited. Others <strong>in</strong>quir<strong>in</strong>g must be referred to Chief, WeaponsSystems Division, DSTO.REGULATED RELEASE


Published bySystems <strong>Science</strong>s LaboratoryPO Box 1500Ed<strong>in</strong>burgh South Australia 5111 AustraliaTelephone: (08) 8259 5555Fax: (08) 8259 6567© Commonwealth <strong>of</strong> Australia 2002AR-012-364August 2002Conditions <strong>of</strong> Release <strong>and</strong> DisposalThis document is the property <strong>of</strong> the <strong>Australian</strong> Government; the<strong>in</strong>formation it conta<strong>in</strong>s is released for defence purposes only <strong>and</strong> must not bedissem<strong>in</strong>ated beyond the stated distribution without prior approval.The document <strong>and</strong> the <strong>in</strong>formation it conta<strong>in</strong>s must be h<strong>and</strong>led <strong>in</strong>accordance with security regulations apply<strong>in</strong>g <strong>in</strong> the country <strong>of</strong> lodgement,downgrad<strong>in</strong>g <strong>in</strong>structions must be observed <strong>and</strong> delimitation is only withthe specific approval <strong>of</strong> the Releas<strong>in</strong>g Authority as given <strong>in</strong> the SecondaryDistribution statement.This <strong>in</strong>formation may be subject to privately owned rights.The <strong>of</strong>ficer <strong>in</strong> possession <strong>of</strong> this document is responsible for its safe custody.When no longer required DSTO Reports should be returned to the DSTOLibrary, (Reports Section), Ed<strong>in</strong>burgh SA.


REGULATED RELEASE<strong>Evaluation</strong> <strong>of</strong> <strong>Australian</strong> <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>Executive Summary (U)<strong>PBXN</strong>-<strong>109</strong> is the explosive fill for a number <strong>of</strong> munitions <strong>in</strong>clud<strong>in</strong>g BLU-<strong>109</strong>A/B 2000lb penetrator bombs, Pengu<strong>in</strong> anti-ship missiles, some jo<strong>in</strong>t st<strong>and</strong><strong>of</strong>f weapons <strong>and</strong>Tomahawk Block IV. ADI Limited fills the Pengu<strong>in</strong> ASM warhead with <strong>PBXN</strong>-<strong>109</strong>under contract for Kongsberg <strong>Defence</strong> & Aerospace (KDA) as part <strong>of</strong> Project Sea 1414(ANZAC Ship Helicopter Missile Project). This is the first time an <strong>in</strong>-service munitionhas been filled with a polymer bonded explosive (PBX) <strong>in</strong> Australia, albeit entirely withimported <strong>in</strong>gredients.In support <strong>of</strong> the <strong>in</strong>troduction <strong>of</strong> the Pengu<strong>in</strong> ASM <strong>and</strong> local production <strong>of</strong> thewarhead, DSTO was tasked to exam<strong>in</strong>e the high explosive fill <strong>PBXN</strong>-<strong>109</strong>. One aspect <strong>of</strong>this work was to exam<strong>in</strong>e the replacement <strong>of</strong> the imported energetic material (<strong>RDX</strong>)with <strong>in</strong>digenous <strong>RDX</strong> with the primary focus on potential improvements <strong>in</strong> InsensitiveMunition (IM) properties through reduction <strong>in</strong> shock sensitivity.Ordnance filled with <strong>PBXN</strong>-<strong>109</strong> will typically pass most IM tests, the major exceptionto this be<strong>in</strong>g the failure to pass sympathetic reaction tests. The shock sensitivity <strong>of</strong> theexplosive fill is a major determ<strong>in</strong><strong>in</strong>g factor <strong>in</strong> the ability <strong>of</strong> a munition to survive thedetonation <strong>of</strong> a neighbour<strong>in</strong>g round (sympathetic reaction). <strong>PBXN</strong>-<strong>109</strong> filled with<strong>in</strong>digenous <strong>RDX</strong> was demonstrated to have equivalent performance to the qualifiedordnance yet to be significantly less shock sensitive. Whilst this advantage is yet to beproven <strong>in</strong> ordnance sized items, any reduction <strong>in</strong> shock sensitivity <strong>of</strong> the PBX fillshould result <strong>in</strong> improvements <strong>in</strong> sympathetic reaction scenarios <strong>and</strong> potentially leadto <strong>PBXN</strong>-<strong>109</strong> filled munitions obta<strong>in</strong><strong>in</strong>g full IM compliance.REGULATED RELEASE


Contents1. INTRODUCTION................................................................................................................ 12. INGREDIENTS AND FORMULATION......................................................................... 12.1 Formulation ................................................................................................................ 12.1.1 <strong>RDX</strong> Comparison .......................................................................................... 22.1.2 Alum<strong>in</strong>ium Comparison.............................................................................. 42.2 Charge Preparation ................................................................................................... 53. RESULTS ........................................................................................................................63.1 End <strong>of</strong> Mix Viscosity ................................................................................................ 63.2 Mechanical Properties.............................................................................................. 73.3 Sensitiveness Test<strong>in</strong>g ............................................................................................... 73.4 Shock Sensitivity....................................................................................................... 83.5 Detonation Parameters........................................................................................... 103.5.1 Velocity <strong>of</strong> Detonation ............................................................................... 103.5.2 Relative Detonation Pressure .................................................................... 113.5.3 Critical Diameter......................................................................................... 114. DISCUSSION AND RECOMMENDATIONS ............................................................ 125. ACKNOWLEDGEMENTS............................................................................................... 136. REFERENCES ..................................................................................................................... 14


AbbreviationsADIALARPAOARXASMD critDOADSCEBWESDF <strong>of</strong> IHMXHTPBIMI-<strong>RDX</strong>IPDIJANNAFKDALSGTMRLNOLPBX<strong>PBXN</strong>PBXW<strong>RDX</strong>ROSEMSNPET <strong>of</strong> ITMDTNTTPBVTSADI LimitedAs low as reasonably practicableAnti-oxidant<strong>Australian</strong> research explosiveAnti-ship missileCritical diameterDioctyl adipateDifferential scann<strong>in</strong>g calorimetryExplod<strong>in</strong>g bridge wireElectrostatic spark dischargeFigure <strong>of</strong> <strong>in</strong>sensitivenessCyclotetramethylenetetranitram<strong>in</strong>eHydroxyl term<strong>in</strong>ated polybutadieneInsensitive munitionsInsensitive <strong>RDX</strong>Isophorone diisocyanateJo<strong>in</strong>t Army Navy NASA Air ForceKongsberg <strong>Defence</strong> <strong>and</strong> AerospaceLarge scale gap testMaterials Research Laboratory (DSTO)Naval Ordnance LaboratoryPolymer bonded explosivePBX formulation qualified for <strong>in</strong> service use by the US NavyPBX experimental formulation developed by Naval Surface WarfareCenter White Oak (USA)Cyclotrimethylenetr<strong>in</strong>itram<strong>in</strong>eRoyal Ordnance PLC, Bridgewater UKScann<strong>in</strong>g electron microscopySociété Nationale des Poudres et ExplosifsTemperature <strong>of</strong> ignitionTheoretical maximum density2,4,6-Tr<strong>in</strong>itrotolueneTriphenyl bismuthVacuum thermal stability2


