13.07.2015 Views

Fatigue Crack Growth in 7050T7451 Aluminium Alloy Thick Section ...

Fatigue Crack Growth in 7050T7451 Aluminium Alloy Thick Section ...

Fatigue Crack Growth in 7050T7451 Aluminium Alloy Thick Section ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fatigue</strong> <strong>Crack</strong> <strong>Growth</strong> <strong>in</strong> <strong>7050T7451</strong> Alum<strong>in</strong>ium<strong>Alloy</strong> <strong>Thick</strong> <strong>Section</strong> Plate with a Glass Bead PeenedSurface Simulat<strong>in</strong>g Some Regions of the F/A-18StructureExecutive SummaryAVD research <strong>in</strong>to material factors likely to affect F/A-18 fatigue life has highlightedthe critical role played by surface condition <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the service fatigue life ofaircraft structure. This report presents the results of a fatigue coupon test program.The primary purpose was to obta<strong>in</strong> results from coupons with a glass bead peenedsurface condition typical of some regions of the critical structure of the F/A-18 aircraft.Another surface condition that could possibly <strong>in</strong>itiate critical cracks was compared tothese results.These specimens were loaded with a representative w<strong>in</strong>g root-bend<strong>in</strong>g spectrumderived from the F/A-18 FT488/2 centre barrel bulkhead fatigue test. Several peakstress levels were used. The coupons were representative of the material and geometrytypical of a structural detail that has been found to be fatigue-critical <strong>in</strong> the <strong>7050T7451</strong>high strength alum<strong>in</strong>ium alloy w<strong>in</strong>g carry through bulkheads. The spectrum used hadadditional marker loads added to aid quantitative fractography. These marker loadsare briefly discussed.Follow<strong>in</strong>g the tests, quantitative fractography was used to produce crack growthcurves for each of the fatigue specimens. This allowed a detailed <strong>in</strong>terpretation of thecrack growth to be made, <strong>in</strong>clud<strong>in</strong>g a measure of the severity of the flaws from whichthe fatigue cracks <strong>in</strong>itiated. In addition to an exam<strong>in</strong>ation of the effect of the flaws, itwas found that the peen<strong>in</strong>g produced a retard<strong>in</strong>g effect on the early part of the crackgrowth. The extent of this effect was exam<strong>in</strong>ed by comparison to previously exam<strong>in</strong>edetched specimens. These comparisons are reported.


DSTO-TR-14771. IntroductionDSTO research <strong>in</strong>to material factors likely to be of importance to the F/A-18 fatigue life havehighlighted the critical role played by surface condition <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the service fatigue life ofaircraft structure. Previous coupon test programs have addressed the differences betweenpolished, ‘as-mach<strong>in</strong>ed’ and peened surfaces <strong>in</strong> terms of life when loaded by several differentw<strong>in</strong>g root bend<strong>in</strong>g moment spectra; Molent et al , 2000; Sharp & Clark, 2001. This report exam<strong>in</strong>esthe application of glass bead peen<strong>in</strong>g to alum<strong>in</strong>ium alloy <strong>7050T7451</strong> thick section plate typical ofareas <strong>in</strong> the F/A-18 which have been treated to extend their fatigue life. Work similar to this haspreviously been carried out and reported <strong>in</strong> Sharp & Clark, 2001 for some w<strong>in</strong>g root bend<strong>in</strong>gspectra. The specimens reported on <strong>in</strong> this paper were loaded with more representative w<strong>in</strong>g rootbend<strong>in</strong>g spectrum derived from the F/A-18 FT55 centre fuselage fatigue test be<strong>in</strong>g carried out <strong>in</strong>Canada, Simpson, 2002. Whereas the previous test<strong>in</strong>g compared lives at a s<strong>in</strong>gle peak spectrumstress, this exam<strong>in</strong>ation reports on several peak stresses <strong>in</strong> order to establish the trend <strong>in</strong> the LifeImprovement Factor (LIF). In addition, a more detailed exam<strong>in</strong>ation of the crack growthmorphology <strong>in</strong>clud<strong>in</strong>g detailed quantitative fractography on the largest cracks, at these differentpeak spectrum stresses is presented. The use of several peak stress levels produced life dataapplicable <strong>in</strong> the estimation of the LIFs for the most critical structure <strong>in</strong> the F/A-18 aircraft. TheFT55 spectrum used had additional marker loads added to aid quantitative fractography.This project was developed out of a desire to improve the understand<strong>in</strong>g of fatigue crack<strong>in</strong>gencountered <strong>in</strong> service and test components from the F/A-18 aircraft. To simulate the peenedsurface of the AL<strong>7050T7451</strong> material <strong>in</strong> the aircraft, the surfaces of the test coupons were preparedto simulate those of 7050 components fitted to the F/A-18.2.1 Introduction2. BackgroundPeen<strong>in</strong>g treatments are widely used <strong>in</strong> mechanical and aeronautical eng<strong>in</strong>eer<strong>in</strong>g to improve thefatigue lives of components. The process is normally associated with harder metals such as steels,nickel and titanium alloys. Although this is generally the case, simply configured alum<strong>in</strong>ium alloycomponents have for many years been peened, for example alum<strong>in</strong>ium alloy propeller blade hubs.The application of this method to complex alum<strong>in</strong>ium alloy components such as those found <strong>in</strong>the F/A-18 is however a relatively recent occurrence. This has resulted <strong>in</strong> reports of extensivevariation <strong>in</strong> the fatigue life results for these high strength alum<strong>in</strong>ium alloy peened componentsand, <strong>in</strong> some cases (Clayton & Clark, 1988), a decrease <strong>in</strong> fatigue life has been observed. Suchvariability naturally raises concern that the peen<strong>in</strong>g process developed for use with hard materialssuch as steels might not always be suitable for peen<strong>in</strong>g high-strength alum<strong>in</strong>ium alloys which aremuch softer.An extensive array of literature dat<strong>in</strong>g back to early <strong>in</strong> the twentieth century exam<strong>in</strong><strong>in</strong>g the effectsof peen<strong>in</strong>g on steels and other hard alloys exists. An excellent review of this literature may befound <strong>in</strong> the book produced by the Metal Improvement Company, Inc of New Jersey, USAentitled “Shot Peen<strong>in</strong>g Applications” eighth edition, 2001. In a general sense most of this isrelevant although the softness of the alum<strong>in</strong>ium alloys compared to these materials results <strong>in</strong>some special problems which need to be addressed by an improved understand<strong>in</strong>g of the wayfatigue crack<strong>in</strong>g propagates <strong>in</strong> a peened alum<strong>in</strong>ium alloy.1


DSTO-TR-1477To build the required level of understand<strong>in</strong>g, DSTO has over the years undertaken a number ofresearch programs <strong>in</strong>vestigat<strong>in</strong>g the effects of steel shot, glass and ceramic bead peen<strong>in</strong>g on 7050alum<strong>in</strong>ium alloy - an alloy which is used extensively <strong>in</strong> RAAF F/A-18 aircraft. The overall aim ofthis previous work was to establish a LIF for the peen<strong>in</strong>g undertaken on various parts of the F/A-18. This previous work also attempted to provide a means of measur<strong>in</strong>g peen<strong>in</strong>g quality byassess<strong>in</strong>g the surface condition after peen<strong>in</strong>g, and thereby the reliability of the fatigue lifeimprovement, Sharp & Clark, 2001. While the flaws that <strong>in</strong>itiated crack<strong>in</strong>g <strong>in</strong> the peen<strong>in</strong>g wereunderstood to be an important factor <strong>in</strong> the effectiveness of the peen<strong>in</strong>g, no attempt was made toquantify the way the fatigue cracks grew from them.2.2 Peen<strong>in</strong>g and its relevance to the F/A-18Peen<strong>in</strong>g attempts to deform material surround<strong>in</strong>g the impact po<strong>in</strong>t of a projectile impact<strong>in</strong>g thetarget surface, aga<strong>in</strong>st the resistance of the material surround<strong>in</strong>g the impact. In so do<strong>in</strong>g, acomplex sub-surface residual stress distribution is generated <strong>in</strong> which, generally, the material justbelow and to the sides of the impact are <strong>in</strong> elastic compression as shown <strong>in</strong> Figure 1, produced bythe enlarged surface layer. To balance this compression zone an elastic tension zone surroundsthe compression zone. The transition to this tension zone can be rapid. For the case were thesurface has been covered by impacts the zones may be considered to be <strong>in</strong> layers reced<strong>in</strong>g fromthe surface so that the surface is generally <strong>in</strong> compression followed by a layer of tension which, onmov<strong>in</strong>g deeper decays to zero as shown <strong>in</strong> Figure 2. These deformation <strong>in</strong>duced residual stressesare triaxial with a balanced biaxial state and as such will affect the apparent load<strong>in</strong>g of anydiscont<strong>in</strong>uity, such as a fatigue crack, that is grow<strong>in</strong>g through the layers. The compressiveresidual stresses keep the crack closed when a far field tensile stress is applied to a component, toa level related to the magnitude of the compressive residual stresses, reduc<strong>in</strong>g the amount of cracktip open<strong>in</strong>g. This reduction <strong>in</strong> crack open<strong>in</strong>g, and therefore crack tip stress <strong>in</strong>tensity range (∆K)retards the cracks growth. The retardation caused by these compressive stresses still operateswhen the crack tip has grown <strong>in</strong>to the tensile stress field at deeper depths, where the crack tip isheld open by the tensile residual stresses s<strong>in</strong>ce the crack beh<strong>in</strong>d the tip (wake) is still clampedclosed by the compressive residual stresses. Therefore the effect of the residual stresses producedby peen<strong>in</strong>g is always to retard the crack growth by rais<strong>in</strong>g the far field stress required to open thecrack from its far field unloaded state.Impact<strong>in</strong>gprojectileFigure 1Surface of metalRegion of material held <strong>in</strong>compression by surround<strong>in</strong>gmaterialThe process of deform<strong>in</strong>g the surface as the result of the impact of a projectile produces residualstra<strong>in</strong> which is more commonly referred to as residual compressive stress. From “Shot Peen<strong>in</strong>gApplications”, 2001.2


DSTO-TR-1477Figure 2Schematic of residual stress distribution below a peened surface. With traditional bead peen<strong>in</strong>gtechniques this compressive layer generally extends 0.2-0.4mm below the surface (from Sharp &Clark, 2001).In reality peen<strong>in</strong>g does not produce a consistent surface condition s<strong>in</strong>ce the resultant residualstresses are the product of many <strong>in</strong>dividual impacts by the peen<strong>in</strong>g media. These impacts are notdistributed evenly over a surface, so the result is a variation <strong>in</strong> the f<strong>in</strong>al residual stress field. Anexample of a peened <strong>7050T7451</strong> surface as imaged by backscattered electron channell<strong>in</strong>gdiffraction pattern mapp<strong>in</strong>g methods <strong>in</strong> the scann<strong>in</strong>g electron microscope (SEM) is shown <strong>in</strong>Figure 3. Here the variation <strong>in</strong> colour shows the variation <strong>in</strong> the <strong>in</strong>tensity of the residual stra<strong>in</strong>s.Surface20 micronsFigure 3Example of stra<strong>in</strong> variation <strong>in</strong> a peened section of <strong>7050T7451</strong> alum<strong>in</strong>ium alloy as shown bybackscattered electron channell<strong>in</strong>g diffraction pattern mapp<strong>in</strong>g. The stra<strong>in</strong> appears to be highestdirectly below the centre of a peen<strong>in</strong>g dent (arrow). The l<strong>in</strong>es <strong>in</strong>dicate the sub-gra<strong>in</strong> boundaries.(Note that the image does not show the full extent of the peen<strong>in</strong>g, just the variation <strong>in</strong> stra<strong>in</strong>)Along with the above local variations, the residual stress field is reliant on the constra<strong>in</strong>t that isma<strong>in</strong>ta<strong>in</strong>ed by the material surround<strong>in</strong>g the deformed material. This constra<strong>in</strong>t disappears at afree surface, and can be reduced at external radii (re-entrant radii usually have excellentconstra<strong>in</strong>t). This leads to the most favourable region for crack propagation be<strong>in</strong>g at externalcorners of peened components. S<strong>in</strong>ce the surface is unconstra<strong>in</strong>ed the compressive residual stressusually drops very close to the surface and, because the surface is not smooth, may conta<strong>in</strong>regions of residual tension. This allows surface flaws to <strong>in</strong>itiate fatigue cracks more favourably3


DSTO-TR-1477than <strong>in</strong>ternal flaws. An example 1 of the measured residual stresses for a glass bead peened<strong>7050T7451</strong> specimen is shown <strong>in</strong> Figure 4.500-50-100-150-200-2500 0.2 0.4 0.6 0.8 1 1.2Depth below the surface mm.Figure 4Measured residual stresses through the surface layers of a <strong>7050T7451</strong> specimen peened withglass beads, corrected to show the stresses at a depth of 1mm as zero, Sharp & Clark, 2001.2.3 Peen<strong>in</strong>g <strong>in</strong> the F/A-18Many critical areas of the F/A-18 structure are peened. Three different forms of peen<strong>in</strong>g havebeen used: glass bead, ceramic bead and steel shot 2 . Generally OEM peen<strong>in</strong>g was carried out withsteel or glass beads whereas areas that are now peened are typically peened, or re-peened <strong>in</strong> somecases with ceramic beads. DSTO tests on the difference <strong>in</strong> the lives produced by these threemethods on the critical <strong>7050T7451</strong> material have <strong>in</strong>dicated that steel shot results <strong>in</strong> significantsurface damage which, under some conditions will result <strong>in</strong> lives that are shorter than theunpeened lives. It has been found that although the fatigue crack growth rate is retarded <strong>in</strong> thecompressive residual stress layer produced by the peen<strong>in</strong>g, the damage to the surface from thesteel shot peen<strong>in</strong>g (laps folds and embedded shot) produce crack like defects that can be so largeas to shorten the total crack growth life to below the unpeened life even with the retardation<strong>in</strong>cluded, Clayton and Clark, 1988, Clark and Clayton, 1991 and Sharp and Clark, 2001. On theother hand glass bead peen<strong>in</strong>g produces a shallower residual stress layer along with the reduction<strong>in</strong> damage, produc<strong>in</strong>g a comb<strong>in</strong>ation that usually leads to an extension to the fatigue life, s<strong>in</strong>ce thedamage produced by this process is usually considerably shallower than the extent of the depth towhich crack retardation occurs. This trade off between surface damage and crack retardationdepth can still become marg<strong>in</strong>al due to large flaws be<strong>in</strong>g produced by impact with fractured1 The residual stress distribution shown <strong>in</strong> Figure 4 is not necessarily applicable to all glass bead peened<strong>7050T7451</strong> surfaces. The depth to which the residual stresses for glass bead peened <strong>7050T7451</strong> reach aremore typically about 0.25mm on a flat surface and a little less at corners. This of course depends on whatis used as the surface: the top of the peened areas or the base of the peen<strong>in</strong>g dents. The variation <strong>in</strong> thestra<strong>in</strong> noted <strong>in</strong> Figure 3 and the difficulties <strong>in</strong> the measurement of residual stresses also adds to theuncerta<strong>in</strong>ty <strong>in</strong> residual stress plots.2 Flapper wheel peen<strong>in</strong>g is <strong>in</strong>cluded <strong>in</strong> the McDonnell Douglas process specification for peen<strong>in</strong>g: PS14023.1, although it is not recommended for fillet areas and was recommended ‘for peen<strong>in</strong>g previouslypeened areas and for assemblies requir<strong>in</strong>g rework’. Glass beads were orig<strong>in</strong>ally recommended foralum<strong>in</strong>ium alloy peen<strong>in</strong>g <strong>in</strong> this specification.4


DSTO-TR-1477beads, fragments of which may become embedded <strong>in</strong> the surface, excessive dwell times due tomanual application of the peen<strong>in</strong>g process result<strong>in</strong>g <strong>in</strong> deep folds and laps, and <strong>in</strong>correct peen<strong>in</strong>gof corners – fold<strong>in</strong>g over sharp corners by peen<strong>in</strong>g towards the edge, then burr<strong>in</strong>g this materialaround the edge prevent<strong>in</strong>g the surface beneath the burr from be<strong>in</strong>g peened.To reduce the risk of bead fracture while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the controllability of glass beads, ceramicbeads were <strong>in</strong>troduced. These are denser and stronger than glass while be<strong>in</strong>g lighter than steelshot. Tests compar<strong>in</strong>g ceramic bead peened specimens to glass bead peened specimens found thaton average they gave a similar life – the difference was that the glass bead peened specimens hada larger scatter <strong>in</strong> fatigue life as the result of the damage caused by fractured beads (Sharp et. al.,1994). Given that glass bead peen<strong>in</strong>g if correctly used, generally gives reasonable lifeimprovements, and that several of the critical areas of the F/A-18 aircraft structure have beenglass bead peened, this method was adopted to prepare the surfaces of the coupons tested andreported on here.3.1 Introduction3. <strong>Fatigue</strong> test<strong>in</strong>gA series of fatigue tests designed to represent typical RAAF service load<strong>in</strong>g were carried out. Thespecimens were of a type used previously to compare spectra developed dur<strong>in</strong>g the lead-up to thetest<strong>in</strong>g of full-scale F/A-18 structure both <strong>in</strong> Canada and Australia (DSTO) under the IFOSTP,Simpson et. al., 2002. These previous tests also <strong>in</strong>cluded tests carried out with etched surfaces,surfaces similar to those of F/A-18 fracture critical 7050 components, us<strong>in</strong>g the same spectrum asused here, Barter, 2003. Prior to the etched surface specimen test<strong>in</strong>g, test<strong>in</strong>g was either carried outus<strong>in</strong>g different spectra or unrepresentative surface conditions. In the case of the peened specimens(Sharp and Clark, 2001) test<strong>in</strong>g was mostly aimed at disclos<strong>in</strong>g some of the critical factors <strong>in</strong>produc<strong>in</strong>g a reliably peened surface rather than establish<strong>in</strong>g the LIF for vary<strong>in</strong>g stress levelsunder a representative spectrum.3.2 Specimens geometryThe specimens were of the simple ‘dog bone’ type with a cont<strong>in</strong>uous 127mm radius on either sideresult<strong>in</strong>g <strong>in</strong> a 15mm wide test section. The thickness of the specimens was 6.35mm giv<strong>in</strong>g a crosssectionalarea of 95.25mm 2 at the specimen centre. A schematic of the specimens is shown <strong>in</strong>Figure 5. The K t of 1.037 for the radius was calculated by FE analysis. This specimen was orig<strong>in</strong>allydesigned to mimic a critical low K t detail of an F/A-18 Y488 centre-section bulkhead, for which alot of data has already been generated us<strong>in</strong>g this specimen or similar specimens of a closelyrelated configuration. Although the Y488 bulkhead detail <strong>in</strong> question has a 6” (152.4mm) radius,the K t was not significantly different (Molent, Ogden and Pell, 2000) and the 127mm radiusallowed a shorter specimen that used less material. Experience with fatigue crack<strong>in</strong>g <strong>in</strong> thesespecimens <strong>in</strong>dicated that critical cracks could occur up to about 15mm on either side of thespecimen centre. Us<strong>in</strong>g, for simplicity a constant width of 10mm over this region an estimate ofthe approximate surface area likely to generate a critical crack <strong>in</strong> each specimen was about850mm 2 . Therefore for each stress level with five specimens tested about 4270mm 2 of peenedsurface was tested. Over this area the specimen varies <strong>in</strong> width from 15mm at the centre to about16mm at 15mm from the centre. This will result <strong>in</strong> about a 5.6% drop <strong>in</strong> the net section appliedstress at 10mm from the centre. Counter<strong>in</strong>g this, the round<strong>in</strong>g of the corners prior to peen<strong>in</strong>gresulted <strong>in</strong> a measured drop <strong>in</strong> cross-sectional area of between 1 and 3.5%. More on the criticalregions for peened surfaces will be presented later.5


