03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SP-1231<br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> & <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong><br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g><br />

<str<strong>on</strong>g>System</str<strong>on</strong>g> &<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong><br />

Report from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>ESA</strong> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Team Study<br />

1997-1998<br />

SP-1231<br />

October 1999


EXOBIOLOGY IN THE SOLAR SYSTEM<br />

AND<br />

THE SEARCH FOR LIFE ON MARS<br />

Report from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>ESA</strong> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Team Study<br />

1997-1998<br />

SP-1231<br />

October 1999


Cover<br />

Fossil coccoid bacteria, 1 µm <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, found <str<strong>on</strong>g>in</str<strong>on</strong>g> sediment 3.3-3.5 Gyr old from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Early Archean of South Africa. See pages 160-161.<br />

Background: a porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> meander<str<strong>on</strong>g>in</str<strong>on</strong>g>g cany<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> Nanedi Valles system<br />

viewed by <strong>Mars</strong> Global Surveyor. <str<strong>on</strong>g>The</str<strong>on</strong>g> valley is about 2.5 km wide; <str<strong>on</strong>g>the</str<strong>on</strong>g> scene covers<br />

9.8 km by 27.9 km centred <strong>on</strong> 5.1°N/48.26°W. <str<strong>on</strong>g>The</str<strong>on</strong>g> valley floor at top right exhibits a<br />

200 m-wide channel covered by dunes and debris. This channel suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

valley might have been carved by water flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g through <str<strong>on</strong>g>the</str<strong>on</strong>g> system over a l<strong>on</strong>g<br />

period, <str<strong>on</strong>g>in</str<strong>on</strong>g> a manner similar to rivers <strong>on</strong> Earth. (Mal<str<strong>on</strong>g>in</str<strong>on</strong>g> Space Science <str<strong>on</strong>g>System</str<strong>on</strong>g>s/NASA)<br />

SP-1231 ‘<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> and <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong>’,<br />

ISBN 92-9092-520-5<br />

Scientific<br />

Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ators: André Brack, Brian Fitt<strong>on</strong> and François Raul<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Edited by: Andrew Wils<strong>on</strong><br />

<strong>ESA</strong> Publicati<strong>on</strong>s Divisi<strong>on</strong><br />

Published by: <strong>ESA</strong> Publicati<strong>on</strong>s Divisi<strong>on</strong><br />

ESTEC, Noordwijk, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands<br />

Price: 70 Dutch Guilders/ EUR32<br />

Copyright: © 1999 European Space Agency


C<strong>on</strong>tents<br />

Foreword 7<br />

I An Exobiological View of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> 15<br />

I.1 Introducti<strong>on</strong> 17<br />

I.2 Chemical Evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> 19<br />

2.1 Terrestrial Prebiotic Chemistry 19<br />

2.1.1 Terrestrial Producti<strong>on</strong> of Reduced Organic Molecules 19<br />

2.1.2 Extraterrestrial Delivery of Organic Molecules to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth 20<br />

2.2 Chemical Evoluti<strong>on</strong> <strong>on</strong> O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Bodies of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> 21<br />

2.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Icy Bodies: Comets, Europa, Ganymede 21<br />

2.2.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> N<strong>on</strong>-Icy Bodies: Titan, Giant Planets, Venus, 22<br />

Mo<strong>on</strong>, <strong>Mars</strong><br />

I.3 Limits of <str<strong>on</strong>g>Life</str<strong>on</strong>g> under Extreme C<strong>on</strong>diti<strong>on</strong>s 27<br />

3.1 Introducti<strong>on</strong> 27<br />

3.2 Extreme Temperature Regimes 27<br />

3.2.1 High Temperatures 27<br />

3.2.2 Low Temperatures 29<br />

3.3 High-Salt Envir<strong>on</strong>ments 30<br />

3.4 Acidic and Alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e Envir<strong>on</strong>ments 31<br />

3.5 High-Pressure Envir<strong>on</strong>ments 31<br />

3.6 Subterranean <str<strong>on</strong>g>Life</str<strong>on</strong>g> 32<br />

3.7 Survival of <str<strong>on</strong>g>Life</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>ms <str<strong>on</strong>g>in</str<strong>on</strong>g> Space 34<br />

3.8 Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Future <str<strong>on</strong>g>Search</str<strong>on</strong>g>es 36<br />

I.4 Morphological and Biochemical Signatures of Extraterrestrial <str<strong>on</strong>g>Life</str<strong>on</strong>g>: 41<br />