DSTO-TN-04401. Introduction<strong>PBXN</strong>-<strong>109</strong> (64% <strong>RDX</strong>, 20% alum<strong>in</strong>ium, 16% b<strong>in</strong>der) is the explosive fill for a number <strong>of</strong>munitions <strong>in</strong>clud<strong>in</strong>g BLU-<strong>109</strong>A/B 2000lb penetrator bombs, Pengu<strong>in</strong> anti-ship missiles(ASM), some jo<strong>in</strong>t st<strong>and</strong><strong>of</strong>f weapons <strong>and</strong> Tomahawk Block IV. As part <strong>of</strong> Project Sea1414 (ANZAC Ship Helicopter Missile Project), ADI Limited is presently fill<strong>in</strong>gwarheads for the Pengu<strong>in</strong> anti-ship missile with <strong>PBXN</strong>-<strong>109</strong>, under contract forKongsberg <strong>Defence</strong> & Aerospace (KDA). This is the first time an <strong>in</strong>-service munitionhas been filled with a polymer bonded explosive (PBX) <strong>in</strong> Australia, albeit entirely withimported <strong>in</strong>gredients.In support <strong>of</strong> the <strong>in</strong>troduction <strong>of</strong> the Pengu<strong>in</strong> ASM <strong>and</strong> local production <strong>of</strong> thewarhead, DSTO was tasked to exam<strong>in</strong>e the high explosive fill <strong>PBXN</strong>-<strong>109</strong>. Results <strong>of</strong>performance <strong>and</strong> hazards test<strong>in</strong>g, tensile test<strong>in</strong>g, age<strong>in</strong>g studies <strong>and</strong> exam<strong>in</strong>ation <strong>of</strong><strong>in</strong>sensitive munition (IM) properties are reported elsewhere. An exam<strong>in</strong>ation <strong>of</strong> theuse <strong>of</strong> locally produced <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>, with the primary focus on potentialimprovements <strong>in</strong> IM properties, is reported here. The <strong>PBXN</strong>-<strong>109</strong> formulationconta<strong>in</strong><strong>in</strong>g <strong>Australian</strong> <strong>RDX</strong> was designated [1] ARX-2014/M1.Ordnance filled with <strong>PBXN</strong>-<strong>109</strong> will typically pass most <strong>in</strong>sensitive munition (IM)tests, the major exception to this be<strong>in</strong>g the failure to pass sympathetic reaction tests.The shock sensitivity <strong>of</strong> the explosive fill is a major determ<strong>in</strong><strong>in</strong>g factor <strong>in</strong> the ability <strong>of</strong>a munition to survive the detonation <strong>of</strong> a neighbour<strong>in</strong>g round (sympathetic reaction).The French company SNPE has recently been promot<strong>in</strong>g [2] an <strong>in</strong>sensitive grade <strong>of</strong><strong>RDX</strong> (I-<strong>RDX</strong>) which is reported to be <strong>in</strong>tr<strong>in</strong>sically less sensitive to shock stimuli <strong>in</strong> castcuredPBXs. Some evidence from an earlier DSTO study [3] lead to the hypothesis that<strong>RDX</strong> produced locally by ADI might also exhibit reduced sensitivity to shock stimuli <strong>in</strong>cast-cured PBXs. Any reduction <strong>in</strong> shock sensitivity <strong>of</strong> the PBX fill should result <strong>in</strong>improvements <strong>in</strong> sympathetic reaction scenarios <strong>and</strong> potentially lead to <strong>PBXN</strong>-<strong>109</strong>filled munitions obta<strong>in</strong><strong>in</strong>g full IM compliance.2.1 Formulation2. Ingredients <strong>and</strong> Formulation<strong>PBXN</strong>-<strong>109</strong> <strong>and</strong> ARX-2014/M1 are nom<strong>in</strong>ally exactly the same formulation (Table 1);the differences are the specifications <strong>of</strong> the solids <strong>in</strong>gredients. Of particular <strong>in</strong>terest isthe <strong>RDX</strong> † used – <strong>PBXN</strong>-<strong>109</strong> conta<strong>in</strong>s 64% <strong>RDX</strong> comprised <strong>of</strong> at least 57% <strong>of</strong> Class 1Type II <strong>RDX</strong> <strong>and</strong> no more than 7% <strong>of</strong> Class 5 Type II <strong>RDX</strong> manufactured by Dyno† <strong>RDX</strong> Term<strong>in</strong>ology: Class is a particle size descriptor, Class 1 is coarser than Class 5. Typerefers to the method <strong>of</strong> manufacture <strong>and</strong> the resultant levels <strong>of</strong> HMX <strong>in</strong> the <strong>RDX</strong> – Type Iconta<strong>in</strong>s no HMX <strong>and</strong> Type II conta<strong>in</strong>s 5 – 12% HMX.1


DSTO-TN-0440Nobel (Norway) whilst ARX-2014/M1 conta<strong>in</strong>s 59% Class 1 Type I <strong>RDX</strong> from ADI <strong>and</strong>5% Class 5 Type I <strong>RDX</strong> from Royal Ordnance (Bridgewater UK). Locally producedalum<strong>in</strong>ium powder (Comalco CAP45A) was selected <strong>in</strong> preference to X-81 alum<strong>in</strong>iumfor reasons <strong>of</strong> availability <strong>and</strong> cost. All <strong>in</strong>gredients for the <strong>PBXN</strong>-<strong>109</strong> are consistentwith the military specification MIL-E-82886(OS) [4]. The <strong>RDX</strong> <strong>and</strong> alum<strong>in</strong>ium used <strong>in</strong>ARX-2014/M1 approximate the requirements <strong>of</strong> this specification but are notmanufactured to comply with it.Table 1. <strong>PBXN</strong>-<strong>109</strong> <strong>and</strong> ARX-2014/M1 Formulations<strong>PBXN</strong>-<strong>109</strong>ARX-2014/M1Ingredient Grade/Source Nom<strong>in</strong>al wt % 1 Grade/Source Nom<strong>in</strong>al wt % 1<strong>RDX</strong> (class 1) Type II, Dyno Nobel 2 ≥ 57 3 Type I, ADI 4 59<strong>RDX</strong> (class 5) Type II, Dyno Nobel 2 ≤ 7 3 Type I, RO 5 5Alum<strong>in</strong>ium X-81 20 CAP45A 20HTPB (R-45HT) R-45HT 7.346 6 R-45HT 7.346 6IPDI 0.9465 6 0.9465 6Dioctyl adipate 7.346 7.346Dantocol DHE 0.26 6 0.26 6Anti-oxidant Low<strong>in</strong>ox 2246 0.10 Low<strong>in</strong>ox 2246 0.10Triphenyl Bismuth 0.02 0.021as per MIL-E-82886(OS)2lot no. NS 198H001-0013total <strong>RDX</strong> = 64%4 grade A <strong>RDX</strong>, lot no. R6345lot no. 1659, batch AM5R2406quantities are based on an NCO/OH ratio <strong>of</strong> 1.0 <strong>and</strong> depend on equivalent weights2.1.1 <strong>RDX</strong> ComparisonExam<strong>in</strong>ation <strong>of</strong> the three <strong>RDX</strong> variants by scann<strong>in</strong>g electron microscopy (figs. 1 – 5)showed some dist<strong>in</strong>ct differences. The <strong>RDX</strong> from CXM-7 † is a blend <strong>of</strong> the Class 1 <strong>and</strong>Class 5 particle sizes, the Class 1 <strong>in</strong> particular was observed to possess quite angularmorphology, consistent with a mill<strong>in</strong>g process. The type I <strong>RDX</strong> grades are both morerounded as expected for recrystallised <strong>RDX</strong> grades. Pure <strong>RDX</strong> was obta<strong>in</strong>ed fromCXM-7 by repeated wash<strong>in</strong>gs with solvent to remove the plasticiser followed bydry<strong>in</strong>g at elevated temperature.† CXM-7 is <strong>RDX</strong> coated with the plasticiser dioctyl adipate accord<strong>in</strong>g to the specification WS26702, Material Specification for Explosive Material, Coated, CXM-7.2