DSTO-TR-1477127mm Radius (5’)230mm65mm15mm6.35mmFigure 5A draw<strong>in</strong>g of the specimens used <strong>in</strong> this test<strong>in</strong>g programThe specimens were mach<strong>in</strong>ed from a 5.5 <strong>in</strong>ch thick 7050-T7451 alum<strong>in</strong>ium alloy plate with theDSTO, AVD designation of ‘KS’ (produced by Ravenswood Alum<strong>in</strong>ium Corporation,Ravenswood, West Virg<strong>in</strong>ia 3 ). The long axis of the specimen aligned with the roll<strong>in</strong>g direction andthe width of the specimen <strong>in</strong> the roll<strong>in</strong>g plane as shown, <strong>in</strong> Figure 6. This gave the coupons a gra<strong>in</strong>orientation that was more resistant to fatigue crack growth than would have been the case hadthey been cut with the long axis across the plate width. The crack<strong>in</strong>g <strong>in</strong> these specimens will be <strong>in</strong>the Short/Transverse plane. The structural detail that was the subject of the previous test<strong>in</strong>ggenerates crack<strong>in</strong>g consistent with ‘across the plate’ specimens – crack<strong>in</strong>g <strong>in</strong> theShort/Longitud<strong>in</strong>al plane, therefore the specimens tested here are not strictly representative of themould l<strong>in</strong>e flange of the F/A-18 bulkheads.Roll<strong>in</strong>g directionT (Transverse)S (Short Transverse)L (Logitud<strong>in</strong>al)Figure 6A schematic show<strong>in</strong>g the orientation of the specimens as they were cut from the plate3.3 Specimen Material PropertiesThe KS plate was certified by Ravenswood to conform to the requirements of the specificationAMS 4050E which is very similar to the McDonnell Douglas Process specification 1420. Thechemical composition specification requirements are shown <strong>in</strong> Table 1 along with the results ofanalysis of the KS plate. Table 2 shows the mechanical properties and conductivity requirementsof <strong>7050T7451</strong>. The supplied mechanical properties and conductivity measurements are shown <strong>in</strong>Table 3 along with the measured conductivity and hardness values.3 now – Century Alum<strong>in</strong>ium Company6


DSTO-TR-1477Table 1 Specification AMS 4050E – Chemical composition %.Element M<strong>in</strong> Max Analysis of KSplateZ<strong>in</strong>c 5.7 6.7 6.42Copper 2 2.6 2.20Magnesium 1.9 2.6 1.99Zirconium 0.08 0.15 0.08Iron -- 0.15 0.06Silicon -- 0.12 0.03Manganese -- 0.1


DSTO-TR-1477At the surface large gra<strong>in</strong>s were not disguisable. These larger gra<strong>in</strong>s tended to surround the f<strong>in</strong>er,equiaxed gra<strong>in</strong>s (10-20µm) that made up the bulk of the microstructure.3.4 Surface PreparationTo prepare the specimens for glass bead peen<strong>in</strong>g, the specimen edges were rounded to a 1 to 2mmradius and the surfaces were polished to a 600# f<strong>in</strong>ish. Peen<strong>in</strong>g was carried out <strong>in</strong> a repeatablemanner us<strong>in</strong>g a mechanical scann<strong>in</strong>g frame. The corners were first peened followed by each of thefaces. Peen<strong>in</strong>g was to an <strong>in</strong>tensity of Almen 6-8A (SAE J442 standard), after 200% coverage. Thebeads were all virg<strong>in</strong> - none were reused. This method is similar to that used to repair regions ofthe F/A-18 aircraft and could be expected to produce similar life results. The grip regions of thespecimens were also peened to prevent failure <strong>in</strong> the grip area.3.5 Load<strong>in</strong>g and Marker loadsThe load<strong>in</strong>g applied to the specimens was a modified IARPO3a spectrum as applied to FT488/2,Ath<strong>in</strong>iotis, et, al, 2003. It had been derived from the FT55 w<strong>in</strong>g root bend<strong>in</strong>g moment spectrumapplied to the Canadian F/A-18 centre fuselage test article. The IARPO3a spectrum used <strong>in</strong> thistest<strong>in</strong>g is equivalent to 324.92 Simulated Flight Hours (SFH) and consisted of 13,475 turn<strong>in</strong>gpo<strong>in</strong>ts, 13,480 <strong>in</strong>clud<strong>in</strong>g marker loads (see below). The orig<strong>in</strong>al spectrum was developed fromflight data collected from the w<strong>in</strong>g root stra<strong>in</strong> gauges from service aircraft.Several peak load levels were selected and the spectrum was factored accord<strong>in</strong>gly. The peak loadswere selected to represent some of the peak loads expected <strong>in</strong> the centre section bulkheads of theF/A-18 <strong>in</strong> Australian service. The highest load level was selected to be greater than the highestknown load<strong>in</strong>g experienced by several details <strong>in</strong> the F/A-18. This was carried out to cover anypossibility that these load levels would be reached <strong>in</strong> service either through ‘spikes’ or <strong>in</strong>creases <strong>in</strong>load<strong>in</strong>g due to repair of critical areas, where peen<strong>in</strong>g is most likely to be used. The test matrix isshown <strong>in</strong> Table 4. S<strong>in</strong>ce there is a small Kt associated with the shape of the test section of thespecimen the stress at the root of the radii will have been a little larger than the net section stress.This along with the net section stress difference associated with failure of the specimen away fromthe centre (common <strong>in</strong> these peened specimens), and the slight difference <strong>in</strong> the cross sectionalareas due to the round<strong>in</strong>g of the corners of the specimens (calculated to average about 2%) hasbeen ignored <strong>in</strong> the presentation of the data. Further analysis of the effects of these stressvariations may lead to further comment <strong>in</strong> a follow<strong>in</strong>g report. Load<strong>in</strong>g was applied at 10Hz with acomputer controlled servo hydraulic fatigue test mach<strong>in</strong>e.Table 4 Test matrixPeak Spectrum Stress Surface Condition No. of specimensMPa (Ksi)tested360 (52.2) Glass bead peened 5390 (56.6) “ 5420 (60.9) “ 5450 (65.3) “ 5S<strong>in</strong>ce quantitative fractography (QF) was to be carried out on the fractures produced dur<strong>in</strong>g thetest<strong>in</strong>g it was decided to add marker-loads to the spectrum. After several tests of different markerload additions, five compressive marker loads were found to be the best compromise. These were<strong>in</strong>serted <strong>in</strong>to the spectrum just before one of the spectrum peak loads, between the four preced<strong>in</strong>gtensile loads. A graphical representation of these marker loads is shown <strong>in</strong> Figure 7.8


DSTO-TR-14773.6.1 <strong>Crack</strong> morphologyAll the ma<strong>in</strong> fatigue cracks produced dur<strong>in</strong>g this phase of the test<strong>in</strong>g were exam<strong>in</strong>ed by QF andthe crack growth rates measured (reported <strong>in</strong> <strong>Section</strong> 3.7.2). As part of this exam<strong>in</strong>ation severalgeneral observations about the appearance of the crack surfaces, and the secondary cracks, can bemade. The most obvious difference between the etched specimens exam<strong>in</strong>ed <strong>in</strong> Barter, 2003, andthe peened specimens was the number of larger cracks. While numerous cracks had <strong>in</strong>itiated <strong>in</strong>the etched specimens, and many of these cracks were not far beh<strong>in</strong>d the growth of the crack/s thatcaused failure, this was not the case <strong>in</strong> the peened specimens. The peened specimens had very fewsignificant cracks, although a large number of much smaller cracks did exist. In general only a fewsignificant cracks <strong>in</strong>tersected the fracture surface, and <strong>in</strong> some cases only a s<strong>in</strong>gle significant crack(Figure 10A). This led to some very jagged fracture surfaces (Figure 10B) due to the fast fracturerunn<strong>in</strong>g along the gra<strong>in</strong> orientation rather than l<strong>in</strong>k<strong>in</strong>g together significant cracks dur<strong>in</strong>g failure.This can be compared with the large number of cracks usually found on the fracture plane of oneof the etched specimens, Figure 11. The distribution of cracks over the surface of the specimenswas reasonably even although the size of the crack<strong>in</strong>g compared to the ma<strong>in</strong> crack/s was usuallyvery small. Some of these small secondary cracks could usually be seen <strong>in</strong> the stretch zones(surface regions that yielded dur<strong>in</strong>g failure of the specimen) either side of the failure plane.Examples are shown <strong>in</strong> Figure 12 .ABFigure 10 The fracture <strong>in</strong> one of the peened specimens ‘A’ (390MPa load<strong>in</strong>g) show<strong>in</strong>g the s<strong>in</strong>gle crack fromwhich failure occurred. Note that s<strong>in</strong>ce the crack<strong>in</strong>g was across the roll<strong>in</strong>g direction the fracturewas heavily distorted along the roll<strong>in</strong>g direction as shown <strong>in</strong> ‘B’.11


DSTO-TR-1477Figure 11 The fracture surface from one of the etched specimens. Note the large number of fatigue cracks(darker grey areas) that have grown around the entire circumference of the fracture surface.ABCFigure 12 The stretch zone surface adjacent to the fractures of several peened specimens show<strong>in</strong>g the manysecondary cracks. ‘A’ has some of these cracks marked with arrows and ‘B’ shows peen<strong>in</strong>gdamage from which a larger crack started marked with an arrow.D12


DSTO-TR-1477The largest cracks were found grow<strong>in</strong>g from all positions (sides, edges and corners up to about10mm either side of the centre of the specimen) from the specimen surface, although thepredom<strong>in</strong>ant position was at or near the external radii <strong>in</strong> the specimen edge (5”radius) as shown<strong>in</strong> Figure 13. Here an example of a ma<strong>in</strong> crack with two ma<strong>in</strong> regions of <strong>in</strong>itiation, both of whichare just with<strong>in</strong> the radius of the corner which was a favoured site for <strong>in</strong>itiation for many of thema<strong>in</strong> cracks. Although the corners were favoured as sites for <strong>in</strong>itiation, these corners had beenrounded with a 1 to 2mm radius to prevent them from be<strong>in</strong>g overly significant as <strong>in</strong>itiation sitesand to mimic the type of peen<strong>in</strong>g rework carried out on F/A-18 structure.Figure 13 Typical region of crack <strong>in</strong>itiation near a corner. This was the most common position for crack<strong>in</strong>itiation <strong>in</strong> these peened specimens. Note that the <strong>in</strong>itiation sites are not <strong>in</strong> the middle of thecurved section but closer to the transition region.The number of cracks that could be observed <strong>in</strong>tersect<strong>in</strong>g the fracture appeared to <strong>in</strong>creased withthe stress level and specimen life (at a particular stress level).The crack growth around the orig<strong>in</strong>s of the cracks, particularly the cracks which occurred <strong>in</strong> thespecimens loaded at the lower stress levels revealed considerable distortion of the normal crackfront shape. Some examples are shown <strong>in</strong> Figure 14. Typically the cracks <strong>in</strong>itially grew with alonger surface length than depth compared to cracks <strong>in</strong> the etched specimens (Barter, 2003), thenrapidly deepened result<strong>in</strong>g <strong>in</strong> a bulg<strong>in</strong>g out of the centre of the crack front. This is evident <strong>in</strong>Figure 14B. (The band<strong>in</strong>g <strong>in</strong> this Figure shows the repeat <strong>in</strong> the block load<strong>in</strong>g). The shape was tosome extent distorted <strong>in</strong> this manner due to the deepest po<strong>in</strong>t of the crack mov<strong>in</strong>g <strong>in</strong>to thematerial that is less affected by the residual stresses produced by the peen<strong>in</strong>g, while the rema<strong>in</strong>derof the crack fount is still affected by the residual stress. Odd shaped crack fronts can also occurdur<strong>in</strong>g crack<strong>in</strong>g from cold worked fastener holes, Clark, 1991.13


DSTO-TR-1477A (KSIF152)B (KSIF107)Figure 14 Two views of the regions about <strong>in</strong>itiations of the fatigue crack<strong>in</strong>g <strong>in</strong> the peened specimens. ‘B’shows the approximate position of one of the marker bands – red dashed l<strong>in</strong>e, <strong>in</strong>dicat<strong>in</strong>g the oddshaped crack front while the crack was small. The arrows po<strong>in</strong>t out some of the block repeats.<strong>Crack</strong> <strong>in</strong>itiation was <strong>in</strong> all cases found to be associated with flaws <strong>in</strong> the surface, as was the casewith the etched specimens. Most usually the orig<strong>in</strong>s consisted of closely spaced multiple<strong>in</strong>itiations along the edges of laps produced dur<strong>in</strong>g peen<strong>in</strong>g. These were usually the mostprevalent type of flaw <strong>in</strong> the glass bead peened surface and were found, to a grater or lesserdegree, to depend on the quality of the peen<strong>in</strong>g, as has been noted previously by Sharp et al, 2001.An example of such an orig<strong>in</strong> site is shown <strong>in</strong> Figure 15A. Those laps that are most likely to<strong>in</strong>itiate crack<strong>in</strong>g are usually at the base of peen<strong>in</strong>g dents. The second view <strong>in</strong> Figure 15B shows adeep cut produced by a fractured glass bead. This also produced multiple orig<strong>in</strong>s around its edge.Although multiple orig<strong>in</strong>s <strong>in</strong>itially occurred the crack quickly formed a s<strong>in</strong>gle crack front, whichprogressed more rapidly <strong>in</strong>to the material than it did at its flanks.14A (KSIF193)B (KSIF142)Figure 15 Two examples of the types of flaws that <strong>in</strong>itiate fatigue cracks <strong>in</strong> peened <strong>7050T7451</strong>. ‘A’ showsthe closely spaced multiple <strong>in</strong>itiations associated with a broad lap produced dur<strong>in</strong>g peen<strong>in</strong>g(approximately outl<strong>in</strong>ed). ‘B’ shows a deep cut and associated damage produced by a fracturedglass bead impact (approximately outl<strong>in</strong>ed). This also produced multiple orig<strong>in</strong>s around its edge.


DSTO-TR-1477<strong>Section</strong>s through one of the specimens surfaces show<strong>in</strong>g examples of cracks grow<strong>in</strong>g from a lapand a sharp glass bead cut are presented <strong>in</strong> Figure 16.Figure 16 <strong>Section</strong>s through the surface of one of the specimens, show<strong>in</strong>g examples of fatigue cracks grow<strong>in</strong>gfrom a lap and a sharp glass bead cut3.7 Quantitative fractography3.7.1 IntroductionQuantitative fractography (QF) was carried out on the largest crack <strong>in</strong> each specimen. Themethod of calculat<strong>in</strong>g the crack depth dur<strong>in</strong>g measurement of crack growth is set out <strong>in</strong> Barter,2003. These analyses were made possible by the existence of a fairly dist<strong>in</strong>ct repeat<strong>in</strong>g patternaided by the marker loads as discussed earlier. The repeat<strong>in</strong>g mark<strong>in</strong>gs were found to be veryconsistent with the type and spac<strong>in</strong>g expected for fatigue growth per spectrum under the testconditions. Usually the repeat<strong>in</strong>g pattern from the repeat of the spectrum was fairly easily foundparticularly around the orig<strong>in</strong>at<strong>in</strong>g flaws, although its dist<strong>in</strong>ctiveness did vary from area to areaon the fracture surface. By track<strong>in</strong>g the most dist<strong>in</strong>ct areas and some of the less dist<strong>in</strong>ct areas ofthe repeat<strong>in</strong>g patterns and comb<strong>in</strong><strong>in</strong>g the data from these regions, a relatively complete picture ofthe crack growth could be assembled assum<strong>in</strong>g that each repeat of the pattern was equivalent to as<strong>in</strong>gle load spectrum. This is supported by previous exam<strong>in</strong>ations of fatigue fracture surfaces <strong>in</strong>7050 alum<strong>in</strong>ium alloy, which have undergone similar fatigue test<strong>in</strong>g, Barter, 1990a, Barter, 1991,Bishop and Clark, 1991, Barter, 1998, Barter and Price, 2000.For the peened specimens, the crack shape could be very distorted from the semi-elliptical shapenormally found <strong>in</strong> the absence of residual stresses, as noted <strong>in</strong> the previous section. In all thesecases the QF was carried out on the region as close as possible to the centre and deepest part of thecrack to avoid artefacts <strong>in</strong> the crack growth curves.3.7.2 Quantitative fractography measurementsFigure 17A&B to Figure 20A&B present the crack growth curves produced from exam<strong>in</strong><strong>in</strong>g eachof the ma<strong>in</strong> cracks on the peened specimen fracture surfaces. The crack growth curves areconsidered to be reasonable representations of the rate of crack<strong>in</strong>g of the largest crack <strong>in</strong> each ofthese specimens. These curves do not conta<strong>in</strong> the flaw depth, which was also measured dur<strong>in</strong>gthis exam<strong>in</strong>ation. Consequently the data adjacent to the orig<strong>in</strong> is distorted with an accelerationrate higher than the true picture. This will be discussed <strong>in</strong> <strong>Section</strong> 4. To improve the clarity of therate of growth while the crack is small the data have also been plotted on log crack depth versus15


DSTO-TR-1477life axes. The data po<strong>in</strong>ts for these graphs, along with the measured flaw depths are conta<strong>in</strong>ed <strong>in</strong>Appendix A.Simulated flight hours0 20000 40000 60000 80000 100000 12000076KSIF 194 peened 360MPaKSIF 107 peened 360MPaKSIF 167 peened 360MPaKSIF 152 peened 360MPaKSIF 149 peened 360MPa0.25Simulated flight hours0 20000 40000 60000 80000 100000 120000100.150.21<strong>Crack</strong> depth mm.430.150.1<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.210.050.01KSIF 194 peened 360MPaKSIF 107 peened 360MPaKSIF 167 peened 360MPaKSIF 152 peened 360MPaKSIF 149 peened 360MPa0.0001000 50 100 150 200 250 300 350 400IARPO3a + 5ML Spectra0.0010 50 100 150 200 250 300 350 400IARPO3a + 5ML SpectraABFigure 17 The result of the quantitative fractographic exam<strong>in</strong>ation of cracks <strong>in</strong> the peened specimens loadedto a peak stress of 360MPa. Plot ‘A’ presents the results plotted on l<strong>in</strong>ear/l<strong>in</strong>ear axes. Plot ‘B’presents the same data plotted on log/l<strong>in</strong>ear axes.0 4000 8000 12000 16000 20000 24000 28000 3200065Simulated flight hoursKSIF 205 390MPa peenKSIF 151 390MPa peenKSIF 140 390MPa PeenKSIF 118 390MPa peenKSIF 116 390MPa peen0.2Simulated flight hours0104000 8000 12000 16000 20000 24000 28000 320000.11<strong>Crack</strong> depth mm.4320.150.1<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.10.050.01KSIF 205 390MPa peenKSIF 151 390MPa peenKSIF 140 390MPa PeenKSIF 118 390MPa peenKSIF 116 390MPa peen0.0001000 20 40 60 80 100IARPO3a + 5ML SpectraA0.0010 20 40 60 80 100IARPO3a + 5ML SpectraFigure 18 The result of the quantitative fractographic exam<strong>in</strong>ation of cracks <strong>in</strong> the peened specimens loadedto a peak stress of 390MPa.B16


DSTO-TR-1477Simulated flight hours0 2000 4000 6000 8000 10000 120005Simulated flight hours0 2000 4000 6000 8000 10000 12000104KSIF 191 420MPa peenKSIF 193 420MPa peenKSIF 204 420MPa peenKSIF 147 420MPa peenKSIF 142 420MPa peen0.1610.1<strong>Crack</strong> depth mm.320.120.08<strong>Crack</strong> depth <strong>in</strong>ch<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch1000 5 10 15 20 25 30 35 40IARPO3a + 5ML Spectra0.040.01KSIF 191 420MPa peenKSIF 193 420MPa peenKSIF 204 420MPa peenKSIF 147 420MPa peenKSIF 142 420MPa peen0.0010 5 10 15 20 25 30 35 40IARPO3a + 5ML SpectraABFigure 19 The result of the quantitative fractographic exam<strong>in</strong>ation of cracks <strong>in</strong> the peened specimens loadedto a peak stress of 420MPa.0.0001Simulated flight hours0 1000 2000 3000 4000 5000 6000 7000 80003.5Simulated flight hours0 1000 2000 3000 4000 5000 6000 7000 80001032.5KSIF 186 450MPa peenKSIF 146 450MPa peenKSIF 164 450MPa peenKSIF 178 450MPa peenKSIF 183 450MPa peen0.120.110.1<strong>Crack</strong> depth mm.21.50.080.06<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.10.040.010.5000 5 10 15 20 25IARPO3a + 5ML SpectraA0.02KSIF 186 450MPa peenKSIF 146 450MPa peenKSIF 164 450MPa peenKSIF 178 450MPa peenKSIF 183 450MPa peen0.0010 5 10 15 20 25IARPO3a + 5ML SpectraFigure 20 The result of the quantitative fractographic exam<strong>in</strong>ation of cracks <strong>in</strong> the peened specimens loadedto a peak stress of 450MPa.B0.000117