DSTO-TN-0440Figures 1 & 2. SEM Images <strong>of</strong> Dyno Nobel Type II <strong>RDX</strong> from CXM-7Figure 3 & 4. SEM Images <strong>of</strong> ADI Type I Grade A <strong>RDX</strong>Figure 5. SEM Image <strong>of</strong> Royal Ordnance Type I Class 5 <strong>RDX</strong>Small scale sensitiveness [5] <strong>and</strong> vacuum thermal stability (VTS) test<strong>in</strong>g was carriedout <strong>in</strong> the DSTO laboratories <strong>and</strong> the results are reported <strong>in</strong> Table 2. All <strong>of</strong> the3


DSTO-TN-0440sensitiveness test<strong>in</strong>g results for the different types <strong>of</strong> <strong>RDX</strong> are considered to beessentially identical <strong>and</strong> consistent with results typically expected for <strong>RDX</strong>.Table 2. Sensitiveness Test<strong>in</strong>g <strong>and</strong> Vacuum Stability Results for <strong>RDX</strong> Samples<strong>RDX</strong>Type II 1 Type I Class 1 Type I Class 5 St<strong>and</strong>ard (Grade F)Source Dyno ADI RORotter Impact (F <strong>of</strong> I) 2 80 (NR) 3 90 (12.3) 90 (11.6) 80 (11.9)BAM Friction (N) 108 80 108 108T <strong>of</strong> I (ºC) 213 228 219 213ESD – ignition (J) 4.5 4.5 4.5 4.5ESD – no ignition (J) 0.45 0.45 0.45 0.45VTS (mL/g) 0.03 0.16 0.12 0.031 from CXM-7, blend <strong>of</strong> class 1 <strong>and</strong> class 5 <strong>RDX</strong>.2 evolved gas volumes (mL) shown <strong>in</strong> parentheses.3 not recorded.2.1.2 Alum<strong>in</strong>ium ComparisonThe alum<strong>in</strong>ium powder <strong>in</strong> the <strong>PBXN</strong>-<strong>109</strong> formulation was described as ATA X-81alum<strong>in</strong>ium powder <strong>and</strong> certification was provided by the supplier <strong>in</strong>dicat<strong>in</strong>g that itcomplies with MIL-A-23950A (amendment 1), Type IV specifications. CAP45Aalum<strong>in</strong>ium powder, supplied by Comalco Alum<strong>in</strong>ium Powders (now EckartAustralia), was used <strong>in</strong> ARX-2014/M1.Particle size <strong>of</strong> the two alum<strong>in</strong>ium grades was comparable at 16 microns for X-81 † <strong>and</strong>17 microns for CAP45A [6] however it should be noted that different techniques wereused to determ<strong>in</strong>e these values.The scann<strong>in</strong>g electron microscopy (SEM) analysis <strong>of</strong> the alum<strong>in</strong>ium powders shows(figs. 6 - 9) that X-81 is mostly spherical <strong>in</strong> nature compared with CAP45A, which isrounded but less regular <strong>in</strong> shape. The SEM study supports the particle size analysis.† The particle size date for X-81 alum<strong>in</strong>ium powder was provided by the supplier <strong>and</strong>determ<strong>in</strong>ed accord<strong>in</strong>g to ASTM-B3304


DSTO-TN-0440Figures 6 & 7. SEM images <strong>of</strong> X-81 Alum<strong>in</strong>ium PowderFigures 8 & 9. SEM Images <strong>of</strong> CAP45A Alum<strong>in</strong>ium Powder2.2 Charge PreparationThe PBXs were prepared <strong>in</strong> a vertical planetary action mixer accord<strong>in</strong>g to theprogramme shown below. Charges were cast under vacuum with vibration <strong>and</strong> curedat 60ºC for 7 days.5


DSTO-TN-0440Table 3. PBX Mix<strong>in</strong>g ProgrammeIngredients/Action Mix time (no vacuum) Mix time (vacuum)HTPB, DOA, Dantocol, TPB, AO 2 28Alum<strong>in</strong>ium 2 13<strong>RDX</strong> (50%) 2 13<strong>RDX</strong> (25%) 2 13<strong>RDX</strong> (25%) 2 13Scrape DownMix 0 60IPDI 1 4Scrape DownMix 0 15The only process<strong>in</strong>g difference between <strong>PBXN</strong>-<strong>109</strong> <strong>and</strong> ARX-2014/M1 is the form <strong>in</strong>which the <strong>RDX</strong> exists prior to <strong>in</strong>corporation. <strong>PBXN</strong>-<strong>109</strong> uses a pre-blend called CXM-7,which is composed <strong>of</strong> the comb<strong>in</strong>ed class 1 <strong>and</strong> class 5 <strong>RDX</strong> grades along with(nom<strong>in</strong>ally) 4.75% plasticiser. This is done primarily for safety reasons – the CXM-7 isless sensitive than dry <strong>RDX</strong> <strong>and</strong> is safer to transport <strong>and</strong> process. When process<strong>in</strong>gARX-2014/M1 all <strong>of</strong> the plasticiser was added at the start <strong>of</strong> the mix <strong>and</strong> the dry <strong>RDX</strong>grades were added later. This technique is possible on a research scale however it is<strong>in</strong>appropriate on a production scale.3.1 End <strong>of</strong> Mix Viscosity3. ResultsThe nature <strong>of</strong> the PBX slurries at the end <strong>of</strong> the mix cycle (high solids load<strong>in</strong>g, highviscosity) was such that the viscometer with cup <strong>and</strong> rotor attachment was unable tomeasure the viscosities. Observations dur<strong>in</strong>g h<strong>and</strong>l<strong>in</strong>g <strong>and</strong> cast<strong>in</strong>g <strong>in</strong>dicated that theviscosity <strong>of</strong> ARX-2014/M1 was lower than <strong>PBXN</strong>-<strong>109</strong>. This is most likely due to themore rounded nature <strong>of</strong> the <strong>RDX</strong> particles <strong>in</strong> ARX-2014/M1, along with m<strong>in</strong>orvariations <strong>in</strong> particle size distribution. An example <strong>of</strong> this can be seen whencompar<strong>in</strong>g the viscosity <strong>of</strong> two <strong>PBXN</strong>-<strong>109</strong> formulations us<strong>in</strong>g CXM-7 with differentforms <strong>of</strong> <strong>RDX</strong> [7]. It was also noted that further reductions <strong>in</strong> the viscosity <strong>of</strong> ARX-2014 formulations were obta<strong>in</strong>ed when the percentage <strong>of</strong> Class 5 <strong>RDX</strong> was <strong>in</strong>creased.Improvements <strong>in</strong> viscosity have the potential to improve charge quality.6