DSTO-TR-14774. Discussion4.1 IntroductionA number of the observations made dur<strong>in</strong>g this exam<strong>in</strong>ation will be discussed <strong>in</strong> the follow<strong>in</strong>g<strong>Section</strong>s, and the results are compared with the results of similar test<strong>in</strong>g on specimens with etchedsurfaces (Barter, 2003).4.2 An exam<strong>in</strong>ation of test<strong>in</strong>g resultsThe results of the test<strong>in</strong>g are presented <strong>in</strong> Table 5 and Figure 9. The peen<strong>in</strong>g resulted <strong>in</strong> lifeimprovement over the four peak stress levels tested, when compared to the same specimenswhich had been etched (simulat<strong>in</strong>g the etch<strong>in</strong>g that occurs to F/A-18 structure prior to theapplication of a corrosion protective alum<strong>in</strong>ium alloy coat<strong>in</strong>g by an ion vapour depositionmethod, generally known as an IVD coat<strong>in</strong>g). This life improvement is variable and is greatest atthe lower stresses and least at the highest stress while the scatter <strong>in</strong>creases with the lower stresslevels. If the range of three log standard deviations above and below the log mean of the results iscompared to the values for the etched specimens at the same stress levels then the LIF (peenedvalues normalised by divid<strong>in</strong>g by the etched log mean values for each of the stress levels) can becalculated. These results are shown graphically <strong>in</strong> Figure 21. Exponential curves have been fittedto the data sets, although power curves also fit the data very well. Exam<strong>in</strong><strong>in</strong>g these curves<strong>in</strong>dicates that the LIFs, measured by the three methods pass through one (no improvement) atabout 475MPa, which is very close to the stated yield stress of this material (461MPa). The factthat the curves <strong>in</strong>dicate a loss of peen<strong>in</strong>g life extension at about the yield stress might be<strong>in</strong>tuitively expected, although some workers <strong>in</strong> this field have suggested that ‘shake down’ atstresses below yield would reduce the effectiveness of the cold work<strong>in</strong>g at high sub-yield cyclicstress levels. For this spectrum ‘shake down’ does not appear to be significant. From the data it isclear that the LIF depends on the load<strong>in</strong>g spectrum stress (and probably the spectrum form) andshould not be considered to be a constant for the purposes of calculat<strong>in</strong>g the effect of a peen<strong>in</strong>goperation – the life of the detail that is proposed to be peened must be established given theexpected load<strong>in</strong>g spectrum and the local stress<strong>in</strong>g.1000y = 1.29e+06 * e^(-0.025x) R 2 = 0.983y = 7.16e+07 * e^(-0.0334x) R 2 = 0.962y = 2.31e+04 * e^(-0.0165x) R 2 = 0.971y = 574 * e^(-0.00866x) R 2 = 0.999100y = 2.24e+03 * e^(-0.0163x) R= 0.981y = 1.25e+05 * e^(-0.0247x) R= 0.964y = 40.2 * e^(-0.00789x) R= 0.94210010101Peen<strong>in</strong>g log meanPeen<strong>in</strong>g + 3 logSDPeen<strong>in</strong>g -3 LogSDEtched Log meanPeen<strong>in</strong>g log mean/etched meanPeen<strong>in</strong>g + 3 logSD/etched meanPeen<strong>in</strong>g -3 LogSD/etched mean1350 400 450 500Stress Level MPa0.1350 375 400 425 450 475 500Peak stress level MPa.Figure 21 The log mean curves for the etched and peened tests are shown along with the + and – 3 log SDsfor the peened specimens. Divid<strong>in</strong>g the log mean life and the + and – 3 log SDs of the peenedspecimens by the log mean etched specimen lives gives an <strong>in</strong>dication of the ‘life improvementfactor’ for glass bead peen<strong>in</strong>g. Exponential curves have been fitted to the data sets and <strong>in</strong>dicate aloss of peen<strong>in</strong>g effect at about the yield stress of this material.18


DSTO-TR-14774.2.1 Position of the crack<strong>in</strong>g and crack orig<strong>in</strong>s<strong>Crack</strong> <strong>in</strong>itiations <strong>in</strong> the peened specimens were all found to be associated with flaws <strong>in</strong> thesurface, as was the case with etched specimens for the same specimen type and material. Usuallythe orig<strong>in</strong>s of the peened specimens consisted of closely spaced multiple <strong>in</strong>itiations along theedges of laps produced dur<strong>in</strong>g the peen<strong>in</strong>g as noted previously. These are the most prevalent typeof flaw <strong>in</strong> these and other glass bead peened alum<strong>in</strong>ium alloy surfaces, populat<strong>in</strong>g the surface, toa greater or lesser degree, depend<strong>in</strong>g on the quality of the peen<strong>in</strong>g, as was shown by Clayton &Clark, 1988, Sharp et al, 1994 and Sharp & Clark, 2001. Those laps that are most likely to <strong>in</strong>itiatecrack<strong>in</strong>g are usually at the base of peen<strong>in</strong>g dents. Deep cuts and embedded fractured glass beadswere also noted as crack starters. These flaws also produced multiple orig<strong>in</strong>s around their edges.Although multiple local orig<strong>in</strong>s <strong>in</strong>itially occur around a flaw, cracks quickly comb<strong>in</strong>ed to form as<strong>in</strong>gle crack, which progress more rapidly <strong>in</strong>to the material at its centre than its flanks.Although the predom<strong>in</strong>ant position of the largest cracks was at or near corner radii, large crackswere found <strong>in</strong> all positions; sides, edges, close to the corners and away from the corners, generallywith<strong>in</strong> 10mm of the specimen centre. The corners, or at least close to the corners of the specimenswould appear to be the dom<strong>in</strong>ant regions of crack<strong>in</strong>g due to a number of <strong>in</strong>teract<strong>in</strong>g effects: thecorners have less constra<strong>in</strong>t over the flat surfaces as noted before, the probability of fold<strong>in</strong>g at thecorners is higher s<strong>in</strong>ce the peen<strong>in</strong>g is bound to be angled to the surface at some time dur<strong>in</strong>g thepeen<strong>in</strong>g process (for example see Figure 22) and over peen<strong>in</strong>g is more likely at the corners s<strong>in</strong>cethey receive peen<strong>in</strong>g when the flat surfaces are peened and when the radii are peened as aseparate peen<strong>in</strong>g operation.Figure 22 An example of a poorly peened corner. Note the laps (arrows) that <strong>in</strong>dicate surface flow awayfrom the corner <strong>in</strong> both directions (Not from this specimen series).The dom<strong>in</strong>ance of a s<strong>in</strong>gle crack while many other very small cracks were present <strong>in</strong>dicated thatalthough there may be many crack <strong>in</strong>itiations <strong>in</strong> the peened specimens only a few cracksdom<strong>in</strong>ate. This is most likely the result of the very slow crack growth through the residual stressaffected layer; once a crack has passed though, it grows relatively rapidly to failure, dom<strong>in</strong>at<strong>in</strong>gthe damage to the specimen. This results <strong>in</strong> the specimen fail<strong>in</strong>g before most, if any of the othercracks have exited the region of residual stress <strong>in</strong>fluence. This led to some very jagged fracturesurfaces (Figure 10B) due to the fast fracture runn<strong>in</strong>g along the gra<strong>in</strong> orientation rather thanl<strong>in</strong>k<strong>in</strong>g together significant cracks dur<strong>in</strong>g failure. Fractures similar to this have also been found <strong>in</strong>7050 thick section plate specimens with a similar gra<strong>in</strong> orientation with mach<strong>in</strong>ed surfaces,Aktepe, 2000. In these cases the jagged nature of the f<strong>in</strong>al fracture was attributed to a lack ofsecondary crack<strong>in</strong>g due to a low population of surface flaws, which led to the f<strong>in</strong>al fracturerunn<strong>in</strong>g along the gra<strong>in</strong> orientation rather than across the specimen test section.19


DSTO-TR-14774.2.2 Shape of the crack growth curvesAn exam<strong>in</strong>ation of the crack growth curves <strong>in</strong>dicated that the cracks are <strong>in</strong>itially retarded by theresidual stresses and then transition to a faster rate of acceleration after the cracks pass a depth ofabout 0.2mm. This acceleration never exceeds the unpeened growth acceleration rate as <strong>in</strong>dicatedby the tests reported <strong>in</strong> Barter, 2003. This agrees with previous studies of the depth of the residualstress layers below the surface of specimens <strong>in</strong> this material; Sharp and Clark, 2001, Chang et al,2003. It is notable that the balanc<strong>in</strong>g tensile residual stresses are not adversely affect<strong>in</strong>g the crackgrowth. The predicted effect of the residual stress is to lower the crack tip K as the compressivestress is applied to the crack surfaces, and then as the tensile stresses beg<strong>in</strong> to be added, theretard<strong>in</strong>g effect decays.For example, the predicted K may be calculated assum<strong>in</strong>g (for the purpose of the calculation) anapplied static stress of 390MPa and the residual stress distribution shown <strong>in</strong> Figure 4. Us<strong>in</strong>g anembedded thumb nail shaped crack solution, <strong>in</strong> a large plate where K = 1.12σ(πa) 0.5 , the curvesshown <strong>in</strong> Figure 23 result. In this Figure the results have been plotted on log-log axes s<strong>in</strong>ce the Ksolution should be a straight l<strong>in</strong>e on this presentation (power law). The first notable po<strong>in</strong>t is thedecrease <strong>in</strong> K due to the residual compression, which is then restored to the non-residual stresssituation when the crack enters the residual tension layer. This lowers the K curve but ma<strong>in</strong>ta<strong>in</strong>s itparallel to the orig<strong>in</strong>al. This supports the observation that the region of growth through theresidual compression layer generally has a similar form (exponential, although at a lower slope) tothe growth observed <strong>in</strong> the non-peened specimens or the region of growth after the residualstresses have been passed. The slight <strong>in</strong>crease <strong>in</strong> the tensile region, and consequent <strong>in</strong>crease <strong>in</strong> K,has been observed to have no real growth effect whereas some effect might have been expectedfrom the curves. This is considered to be the result of the clamp<strong>in</strong>g action of the residualcompressive stress beh<strong>in</strong>d the crack tip be<strong>in</strong>g a potent method of retard<strong>in</strong>g the potential crackgrowth rate.100K for a constant 390MPa tensile loadadjusted for residual stressK for a constant 390MPa tensile load1000101Interpolated residual stress frompeen<strong>in</strong>g plus 390MPa tensile load0.11000.001 0.01 0.1 1a mm.Figure 23 Here the effect on the K on the residual stress (brown l<strong>in</strong>e) is shown compared to no effect (redl<strong>in</strong>e). The residual stress lowers the K for about 0.07mm of depth <strong>in</strong> this case (see footnote 1).Note that the change <strong>in</strong> K due to the residual stress is mostly parallel to the unaffected K.20


DSTO-TR-14774.3 Estimat<strong>in</strong>g the effect of the <strong>in</strong>itiat<strong>in</strong>g flawsThe exam<strong>in</strong>ation of the fatigue crack growth of the KS etched specimens revealed that a relativelysimple method could be used to estimate the crack like size of the flaws from which the cracksgrew. This is reported <strong>in</strong> Barter, 2003. In that case the flaws that started crack<strong>in</strong>g were etch pitsassociated with gra<strong>in</strong> boundaries and etched out <strong>in</strong>clusions. The method used to analyse theseverity of these flaws was to fit an exponential growth model of the form:a = a 0 e β (N) (1)Where ‘a’ is the crack depth, ‘a 0 ‘is the apparent crack size at the commencement of load<strong>in</strong>g, ‘N’ isthe life and ‘β’ is the slope of the curve, or a measure of the rate of crack growth. This was handled<strong>in</strong> several ways; one of which was to fit the curve to all the data po<strong>in</strong>ts and use the zero life<strong>in</strong>tersect as the measure of the Estimated Pre-<strong>Crack</strong> Size (EPS). A more complete discussion of thisprocess as applied previously may be found <strong>in</strong> Barter, 2003.The flaws that <strong>in</strong>itiated the crack<strong>in</strong>g <strong>in</strong> the peened specimens varied, although the dom<strong>in</strong>ant flawtype was observed to be laps <strong>in</strong> the surface due to fold<strong>in</strong>g dur<strong>in</strong>g peen<strong>in</strong>g (section 3.6.1).Although the lap depth or the depth of any of the other types of flaw found <strong>in</strong> these specimenswas usually fairly easy to measure, unlike the etch pit flaws, their length varied along with theirposition with<strong>in</strong> the peen<strong>in</strong>g dents. This led to uncerta<strong>in</strong>ty about the effectiveness of these flaws <strong>in</strong><strong>in</strong>itiat<strong>in</strong>g fatigue cracks, so aga<strong>in</strong> the use of the QF results to estimate the EPS seemed to bewarranted.The growth rates of the peened specimens were not consistently exponential over their entirecrack depths rul<strong>in</strong>g out the use of all the data to estimate the EPS. Nevertheless, the growth didappear to be the result of two phases of exponential growth connected by a transition phase atabout the depth at which the retard<strong>in</strong>g effect of the peen<strong>in</strong>g disappeared (as was predicted byprevious measurements of the typical residual stress such as reported <strong>in</strong> Wang, 2003).The EPS was estimated us<strong>in</strong>g the slope of the crack growth curves, which <strong>in</strong> essence assumed thatthe result<strong>in</strong>g EPS is a comb<strong>in</strong>ation of the size and shape of the flaw, the flaw position and thenumber of <strong>in</strong>itiations that grew together from the flaw, as well as any abnormality (from theexponential growth rate assumed) <strong>in</strong> the growth at the very start of the crack<strong>in</strong>g. The confidence<strong>in</strong> the EPS size was highest for those cracks where the majority of the progressions close to theorig<strong>in</strong>/s were found.To achieve the most reasonable 4 EPS result for these crack growth curves, several processes havebeen <strong>in</strong>vestigated. The easiest approach for the fractographer who is <strong>in</strong>teractively exam<strong>in</strong><strong>in</strong>g aparticular crack and the measurements taken from that crack, is to add the measured depth of theflaw to the raw data which has been measured from the flaw-to-fatigue surface <strong>in</strong>terface.Alternatively, vary<strong>in</strong>g amounts of depth can be added until a reasonably straight l<strong>in</strong>e is achievedon a log depth versus l<strong>in</strong>ear life plot of the measurements for the early part of the crack growth.This ‘anticipation-by-eye’ approach allows a ‘first cut’ at the data, which is used to highlightobvious errors <strong>in</strong> the measurements so that re-assessment of the measurements can be carried outon the specimen <strong>in</strong> real-time. This helps prevent ‘un<strong>in</strong>formed’ data correction while re-measur<strong>in</strong>g4 The most reasonable measure of the EPS is still to be fully def<strong>in</strong>ed, although it should have some of thefollow<strong>in</strong>g attributes; should not be so subjective such that different workers would produce grosslydifferent measures of it from the same data, be <strong>in</strong>dependent of the spectrum or load level used todeterm<strong>in</strong>e it, be transferable to different items made of the same material, not be excessivelyconservative or unconservative, nor should it be grossly different to the real flaw size that started thecrack<strong>in</strong>g s<strong>in</strong>ce this may lead to confusion <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g some problems.21


DSTO-TR-1477poorly def<strong>in</strong>ed areas on the fracture surface. The <strong>in</strong>teractive exam<strong>in</strong>ation of the crack surface is astrong advantage of this method, while the dependence of the result on the skill and consistencyof the fractographer may be a disadvantage as far as reproducibility is concerned.After the data have been collected and the flaw depth and <strong>in</strong>itial best-fit EPS have beenanticipated other methods were <strong>in</strong>vestigated to estimate EPS. These are listed below along withthe two prior types mentioned as measures of the flaw effectiveness. Each method has beendesignated as an EPS Type:Type I.‘Measured flaw depth’. This is usually the depth of the flaw at the po<strong>in</strong>t from whichcrack measurement was started, and has a level of uncerta<strong>in</strong>ty associated with theflaw shape and where along the edge of the flaw the measurements were startedfrom, as well as the position of the true surface; either the peaks between the peen<strong>in</strong>gdents or the base of the peen<strong>in</strong>g dents or somewhere between. (It should be notedthat this is not necessarily the deepest po<strong>in</strong>t of the flaw). In some historicalpresentations of this approach, particularly Barter et al, 1991 and Ath<strong>in</strong>iotis et al,1991 the measured flaw size was <strong>in</strong>cluded <strong>in</strong> the data and a exponential curve fit wasapplied (equation 1) to the data to determ<strong>in</strong>e the a o (zero life <strong>in</strong>tersect). Thisapproach, although not used here is designated as a Type IA EPS.Type II. The measure that was used dur<strong>in</strong>g the collection of the QF data, which was the‘anticipated EPS’. This measure is subjective and depends on the skill of thefractographer.Type III. Fitt<strong>in</strong>g the data to the exponential model (equation 1) us<strong>in</strong>g a curve fitt<strong>in</strong>g program,and optimis<strong>in</strong>g the <strong>in</strong>itial crack depth added to the raw crack size (offset value),check<strong>in</strong>g the ‘goodness of fit’ (R 2 value), and ref<strong>in</strong><strong>in</strong>g the depth added until themaximum R 2 is reached. This method could be used to produce the curve that bestfitted the total data, and gave a zero life <strong>in</strong>tercept value, which was thought to be thebest measure of the two possible EPSs (offset (Type IIIA) or <strong>in</strong>tercept (Type III)). Thismethod would produce an ‘optimised EPS’ for all the data which clearly was notappropriate here due to the non-s<strong>in</strong>gle exponential growth rate for the cracksgrow<strong>in</strong>g through the peen<strong>in</strong>g.Type IV. The data for each curve were divided <strong>in</strong>to two at the middle of the transition Phase(II) between the slower accelerat<strong>in</strong>g early Phase I of crack<strong>in</strong>g and the faster latterPhase III. The ‘anticipated EPS’ was <strong>in</strong>cluded <strong>in</strong> the early Phase I data <strong>in</strong> order togive an approximately correct start<strong>in</strong>g po<strong>in</strong>t and an exponential curve was fitted toPhase I data ignor<strong>in</strong>g the effect of the small amount of transition data <strong>in</strong>cluded. Thezero life <strong>in</strong>tersect of the curve a 0 was then used as the ‘fitted EPS’. This process wasdifferent to the process followed <strong>in</strong> Barter, 2003 (Type III EPS).While the Type III EPS is probably a more ref<strong>in</strong>ed method for growth curves that areclose to an exponential over their entire life, the amount of data to use <strong>in</strong> the case ofthe peened slopes needed to be considered carefully s<strong>in</strong>ce the optimisation rout<strong>in</strong>eused <strong>in</strong> the Type III EPS calculation, when applied to the early Phase I data,occasionally resulted <strong>in</strong> a runaway of the of the amount added s<strong>in</strong>ce the curve simplybecomes a more perfect exponential fit with greater additions when the data is notvery exponential <strong>in</strong> nature. This was particularly the case when the early part of thecurve is not entirely straight (log depth/l<strong>in</strong>ear life) such as some of the curves for the360MPa peak stress.22