DSTO-TN-04403.2 Mechanical PropertiesUniaxial tensile test<strong>in</strong>g <strong>of</strong> the cured PBXs was performed on an Instron 5500R1185Universal Test Instrument. Load was applied at a constant stra<strong>in</strong> rate <strong>of</strong> 50mm/m<strong>in</strong> tothe JANNAF [8] stamped test specimens until rupture.Table 4. Uniaxial Tensile Test ResultsFormulationBatchStress at Max. Load(MPa)% Stra<strong>in</strong> at Max.LoadYoung’s Modulus(MPa)<strong>PBXN</strong>-<strong>109</strong> EG119 0.65 13.9 8.31<strong>PBXN</strong>-<strong>109</strong> EG144 0.61 10.7 8.67<strong>PBXN</strong>-<strong>109</strong> 1 EG205 0.70 11.3 9.48ARX-2014/M1 EG163 0.68 20.0 7.39ARX-2014/M1 EG222 0.72 23.4 6.11ARX-2014/M1 2 EG221 0.71 22.7 6.131 dry <strong>RDX</strong> (CXM-7 with DOA removed) was used for this batch2 <strong>RDX</strong> lot no. 11852 (Mulwala)The data <strong>in</strong> table 4 represents tensile test<strong>in</strong>g <strong>of</strong> three different batches <strong>of</strong> PBX for eachformulation. There is a significant difference <strong>in</strong> the stra<strong>in</strong> at maximum load for the tw<strong>of</strong>ormulations with consequent change <strong>in</strong> Young’s Modulus. Factors that may have<strong>in</strong>fluenced the tensile test results <strong>in</strong>clude particle size distribution, particle shape <strong>and</strong>plasticiser content. Dur<strong>in</strong>g related work with <strong>PBXN</strong>-<strong>109</strong> † , plasticiser content wassuspected as be<strong>in</strong>g a major factor <strong>in</strong> batch to batch variation <strong>in</strong> tensile test results,particularly stra<strong>in</strong> <strong>and</strong> modulus. The comparison between EG205 <strong>and</strong> EG222 (orEG163) however effectively elim<strong>in</strong>ates variations <strong>in</strong> plasticiser levels be<strong>in</strong>g acontribut<strong>in</strong>g factor to the differences between <strong>PBXN</strong>-<strong>109</strong> <strong>and</strong> ARX-2014/M1 as bothbatches were made from dry <strong>RDX</strong> with identical amounts <strong>of</strong> plasticiser added <strong>in</strong> liquidform. This leads to the assumption that some property <strong>of</strong> either the <strong>RDX</strong> or thealum<strong>in</strong>ium powder, or a comb<strong>in</strong>ation <strong>of</strong> the two, is the cause <strong>of</strong> differences <strong>in</strong>mechanical properties between the two formulations. One factor for consideration isthe angular nature <strong>of</strong> the <strong>RDX</strong> particles <strong>in</strong> the st<strong>and</strong>ard <strong>PBXN</strong>-<strong>109</strong>. These are likely toact as stress concentrators, caus<strong>in</strong>g a reduction <strong>in</strong> stra<strong>in</strong> at maximum load. A muchmore extensive <strong>in</strong>vestigation than that allowed by the scope <strong>of</strong> this project would berequired to reach more specific conclusions.3.3 Sensitiveness Test<strong>in</strong>gSensitiveness test<strong>in</strong>g was performed for the <strong>PBXN</strong>-<strong>109</strong> formulations with the resultsreported <strong>in</strong> Table 5. Results from multiple batches are reported as a data range <strong>and</strong>† Yet to be published.7


DSTO-TN-0440reflect batch variation. Overall the sensitiveness properties <strong>of</strong> each formulation areessentially identical, the variations <strong>in</strong> results between formulations are considered<strong>in</strong>significant.Table 5. Sensitiveness Test<strong>in</strong>g <strong>and</strong> Vacuum Stability Results, <strong>PBXN</strong>-<strong>109</strong> Type Formulations<strong>PBXN</strong>-<strong>109</strong>ARX-2014/M1Rotter Impact (F <strong>of</strong> I) 1 140 – 180 (3.3) 130 – 150 (4.3)BAM Friction (N) 252 - >360 288 - 324T <strong>of</strong> I (ºC) 221 222ESD – ignition (J) - 4.5ESD – no ignition (J) 4.5 0.45VTS (mL/g) 0.03 0.051evolved gas volumes (mL) shown <strong>in</strong> parentheses3.4 Shock SensitivityThe shock sensitivities <strong>of</strong> the two formulations were determ<strong>in</strong>ed us<strong>in</strong>g the MRL LargeScale Gap Test (LSGT) [9]. The results are recorded <strong>in</strong> Table 6.Table 6. LSGT Results, <strong>PBXN</strong>-<strong>109</strong> Type Formulations50% po<strong>in</strong>t <strong>PBXN</strong>-<strong>109</strong> ARX-2014/M1Number <strong>of</strong> Cards 196 <strong>109</strong>Pressure (GPa) 2.35 5.02ARX-2014/M1 is significantly less sensitive to shock stimuli than <strong>PBXN</strong>-<strong>109</strong>. Similarresults have been observed [3] for another PBX conta<strong>in</strong><strong>in</strong>g <strong>Australian</strong> <strong>RDX</strong>, namelyPBXW-115(Aust), when compared with PBXW-115 produced <strong>in</strong> the USA (Table 7).Bockste<strong>in</strong>er et al. [3] have discussed <strong>in</strong> some detail possible explanations for differences<strong>in</strong> shock sensitivity for nom<strong>in</strong>ally identical formulations, <strong>in</strong>clud<strong>in</strong>g <strong>RDX</strong> particle sizedistribution <strong>and</strong> morphology, defect levels <strong>in</strong> the <strong>RDX</strong> <strong>and</strong> the presence <strong>of</strong> cocrystallisedHMX <strong>in</strong> the US Type II <strong>RDX</strong>. No conclusive evidence was presented tosupport any <strong>of</strong> these possibilities.Table 7. LSGT Results, PBXW-115 Formulations50% po<strong>in</strong>t PBXW-115 (US) PBXW-115 (Aust)Number <strong>of</strong> Cards 130 86Pressure (GPa) 4.7 6.3The most obvious difference between <strong>Australian</strong> produced <strong>RDX</strong> (Type I) <strong>and</strong> theoverseas sourced <strong>RDX</strong> (Type II), <strong>in</strong> both the PBXW-115 <strong>and</strong> <strong>PBXN</strong>-<strong>109</strong> cases, is the8