DSTO-TR-1477Examples of the Type IV process and the formula generated are shown <strong>in</strong> Figure 24 and Figure 25for one crack from each peak stress level. These values along with the curve fits for the Phase IIIparts of the curves will be presented and discussed <strong>in</strong> the follow<strong>in</strong>g section. Although this methodwhen applied to the peened specimens would probably over estimate the effectiveness of a flawconsider<strong>in</strong>g the variable residual stress (particularly the small region near the surface where theresidual stresses are less <strong>in</strong>tense, see Figure 23), it does give a consistent picture that may betransferable to other spectra for this material.The crack growth curves with corrections for the measured flaw depth (Type I EPS) and theestimated EPS Type II are shown <strong>in</strong> Figure 26 to Figure 29 A & B. Table 6 gives the Type II EPSand flaw depths along with the means of these values. The Type IV EPS calculations will bepresented <strong>in</strong> the follow<strong>in</strong>g section.0 10000 20000 30000 4000010KSIF 149 lowKSIF 149 highSFHy = 0.11611 * e^(0.011033x) R= 0.97153SFH0 5000 10000 15000 20000 2500010KSIF 140 lowKSIF 140 highy = 0.03347 * e^(0.041935x) R= 0.99540.1y = 1.1892e-09 * e^(0.17481x) R= 0.927170.11y = 8.5323e-06 * e^(0.18776x) R= 0.9974110.010.10.010.0010.10 20 40 60 80 100 120 140IARPO3a + 5ML Spectra0.010 10 20 30 40 50 60 70 80IARPO3a + 5ML SpectraFigure 24 Examples of the generation of Phase I and Phase III growth slopes and the Type IV EPS valuesfor the 360 and 290MPa peak stress levels.SFH0 2000 4000 6000 8000 1000010KSIF 191 lowKSIF 191 highSFH0 1000 2000 3000 4000 5000 6000 7000 800010KSIF 146 lowKSIF 146 high1y = 0.043288 * e^(0.089068x) R= 0.98739y = 7.2653e-05 * e^(0.33012x) R= 0.99410.11y = 0.049993 * e^(0.1354x) R= 0.98559y = 0.00028305 * e^(0.4503x) R= 0.944750.10.010.010.10.10.0010.0010.010 5 10 15 20 25 30 35IARPO3a + 5ML Spectra0.010 5 10 15 20 25IARPO3a + 5ML SpectraFigure 25 Examples of the generation of Phase I and Phase III growth slopes and the Type IV EPS valuesfor the 420 and 450MPa peak stress levels.23


DSTO-TR-1477Simulated flight hours0 20000 40000 60000 80000 100000 12000010Simulated flight hours0 20000 40000 60000 80000 100000 120000100.10.111<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.0.010.01KSIF 194 peened 360MPa + flaw depthKSIF 107 peened 360MPa + flaw depthKSIF 149 peened 360MPa + flaw depthKSIF 152 peened 360MPa + flaw depthKSIF 167 peened 360MPa + flaw depth0.0010 50 100 150 200 250 300 350 400IARPO3a + 5ML SpectraA0.0001KSIF 194 peened 360MPa + EPSKSIF 107 peened 360MPa + EPSKSIF 149 peened 360MPa + EPSKSIF 152 peened 360MPa + EPSKSIF 167 peened 360MPa + EPS0.0010 50 100 150 200 250 300 350 400IARPO3a + 5ML SpectraFigure 26 <strong>Crack</strong> growth results for the 360MPa peened specimens where the data <strong>in</strong>cludes the measuredflaw depth; A and Type II EPS; B.B0.0001Simulated flight hours0104000 8000 12000 16000 20000 24000 28000 32000Simulated flight hours0104000 8000 12000 16000 20000 24000 28000 320000.10.1<strong>Crack</strong> depth mm.10.01<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.10.01<strong>Crack</strong> depth <strong>in</strong>ch.0.10.1KSIF 140 390MPa Peen + flaw depthKSIF 116 390MPa peen + flaw depthKSIF 118 390MPa peen + flaw depthKSIF 205 390MPa peen + flaw depthKSIF 151 390MPa peen + flaw depth0.010 20 40 60 80 100IARPO3a + 5ML SpectraA0.001KSIF 140 390MPa Peen + EPSKSIF 116 390MPa peen + EPSKSIF 118 390MPa peen + EPSKSIF 205 390MPa peen + EPSKSIF 151 390MPa peen + EPS0.010 20 40 60 80 100IARPO3a + 5ML SpectraFigure 27 <strong>Crack</strong> growth results for the 390MPa peened specimens where the data <strong>in</strong>cludes the measuredflaw depth; A and Type II EPS; B.B0.00124


DSTO-TR-1477Simulated flight hours0 2000 4000 6000 8000 10000 1200010Simulated flight hours0 2000 4000 6000 8000 10000 12000100.10.111<strong>Crack</strong> depth mm.0.10.01<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.0.10.01<strong>Crack</strong> depth <strong>in</strong>ch.KSIF 142 420MPa peen + flaw depthKSIF 147 420MPa peen + flaw depthKSIF 204 420MPa peen + flaw depthKSIF 193 420MPa peen + flaw depthKSIF 191 420MPa peen + flaw depth0.010 5 10 15 20 25 30 35 40IARPO3a + 5ML SpectraA0.001KSIF 142 420MPa peen + EPSKSIF 147 420MPa peen + EPSKSIF 204 420MPa peen + EPSKSIF 193 420MPa peen + EPSKSIF 191 420MPa peen + EPS0.010 5 10 15 20 25 30 35 40IARPO3a + 5ML SpectraFigure 28 <strong>Crack</strong> growth results for the 420MPa peened specimens where the data <strong>in</strong>cludes the measuredflaw depth; A and Type II EPS; B.B0.001Simulated flight hours0 1000 2000 3000 4000 5000 6000 7000 800010Simulated flight hours0 1000 2000 3000 4000 5000 6000 7000 8000100.10.111<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.<strong>Crack</strong> depth mm.0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch.0.01KSIF 186 450MPa peen + flaw depthKSIF 183 450MPa peen + flaw depthKSIF 178 450MPa peen + flaw depthKSIF 164 450MPa peen + flaw depthKSIF 146 450MPa peen + flaw depth0.0010 5 10 15 20 25IARPO3a + 5ML SpectraA0.00010.01KSIF 186 450MPa peen + EPSKSIF 183 450MPa peen + EPSKSIF 178 450MPa peen + EPSKSIF 164 450MPa peen + EPSKSIF 146 450MPa peen + EPS0.0010 5 10 15 20 25IARPO3a + 5ML SpectraFigure 29 <strong>Crack</strong> growth results for the 450MPa peened specimens where the data <strong>in</strong>cludes the measuredflaw depth; A and Type II EPS; B.B0.000125


DSTO-TR-1477<strong>in</strong> the appropriate regions of a component. Clearly the number of <strong>in</strong>itiation sites must berelatively large for a consistent measure of the crack growth to be made – the fastest cracks need tobe <strong>in</strong>cluded <strong>in</strong> a data set <strong>in</strong> order to be confident of a prediction, or a distribution of the crackgrowth rates for the material must be known. The optimum specimen size for a particular surfacecondition is as yet unknown, although for etch<strong>in</strong>g it would be expected to be considerably smallerthan for peen<strong>in</strong>g s<strong>in</strong>ce etch<strong>in</strong>g produces many etch pits that grow similar sized cracks, Barter,2003, while it rema<strong>in</strong>s unclear as to the density of the peen<strong>in</strong>g flaws <strong>in</strong> these specimens s<strong>in</strong>ce mostof the secondary cracks are very much smaller than the lead cracks.The mean slopes of the KS etched specimens, normalised to an EPS of 0.01mm were calculated andthe results are presented graphed, for one set of etched curves (as an example) and comb<strong>in</strong>ed forall stress levels tested <strong>in</strong> Figure 30. The EPS parameters for the four stress levels (unnormalised),equivalent to the stress levels tested for the peened specimens are presented <strong>in</strong> Table 7.Simulated flight hours0 800 1600 2400 3200 4000 4800 5600 640010Simulated flight hours0 5000 10000 15000 20000100.10.111<strong>Crack</strong> depth mm0.10.01KSIF 105 420MPa + EPSKSIF 121 420MPa + EPSKSIF 136 420MPa + EPSKSIF 171 420MPa + EPSKSIF 173 420MPa + EPSKSIF 180 420MPa + EPS420MPa + EPS mean slop0.0010 5 10 15 20IARPO3a + 5ML Spectra0.010.001<strong>Crack</strong> depth <strong>in</strong>ch0.00010.10.01270MPa + EPS mean slop300MPa + EPS mean slop330MPa + EPS mean slop360MPa + EPS mean slop390MPa + EPS mean slop420MPa + EPS mean slop450MPa + EPS mean slop0.0010 10 20 30 40 50 60 70IARPO3a + 5ML SpectraFigure 30 Mean crack growth curves for one of the families of etched specimen results from Barter, 2003.The second graph shows the mean curves for each stress level <strong>in</strong> the etched specimens.<strong>Crack</strong> depth mm0.010.0010.0001<strong>Crack</strong> depth <strong>in</strong>chThe same process was followed for the peened specimens assum<strong>in</strong>g that the crack growth curveshave only two dist<strong>in</strong>ct exponential phases of growth as discussed above The parameters for theseslopes are shown <strong>in</strong> Table 8. Figure 31 and Figure 32 show the comparison of the mean slopes forthe etched specimens and the peened specimens when the EPS is normalised to 0.01mm. It may benoted that the steep part of the peened specimen curves produces a slope that is very close to theslope of the etched specimens, at the same applied stress level, although always lagg<strong>in</strong>g the etchedspecimens. This <strong>in</strong>dicates that the effect of the peen<strong>in</strong>g is mostly conf<strong>in</strong>ed to the small region nearthe surface, although even after this region is left beh<strong>in</strong>d the crack<strong>in</strong>g proceeds with someretardation evident, possibly due to the surface edges of the crack<strong>in</strong>g still be<strong>in</strong>g <strong>in</strong>fluenced by thepeen<strong>in</strong>g.27


DSTO-TR-1477Table 7Etched specimen calculated growth rate and EPS parametersPeakstresslevel MPaSpecimenNo.Type III EPSa 0(Optimised)Type III slopeβ(Optimised)Average βUs<strong>in</strong>g TypeIII EPS360 KSIF100 0.0271 0.224 0.203KSIF110 0.0253 0.182KSIF129 0.0069 0.242KSIF162 0.026 0.168KSIF198 0.0209 0.197390 KSIF165 0.0085 0.305 0.256KSIF170 0.0228 0.281KSIF181 0.0139 0.266KSIF182 0.0213 0.226KSIF207 0.0394 0.201420 KSIF105 0.0177 0.365 0.380KSIF121 0.0076 0.415KSIF136 0.0129 0.339KSIF171 0.0061 0.392KSIF173 0.0073 0.363KSIF180 0.0059 0.392450 KSID101 0.011 0.489 0.458KSIF103 0.0111 0.408KSIF108 0.0092 0.5KSIF109 0.0207 0.41KSIF126 0.0093 0.482Table 8PeakStressMPa360MPalowerslope)390MPa(lowerslope)420MPa(lowerslope)450MPa(lowerslope)360MPa(higherslope)Calculated growth and EPS parameters for the peened specimensSpecimenNo.Type IV EPSa 0 (mm)Type IVβ (slope)Measureof fit: R 2KSIF 194 0.0651 0.0072 0.944KSIF 107 0.0135 0.0089 0.987KSIF 149 0.1161 0.0110 0.972KSIF 152 0.0095 0.0207 0.999KSIF 167 0.0541 0.0125 0.994KSIF 140 0.0335 0.0419 0.995KSIF 205 0.0711 0.0392 0.994KSIF 118 0.0212 0.0418 0.992KSIF 116 0.0479 0.0377 0.980KSIF 151 0.0261 0.0460 0.986KSIF 142 0.0479 0.1030 0.993KSIF 204 0.0349 0.0838 0.993KSIF 147 0.0270 0.0856 0.985KSIF 193 0.0318 0.0835 0.991KSIF 191 0.0433 0.0891 0.987KSIF 183 0.0309 0.1582 0.998KSIF 178 0.0130 0.3395 0.997KSIF 186 0.0285 0.1651 0.994KSIF 164 0.0110 0.2006 0.996KSIF 146 0.0500 0.1354 0.986KSIF 194 0.0805 0.908KSIF 107 0.1666 0.978KSIF 149 0.1748 0.927KSIF 152 0.0948 0.975KSIF 167 0.1224 0.903log meanof a 0 (mm)averageof βSD oflog a 00.0350 0.0121 0.4670.0363 0.0413 0.2100.0362 0.089 0.1000.0227 0.1998 0.279Average Maxcrack depth(failure) mm.0.1278 5.3828


DSTO-TR-1477390MPa(higherslope)420MPa(higherslope)450MPa(higherslope)KSIF 140 0.1878 0.997KSIF 205 0.2280 0.988KSIF 118 0.2149 0.997KSIF 116 0.2462 0.980KSIF 151 0.2011 0.998KSIF 142 0.3729 0.999KSIF 204 0.2684 0.995KSIF 147 0.2815 0.980KSIF 193 0.2437 0.995KSIF 191 0.3301 0.994KSIF 183 0.3898 0.998KSIF 178 0.013 0.3395 0.989KSIF 186 0.3739 0.996KSIF 164 0.4427 0.998KSIF 146 0.4503 0.9450.2156 4.150.2993 3.630.3993 2.47Note: The a 0 values for the parts of the curve that have the high slope have not been reported s<strong>in</strong>ce they aremean<strong>in</strong>gless because the higher slope only occurred after the crack<strong>in</strong>g had grown through the peenedlayer. The exception is the crack measured <strong>in</strong> Specimen KSIF 178 which did not appear to have been<strong>in</strong>fluenced by the peen<strong>in</strong>g, suggest<strong>in</strong>g the peen<strong>in</strong>g at the orig<strong>in</strong> of this crack was not effective.Simulated flight hours100 40000 80000 120000 1600000.11<strong>Crack</strong> depth mm0.10.01360MPa peened lower slop390MPa peened lower slop420MPa peened lower slop450MPa peened lower slop360MPa peened high slop390MPa peened high slop420MPa peened high slop450MPa peened high slop0.010.0010.0001<strong>Crack</strong> depth <strong>in</strong>ch0.0010 100 200 300 400 500 600IARPO3a + 5ML SpectraFigure 31 Mean crack growth slopes of the peened specimens under various peak stresses split <strong>in</strong>to tworegions: the low <strong>in</strong>itial slope associated with the residual stress retardation and the higher f<strong>in</strong>alslope.29


DSTO-TR-1477Simulated flight hours0 40000 80000 120000 16000010Simulated flight hours0 8000 16000 24000 32000 40000 48000100.10.111<strong>Crack</strong> depth mm0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch<strong>Crack</strong> depth mm0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch0.010.01360MPa etched slop360MPa peened lower slop360MPa peened high slop0.0001390MPa etched slop390MPa peened lower slop390MPa peened high slop0.00010.0010 100 200 300 400 500 600IARPO3a + 5ML Spectra0.0010 50 100 150IARPO3a + 5ML SpectraSimulated flight hours0 5000 10000 15000 2000010Simulated flight hours0 2000 4000 6000 80001010.110.1<strong>Crack</strong> depth mm0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch<strong>Crack</strong> depth mm0.10.010.001<strong>Crack</strong> depth <strong>in</strong>ch0.010.01420MPa etched slop420MPa peened lower slop420MPa peened high slop0.0001450MPa etched slop450MPa peened lower slop450MPa peened high slop0.00010.0010 10 20 30 40 50 60 700.0010 5 10 15 20 25 30IARPO3a + 5ML SpectraIARPO3a + 5ML SpectraFigure 32The slopes from the peened and etched crack growth data show<strong>in</strong>g the similar slope of the etchedcrack growth with the f<strong>in</strong>al slope of the peened specimens.4.5 Comparison of EPS resultsThe EPS results for each EPS Type discussed above are summarised <strong>in</strong> Table 9. These results areplotted aga<strong>in</strong>st each other <strong>in</strong> Figure 33 along with the cumulative probability curves. Thecomparison graphs show that although most of the <strong>in</strong>itial flaws had EPS’s similar to theirmeasured depths there were a considerable number of flaws where this was not the case. ThoseEPS’s higher than the l<strong>in</strong>e on the ‘Type II verus Type I’ and ‘Type IV versus Type I’ plots wereusually associated with long shallow flaws and those lower on these graphs, with short deep flaws(which, s<strong>in</strong>ce the long shallow laps were the dom<strong>in</strong>ant flaw <strong>in</strong> the peened specimens, resulted <strong>in</strong>few po<strong>in</strong>ts significantly below the l<strong>in</strong>es). The Type II and Type IV EPS values appear to be verysimilar, although <strong>in</strong> most cases the Type IV EPS values are larger than the Type II EPS values andas such are considered a more conservative measure of the EPS, notwithstand<strong>in</strong>g theacknowledged level of subjectivity that still rema<strong>in</strong>s <strong>in</strong> their derivation.30


DSTO-TR-1477Table 9Specimen No.A comparison between the different EPS values determ<strong>in</strong>ed for the glass bead peen<strong>in</strong>g ofthe <strong>7050T7451</strong> thick plate studied hereType I EPS(flaw depth)mmType II EPSmm.Type IV EPSmm.% differencebetween Type Iand II EPS% differencebetween Type IIand I VEPS% differencebetween TypeI and IV EPSKSIF 194 0.0884 0.080.06511123 36KSIF 107 0.0064 0.0080.0135-20-41 -53KSIF 149 0.0292 0.10.1161-71-14 -75KSIF 152 0.0092 0.010.0095-85 -3KSIF 167 0.0048 0.050.0541-90-8 -91KSIF 140 0.012 0.030.0335-60-10 -64KSIF 205 0.0324 0.070.0711-54-2 -54KSIF 118 0.0188 0.020.0212-6-6 -11KSIF 116 0.036 0.0450.0479-20-6 -25KSIF 151 0.0368 0.030.02612315 41KSIF 142 0.056 0.050.0479124 17KSIF 204 0.0168 0.030.0349-44-14 -52KSIF 147 0.0308 0.030.027311 14KSIF 193 0.0284 0.030.0318-5-6 -11KSIF 191 0.0208 0.040.0433-48-8 -52KSIF 183 0.028 0.03 0.0309 -7-3 -9KSIF 178 0.013 0.01 0.013 30-23 0KSIF 186 0.0392 0.03 0.0285 315 38KSIF 164 0.0076 0.01 0.011 -24-9 -31KSIF 146 0.0248 0.05 0.05 -500 -50Average %difference -20 -4 -22Also <strong>in</strong>cluded <strong>in</strong> Table 9 are the percentage differences between the different measures of the EPS.Some noteworthy outcomes of this comparison are that the lowest stress level results appear to bethe least consistent from measure to measure and that generally the Type II and IV results are verysimilar as would be expected s<strong>in</strong>ce the Type II results are <strong>in</strong>corporated <strong>in</strong> the calculation of theType IV results. It is also noted that the Type II and IV results had about the same difference withthe measured flaw depth (Type I).The cumulative probability curves for these data suggest a log normal distribution will give agood fit as shown by the fitted exponential curves on the f<strong>in</strong>al graph <strong>in</strong> Figure 33. Us<strong>in</strong>g thefunction used to generate these curve fits it is possible to predict the size of an out-ly<strong>in</strong>g flaw(large flaw of low probability). For <strong>in</strong>stance the 1 <strong>in</strong> 1000 flaw for the three measures of the EPSare listed <strong>in</strong> Table 10 along with the lognormal mean and standard deviation.Table 10The 1 <strong>in</strong> 1000 EPS values predicted for each EPS Type given that the distributions areLognormal. Included are the means and log standard deviations for are of the distributions.Measure of flaw Type Estimated EPS Lognormal Lognormal standardmean mm. deviation SD log (log)I 0.206mm 0.021 0.32II 0.255mm 0.030 0.31IV 0.236mm 0.032 0.2831