DSTO-TN-0440presence <strong>of</strong> the more sensitive HMX <strong>in</strong> the Type II <strong>RDX</strong>. Additional LSGT experimentshave been carried out <strong>in</strong> this <strong>and</strong> other work (yet to be published) to <strong>in</strong>vestigate thisdifference. Two additional <strong>PBXN</strong>-<strong>109</strong> formulations were produced, one conta<strong>in</strong>ed an<strong>RDX</strong> supplied by DYNO Nobel that was recrystallised to improve particle shape. Therecrystallisation also reduced the co-crystallised HMX content to < 0.5%. HMX wasthen blended <strong>in</strong>to the <strong>RDX</strong> to make it nom<strong>in</strong>ally equivalent to Type II <strong>RDX</strong>. Theformulation produced from this <strong>RDX</strong> is referred to as <strong>PBXN</strong>-<strong>109</strong>/M1 [7]. Forcomparison, ARX-2014/M1 was modified by replac<strong>in</strong>g 5% <strong>of</strong> the Grade A <strong>RDX</strong> withHMX (referred to as ARX-2014/M3).Table 8. LSGT Results, St<strong>and</strong>ard <strong>and</strong> Modified <strong>PBXN</strong>-<strong>109</strong> Type Formulations<strong>PBXN</strong>-<strong>109</strong> <strong>PBXN</strong>-<strong>109</strong>/M1 ARX-2014/M1 ARX-2014/M3HMX Co-crystallised Blended (~ 5%) Nil Blended (5%)50% Po<strong>in</strong>t (cards) 196 196 <strong>109</strong> 11750% Po<strong>in</strong>t (GPa) 2.35 2.35 5.02 4.68As can be seen from the results <strong>in</strong> Table 8, the presence <strong>of</strong> 5% blended HMX <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>/M1 has not changed the shock sensitivity compared with st<strong>and</strong>ard <strong>PBXN</strong>-<strong>109</strong>(table 6) <strong>and</strong> the 5% blended HMX <strong>in</strong> ARX-2014/M3 has not significantly affected thisformulation. More conclusive results come from a related study (yet to be published)where, <strong>in</strong> a generic PBX formulation, comparison <strong>of</strong> the shock sensitivity is madebetween two batches <strong>of</strong> ADI Type I Grade A <strong>RDX</strong>, ADI Type I Grade B † <strong>RDX</strong> <strong>and</strong> DynoNobel Type II <strong>RDX</strong>. The two formulations conta<strong>in</strong><strong>in</strong>g ADI Grade A <strong>RDX</strong> have a LSGT50% po<strong>in</strong>t <strong>of</strong> approximately 4.6 GPa, compared with 2.9 GPa for the Type I Grade B<strong>and</strong> Type II <strong>RDX</strong>. These results clearly support the statement that the observedreduction <strong>in</strong> shock sensitivity for PBX formulations conta<strong>in</strong><strong>in</strong>g ADI Grade A <strong>RDX</strong> isnot simply because it is free <strong>of</strong> HMX (ie Type I).Similar outcomes have been reported by the French company SNPE, which hasrecently been promot<strong>in</strong>g a grade <strong>of</strong> <strong>RDX</strong> they claim is <strong>in</strong>tr<strong>in</strong>sically less sensitive toshock stimuli <strong>in</strong> cast-cured PBXs. A timely publication [2] reports the LSGT results for<strong>PBXN</strong>-<strong>109</strong> us<strong>in</strong>g st<strong>and</strong>ard <strong>RDX</strong> (MI-<strong>RDX</strong>) <strong>and</strong> their <strong>in</strong>sensitive <strong>RDX</strong> (I-<strong>RDX</strong>). Areduction <strong>in</strong> shock sensitivity for the <strong>PBXN</strong>-<strong>109</strong> (I-<strong>RDX</strong>) similar to that for ADI GradeA <strong>RDX</strong> is observed. Whilst Bouma et al. [10] have stated that the shock sensitivity <strong>of</strong>PBXs conta<strong>in</strong><strong>in</strong>g <strong>RDX</strong> is related to <strong>in</strong>ternal defects <strong>in</strong> the <strong>RDX</strong>, SNPE [2] claim that I-<strong>RDX</strong> does not differ from regular grades <strong>in</strong> terms <strong>of</strong> <strong>in</strong>ternal defects. Table 9summarises the shock sensitivity results <strong>and</strong> clearly demonstrates the similaritiesbetween ADI Grade A <strong>RDX</strong> <strong>and</strong> SNPE I-<strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong> formulations.† Grade B = boiled <strong>and</strong> milled.9


DSTO-TN-0440Table 9. Summary <strong>of</strong> LSGT Results for <strong>PBXN</strong>-<strong>109</strong> Type Formulations<strong>RDX</strong> typeARX-2014/M1Type I (A)ARX-2014/M3Type I (A) +5% HMX<strong>PBXN</strong>-<strong>109</strong>Type II<strong>PBXN</strong>-<strong>109</strong>/M1Recryst. +5% HMX<strong>PBXN</strong>-<strong>109</strong>MI-<strong>RDX</strong><strong>PBXN</strong>-<strong>109</strong>I-<strong>RDX</strong><strong>RDX</strong> source ADI 1 ADI 1 DYNO DYNO SNPE SNPEPBXManufacture50% po<strong>in</strong>t(cards)DSTO DSTO DSTO DSTO SNPE SNPE<strong>109</strong> 117 196 196 200 13050% po<strong>in</strong>t (GPa) 5.02 4.68 2.35 2.35 2-3 5-6Reference This work This work This work [7] [2] [2]15% type I class 5 from Royal Ordnance.In exam<strong>in</strong><strong>in</strong>g the complete set <strong>of</strong> results it must be remembered that all data wereobta<strong>in</strong>ed from gap tests based on the NOL LSGT <strong>and</strong> m<strong>in</strong>or differences <strong>in</strong> techniqueare known to exist.3.5 Detonation ParametersAll detonation experiments were performed on unconf<strong>in</strong>ed charges boosted with 50:50pentolite cyl<strong>in</strong>ders (length/diameter = 1) <strong>and</strong> <strong>in</strong>itiated with Risi RP-501 EBWdetonators. Density <strong>of</strong> the PBX charges was 1.65 ± 0.01 g.cm -3 .3.5.1 Velocity <strong>of</strong> DetonationThe velocity <strong>of</strong> detonation for unconf<strong>in</strong>ed charges was determ<strong>in</strong>ed at two diameters(50 <strong>and</strong> 82 mm) by either digital streak photography or time-<strong>of</strong>-arrival piezoelectricp<strong>in</strong>s spaced at 20.0 mm <strong>in</strong>tervals along the length <strong>of</strong> the charge.Table 10. Velocity <strong>of</strong> Detonation DataFormulation Diameter (mm) Technique VoD (m/s) 1<strong>PBXN</strong>-<strong>109</strong> 50 Digital streak imag<strong>in</strong>g 7678<strong>PBXN</strong>-<strong>109</strong> 82 Digital streak imag<strong>in</strong>g 7567<strong>PBXN</strong>-<strong>109</strong> 82 Piezoelectric p<strong>in</strong>s 7617 2ARX-2014/M1 20 3 Digital streak imag<strong>in</strong>g 6209ARX-2014/M1 50 Piezoelectric p<strong>in</strong>s 7599ARX-2014/M1 82 Piezoelectric p<strong>in</strong>s 76071average from three fir<strong>in</strong>gs2one fir<strong>in</strong>g only3 for critical diameter determ<strong>in</strong>ation10


DSTO-TN-0440Due to problems with the calibration s<strong>of</strong>tware for the digital camera the velocity <strong>of</strong>detonation results for <strong>PBXN</strong>-<strong>109</strong> measured with this technique are not extremelyaccurate as is observed for the results at 50 mm diameter, which is unrealistically high.The best available results for comparison are those obta<strong>in</strong>ed for 82mm diametercharges with piezoelectric p<strong>in</strong>s. The velocities <strong>of</strong> detonation for <strong>PBXN</strong>-<strong>109</strong> <strong>and</strong> ARX-2014/M1 are essentially identical <strong>and</strong> comparable to literature values <strong>of</strong> 7602 <strong>and</strong> 7630m/s [11].3.5.2 Relative Detonation PressureRelative detonation pressure was determ<strong>in</strong>ed at two diameters us<strong>in</strong>g the dent testtechnique [12, 13]. The unconf<strong>in</strong>ed charges were detonated on top <strong>of</strong> a stack <strong>of</strong> at leastthree 50 mm thick plates <strong>of</strong> 250 grade steel with Rockwell hardness B74-76. The dentdepths were compared to dents produced by TNT <strong>and</strong>/or Composition B charges <strong>of</strong>the same diameters.Table 11. Relative Detonation Pressure DataP CJ relative toFormulation Diameter Dent Depth (mm)TNT (GPa) Comp B (GPa)<strong>PBXN</strong>-<strong>109</strong> 50 7.78 20.1 19.4<strong>PBXN</strong>-<strong>109</strong> 82 14.28 18.3ARX-2014/M1 50 8.33 21.6 20.7ARX-2014/M1 82 14.27 18.3The differences <strong>in</strong> detonation pressure between the two formulations at 50 mmdiameter are considered to be <strong>in</strong>significant. The detonation pressure <strong>of</strong> bothformulations is lower than the 23.7 GPa (at a density <strong>of</strong> 1.681 g.cm -3 ) reported <strong>in</strong> theliterature [11] however this difference is probably attributable to the differenttechniques rather than any absolute difference.3.5.3 Critical DiameterThe critical diameter <strong>of</strong> the two formulations was estimated by fir<strong>in</strong>g cyl<strong>in</strong>dricalcharges <strong>of</strong> various diameters. Success or failure <strong>of</strong> the charge to susta<strong>in</strong> a detonationwas determ<strong>in</strong>ed from the digital streak image.11


DSTO-TN-0440Table 12. Critical Diameter DataFormulation <strong>RDX</strong> Type/Source D crit (mm)<strong>PBXN</strong>-<strong>109</strong> Type II/Dyno < 10ARX-2014/M1 Type I/ADI (& RO) 15 < D crit < 20<strong>PBXN</strong>-<strong>109</strong> MI-<strong>RDX</strong>/SNPE 7<strong>PBXN</strong>-<strong>109</strong> I-<strong>RDX</strong>/SNPE 14PBXW-115(Aust) Type I/ADI 80PBXW-115(US) Type II/US 38The critical diameter for the st<strong>and</strong>ard <strong>PBXN</strong>-<strong>109</strong> was determ<strong>in</strong>ed to be below 10mm,which is consistent with the value <strong>of</strong> 7mm reported by SNPE [2] <strong>and</strong> <strong>in</strong> the literature[11]. ARX-2014/M1 has a higher D crit with stable detonation occurr<strong>in</strong>g for 20mm butnot for 15mm diameter charges. This significant <strong>in</strong>crease is aga<strong>in</strong> comparable with theresults obta<strong>in</strong>ed for <strong>PBXN</strong>-<strong>109</strong> produced with SNPE I-<strong>RDX</strong> [2]. A similar <strong>in</strong>crease <strong>in</strong>D crit was observed when PBXW-115(Aust) was compared with PBXW-115(US) [3].4. Discussion <strong>and</strong> RecommendationsThe outcomes from this prelim<strong>in</strong>ary comparison between st<strong>and</strong>ard <strong>PBXN</strong>-<strong>109</strong> <strong>and</strong>ARX-2014/M1 can be summarised by the follow<strong>in</strong>g statements:- The sensitiveness <strong>of</strong> the various <strong>RDX</strong> grades is essentially identical.- The sensitiveness <strong>of</strong> the two PBX formulations is comparable.- The performance <strong>of</strong> the two formulations is identical.- The shock sensitivity <strong>of</strong> ARX-2014/M1 is significantly improved comparedwith st<strong>and</strong>ard <strong>PBXN</strong>-<strong>109</strong> <strong>and</strong> is consistent with results obta<strong>in</strong>ed with SNPE I-<strong>RDX</strong>.- The critical diameter <strong>of</strong> ARX-2014/M1 is <strong>in</strong>creased compared with st<strong>and</strong>ard<strong>PBXN</strong>-<strong>109</strong>.The use <strong>of</strong> <strong>Australian</strong> produced <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong> has no apparent disadvantages <strong>and</strong>one major advantage, namely the reduction <strong>in</strong> shock sensitivity <strong>of</strong> the explosive. Thisreduction <strong>in</strong> shock sensitivity should translate <strong>in</strong>to improvements <strong>in</strong> response <strong>in</strong>sympathetic reaction scenarios <strong>and</strong> thus has the potential to take <strong>PBXN</strong>-<strong>109</strong> filledordnance, such as the Pengu<strong>in</strong> ASM warhead, a step closer to IM compliance. Testswould need to be carried out to determ<strong>in</strong>e whether the reduction <strong>in</strong> shock sensitivitydoes translate to large ordnance items <strong>in</strong> <strong>in</strong>-service scenarios.Specifically <strong>in</strong> relation to the Pengu<strong>in</strong> ASM warhead, the authors are unable to makeany def<strong>in</strong>itive recommendations until the potential benefits <strong>of</strong> us<strong>in</strong>g <strong>in</strong>sensitive <strong>RDX</strong>are demonstrated <strong>in</strong> such ordnance. If the benefits do translate from small scale test<strong>in</strong>gto <strong>in</strong>-service ordnance it is not known whether the ga<strong>in</strong>s would be sufficient to allow12