DSTO-TR-14770.120.120.10.10.080.080.060.060.040.040.020.0200 0.02 0.04 0.06 0.08 0.1Type I EPS (measured flaw depth) mm.0.1200 0.02 0.04 0.06 0.08 0.1 0.12Type II EPS mm.99.9999.90.1990.080.060.040.0200 0.02 0.04 0.06 0.08 0.1Type I EPS (measured flaw depth) mm.959080705030201051.1Type I EPS (measured flaw depth) mm.Type II EPS mm.Type IV EPS mm..010.001 0.01 0.1 1EPS flaw depth mm.Figure 33Type II EPS plotted aga<strong>in</strong>st the measured <strong>in</strong>itial flaw depth (Type I EPS). Type VI EPS plottedaga<strong>in</strong>st Type I EPS and the Type IV EPS plotted aga<strong>in</strong>st Type II EPS. The l<strong>in</strong>e <strong>in</strong> each graph<strong>in</strong>dicates the one-to-one ratio. F<strong>in</strong>ally the cumulative probability plot for the three types of EPSis shown with the best fit curves.An exam<strong>in</strong>ation of the mean and SD log data given <strong>in</strong> Table 10 along with the plotted data <strong>in</strong> thef<strong>in</strong>al graph of Figure 33 <strong>in</strong>dicates that although the Type II EPS values are on average smaller thanthe Type IV values, the lower Type IV SD log values results <strong>in</strong> the small value at the 1 <strong>in</strong> 1000 EPSsize, which is not all that different to the value predicted by the measurement of the flaw depth. Itmay be that with sufficient data, for the purposes of prediction, the use of the flaw depth <strong>in</strong> thesepeened specimens, and possibly peened F/A-18 structure, may be sufficient for the prediction of aparts life when consider<strong>in</strong>g the 1 <strong>in</strong> 1000 life po<strong>in</strong>t.The size of the 1 <strong>in</strong> 1000 EPSs, although an ‘imag<strong>in</strong>ary’ measure and not an actual crack size,appears to be about the depth where the peen<strong>in</strong>g ceases to be fully effective and on these groundsit may be predicted that there will be <strong>in</strong>stances where complex shaped aircraft components whichhave been ‘repaired’ by peen<strong>in</strong>g will not receive the expected life extension, and therefore be a32


DSTO-TR-1477considerable concern to aircraft structural <strong>in</strong>tegrity. This is borne out by the case where peen<strong>in</strong>gdid not appear to be effective <strong>in</strong> the KSIF178 specimen, as well as previous experience with theFT55 and the FT488/2 full-scale and component tests (Barter, 1996, Ath<strong>in</strong>iotis et. al, 2003). This,while pessimistic about the practical advantage of glass bead peen<strong>in</strong>g for aircraft repair, does notconsider ceramic bead peen<strong>in</strong>g which has been shown (Sharp & Clark, 2001) to produce surfaceswith a reduced scatter <strong>in</strong> their fatigue lives, and thus may produce a considerably smaller 1 <strong>in</strong> 1000EPS than for glass bead peen<strong>in</strong>g.5. ConclusionA series of fatigue coupon tests were carried out to <strong>in</strong>vestigate the effect of glass bead peen<strong>in</strong>g onF/A-18 aircraft <strong>7050T7451</strong> components. This type of surface treatment has been used as a repair toextend the life of many critical regions on several of the fracture critical bulkheads of the aircraft.These tests produced the follow<strong>in</strong>g results:1. The peen<strong>in</strong>g had <strong>in</strong> all cases (<strong>in</strong>clud<strong>in</strong>g KSIF 178) resulted <strong>in</strong> an extension of the specimenlife when compared to the etched specimens from Barter, 2003.2. The peened specimens gave a scatter on life dependent on the peak stress level. The lowerthe stress the higher the scatter.3. The Life Improvement Factor for the peened specimens compared to the etched specimensreported <strong>in</strong> Barter, 2003, varied exponentially with the peak stress level reduc<strong>in</strong>g to noapparent life improvement when the spectrum peak stress level was about the yield stressof the material.4. The crack growth curves for all specimens had growth rates that were well represented bytwo phases of exponential growth, with a early stage of retarded growth as the crack grewthrough the residual stress layer and a faster growth acceleration phase almost as fast asthe growth of crack<strong>in</strong>g without the effect of peen<strong>in</strong>g. A small beneficial effect on thegrowth of the faster phase was noted, although it would need to be further <strong>in</strong>vestigated toconfirm this as a consistent effect.5. All lead cracks had <strong>in</strong>itiated <strong>in</strong> the first applied block of load<strong>in</strong>g. Many other secondarycracks existed <strong>in</strong> the specimens at failure although most of these were very small.6. Several different measures of the effectiveness of the crack <strong>in</strong>itiat<strong>in</strong>g defects <strong>in</strong> the peen<strong>in</strong>gwere evaluated. The Log normal distributions of the measures appeared to be similarwhen used to predict a large flaw of low probability.In general the quantitative fractography gave valuable <strong>in</strong>formation about the nature of the crackgrowth. This allowed a better understand<strong>in</strong>g of the life results and the way that peen<strong>in</strong>g improvedthe fatigue life of these specimens.The estimated pre-crack size (EPS) values calculated <strong>in</strong> this series of tests would appear to showpromise as the start<strong>in</strong>g po<strong>in</strong>t for a fracture mechanics based prediction of life <strong>in</strong> peened <strong>7050T7451</strong>alloy parts.6. AcknowledgementsThe author gratefully acknowledges the work of Chris Niessen and Brian Jones of DSTO-PSL forspecimen preparation and perform<strong>in</strong>g the fatigue tests.33


DSTO-TR-14777. BibliographyAktepe, B. and Dick<strong>in</strong>son, T., Coupon Tests to Determ<strong>in</strong>e the Influence of Buffet Detected at F/A-18 W<strong>in</strong>g Root. DSTO-TR-0924, Department of Defence, Defence Science and TechnologyOrganisation, 2000.Ath<strong>in</strong>iotis, N., Barter, S. A. and Clark, G., Summary of <strong>Fatigue</strong> <strong>Crack</strong><strong>in</strong>g <strong>in</strong> RAAF Macchi MB326HW<strong>in</strong>g Spars. ARL-MAT-TR-0747, AR-010-700, Department of Defence, Defence Science andTechnology Organisation. 1999.Ath<strong>in</strong>iotis, N., Barter, S. A., Bohret, D.D., Green, A.J., Houston M.I. and Stimson, M.G., F<strong>in</strong>alReport for the Component <strong>Fatigue</strong> Test of a F/A-18 Centre Fuselage FS488 Bulkhead - FT488/2,DSTO-TR-0948, Department of Defence, Defence Science and Technology Organisation. 2003.Barter, S. A., FS488 Bulkhead Fracture Surface Prelim<strong>in</strong>ary Fractographic Exam<strong>in</strong>ation, DefectAssessment and Failure Analysis Report M45/90. Department of Defence, Defence Science andTechnology Organisation. 1990a.Barter, S. A., Ath<strong>in</strong>iotis, N. and Lambianidis L., Exam<strong>in</strong>ation of the Microstructure of SeveralSamples of 7050 Alum<strong>in</strong>ium <strong>Alloy</strong>. ARL-MAT-TM-403, AR-006-113, Department of Defence,Defence Science and Technology Organisation. 1990b.Barter, S. A., The use of the Conventional Optical Microscope for Quantitative FractographyMetallography and M<strong>in</strong>eralogy Conference, Institute of Metals and Materials Australasia Limited.1991.Barter, S. A., Bishop, B. and Clark, G., Defect Assessment on F/A-18 488 Bulkhead Tested at ARL.Aircraft Material Report 125, AR-006-618, Department of Defence, Defence Science andTechnology Organisation. 1991.Barter, S. A., Inspection of <strong>Crack</strong><strong>in</strong>g <strong>in</strong> the Starboard Forward Flange 6 <strong>in</strong>ch Radius of FT488/2.DSTO-DDP-0191, Airframes and Eng<strong>in</strong>es Division, Department of Defence, Defence Science andTechnology Organisation. 1996.Barter, S. A., Fractographic Inspection of the <strong>Crack</strong><strong>in</strong>g <strong>in</strong> FT488/2 Removed at Program 79. DSTO-TN-0170. Airframes and Eng<strong>in</strong>es Division, Department of Defence, Defence Science andTechnology Organisation. 1998.Barter, S., Molent, L., Sharp, K. and Clark, G., Repair and Life Assessment of Critical <strong>Fatigue</strong>Damaged Alum<strong>in</strong>ium <strong>Alloy</strong> Structure Us<strong>in</strong>g a Peen<strong>in</strong>g Rework Method. In the proceed<strong>in</strong>gs of theUSAF ASIP Conference, San Antonio USA. 2000.Barter, S. A. and Price, J., Effect of Surface Preparation Treatments on <strong>Fatigue</strong> Life of 7050-Alum<strong>in</strong>ium <strong>Alloy</strong>. Proceed<strong>in</strong>gs of the Structural Integrity and Fracture 2000 Symposium, pp140-153. 2000.34


DSTO-TR-1477Barter, S. A., <strong>Fatigue</strong> <strong>Crack</strong> <strong>Growth</strong> <strong>in</strong> <strong>7050T7451</strong> Alum<strong>in</strong>ium <strong>Alloy</strong> <strong>Thick</strong> <strong>Section</strong> Plate with aSurface Condition Simulat<strong>in</strong>g Some Regions of F/A-18 Structure. DSTO-TR-1458, Department ofDefence, Defence Science and Technology Organisation. 2003.Clayton, J. Q. and Clark, G., The effect of Steel Shot and Glass Bead Peen<strong>in</strong>g Treatments on the<strong>Fatigue</strong> Resistance of 7050-T76351 Alum<strong>in</strong>ium <strong>Alloy</strong>, Proc. Aust. Ftact. Group, Fracture Mechanics<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g Practice, Melbourne. pp44-51. 1988.Clark, G., Modell<strong>in</strong>g Residual Stresses and <strong>Fatigue</strong> <strong>Crack</strong> <strong>Growth</strong> at Cold-Expanded FastenerHoles. <strong>Fatigue</strong> Fract. Engng Mater. Struct. Vol. 14, No. 5, pp. 379-589, 1991.Clark, G. and Clayton, J. Q., Effectiveness of Peen<strong>in</strong>g Treatments <strong>in</strong> Improv<strong>in</strong>g <strong>Fatigue</strong> Resistanceof 7050 Alum<strong>in</strong>ium <strong>Alloy</strong> under Constant Amplitude and Spectrum Load<strong>in</strong>g, Aust. Surface EngngConf., University of Sth. Australia, 1991.Miller, K., The Short <strong>Crack</strong> problem., <strong>Fatigue</strong> Fract. Engng Mater. Struct. Vol. 5, No. 3, pp. 223-232.1982.Molent, L., Ogden, R. and Pell, R., F/A-18 FS488 Bulkhead <strong>Fatigue</strong> Coupon Test Program. DSTO-TR-0941, Airframes and Eng<strong>in</strong>es Division, Department of Defence, Defence Science andTechnology Organisation. 2000.Sharp, P. K. and Clark, G., The Effects of Peen<strong>in</strong>g on the <strong>Fatigue</strong> Life of 7050 Alum<strong>in</strong>ium <strong>Alloy</strong>.DSTO-RR-0208, AR N0. 011-795, Department of Defence, Defence Science and TechnologyOrganisation. 2001.Sharp, P. K, Byrnes, R. and Clark, G., Exam<strong>in</strong>ation of 7050 <strong>Fatigue</strong> <strong>Crack</strong> <strong>Growth</strong> Data and itsEffect on Life Prediction. DSTO-TR-0729, AR-010-648, Department of Defence, Defence Scienceand Technology Organisation. 1998.Sharp, P. K, Clayton, J. Q. and Clark, G., The <strong>Fatigue</strong> Resistance of Peened 7050-T7451 Alum<strong>in</strong>ium<strong>Alloy</strong> – Repair and Re-Treatment of Component Surface, <strong>Fatigue</strong> Fract. Eng Mater Structure. Vol17, No3, pp243-252. 1994.Simpson, D.L., Molent, L., Landry, N., Roussel, J., Graham, A.D. and Schmidt, N., “The Canadianand Australian F/A-18 International Follow-On Structural Test Project”, Proc. ICAS 2002Congress, Toronto, Canada. 2002.Wang, C. H., Barter, S. A. and Liu, Q., A Closure Model to <strong>Crack</strong> <strong>Growth</strong> Under Large-ScaleYield<strong>in</strong>g and Through Residual Stress Fields. Journal of Eng<strong>in</strong>eer<strong>in</strong>g Material and Technology,Vol. 125. 2003.35


DSTO-TR-1477Appendix A: QF measurements for the Peened SpecimensTable A-1. Results of the quantitative fractography on KSIF 194, peak stress 360MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0884 0.0865.5 21282 0.0256 0.114 0.105666.5 21607 0.026 0.1144 0.10668.5 22257 0.0268 0.1152 0.106870.5 22907 0.0276 0.116 0.107672.5 23557 0.0284 0.1168 0.108473.5 23882 0.0292 0.1176 0.109275.5 24531 0.03 0.1184 0.1177.5 25181 0.0308 0.1192 0.110879.5 25831 0.0316 0.12 0.111680.5 26156 0.0328 0.1212 0.112881.5 26481 0.0336 0.122 0.113682.5 26806 0.0344 0.1228 0.114483.5 27131 0.0352 0.1236 0.115284.5 27456 0.0356 0.124 0.115685.5 27781 0.0364 0.1248 0.116486.5 28106 0.0372 0.1256 0.117287.5 28431 0.038 0.1264 0.11888.5 28755 0.0384 0.1268 0.118489.5 29080 0.0396 0.128 0.119690.5 29405 0.0404 0.1288 0.120491.5 29730 0.0416 0.13 0.121692.5 30055 0.0424 0.1308 0.122493.5 30380 0.0432 0.1316 0.123294.5 30705 0.0444 0.1328 0.124495.5 31030 0.0456 0.134 0.125696.5 31355 0.0468 0.1352 0.126897.5 31680 0.0476 0.136 0.127698.5 32005 0.0484 0.1368 0.128499.5 32330 0.05 0.1384 0.13100.5 32654 0.0512 0.1396 0.1312101.5 32979 0.0524 0.1408 0.1324102.5 33304 0.0536 0.142 0.1336103.5 33629 0.0552 0.1436 0.1352104.5 33954 0.0564 0.1448 0.1364105.5 34279 0.0573 0.1457 0.1373106.5 34604 0.0589 0.1473 0.1389107.5 34929 0.0606 0.149 0.1406108.5 35254 0.0622 0.1506 0.1422109.5 35579 0.0648 0.1532 0.1448110.5 35904 0.0672 0.1556 0.1472111.5 36229 0.0697 0.1581 0.1497112.5 36553 0.0721 0.1605 0.1521113.5 36878 0.0743 0.1627 0.1543114.5 37203 0.0772 0.1656 0.1572115.5 37528 0.0805 0.1689 0.1605116.5 37853 0.0831 0.1715 0.1631117.5 38178 0.0886 0.177 0.1686118.5 38503 0.0937 0.1821 0.1737119.5 38828 0.1003 0.1887 0.1803120.5 39153 0.1072 0.1956 0.1872121.5 39478 0.11 0.1984 0.19122.5 39803 0.1193 0.2077 0.1993123.5 40128 0.1279 0.2163 0.2079124.5 40453 0.1374 0.2258 0.2174125.5 40777 0.1476 0.236 0.227636


DSTO-TR-1477126.5 41102 0.1638 0.2522 0.2438127.5 41427 0.1781 0.2665 0.2581128.5 41752 0.1942 0.2826 0.2742129.5 42077 0.2124 0.3008 0.2924130.5 42402 0.2275 0.3159 0.3075131.5 42727 0.253 0.3414 0.333132.5 43052 0.2636 0.352 0.3436133.5 43377 0.2826 0.371 0.3626134.5 43702 0.3103 0.3987 0.3903135.5 44027 0.3313 0.4197 0.4113136.5 44352 0.3623 0.4507 0.4423137.5 44676 0.3973 0.4857 0.4773138.5 45001 0.4284 0.5168 0.5084139.5 45326 0.4709 0.5593 0.5509140.5 45651 0.5195 0.6079 0.5995141.5 45976 0.5801 0.6685 0.6601143.5 46626 0.6817 0.7701 0.7617144.5 46951 0.7435 0.8319 0.8235145.5 47276 0.8181 0.9065 0.8981146.5 47601 0.8897 0.9781 0.9697147.5 47926 0.9878 1.0762 1.0678148.5 48251 1.1356 1.224 1.2156149.5 48576 1.2591 1.3475 1.3391150.5 48900 1.3887 1.4771 1.4687152.5 49550 1.7064 1.7948 1.7864153.5 49875 2.0829 2.1713 2.1629154.5 50200 2.6026 2.691 2.6826155.5 50525 3.4098 3.4982 3.4898156.5 50850 5.4922 5.5806 5.5722Table A-2. Results of the quantitative fractography on KSIF 107, peak stress 360MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0064 0.008144.5 46951 0.0314 0.0378 0.0394145.5 47276 0.0317 0.0381 0.0397156.5 50850 0.0412 0.0476 0.0492157.5 51175 0.042 0.0484 0.05158.5 51500 0.0431 0.0495 0.0511159.5 51825 0.0438 0.0502 0.0518160.5 52150 0.0449 0.0513 0.0529161.5 52475 0.0453 0.0517 0.0533162.5 52800 0.0464 0.0528 0.0544163.5 53124 0.0468 0.0532 0.0548164.5 53449 0.0476 0.054 0.0556165.5 53774 0.0491 0.0555 0.0571166.5 54099 0.0498 0.0562 0.0578167.5 54424 0.0506 0.057 0.0586168.5 54749 0.051 0.0574 0.059169.5 55074 0.0521 0.0585 0.0601170.5 55399 0.0525 0.0589 0.0605171.5 55724 0.0533 0.0597 0.0613172.5 56049 0.054 0.0604 0.062173.5 56374 0.0552 0.0616 0.0632174.5 56699 0.0559 0.0623 0.0639175.5 57023 0.0567 0.0631 0.0647176.5 57348 0.0579 0.0643 0.0659177.5 57673 0.0586 0.065 0.0666178.5 57998 0.0594 0.0658 0.0674179.5 58323 0.0606 0.067 0.0686180.5 58648 0.0617 0.0681 0.0697181.5 58973 0.0625 0.0689 0.070537


DSTO-TR-1477182.5 59298 0.0633 0.0697 0.0713183.5 59623 0.064 0.0704 0.072184.5 59948 0.0648 0.0712 0.0728185.5 60273 0.0656 0.072 0.0736186.5 60598 0.0664 0.0728 0.0744187.5 60922 0.0671 0.0735 0.0751188.5 61247 0.0679 0.0743 0.0759189.5 61572 0.0683 0.0747 0.0763190.5 61897 0.0691 0.0755 0.0771191.5 62222 0.0699 0.0763 0.0779192.5 62547 0.0706 0.077 0.0786193.5 62872 0.0718 0.0782 0.0798194.5 63197 0.0722 0.0786 0.0802195.5 63522 0.0734 0.0798 0.0814196.5 63847 0.0741 0.0805 0.0821197.5 64172 0.0749 0.0813 0.0829198.5 64497 0.0761 0.0825 0.0841199.5 64822 0.0769 0.0833 0.0849200.5 65146 0.0781 0.0845 0.0861201.5 65471 0.0788 0.0852 0.0868202.5 65796 0.08 0.0864 0.088203.5 66121 0.0808 0.0872 0.0888204.5 66446 0.082 0.0884 0.09205.5 66771 0.0828 0.0892 0.0908206.5 67096 0.0835 0.0899 0.0915207.5 67421 0.0847 0.0911 0.0927208.5 67746 0.0851 0.0915 0.0931209.5 68071 0.0863 0.0927 0.0943210.5 68396 0.0871 0.0935 0.0951211.5 68721 0.0875 0.0939 0.0955212.5 69046 0.0883 0.0947 0.0963213.5 69370 0.089 0.0954 0.097214.5 69695 0.0898 0.0962 0.0978215.5 70020 0.0906 0.097 0.0986216.5 70345 0.0914 0.0978 0.0994217.5 70670 0.0918 0.0982 0.0998218.5 70995 0.093 0.0994 0.101219.5 71320 0.0934 0.0998 0.1014220.5 71645 0.0946 0.101 0.1026221.5 71970 0.0954 0.1018 0.1034222.5 72295 0.0961 0.1025 0.1041223.5 72620 0.0969 0.1033 0.1049224.5 72945 0.0981 0.1045 0.1061225.5 73269 0.0989 0.1053 0.1069226.5 73594 0.0997 0.1061 0.1077227.5 73919 0.1009 0.1073 0.1089228.5 74244 0.1017 0.1081 0.1097229.5 74569 0.1025 0.1089 0.1105230.5 74894 0.1032 0.1096 0.1112231.5 75219 0.104 0.1104 0.112232.5 75544 0.1048 0.1112 0.1128233.5 75869 0.1056 0.112 0.1136234.5 76194 0.1064 0.1128 0.1144235.5 76519 0.1072 0.1136 0.1152236.5 76844 0.108 0.1144 0.116237.5 77169 0.1088 0.1152 0.1168238.5 77493 0.1096 0.116 0.1176239.5 77818 0.1104 0.1168 0.1184240.5 78143 0.1112 0.1176 0.1192241.5 78468 0.1119 0.1183 0.1199242.5 78793 0.1127 0.1191 0.1207243.5 79118 0.1139 0.1203 0.1219244.5 79443 0.1147 0.1211 0.1227245.5 79768 0.1155 0.1219 0.1235246.5 80093 0.1167 0.1231 0.1247247.5 80418 0.1183 0.1247 0.126338


DSTO-TR-1477248.5 80743 0.1195 0.1259 0.1275249.5 81068 0.1203 0.1267 0.1283250.5 81392 0.1211 0.1275 0.1291251.5 81717 0.1223 0.1287 0.1303252.5 82042 0.123 0.1294 0.131253.5 82367 0.1238 0.1302 0.1318254.5 82692 0.1246 0.131 0.1326255.5 83017 0.1254 0.1318 0.1334256.5 83342 0.1262 0.1326 0.1342257.5 83667 0.127 0.1334 0.135258.5 83992 0.1278 0.1342 0.1358259.5 84317 0.1282 0.1346 0.1362260.5 84642 0.1294 0.1358 0.1374261.5 84967 0.1298 0.1362 0.1378262.5 85291 0.131 0.1374 0.139263.5 85616 0.1314 0.1378 0.1394264.5 85941 0.1322 0.1386 0.1402265.5 86266 0.133 0.1394 0.141266.5 86591 0.1342 0.1406 0.1422267.5 86916 0.135 0.1414 0.143268.5 87241 0.1357 0.1421 0.1437269.5 87566 0.1365 0.1429 0.1445270.5 87891 0.1373 0.1437 0.1453271.5 88216 0.1381 0.1445 0.1461272.5 88541 0.1389 0.1453 0.1469273.5 88866 0.1397 0.1461 0.1477274.5 89191 0.1406 0.147 0.1486275.5 89515 0.1414 0.1478 0.1494276.5 89840 0.1422 0.1486 0.1502277.5 90165 0.143 0.1494 0.151278.5 90490 0.1438 0.1502 0.1518279.5 90815 0.1445 0.1509 0.1525280.5 91140 0.1453 0.1517 0.1533281.5 91465 0.1461 0.1525 0.1541282.5 91790 0.1469 0.1533 0.1549283.5 92115 0.1473 0.1537 0.1553284.5 92440 0.1481 0.1545 0.1561285.5 92765 0.1497 0.1561 0.1577286.5 93090 0.1517 0.1581 0.1597287.5 93414 0.1525 0.1589 0.1605288.5 93739 0.1541 0.1605 0.1621289.5 94064 0.1553 0.1617 0.1633290.5 94389 0.1565 0.1629 0.1645291.5 94714 0.1577 0.1641 0.1657292.5 95039 0.1593 0.1657 0.1673293.5 95364 0.1609 0.1673 0.1689294.5 95689 0.1629 0.1693 0.1709295.5 96014 0.1645 0.1709 0.1725296.5 96339 0.1661 0.1725 0.1741297.5 96664 0.1669 0.1733 0.1749298.5 96989 0.1685 0.1749 0.1765299.5 97314 0.1705 0.1769 0.1785300.5 97638 0.1725 0.1789 0.1805301.5 97963 0.1741 0.1805 0.1821302.5 98288 0.1765 0.1829 0.1845303.5 98613 0.1777 0.1841 0.1857304.5 98938 0.1797 0.1861 0.1877305.5 99263 0.1813 0.1877 0.1893306.5 99588 0.1829 0.1893 0.1909307.5 99913 0.1837 0.1901 0.1917308.5 1.00E+05 0.1861 0.1925 0.1941309.5 1.01E+05 0.1885 0.1949 0.1965310.5 1.01E+05 0.1905 0.1969 0.1985311.5 1.01E+05 0.1921 0.1985 0.2001312.5 1.02E+05 0.1944 0.2008 0.2024313.5 1.02E+05 0.1968 0.2032 0.204839


DSTO-TR-1477314.5 1.02E+05 0.1992 0.2056 0.2072315.5 1.03E+05 0.2012 0.2076 0.2092316.5 1.03E+05 0.2036 0.21 0.2116317.5 1.03E+05 0.206 0.2124 0.214318.5 1.03E+05 0.21 0.2164 0.218319.5 1.04E+05 0.2124 0.2188 0.2204320.5 1.04E+05 0.2156 0.222 0.2236321.5 1.04E+05 0.2184 0.2248 0.2264322.5 1.05E+05 0.2212 0.2276 0.2292323.5 1.05E+05 0.2244 0.2308 0.2324324.5 1.05E+05 0.2272 0.2336 0.2352325.5 1.06E+05 0.2304 0.2368 0.2384326.5 1.06E+05 0.234 0.2404 0.242327.5 1.06E+05 0.2376 0.244 0.2456328.5 1.07E+05 0.2416 0.248 0.2496329.5 1.07E+05 0.246 0.2524 0.254330.5 1.07E+05 0.2504 0.2568 0.2584331.5 1.08E+05 0.2568 0.2632 0.2648332.5 1.08E+05 0.262 0.2684 0.27333.5 1.08E+05 0.27 0.2764 0.278334.5 1.09E+05 0.276 0.2824 0.284335.5 1.09E+05 0.2828 0.2892 0.2908336.5 1.09E+05 0.29 0.2964 0.298337.5 1.10E+05 0.3008 0.3072 0.3088338.5 1.10E+05 0.3103 0.3167 0.3183339.5 1.10E+05 0.3191 0.3255 0.3271340.5 1.11E+05 0.3391 0.3455 0.3471341.5 1.11E+05 0.3739 0.3803 0.3819342.5 1.11E+05 0.4051 0.4115 0.4131343.5 1.12E+05 0.4487 0.4551 0.4567344.5 1.12E+05 0.5054 0.5118 0.5134345.5 1.12E+05 0.5754 0.5818 0.5834346.5 1.13E+05 0.6646 0.671 0.6726347.5 1.13E+05 0.7695 0.7759 0.7775348.5 1.13E+05 0.915 0.9214 0.923349.5 1.14E+05 1.1204 1.1268 1.1284350.5 1.14E+05 1.4316 1.438 1.4396351.5 1.14E+05 1.8921 1.8985 1.9001354.5 1.15E+05 3.905 3.9114 3.913Table A-3. Results of the quantitative fractography on KSIF 149, peak stress 360MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0292 0.10.5 162.46 0.002 0.0312 0.1021.5 487.38 0.0044 0.0336 0.10443.5 1137.2 0.0076 0.0368 0.10765.5 1787.1 0.0108 0.04 0.11087.5 2436.9 0.0148 0.044 0.114815.5 5036.3 0.0361 0.0653 0.136116.5 5361.2 0.0393 0.0685 0.139318.5 6011 0.0438 0.073 0.143819.5 6335.9 0.0458 0.075 0.145820.5 6660.9 0.0488 0.078 0.148821.5 6985.8 0.0512 0.0804 0.151222.5 7310.7 0.0536 0.0828 0.153624.5 7960.5 0.0596 0.0888 0.159625.5 8285.5 0.0619 0.0911 0.161926.5 8610.4 0.0639 0.0931 0.163927.5 8935.3 0.0654 0.0946 0.165428.5 9260.2 0.0674 0.0966 0.167429.5 9585.1 0.069 0.0982 0.16940


DSTO-TR-147730.5 9910.1 0.0713 0.1005 0.171331.5 10235 0.0737 0.1029 0.173732.5 10560 0.0756 0.1048 0.175633.5 10885 0.078 0.1072 0.17834.5 11210 0.0804 0.1096 0.180435.5 11535 0.0819 0.1111 0.181936.5 11860 0.0831 0.1123 0.183137.5 12185 0.0847 0.1139 0.184738.5 12509 0.0871 0.1163 0.187140.5 13159 0.093 0.1222 0.19341.5 13484 0.0948 0.124 0.194842.5 13809 0.0964 0.1256 0.196443.5 14134 0.0994 0.1286 0.199444.5 14459 0.1019 0.1311 0.201945.5 14784 0.1035 0.1327 0.203546.5 15109 0.105 0.1342 0.20547.5 15434 0.1068 0.136 0.206848.5 15759 0.1078 0.137 0.207849.5 16084 0.1093 0.1385 0.209350.5 16408 0.111 0.1402 0.21151.5 16733 0.113 0.1422 0.21352.5 17058 0.1148 0.144 0.214853.5 17383 0.1162 0.1454 0.216254.5 17708 0.1173 0.1465 0.217355.5 18033 0.1194 0.1486 0.219456.5 18358 0.1211 0.1503 0.221157.5 18683 0.1232 0.1524 0.223258.5 19008 0.1244 0.1536 0.224459.5 19333 0.1263 0.1555 0.226360.5 19658 0.1279 0.1571 0.227961.5 19983 0.1302 0.1594 0.230262.5 20307 0.1323 0.1615 0.232363.5 20632 0.1335 0.1627 0.233564.5 20957 0.1353 0.1645 0.235365.5 21282 0.1374 0.1666 0.237466.5 21607 0.139 0.1682 0.23967.5 21932 0.1406 0.1698 0.240668.5 22257 0.1433 0.1725 0.243369.5 22582 0.1448 0.174 0.244870.5 22907 0.1468 0.176 0.246871.5 23232 0.1487 0.1779 0.248772.5 23557 0.1497 0.1789 0.249773.5 23882 0.1506 0.1798 0.250674.5 24207 0.1528 0.182 0.252875.5 24531 0.1546 0.1838 0.254676.5 24856 0.1562 0.1854 0.256277.5 25181 0.1578 0.187 0.257878.5 25506 0.1591 0.1883 0.259179.5 25831 0.1615 0.1907 0.261580.5 26156 0.1643 0.1935 0.264381.5 26481 0.1674 0.1966 0.267482.5 26806 0.1691 0.1983 0.269183.5 27131 0.1719 0.2011 0.271984.5 27456 0.1751 0.2043 0.275185.5 27781 0.1782 0.2074 0.278286.5 28106 0.1807 0.2099 0.280787.5 28431 0.1843 0.2135 0.284388.5 28755 0.1872 0.2164 0.287289.5 29080 0.1902 0.2194 0.290290.5 29405 0.1959 0.2251 0.295991.5 29730 0.2004 0.2296 0.300492.5 30055 0.205 0.2342 0.30593.5 30380 0.2089 0.2381 0.308994.5 30705 0.2132 0.2424 0.313295.5 31030 0.2144 0.2436 0.314496.5 31355 0.2198 0.249 0.319841


DSTO-TR-147797.5 31680 0.226 0.2552 0.32698.5 32005 0.2307 0.2599 0.330799.5 32330 0.2369 0.2661 0.3369100.5 32654 0.2436 0.2728 0.3436101.5 32979 0.2502 0.2794 0.3502102.5 33304 0.2572 0.2864 0.3572103.5 33629 0.2631 0.2923 0.3631104.5 33954 0.2713 0.3005 0.3713105.5 34279 0.278 0.3072 0.378106.5 34604 0.291 0.3202 0.391107.5 34929 0.3044 0.3336 0.4044108.5 35254 0.3189 0.3481 0.4189109.5 35579 0.3434 0.3726 0.4434110.5 35904 0.3705 0.3997 0.4705111.5 36229 0.4179 0.4471 0.5179112.5 36553 0.4563 0.4855 0.5563113.5 36878 0.4989 0.5281 0.5989114.5 37203 0.5555 0.5847 0.6555115.5 37528 0.5978 0.627 0.6978116.5 37853 0.6592 0.6884 0.7592117.5 38178 0.7313 0.7605 0.8313118.5 38503 0.844 0.8732 0.944119.5 38828 0.9901 1.0193 1.0901120.5 39153 1.1994 1.2286 1.2994121.5 39478 1.5298 1.559 1.6298122.5 39803 1.9676 1.9968 2.0676123.5 40128 2.6741 2.7033 2.7741124.5 40453 4.0683 4.0975 4.1683125.2 40680 6.3938 6.423 6.4938Table A-4. Results of the quantitative fractography on KSIF 152, peak stress 360MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0092 0.0176.5 24856 0.0371 0.0463 0.047177.5 25181 0.0379 0.0471 0.047978.5 25506 0.0383 0.0475 0.048379.5 25831 0.039 0.0482 0.04980.5 26156 0.0402 0.0494 0.050281.5 26481 0.0406 0.0498 0.050682.5 26806 0.0414 0.0506 0.051483.5 27131 0.0426 0.0518 0.052684.5 27456 0.0434 0.0526 0.053485.5 27781 0.0446 0.0538 0.054686.5 28106 0.0458 0.055 0.055887.5 28431 0.0466 0.0558 0.056688.5 28755 0.0474 0.0566 0.057489.5 29080 0.0486 0.0578 0.058690.5 29405 0.0502 0.0594 0.060291.5 29730 0.051 0.0602 0.06192.5 30055 0.0526 0.0618 0.062693.5 30380 0.0534 0.0626 0.063494.5 30705 0.055 0.0642 0.06595.5 31030 0.0566 0.0658 0.066696.5 31355 0.0582 0.0674 0.068297.5 31680 0.0598 0.069 0.069898.5 32005 0.0614 0.0706 0.071499.5 32330 0.0626 0.0718 0.0726100.5 32654 0.0642 0.0734 0.0742101.5 32979 0.0673 0.0765 0.0773102.5 33304 0.0689 0.0781 0.0789103.5 33629 0.0709 0.0801 0.080942


DSTO-TR-1477104.5 33954 0.0733 0.0825 0.0833105.5 34279 0.0753 0.0845 0.0853106.5 34604 0.0781 0.0873 0.0881107.5 34929 0.0797 0.0889 0.0897108.5 35254 0.0821 0.0913 0.0921109.5 35579 0.0829 0.0921 0.0929110.5 35904 0.0853 0.0945 0.0953111.5 36229 0.0877 0.0969 0.0977112.5 36553 0.0905 0.0997 0.1005113.5 36878 0.0929 0.1021 0.1029114.5 37203 0.0949 0.1041 0.1049115.5 37528 0.0965 0.1057 0.1065116.5 37853 0.0997 0.1089 0.1097117.5 38178 0.1017 0.1109 0.1117118.5 38503 0.1033 0.1125 0.1133119.5 38828 0.1069 0.1161 0.1169120.5 39153 0.1093 0.1185 0.1193121.5 39478 0.1117 0.1209 0.1217122.5 39803 0.1149 0.1241 0.1249123.5 40128 0.1177 0.1269 0.1277124.5 40453 0.1209 0.1301 0.1309125.5 40777 0.1237 0.1329 0.1337126.5 41102 0.1269 0.1361 0.1369127.5 41427 0.1293 0.1385 0.1393128.5 41752 0.1317 0.1409 0.1417129.5 42077 0.1337 0.1429 0.1437130.5 42402 0.1361 0.1453 0.1461131.5 42727 0.1385 0.1477 0.1485132.5 43052 0.1413 0.1505 0.1513133.5 43377 0.1441 0.1533 0.1541134.5 43702 0.1469 0.1561 0.1569135.5 44027 0.1493 0.1585 0.1593136.5 44352 0.1509 0.1601 0.1609137.5 44676 0.1549 0.1641 0.1649138.5 45001 0.1577 0.1669 0.1677139.5 45326 0.1601 0.1693 0.1701140.5 45651 0.1637 0.1729 0.1737141.5 45976 0.1661 0.1753 0.1761142.5 46301 0.1689 0.1781 0.1789143.5 46626 0.1725 0.1817 0.1825144.5 46951 0.1765 0.1857 0.1865145.5 47276 0.1797 0.1889 0.1897146.5 47601 0.1821 0.1913 0.1921147.5 47926 0.1857 0.1949 0.1957148.5 48251 0.1901 0.1993 0.2001149.5 48576 0.1956 0.2048 0.2056150.5 48900 0.1976 0.2068 0.2076151.5 49225 0.2016 0.2108 0.2116152.5 49550 0.2064 0.2156 0.2164153.5 49875 0.2124 0.2216 0.2224154.5 50200 0.2168 0.226 0.2268155.5 50525 0.2244 0.2336 0.2344156.5 50850 0.2304 0.2396 0.2404157.5 51175 0.236 0.2452 0.246158.5 51500 0.2448 0.254 0.2548159.5 51825 0.2536 0.2628 0.2636160.5 52150 0.2636 0.2728 0.2736161.5 52475 0.2752 0.2844 0.2852162.5 52800 0.286 0.2952 0.296163.5 53124 0.2956 0.3048 0.3056164.5 53449 0.3112 0.3204 0.3212165.5 53774 0.3264 0.3356 0.3364166.5 54099 0.3424 0.3516 0.3524167.5 54424 0.3644 0.3736 0.3744168.5 54749 0.384 0.3932 0.394169.5 55074 0.4084 0.4176 0.418443


DSTO-TR-1477170.5 55399 0.4357 0.4449 0.4457171.5 55724 0.4638 0.473 0.4738172.5 56049 0.4943 0.5035 0.5043173.5 56374 0.5254 0.5346 0.5354174.5 56699 0.5675 0.5767 0.5775175.5 57023 0.6112 0.6204 0.6212176.5 57348 0.6573 0.6665 0.6673177.5 57673 0.7208 0.73 0.7308178.5 57998 0.7857 0.7949 0.7957179.5 58323 0.8591 0.8683 0.8691180.5 58648 0.9432 0.9524 0.9532181.5 58973 1.0599 1.0691 1.0699182.5 59298 1.195 1.2042 1.205183.5 59623 1.4078 1.417 1.4178186.5 60598 2.1082 2.1174 2.1182189.5 61572 3.7248 3.734 3.7348190.5 61897 4.5386 4.5478 4.5486191.5 62222 5.0389 5.0481 5.0489192.2 62450 5.504 5.5132 5.514Table A-5. Results of the quantitative fractography on KSIF 167, peak stress 360MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0048 0.055.5 1787.1 0.0092 0.014 0.05926.5 2112 0.0104 0.0152 0.06047.5 2436.9 0.0112 0.016 0.06128.5 2761.8 0.012 0.0168 0.0629.5 3086.7 0.0132 0.018 0.063210.5 3411.7 0.0144 0.0192 0.064411.5 3736.6 0.0152 0.02 0.065212.5 4061.5 0.0164 0.0212 0.066413.5 4386.4 0.0172 0.022 0.067214.5 4711.3 0.018 0.0228 0.06815.5 5036.3 0.0188 0.0236 0.068816.5 5361.2 0.0196 0.0244 0.069617.5 5686.1 0.0204 0.0252 0.070418.5 6011 0.0212 0.026 0.071219.5 6335.9 0.022 0.0268 0.07220.5 6660.9 0.0228 0.0276 0.072821.5 6985.8 0.0232 0.028 0.073222.5 7310.7 0.024 0.0288 0.07423.5 7635.6 0.0256 0.0304 0.075624.5 7960.5 0.0268 0.0316 0.076825.5 8285.5 0.0288 0.0336 0.078826.5 8610.4 0.03 0.0348 0.0827.5 8935.3 0.0308 0.0356 0.080828.5 9260.2 0.032 0.0368 0.08229.5 9585.1 0.0324 0.0372 0.082430.5 9910.1 0.0328 0.0376 0.082831.5 10235 0.0336 0.0384 0.083632.5 10560 0.034 0.0388 0.08433.5 10885 0.0344 0.0392 0.084434.5 11210 0.0348 0.0396 0.084835.5 11535 0.0356 0.0404 0.085636.5 11860 0.0364 0.0412 0.086437.5 12185 0.0372 0.042 0.087238.5 12509 0.038 0.0428 0.08839.5 12834 0.0388 0.0436 0.088840.5 13159 0.0396 0.0444 0.089641.5 13484 0.0404 0.0452 0.090442.5 13809 0.0412 0.046 0.091244