DSTO-TN-0440<strong>PBXN</strong>-<strong>109</strong> filled Pengu<strong>in</strong> ASM warheads to be rated IM. Any benefits would still be <strong>of</strong>value <strong>in</strong> light <strong>of</strong> the ALARP risk reduction approach proposed for the upcom<strong>in</strong>g IMpolicy <strong>and</strong> implementation plan. Cost benefit analysis <strong>of</strong> such ga<strong>in</strong>s is beyond thescope <strong>of</strong> this project.Issues that would need to be considered before us<strong>in</strong>g ADI Grade A <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>(<strong>and</strong> other PBXs), <strong>in</strong> Pengu<strong>in</strong> ASM or other applications, <strong>in</strong>clude:- ADI Grade A <strong>RDX</strong> is a Type I <strong>RDX</strong> however the US specification for <strong>PBXN</strong>-<strong>109</strong>(MIL-E-82886(OS)) requires Type II <strong>RDX</strong> to be used. Pengu<strong>in</strong> ASM (<strong>and</strong> otherordnance) is currently qualified with <strong>PBXN</strong>-<strong>109</strong> to this specification.- The particle size specification for Class 1 <strong>RDX</strong> accord<strong>in</strong>g to DEF(AUST)5382B[14] is slightly different to that specified by MIL-DTL-398D [15] which is thecommonly used specification for <strong>RDX</strong> <strong>in</strong> the <strong>in</strong>ternational community. It ispossible that Class 1 <strong>RDX</strong> produced by ADI does conform to the particle sizeregime <strong>in</strong> MIL-DTL-398D however it is not currently produced to meet thatspecification.- ADI currently only produce Grade A <strong>RDX</strong> <strong>in</strong> one particle size. For PBXformulations, <strong>in</strong>clud<strong>in</strong>g <strong>PBXN</strong>-<strong>109</strong>, two or more particle sizes (that complywith MIL-DTL-398D) are normally required.- It is <strong>in</strong>appropriate to h<strong>and</strong>le dry <strong>RDX</strong> on an <strong>in</strong>dustrial scale <strong>and</strong> therefore theability to coat <strong>RDX</strong> with a plasticiser to desensitise it would be required.- Requalification issues would need to be considered, however, with small scaletest<strong>in</strong>g demonstrat<strong>in</strong>g equivalent performance, reduction <strong>in</strong> shock sensitivity<strong>and</strong> no <strong>in</strong>crease <strong>in</strong> other hazards, full requalification test<strong>in</strong>g may not berequired.In conclusion, whilst the authors acknowledge that there is still significant work to becompleted, they recommend that <strong>in</strong>sensitive grades <strong>of</strong> <strong>RDX</strong> be considered for use <strong>in</strong> allfuture cast-cured PBX filled ordnance.5. AcknowledgementsThe authors would like to acknowledge John Symes, Max Joyner <strong>and</strong> Bob Arbon fortheir assistance <strong>in</strong> the manufacture <strong>of</strong> the explosive charges. Instrumentation <strong>and</strong>fir<strong>in</strong>g support was provided by staff from Term<strong>in</strong>al Effects Group <strong>and</strong> the Pro<strong>of</strong> <strong>and</strong>Experimental Establishment Port Wakefield. Scientific <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g Servicesprovided excellent support <strong>in</strong> a range <strong>of</strong> areas.13


DSTO-TN-04406. References1. Cliff, M. D. <strong>and</strong> Dexter, R. M., (2000), Nomenclature <strong>and</strong> Catalogu<strong>in</strong>g <strong>of</strong> ExperimentalExplosive Compositions, DSTO-TN-0284.2. Lecume, S.; Chab<strong>in</strong>, P. <strong>and</strong> Brunet, P., (2001), Two <strong>RDX</strong> Qualities for <strong>PBXN</strong>-<strong>109</strong>Formulation Sensitivity Comparison, 2001 Insensitive Munitions <strong>and</strong> Energetic MaterialsSymposium, Bordeaux.3. Bockste<strong>in</strong>er, G.; Wolfson, M. G. <strong>and</strong> Whelan, D. J., (1994), The critical diameter,detonation velocity <strong>and</strong> shock sensitivity <strong>of</strong> <strong>Australian</strong> PBXW-115, DSTO-TR-0076.4. Military Specification MIL-E-82886(OS). Explosive, Plastic Bonded, Cast <strong>PBXN</strong>-<strong>109</strong>.5. RARDE, (1988), Sensitiveness Collaboration Committee Manual <strong>of</strong> Tests.6. Cliff, M. D.; Dexter, R. M. <strong>and</strong> Watt, D. S., (2000), The Effect <strong>of</strong> Ultraf<strong>in</strong>e,Electroexploded Alum<strong>in</strong>ium (Alex) on Detonation Velocity <strong>and</strong> Pressure, DSTO-TR-0999.7. Dexter, R. M.; Hamshere, B. L. <strong>and</strong> Lochert, I. J., (2002), <strong>Evaluation</strong> <strong>of</strong> An AlternativeGrade <strong>of</strong> CXM-7 For Use <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>, The Explosive Fill For the Pengu<strong>in</strong> ASM Warhead,DSTO-TN-0441.8. CPIA, (1998), Uniaxial Tensile Tests at Constant Stra<strong>in</strong> Rate, Publication 21.Supplement/Section 4.3.2,9. Wolfson, M. G., (1994), A Large Scale Gap Test at MRL for Measur<strong>in</strong>g Shock Sensitivity<strong>of</strong> Explosive Fill<strong>in</strong>gs for Insensitive Munitions, MRL-TR-93-43.10. Bouma, R. H. B.; Hordijk, A. C. <strong>and</strong> van der Steen, A. C., (2001), Influence <strong>of</strong> <strong>RDX</strong>Crystal Quality <strong>and</strong> Size on the Sensitivity <strong>of</strong> <strong>RDX</strong> based PBXs, 2001 Insensitive Munitions<strong>and</strong> Energetic Materials Symposium, Bordeaux.11. Hall, T. N. <strong>and</strong> Holden, J. R., (1988), Navy Explosives H<strong>and</strong>book. Explosion Effects <strong>and</strong>Properties -- Part III. Properties <strong>of</strong> Explosives <strong>and</strong> Explosive Compositions, NSWC MP 88-116, NSWC Dahlgren.12. Smith, L. C., (1967), On Brisance, <strong>and</strong> a Plate-Dent<strong>in</strong>g Test for the Estimation <strong>of</strong>Detonation Pressure, Explosivst<strong>of</strong>fe, 5, 106-110.13. Smith, L. C., (1967), On Brisance, <strong>and</strong> a Plate-Dent<strong>in</strong>g Test for the Estimation <strong>of</strong>Detonation Pressure, Explosivst<strong>of</strong>fe, (6), 130-134.14. <strong>Australian</strong> <strong>Defence</strong> Department, (1996), <strong>Australian</strong> <strong>Defence</strong> St<strong>and</strong>ardDef(Aust)5382B <strong>RDX</strong>: Specification.15. (1996), MIL-DTL-398D. Detail Specification, <strong>RDX</strong> (Cyclotrimethylenetr<strong>in</strong>itram<strong>in</strong>e).14


DISTRIBUTION LIST<strong>Evaluation</strong> <strong>of</strong> <strong>Australian</strong> <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>Ian J. Lochert, Richard M. Dexter <strong>and</strong> Brian L. HamshereDEFENCE ORGANISATIONAUSTRALIATask SponsorDirector Navy Aviation Project OfficeProject Manager SEA 1414. Navy Aviation Project Office (2 copies)S&T Program}Chief <strong>Defence</strong> ScientistFAS <strong>Science</strong> Policyshared copyAS <strong>Science</strong> Corporate ManagementDirector General <strong>Science</strong> Policy DevelopmentCounsellor <strong>Defence</strong> <strong>Science</strong>, London (Doc Data Sheet only)Counsellor <strong>Defence</strong> <strong>Science</strong>, Wash<strong>in</strong>gton (Doc Data Sheet only)Scientific Adviser Jo<strong>in</strong>tNavy Scientific AdviserScientific Adviser - Army (Doc Data Sheet <strong>and</strong> distribution list only)Air Force Scientific AdviserDirector TrialsSystems <strong>Science</strong>s LaboratoryChief <strong>of</strong> Weapons Systems DivisionRLMWSRLLWSHead Explosives GroupAuthor(s):Dr Ian Lochert (2 copies)Richard Dexter (1 copy)Brian Hamshere (1 copy)Dr Matthew CliffDr Arthur ProvatasDr J<strong>in</strong>g P<strong>in</strong>g LuMr Matthew SmithMr Mark FransonMr Steve OdgersDSTO LibraryLibrary Ed<strong>in</strong>burgh 2 copies<strong>Australian</strong> ArchivesCapability Systems StaffDirector General Maritime DevelopmentDirector General Aerospace Development (Doc Data Sheet only)


Knowledge StaffDirector General Comm<strong>and</strong>, Control, Communications <strong>and</strong> Computers (DGC4)(Doc Data Sheet only)NavySO (SCIENCE), COMAUSNAVSURFGRP, NSWdistribution list only)(Doc Data Sheet <strong>and</strong>ArmySO (<strong>Science</strong>), Deployable Jo<strong>in</strong>t Force Headquarters (DJFHQ) (L), Enoggera QLD(Doc Data Sheet only)Intelligence ProgramDGSTA <strong>Defence</strong> Intelligence OrganisationManager, Information Centre, <strong>Defence</strong> Intelligence Organisation<strong>Defence</strong> LibrariesLibrary Manager, DLS-CanberraLibrary Manager, DLS - Sydney West (Doc Data Sheet Only)DMOTSO-Navy, Ordnance Safety Group, Jo<strong>in</strong>t Logistics Comm<strong>and</strong>OTHER ORGANISATIONSADI LimitedMr David Lang (2 copies)Mr Tim Miller (3 copies)Mr David CorkSPARES (5 copies)Total number <strong>of</strong> copies: 41


Page classification: UNCLASSIFIEDDEFENCE SCIENCE AND TECHNOLOGY ORGANISATIONDOCUMENT CONTROL DATA2. TITLE<strong>Evaluation</strong> <strong>of</strong> <strong>Australian</strong> <strong>RDX</strong> <strong>in</strong> <strong>PBXN</strong>-<strong>109</strong>1. PRIVACY MARKING/CAVEAT (OFDOCUMENT)Regulated Release3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTSTHAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENTCLASSIFICATION)DocumentTitleAbstract(U)(L)(U)(U)4. AUTHOR(S)Ian J. Lochert, Richard M. Dexter <strong>and</strong> Brian L. Hamshere5. CORPORATE AUTHORSystems <strong>Science</strong>s LaboratoryPO Box 1500Ed<strong>in</strong>burgh South Australia 5111 Australia6a. DSTO NUMBERDSTO-TN-04406b. AR NUMBERAR-012-3646c. TYPE OF REPORTTechnical Note7. DOCUMENT DATEAugust 20028. FILE NUMBERJ9505-23-95-19. TASK NUMBERNAV98/07813. DOWNGRADING/DELIMITING INSTRUCTIONS10. TASK SPONSORDNAPO11. NO. OF PAGES1314. RELEASE AUTHORITY12. NO. OFREFERENCES15Downgraded to Public Release June 2003To be reviewed three years after date <strong>of</strong> publicationChief, Weapons Systems Division15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENTApproved for Public ReleaseDistribution additional to the <strong>in</strong>itial list is limited to <strong>Australian</strong> Department <strong>of</strong> <strong>Defence</strong> <strong>and</strong> <strong>Defence</strong> Force personnel <strong>and</strong> employees <strong>of</strong> ADILimited. Others <strong>in</strong>quir<strong>in</strong>g must be referred to Chief, Weapons Systems Division DSTO.OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 511116. DELIBERATE ANNOUNCEMENTNo Limitation<strong>Australian</strong> Department <strong>of</strong> <strong>Defence</strong> <strong>and</strong> <strong>Defence</strong> Force personnel.17. CITATION IN OTHER DOCUMENTS Yes18. DEFTEST DESCRIPTORSPlastic Bonded Explosives, <strong>RDX</strong>, Sympathetic Detonation, Insensitive Munitions19. ABSTRACT<strong>PBXN</strong>-<strong>109</strong> is the explosive fill for a number <strong>of</strong> munitions <strong>in</strong>clud<strong>in</strong>g the Pengu<strong>in</strong> ASM warhead which isbe<strong>in</strong>g filled by ADI Limited as part <strong>of</strong> project SEA 1414. In support <strong>of</strong> this project an exam<strong>in</strong>ation <strong>of</strong> thereplacement <strong>of</strong> the energetic material (<strong>RDX</strong>) with <strong>in</strong>digenous <strong>RDX</strong> was undertaken. This work <strong>in</strong>cludedperformance <strong>and</strong> hazard assessment, with a focus on potential improvements <strong>in</strong> Insensitive Munition(IM) properties through reduction <strong>in</strong> shock sensitivity <strong>of</strong> the PBX fill.Page classification: UNCLASSIFIED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!