DSTO-TR-147743.5 14134 0.042 0.0468 0.09244.5 14459 0.0428 0.0476 0.092845.5 14784 0.0436 0.0484 0.093646.5 15109 0.0444 0.0492 0.094447.5 15434 0.0452 0.05 0.095248.5 15759 0.046 0.0508 0.09649.5 16084 0.0468 0.0516 0.096850.5 16408 0.048 0.0528 0.09851.5 16733 0.0488 0.0536 0.098852.5 17058 0.0496 0.0544 0.099653.5 17383 0.0508 0.0556 0.100854.5 17708 0.0516 0.0564 0.101655.5 18033 0.0524 0.0572 0.102456.5 18358 0.0536 0.0584 0.103657.5 18683 0.0544 0.0592 0.104458.5 19008 0.0552 0.06 0.105259.5 19333 0.0564 0.0612 0.106460.5 19658 0.058 0.0628 0.10861.5 19983 0.0596 0.0644 0.109662.5 20307 0.0612 0.066 0.111263.5 20632 0.0624 0.0672 0.112464.5 20957 0.064 0.0688 0.11465.5 21282 0.0656 0.0704 0.115666.5 21607 0.0673 0.0721 0.117367.5 21932 0.0697 0.0745 0.119768.5 22257 0.0713 0.0761 0.121369.5 22582 0.073 0.0778 0.12370.5 22907 0.075 0.0798 0.12571.5 23232 0.0775 0.0823 0.127572.5 23557 0.08 0.0848 0.1373.5 23882 0.0823 0.0871 0.132374.5 24207 0.0841 0.0889 0.134175.5 24531 0.0858 0.0906 0.135876.5 24856 0.0875 0.0923 0.137577.5 25181 0.0895 0.0943 0.139578.5 25506 0.0911 0.0959 0.141179.5 25831 0.0933 0.0981 0.143380.5 26156 0.0956 0.1004 0.145681.5 26481 0.0978 0.1026 0.147882.5 26806 0.0994 0.1042 0.149483.5 27131 0.102 0.1068 0.15284.5 27456 0.1039 0.1087 0.153985.5 27781 0.1066 0.1114 0.156686.5 28106 0.1082 0.113 0.158287.5 28431 0.1093 0.1141 0.159388.5 28755 0.1117 0.1165 0.161789.5 29080 0.1142 0.119 0.164290.5 29405 0.1163 0.1211 0.166391.5 29730 0.1179 0.1227 0.167992.5 30055 0.1198 0.1246 0.169893.5 30380 0.1219 0.1267 0.171994.5 30705 0.1243 0.1291 0.174395.5 31030 0.1278 0.1326 0.177896.5 31355 0.1312 0.136 0.181297.5 31680 0.1326 0.1374 0.182698.5 32005 0.136 0.1408 0.18699.5 32330 0.1391 0.1439 0.1891100.5 32654 0.1392 0.144 0.1892101.5 32979 0.142 0.1468 0.192102.5 33304 0.1435 0.1483 0.1935103.5 33629 0.1452 0.15 0.1952104.5 33954 0.1475 0.1523 0.1975105.5 34279 0.1497 0.1545 0.1997106.5 34604 0.152 0.1568 0.202107.5 34929 0.1547 0.1595 0.2047108.5 35254 0.1566 0.1614 0.206645


DSTO-TR-1477109.5 35579 0.1605 0.1653 0.2105110.5 35904 0.1653 0.1701 0.2153111.5 36229 0.1697 0.1745 0.2197112.5 36553 0.1733 0.1781 0.2233113.5 36878 0.1757 0.1805 0.2257114.5 37203 0.1776 0.1824 0.2276115.5 37528 0.1808 0.1856 0.2308116.5 37853 0.1852 0.19 0.2352117.5 38178 0.1916 0.1964 0.2416118.5 38503 0.1932 0.198 0.2432119.5 38828 0.1981 0.2029 0.2481120.5 39153 0.199 0.2038 0.249121.5 39478 0.2039 0.2087 0.2539122.5 39803 0.2078 0.2126 0.2578123.5 40128 0.2118 0.2166 0.2618124.5 40453 0.2187 0.2235 0.2687125.5 40777 0.2258 0.2306 0.2758126.5 41102 0.2387 0.2435 0.2887127.5 41427 0.2457 0.2505 0.2957128.5 41752 0.2533 0.2581 0.3033129.5 42077 0.2631 0.2679 0.3131130.5 42402 0.2782 0.283 0.3282131.5 42727 0.2943 0.2991 0.3443132.5 43052 0.3163 0.3211 0.3663133.5 43377 0.327 0.3318 0.377134.5 43702 0.3551 0.3599 0.4051135.5 44027 0.3965 0.4013 0.4465136.5 44352 0.4399 0.4447 0.4899137.5 44676 0.4619 0.4667 0.5119138.5 45001 0.5183 0.5231 0.5683139.5 45326 0.5598 0.5646 0.6098140.5 45651 0.6031 0.6079 0.6531141.5 45976 0.6501 0.6549 0.7001142.5 46301 0.7115 0.7163 0.7615143.5 46626 0.7956 0.8004 0.8456144.5 46951 0.9066 0.9114 0.9566145.5 47276 1.0413 1.0461 1.0913146.5 47601 1.2265 1.2313 1.2765147.5 47926 1.4566 1.4614 1.5066148.5 48251 1.9603 1.9651 2.0103149.5 48576 2.801 2.8058 2.851150.5 48900 3.9129 3.9177 3.9629150.74 48978 5.3467 5.3515 5.3967Table A-6. Results of the quantitative fractography on KSIF 140, peak stress 390MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.012 0.032.5 974.76 0.0051 0.0171 0.03513.5 1299.7 0.0058 0.0178 0.03584.5 1624.6 0.0066 0.0186 0.03665.5 1949.5 0.0082 0.0202 0.03826.5 2274.4 0.0093 0.0213 0.03937.5 2599.4 0.0109 0.0229 0.04098.5 2924.3 0.0138 0.0258 0.04389.5 3249.2 0.016 0.028 0.04610.5 3574.1 0.0178 0.0298 0.047811.5 3899 0.0204 0.0324 0.050412.5 4224 0.0258 0.0378 0.055813.5 4548.9 0.0297 0.0417 0.059714.5 4873.8 0.0337 0.0457 0.063715.5 5198.7 0.037 0.049 0.06746


DSTO-TR-147716.5 5523.6 0.0406 0.0526 0.070617.5 5848.6 0.0467 0.0587 0.076718.5 6173.5 0.0493 0.0613 0.079319.5 6498.4 0.0538 0.0658 0.083820.5 6823.3 0.0578 0.0698 0.087821.5 7148.2 0.061 0.073 0.09122.5 7473.2 0.0636 0.0756 0.093623.5 7798.1 0.0687 0.0807 0.098724.5 8123 0.073 0.085 0.10325.5 8447.9 0.0773 0.0893 0.107326.5 8772.8 0.0827 0.0947 0.112727.5 9097.8 0.0863 0.0983 0.116328.5 9422.7 0.0914 0.1034 0.121429.5 9747.6 0.0948 0.1068 0.124830.5 10073 0.0987 0.1107 0.128731.5 10397 0.1057 0.1177 0.135732.5 10722 0.1097 0.1217 0.139733.5 11047 0.1144 0.1264 0.144434.5 11372 0.1207 0.1327 0.150735.5 11697 0.1258 0.1378 0.155836.5 12022 0.1312 0.1432 0.161237.5 12347 0.1367 0.1487 0.166738.5 12672 0.1407 0.1527 0.170739.5 12997 0.1443 0.1563 0.174340.5 13322 0.1502 0.1622 0.180241.5 13647 0.155 0.167 0.18542.5 13972 0.1629 0.1749 0.192943.5 14296 0.1699 0.1819 0.199944.5 14621 0.1761 0.1881 0.206145.5 14946 0.184 0.196 0.21446.5 15271 0.1906 0.2026 0.220647.5 15596 0.1992 0.2112 0.229248.5 15921 0.209 0.221 0.23949.5 16246 0.2168 0.2288 0.246850.5 16571 0.2259 0.2379 0.255951.5 16896 0.2379 0.2499 0.267952.5 17221 0.2507 0.2627 0.280753.5 17546 0.2686 0.2806 0.298654.5 17871 0.2867 0.2987 0.316755.5 18196 0.3111 0.3231 0.341156.5 18520 0.3427 0.3547 0.372757.5 18845 0.3832 0.3952 0.413258.5 19170 0.4333 0.4453 0.463359.5 19495 0.518 0.53 0.54861.5 20145 0.8229 0.8349 0.852963.5 20795 1.1281 1.1401 1.158164.5 21120 1.413 1.425 1.44366.5 21770 2.1305 2.1425 2.160568.5 22419 3.3209 3.3329 3.350969.5 22744 4.3788 4.3908 4.408870.5 22907 5.091 5.103 5.121Table A-7. Results of the quantitative fractography on KSIF 205, peak stress 390MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0324 0.071.5 487.38 0.002 0.0344 0.0722.5 812.3 0.004 0.0364 0.0743.5 1137.2 0.0068 0.0392 0.07684.5 1462.1 0.0092 0.0416 0.07925.5 1787.1 0.012 0.0444 0.0826.5 2112 0.0168 0.0492 0.086847


DSTO-TR-14777.5 2436.9 0.0204 0.0528 0.09048.5 2761.8 0.0232 0.0556 0.09329.5 3086.7 0.0288 0.0612 0.098810.5 3411.7 0.0356 0.068 0.105611.5 3736.6 0.0388 0.0712 0.108812.5 4061.5 0.046 0.0784 0.11613.5 4386.4 0.0516 0.084 0.121614.5 4711.3 0.0564 0.0888 0.126415.5 5036.3 0.0628 0.0952 0.132816.5 5361.2 0.0672 0.0996 0.137217.5 5686.1 0.0722 0.1046 0.142218.5 6011 0.0786 0.111 0.148619.5 6335.9 0.0822 0.1146 0.152220.5 6660.9 0.0882 0.1206 0.158221.5 6985.8 0.0926 0.125 0.162622.5 7310.7 0.0986 0.131 0.168623.5 7635.6 0.1042 0.1366 0.174224.5 7960.5 0.1094 0.1418 0.179425.5 8285.5 0.1142 0.1466 0.184226.5 8610.4 0.1178 0.1502 0.187827.5 8935.3 0.1225 0.1549 0.192528.5 9260.2 0.1289 0.1613 0.198929.5 9585.1 0.1365 0.1689 0.206530.5 9910.1 0.1433 0.1757 0.213331.5 10235 0.1537 0.1861 0.223732.5 10560 0.1617 0.1941 0.231733.5 10885 0.1713 0.2037 0.241334.5 11210 0.1833 0.2157 0.253335.5 11535 0.1957 0.2281 0.265736.5 11860 0.2109 0.2433 0.280937.5 12185 0.2261 0.2585 0.296138.5 12509 0.2457 0.2781 0.315739.5 12834 0.2661 0.2985 0.336140.5 13159 0.2893 0.3217 0.359341.5 13484 0.3125 0.3449 0.382542.5 13809 0.3445 0.3769 0.414543.5 14134 0.3852 0.4176 0.455244.5 14459 0.4608 0.4932 0.530845.5 14784 0.5643 0.5967 0.634346.5 15109 0.668 0.7004 0.73847.5 15434 0.8125 0.8449 0.882548.5 15759 1.0824 1.1148 1.152449.5 16084 1.4658 1.4982 1.535850.5 16408 2.0536 2.086 2.123651.5 16733 2.9335 2.9659 3.003552.2 16961 3.5692 3.6016 3.6392Table A-8. Results of the quantitative fractography on KSIF 118, peak stress 390MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0188 0.020.5 162.46 0.0016 0.0204 0.02162.5 812.3 0.004 0.0228 0.0244.5 1462.1 0.0056 0.0244 0.02565.5 1787.1 0.0072 0.026 0.02726.5 2112 0.0088 0.0276 0.02888.5 2761.8 0.0116 0.0304 0.031610.5 3411.7 0.014 0.0328 0.03411.5 3736.6 0.0156 0.0344 0.035612.5 4061.5 0.0172 0.036 0.037214.5 4711.3 0.0204 0.0392 0.040416.5 5361.2 0.0232 0.042 0.043248


DSTO-TR-147718.5 6011 0.0264 0.0452 0.046420.5 6660.9 0.0292 0.048 0.049221.5 6985.8 0.032 0.0508 0.05222.5 7310.7 0.0344 0.0532 0.054424.5 7960.5 0.0376 0.0564 0.057626.5 8610.4 0.0408 0.0596 0.060828.5 9260.2 0.0476 0.0664 0.067629.5 9585.1 0.0512 0.07 0.071234.5 11210 0.0698 0.0886 0.089836.5 11860 0.0752 0.094 0.095237.5 12185 0.0796 0.0984 0.099638.5 12509 0.0852 0.104 0.105239.5 12834 0.0908 0.1096 0.110840.5 13159 0.0972 0.116 0.117241.5 13484 0.1008 0.1196 0.120842.5 13809 0.106 0.1248 0.12643.5 14134 0.1104 0.1292 0.130444.5 14459 0.1176 0.1364 0.137645.5 14784 0.1228 0.1416 0.142846.5 15109 0.1264 0.1452 0.146447.5 15434 0.1308 0.1496 0.150848.5 15759 0.1348 0.1536 0.154849.5 16084 0.1396 0.1584 0.159650.5 16408 0.146 0.1648 0.16651.5 16733 0.152 0.1708 0.17252.5 17058 0.16 0.1788 0.1853.5 17383 0.166 0.1848 0.18654.5 17708 0.1728 0.1916 0.192855.5 18033 0.1792 0.198 0.199256.5 18358 0.1888 0.2076 0.208857.5 18683 0.1972 0.216 0.217258.5 19008 0.2064 0.2252 0.226459.5 19333 0.2168 0.2356 0.236860.5 19658 0.2344 0.2532 0.254461.5 19983 0.2464 0.2652 0.266462.5 20307 0.2652 0.284 0.285263.5 20632 0.2848 0.3036 0.304864.5 20957 0.308 0.3268 0.32865.5 21282 0.3326 0.3514 0.352666.5 21607 0.355 0.3738 0.37567.5 21932 0.3794 0.3982 0.399468.5 22257 0.4034 0.4222 0.423469.5 22582 0.429 0.4478 0.44970.5 22907 0.4628 0.4816 0.482871.5 23232 0.507 0.5258 0.52772.5 23557 0.5883 0.6071 0.608373.5 23882 0.7708 0.7896 0.790874.5 24207 0.9631 0.9819 0.983175.5 24531 1.1784 1.1972 1.198476.5 24856 1.4513 1.4701 1.471377.5 25181 1.861 1.8798 1.88178.5 25506 2.5415 2.5603 2.561579.5 25831 3.1274 3.1462 3.147480.5 26156 3.5793 3.5981 3.5993Table A-9. Results of the quantitative fractography on KSIF 116, peak stress 390MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.036 0.0450.5 162.46 0.0056 0.0416 0.05061.5 487.38 0.0076 0.0436 0.05262.5 812.3 0.0092 0.0452 0.054249


DSTO-TR-14773.5 1137.2 0.0116 0.0476 0.05664.5 1462.1 0.0132 0.0492 0.05825.5 1787.1 0.0156 0.0516 0.06066.5 2112 0.0188 0.0548 0.06387.5 2436.9 0.0216 0.0576 0.06668.5 2761.8 0.0244 0.0604 0.06949.5 3086.7 0.026 0.062 0.07110.5 3411.7 0.0284 0.0644 0.073411.5 3736.6 0.0304 0.0664 0.075412.5 4061.5 0.0328 0.0688 0.077813.5 4386.4 0.0358 0.0718 0.080814.5 4711.3 0.0377 0.0737 0.082717.5 5686.1 0.0467 0.0827 0.091730.5 9910.1 0.0932 0.1292 0.138233.5 10885 0.1074 0.1434 0.152434.5 11210 0.1122 0.1482 0.157235.5 11535 0.1178 0.1538 0.162836.5 11860 0.1253 0.1613 0.170337.5 12185 0.1305 0.1665 0.175538.5 12509 0.1381 0.1741 0.183139.5 12834 0.1497 0.1857 0.194740.5 13159 0.1625 0.1985 0.207541.5 13484 0.1721 0.2081 0.217142.5 13809 0.1801 0.2161 0.225143.5 14134 0.1865 0.2225 0.231544.5 14459 0.1933 0.2293 0.238345.5 14784 0.2077 0.2437 0.252746.5 15109 0.2285 0.2645 0.273547.5 15434 0.2485 0.2845 0.293548.5 15759 0.2705 0.3065 0.315549.5 16084 0.2905 0.3265 0.335550.5 16408 0.3129 0.3489 0.357951.5 16733 0.3369 0.3729 0.381952.5 17058 0.3729 0.4089 0.417953.5 17383 0.4176 0.4536 0.462654.5 17708 0.4615 0.4975 0.506555.5 18033 0.536 0.572 0.58156.5 18358 0.6232 0.6592 0.668257.5 18683 0.7582 0.7942 0.803258.5 19008 0.919 0.955 0.96459.5 19333 1.1831 1.2191 1.228160.5 19658 1.6982 1.7342 1.743261.5 19983 2.2517 2.2877 2.296762.5 20307 3.0663 3.1023 3.111363.05 20486 4.2993 4.3353 4.3443Table A-10. Results of the quantitative fractography on KSIF 151, peak stress 390MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0368 0.0310.5 3411.7 0.0142 0.051 0.044211.5 3736.6 0.0162 0.053 0.046213.5 4386.4 0.0202 0.057 0.050214.5 4711.3 0.0218 0.0586 0.051815.5 5036.3 0.0238 0.0606 0.053816.5 5361.2 0.0262 0.063 0.056217.5 5686.1 0.0281 0.0649 0.058118.5 6011 0.0317 0.0685 0.061719.5 6335.9 0.0341 0.0709 0.064120.5 6660.9 0.0381 0.0749 0.068121.5 6985.8 0.0405 0.0773 0.070522.5 7310.7 0.0441 0.0809 0.074150


DSTO-TR-147723.5 7635.6 0.0481 0.0849 0.078124.5 7960.5 0.051 0.0878 0.08125.5 8285.5 0.0534 0.0902 0.083426.5 8610.4 0.0564 0.0932 0.086427.5 8935.3 0.0611 0.0979 0.091128.5 9260.2 0.0647 0.1015 0.094729.5 9585.1 0.0671 0.1039 0.097130.5 9910.1 0.0711 0.1079 0.101131.5 10235 0.0751 0.1119 0.105132.5 10560 0.0799 0.1167 0.109933.5 10885 0.0846 0.1214 0.114634.5 11210 0.0886 0.1254 0.118635.5 11535 0.0946 0.1314 0.124636.5 11860 0.1006 0.1374 0.130637.5 12185 0.1074 0.1442 0.137438.5 12509 0.113 0.1498 0.14339.5 12834 0.1202 0.157 0.150240.5 13159 0.1298 0.1666 0.159841.5 13484 0.1373 0.1741 0.167342.5 13809 0.1461 0.1829 0.176143.5 14134 0.1553 0.1921 0.185344.5 14459 0.1657 0.2025 0.195745.5 14784 0.1757 0.2125 0.205746.5 15109 0.1901 0.2269 0.220147.5 15434 0.2061 0.2429 0.236148.5 15759 0.2253 0.2621 0.255349.5 16084 0.2453 0.2821 0.275350.5 16408 0.2693 0.3061 0.299351.5 16733 0.3005 0.3373 0.330552.5 17058 0.3335 0.3703 0.363553.5 17383 0.3669 0.4037 0.396954.5 17708 0.4084 0.4452 0.438455.5 18033 0.4669 0.5037 0.496956.5 18358 0.5555 0.5923 0.585557.5 18683 0.6627 0.6995 0.692758.5 19008 0.8245 0.8613 0.854559.5 19333 1.0262 1.063 1.056260.5 19658 1.291 1.3278 1.32161.5 19983 1.5902 1.627 1.620262.5 20307 2.1388 2.1756 2.168863.5 20632 2.4998 2.5366 2.529864.5 20957 3.2487 3.2855 3.278765.5 21282 4.0363 4.0731 4.0663Table A-11. Results of the quantitative fractography on KSIF 142, peak stress 420MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.056 0.050.5 162.46 0.002 0.058 0.0521.5 487.38 0.0068 0.0628 0.05682.5 812.3 0.0116 0.0676 0.06163.5 1137.2 0.0184 0.0744 0.06844.5 1462.1 0.0264 0.0824 0.07645.5 1787.1 0.034 0.09 0.0846.5 2112 0.0444 0.1004 0.09447.5 2436.9 0.0532 0.1092 0.10328.5 2761.8 0.0652 0.1212 0.11529.5 3086.7 0.0772 0.1332 0.127210.5 3411.7 0.09 0.146 0.1411.5 3736.6 0.106 0.162 0.15612.5 4061.5 0.1235 0.1795 0.173513.5 4386.4 0.1387 0.1947 0.188751


DSTO-TR-147714.5 4711.3 0.1565 0.2125 0.206515.5 5036.3 0.1736 0.2296 0.223616.5 5361.2 0.1955 0.2515 0.245517.5 5686.1 0.2254 0.2814 0.275418.5 6011 0.2568 0.3128 0.306819.5 6335.9 0.2981 0.3541 0.348120.5 6660.9 0.3496 0.4056 0.399621.5 6985.8 0.4197 0.4757 0.469722.5 7310.7 0.5158 0.5718 0.565823.5 7635.6 0.6494 0.7054 0.699424.5 7960.5 0.9213 0.9773 0.971325.5 8285.5 1.3358 1.3918 1.385826.5 8610.4 2.0847 2.1407 2.134728.4 9227.7 4.2004 4.2564 4.2504Table A-12. Results of the quantitative fractography on KSIF 204, peak stress 420MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0168 0.030.5 162.46 0.002 0.0188 0.0321.5 487.38 0.006 0.0228 0.0362.5 812.3 0.0112 0.028 0.04123.5 1137.2 0.018 0.0348 0.0484.5 1462.1 0.0248 0.0416 0.05485.5 1787.1 0.0296 0.0464 0.05966.5 2112 0.0338 0.0506 0.06387.5 2436.9 0.0398 0.0566 0.06988.5 2761.8 0.0492 0.066 0.079210.5 3411.7 0.0626 0.0794 0.092611.5 3736.6 0.0698 0.0866 0.099812.5 4061.5 0.0801 0.0969 0.110114.5 4711.3 0.0947 0.1115 0.124715.5 5036.3 0.1018 0.1186 0.131816.5 5361.2 0.1084 0.1252 0.138417.5 5686.1 0.1187 0.1355 0.148718.5 6011 0.1278 0.1446 0.157819.5 6335.9 0.1377 0.1545 0.167720.5 6660.9 0.1471 0.1639 0.177121.5 6985.8 0.1633 0.1801 0.193322.5 7310.7 0.1833 0.2001 0.213323.5 7635.6 0.2101 0.2269 0.240124.5 7960.5 0.2455 0.2623 0.275525.5 8285.5 0.2886 0.3054 0.318626.5 8610.4 0.3333 0.3501 0.363327.5 8935.3 0.4123 0.4291 0.442328.5 9260.2 0.5004 0.5172 0.530429.5 9585.1 0.6455 0.6623 0.675530.5 9910.1 0.8154 0.8322 0.845431.5 10235 1.0712 1.088 1.101232.5 10560 1.5158 1.5326 1.545833.5 10885 2.0603 2.0771 2.090334.5 11210 2.815 2.8318 2.84535.13 11414 3.6563 3.6731 3.686352


DSTO-TR-1477Table A-13. Results of the quantitative fractography on KSIF 147, peak stress 420MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0308 0.031.5 487.38 0.0029 0.0337 0.03293.5 1137.2 0.0079 0.0387 0.03794.5 1462.1 0.0118 0.0426 0.04185.5 1787.1 0.0162 0.047 0.04626.5 2112 0.0197 0.0505 0.04977.5 2436.9 0.0234 0.0542 0.05348.5 2761.8 0.0288 0.0596 0.05889.5 3086.7 0.0335 0.0643 0.063510.5 3411.7 0.0373 0.0681 0.067311.5 3736.6 0.0403 0.0711 0.070312.5 4061.5 0.0448 0.0756 0.074813.5 4386.4 0.049 0.0798 0.07914.5 4711.3 0.054 0.0848 0.08415.5 5036.3 0.0606 0.0914 0.090616.5 5361.2 0.0676 0.0984 0.097617.5 5686.1 0.0767 0.1075 0.106718.5 6011 0.0873 0.1181 0.117319.5 6335.9 0.0982 0.129 0.128220.5 6660.9 0.1118 0.1426 0.141821.5 6985.8 0.1301 0.1609 0.160122.5 7310.7 0.1484 0.1792 0.178423.5 7635.6 0.1638 0.1946 0.193824.5 7960.5 0.1896 0.2204 0.219626.5 8610.4 0.2471 0.2779 0.277127.5 8935.3 0.2877 0.3185 0.317728.5 9260.2 0.3392 0.37 0.369229.5 9585.1 0.4031 0.4339 0.433130.5 9910.1 0.5078 0.5386 0.537831.5 10235 0.6324 0.6632 0.662432.5 10560 0.797 0.8278 0.82733.5 10885 0.97 1.0008 134.5 11210 1.3165 1.3473 1.346535.5 11535 1.7938 1.8246 1.823836.5 11860 2.4968 2.5276 2.526837.3 12120 3.9253 3.9561 3.9553Table A-14. Results of the quantitative fractography on KSIF 193, peak stress 420MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0284 0.030.5 162.46 0.0044 0.0328 0.03441.5 487.38 0.008 0.0364 0.0382.5 812.3 0.01 0.0384 0.043.5 1137.2 0.0156 0.044 0.04564.5 1462.1 0.0184 0.0468 0.04845.5 1787.1 0.0228 0.0512 0.05286.5 2112 0.0272 0.0556 0.05727.5 2436.9 0.0316 0.06 0.06168.5 2761.8 0.036 0.0644 0.0669.5 3086.7 0.0408 0.0692 0.070810.5 3411.7 0.0456 0.074 0.075611.5 3736.6 0.0512 0.0796 0.081212.5 4061.5 0.0576 0.086 0.087613.5 4386.4 0.0644 0.0928 0.094453


DSTO-TR-147714.5 4711.3 0.0708 0.0992 0.100815.5 5036.3 0.0776 0.106 0.107616.5 5361.2 0.0856 0.114 0.115617.5 5686.1 0.0952 0.1236 0.125218.5 6011 0.1056 0.134 0.135619.5 6335.9 0.1184 0.1468 0.148420.5 6660.9 0.1332 0.1616 0.163221.5 6985.8 0.1488 0.1772 0.178822.5 7310.7 0.1684 0.1968 0.198423.5 7635.6 0.192 0.2204 0.22224.5 7960.5 0.2192 0.2476 0.249225.5 8285.5 0.2488 0.2772 0.278826.5 8610.4 0.2844 0.3128 0.314427.5 8935.3 0.3252 0.3536 0.355228.5 9260.2 0.3802 0.4086 0.410229.5 9585.1 0.4517 0.4801 0.481730.5 9910.1 0.526 0.5544 0.55631.5 10235 0.6367 0.6651 0.666732.5 10560 0.8363 0.8647 0.866333.5 10885 1.061 1.0894 1.09134.5 11210 1.2599 1.2883 1.289936.5 11860 2.5209 2.5493 2.550937.4 12152 3.1174 3.1458 3.1474Table A-15. Results of the quantitative fractography on KSIF 191, peak stress 420MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0208 0.040.5 162.46 0.0044 0.0252 0.04441.5 487.38 0.0108 0.0316 0.05082.5 812.3 0.018 0.0388 0.0583.5 1137.2 0.0232 0.044 0.06324.5 1462.1 0.0292 0.05 0.06925.5 1787.1 0.036 0.0568 0.0766.5 2112 0.042 0.0628 0.0827.5 2436.9 0.0464 0.0672 0.08648.5 2761.8 0.0536 0.0744 0.09369.5 3086.7 0.0604 0.0812 0.100410.5 3411.7 0.0688 0.0896 0.108811.5 3736.6 0.0804 0.1012 0.120412.5 4061.5 0.0888 0.1096 0.128813.5 4386.4 0.098 0.1188 0.13814.5 4711.3 0.1092 0.13 0.149215.5 5036.3 0.12 0.1408 0.1616.5 5361.2 0.1328 0.1536 0.172817.5 5686.1 0.1476 0.1684 0.187618.5 6011 0.1644 0.1852 0.204419.5 6335.9 0.1844 0.2052 0.224420.5 6660.9 0.208 0.2288 0.24821.5 6985.8 0.2364 0.2572 0.276422.5 7310.7 0.28 0.3008 0.3223.5 7635.6 0.322 0.3428 0.36224.5 7960.5 0.3664 0.3872 0.406425.5 8285.5 0.4393 0.4601 0.479326.5 8610.4 0.5191 0.5399 0.559127.5 8935.3 0.6491 0.6699 0.689128.5 9260.2 0.8331 0.8539 0.873129.5 9585.1 1.0992 1.12 1.139230.5 9910.1 1.5514 1.5722 1.591431.5 10235 2.3776 2.3984 2.417632.1 10430 3.0873 3.1081 3.127354


DSTO-TR-1477Table A-16. Results of the quantitative fractography on KSIF 183, peak stress 450MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.028 0.030.5 162.46 0.006 0.034 0.0362.5 812.3 0.016 0.044 0.0463.5 1137.2 0.0244 0.0524 0.05444.5 1462.1 0.0348 0.0628 0.06485.5 1787.1 0.0433 0.0713 0.07336.5 2112 0.0561 0.0841 0.08617.5 2436.9 0.0684 0.0964 0.09848.5 2761.8 0.0839 0.1119 0.11399.5 3086.7 0.1003 0.1283 0.130310.5 3411.7 0.1222 0.1502 0.152211.5 3736.6 0.1562 0.1842 0.186212.5 4061.5 0.2014 0.2294 0.231413.5 4386.4 0.2462 0.2742 0.276214.5 4711.3 0.2933 0.3213 0.323315.5 5036.3 0.3973 0.4253 0.427316.5 5361.2 0.58 0.608 0.6118.5 6011 1.272 1.3 1.30219.4 6303.4 1.948 1.976 1.978Table A-17. Results of the quantitative fractography on KSIF 178, peak stress 450MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.013 0.011.5 487.38 0.0116 0.0246 0.02162.5 812.3 0.0204 0.0334 0.03043.5 1137.2 0.0348 0.0478 0.04484.5 1462.1 0.0597 0.0727 0.06975.5 1787.1 0.0963 0.1093 0.10636.5 2112 0.1433 0.1563 0.15337.5 2436.9 0.1997 0.2127 0.20978.5 2761.8 0.2565 0.2695 0.26659.5 3086.7 0.3583 0.3713 0.368310.5 3411.7 0.5123 0.5253 0.522311.5 3736.6 0.6954 0.7084 0.705412.5 4061.5 0.8753 0.8883 0.885313.5 4386.4 1.3675 1.3805 1.377514.73 4786.1 1.8905 1.9035 1.9005Table A-18. Results of the quantitative fractography on KSIF 186, peak stress 450MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0392 0.030.5 162.46 0.004 0.0432 0.0341.5 487.38 0.008 0.0472 0.0382.5 812.3 0.0132 0.0524 0.04323.5 1137.2 0.0192 0.0584 0.04924.5 1462.1 0.0252 0.0644 0.05525.5 1787.1 0.034 0.0732 0.0646.5 2112 0.0464 0.0856 0.07647.5 2436.9 0.0608 0.1 0.09088.5 2761.8 0.0836 0.1228 0.113655


DSTO-TR-14779.5 3086.7 0.1092 0.1484 0.139210.5 3411.7 0.144 0.1832 0.17411.5 3736.6 0.1818 0.221 0.211812.5 4061.5 0.2508 0.29 0.280813.5 4386.4 0.3673 0.4065 0.397314.5 4711.3 0.5248 0.564 0.554815.5 5036.3 0.7532 0.7924 0.783216.5 5361.2 1.1665 1.2057 1.196517.5 5686.1 1.9283 1.9675 1.958319.3 6271 3.3166 3.3558 3.3466Table A-19. Results of the quantitative fractography on KSIF 164, peak stress 450MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0076 0.015.5 1787.1 0.029 0.0366 0.0396.5 2112 0.0347 0.0423 0.04477.5 2436.9 0.0406 0.0482 0.05069.5 3086.7 0.0578 0.0654 0.067810.5 3411.7 0.0766 0.0842 0.086611.5 3736.6 0.0962 0.1038 0.106212.5 4061.5 0.1254 0.133 0.135413.5 4386.4 0.1486 0.1562 0.158614.5 4711.3 0.1882 0.1958 0.198215.5 5036.3 0.2558 0.2634 0.265816.5 5361.2 0.3426 0.3502 0.352617.5 5686.1 0.5006 0.5082 0.510618.5 6011 0.757 0.7646 0.76719.5 6335.9 1.3291 1.3367 1.339120.5 6660.9 1.9167 1.9243 1.926720.9 6790.8 2.424 2.4316 2.434Table A-20. Results of the quantitative fractography on KSIF 146, peak stress 450MPaNo. of spectraIARPO3a + 5 markerloadsSimulated FlightHoursMeasurement fromflaw edge to crackpositionmm.Addition of Type IEPS (measured flawdepth)mmAddition of Type IIEPSmm0 0 0.0248 0.050.5 162.46 0.0072 0.032 0.05721.5 487.38 0.0148 0.0396 0.06482.5 812.3 0.0228 0.0476 0.07283.5 1137.2 0.0352 0.06 0.08524.5 1462.1 0.044 0.0688 0.0945.5 1787.1 0.0548 0.0796 0.10486.5 2112 0.0636 0.0884 0.11367.5 2436.9 0.0756 0.1004 0.12568.5 2761.8 0.0944 0.1192 0.14449.5 3086.7 0.1137 0.1385 0.163710.5 3411.7 0.1406 0.1654 0.190611.5 3736.6 0.1743 0.1991 0.224312.5 4061.5 0.2109 0.2357 0.260913.5 4386.4 0.2635 0.2883 0.313514.5 4711.3 0.3352 0.36 0.385215.5 5036.3 0.4479 0.4727 0.497917.5 5686.1 0.7486 0.7734 0.798618.5 6011 1.0677 1.0925 1.117719.5 6335.9 1.4946 1.5194 1.544620 6498.4 2.6592 2.684 2.709256


DISTRIBUTION LIST<strong>Fatigue</strong> <strong>Crack</strong> <strong>Growth</strong> <strong>in</strong> <strong>7050T7451</strong> Alum<strong>in</strong>ium <strong>Alloy</strong> <strong>Thick</strong> <strong>Section</strong> Plate with a Glass BeadPeened Surface Simulat<strong>in</strong>g Some Regions of the F/A-18 StructureAUSTRALIADEFENCE ORGANISATIONS A BarterTask Sponsor DGTA-ASI1 (SQNLDR J. Medved) 2S&T ProgramChief Defence Scientist⎫FAS Science Policy ⎬ shared copy 1AS Science Corporate Management ⎭Director General Science Policy Development 1Counsellor Defence Science, London (Doc Data Sheet )Counsellor Defence Science, Wash<strong>in</strong>gton (Doc Data Sheet )Scientific Adviser to MRDC Thailand (Doc Data Sheet )Scientific Adviser Policy and Command 1Navy Scientific Adviser (Doc Data Sheet and distribution list only)Scientific Adviser - Army (Doc Data Sheet and distribution list only)Air Force Scientific Adviser 1Director Trials 1Platforms Sciences LaboratoryDirector 1Chief of AVD. Division 1Research Leader AVD-ASI 1Task Manager L Molent 1Author: S A Barter 1P White 1K Walker 1Q Liu 1P K Sharp 1IFOSTP fil<strong>in</strong>g system 1DSTO Library and ArchivesLibrary Fishermans Bend 1Library Maribyrnong 1Library Salisbury 2Australian Archives 1Library, MOD, Pyrmont (Doc Data sheet only)Air ForceTFSPO Williamtown (Chief Eng<strong>in</strong>eer) 1RAAF TLO IFOSTP (SQNLDR P. Klose) 1


Intelligence ProgramDGSTA Defence Intelligence Organisation 1Manager, Information Centre, Defence Intelligence Organisation 1CanadaDTA 1NRC – D Simpson 1Bombardier – Y Richard 1SPARES 5Total number of copies: 34


Page classification: UNCLASSIFIEDDEFENCE SCIENCE AND TECHNOLOGY ORGANISATIONDOCUMENT CONTROL DATA1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)2. TITLE<strong>Fatigue</strong> <strong>Crack</strong> <strong>Growth</strong> <strong>in</strong> <strong>7050T7451</strong> Alum<strong>in</strong>ium <strong>Alloy</strong> <strong>Thick</strong> <strong>Section</strong>Plate with a Glass Bead Peened Surface Simulat<strong>in</strong>g Some Regions ofthe F/A-18 Structure4. AUTHOR(S)S. A. Barter3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTSTHAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENTCLASSIFICATION)DocumentTitleAbstract5. CORPORATE AUTHOR(U)(U)(U)Platforms Sciences Laboratory506 Lorimer StFishermans Bend Victoria 3207 Australia6a. DSTO NUMBERDSTO-TR-14776b. AR NUMBERAR-012-8566c. TYPE OF REPORTTechnical Report7. DOCUMENT DATEAugust 20038. FILE NUMBER2003/36886/19. TASK NUMBERAIR0014110. TASK SPONSORASI11. NO. OF PAGES5612. NO. OF REFERENCES2213. URL on the World Wide Web14. RELEASE AUTHORITYhttp://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-1477.pdfChief, Air Vehicles Division15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENTApproved for public releaseOVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 511116. DELIBERATE ANNOUNCEMENTNo Limitations17. CITATION IN OTHER DOCUMENTS Yes18. DEFTEST DESCRIPTORSF/A-18 Aircraft, Alum<strong>in</strong>ium <strong>Alloy</strong>, Shot Peen<strong>in</strong>g, <strong>Crack</strong><strong>in</strong>g, <strong>Fatigue</strong>19. ABSTRACTThis report presents the results of a fatigue coupon test program whose primary purpose was to obta<strong>in</strong> resultsfrom coupons treated with a glass bead peened surfaces typical of some regions of critical F/A-18 aircraftstructure. A spectrum representative of RAAF’s F/A-18 fleet fatigue usage was used. The coupons wererepresentative of the material and geometry of a structural detail that has been found to be fatigue-critical <strong>in</strong>the <strong>7050T7451</strong> high strength alum<strong>in</strong>ium alloy w<strong>in</strong>g carry through bulkheads. Follow<strong>in</strong>g the tests, quantitativefractography was used to produce crack growth curves for each of the fatigued specimens. This reportdescribes the surface condition be<strong>in</strong>g exam<strong>in</strong>ed, test spectrum, test methods, test results and exam<strong>in</strong>es ways of<strong>in</strong>terpret<strong>in</strong>g the crack growth curves to establish a measure of the severity of the flaws from which the fatiguecracks <strong>in</strong>itiated.Page classification: UNCLASSIFIED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!