Utility of Terrestrial Analogues<br />

4.1 Introducti<strong>on</strong> 41<br />

4.2 Evidence of Extant <str<strong>on</strong>g>Life</str<strong>on</strong>g> 41<br />

4.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Microbial World 41<br />

4.2.2 Structural Indicati<strong>on</strong>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 42<br />

4.2.3 Evidence of Microbial Activity as a Functi<strong>on</strong>al 44<br />

Characteristic of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

4.2.4 Chemical Signatures and Biomarkers 47<br />

4.2.5 Indirect F<str<strong>on</strong>g>in</str<strong>on</strong>g>gerpr<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 48<br />

4.2.6 C<strong>on</strong>clusi<strong>on</strong>s 48<br />

4.3 Evidence of Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct (Fossil) Extraterrestrial <str<strong>on</strong>g>Life</str<strong>on</strong>g> 49<br />

4.3.1 Pale<strong>on</strong>tological Evidence 49<br />

4.3.1.1 Microbialites 51<br />

4.3.1.2 Cellular Microfossils 51<br />

4.3.2 Biogeochemical Evidence 53<br />

4.3.2.1 Sedimentary Organic Carb<strong>on</strong> as a Recorder 54<br />

of Former <str<strong>on</strong>g>Life</str<strong>on</strong>g> Processes<br />

4.3.2.2 13 C/ 12 C <str<strong>on</strong>g>in</str<strong>on</strong>g> Sedimentary Organic Matter: 54<br />

Index of Autotrophic Carb<strong>on</strong> Fixati<strong>on</strong><br />

4.3.2.3 Molecular Biomarkers (‘Chemical Fossils’) 57<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Sediments<br />

3


4<br />

I.5 Potential N<strong>on</strong>-Martian Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> Extraterrestrial <str<strong>on</strong>g>Life</str<strong>on</strong>g> 65<br />

5.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Icy Satellites 65<br />

5.1.1 Europa 65<br />

5.1.2 Ganymede 66<br />

5.1.3 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Icy Satellites 67<br />

5.2 Titan 67<br />

5.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Titan Atmosphere 67<br />

5.2.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Titan Surface 69<br />

5.2.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Cass<str<strong>on</strong>g>in</str<strong>on</strong>g>i/Huygens Missi<strong>on</strong> 71<br />

I.6 Science and Experiment Strategy 73<br />

6.1 Where to <str<strong>on</strong>g>Search</str<strong>on</strong>g>? 73<br />

6.2 What to <str<strong>on</strong>g>Search</str<strong>on</strong>g> For? 75<br />

6.3 What to <str<strong>on</strong>g>Search</str<strong>on</strong>g> With? 76<br />

I.7 Summary of <str<strong>on</strong>g>the</str<strong>on</strong>g> Science Team Recommendati<strong>on</strong>s 77<br />

7.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Extant and Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>Life</str<strong>on</strong>g> 77<br />

7.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Study of <str<strong>on</strong>g>the</str<strong>on</strong>g> Precursors of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 77<br />

7.3 Organic Chemistry Processes and Microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> Space 78<br />

7.4 Laboratory-based Studies 78<br />

II <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong> 79<br />

II.1 Introducti<strong>on</strong> 81<br />

II.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Planet <strong>Mars</strong> 83<br />

2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Geology of <strong>Mars</strong> 83<br />

2.2 Volcanism and Tect<strong>on</strong>ism 84<br />

2.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Bulk Chemical Compositi<strong>on</strong> of <strong>Mars</strong> 85<br />

2.4 <str<strong>on</strong>g>The</str<strong>on</strong>g> Geochemistry of <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian Surface Layers 87<br />

2.5 Water and Ground Ice 88<br />

2.6 <str<strong>on</strong>g>The</str<strong>on</strong>g> Climate of <strong>Mars</strong> 89<br />

2.7 NASA-Proposed Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> Explorati<strong>on</strong> 90<br />

2.7.1 Water and a Favourable Envir<strong>on</strong>ment 91<br />

2.7.2 Explorati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>Life</str<strong>on</strong>g> 92<br />

2.7.3 Explorati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Extant <str<strong>on</strong>g>Life</str<strong>on</strong>g> 92<br />

2.7.4 NASA Priority Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> 93<br />

II.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Martian Meteorites 95<br />

3.1 Introducti<strong>on</strong> 95<br />

3.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of SNC Meteorites 96<br />

3.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Martian Meteorites 97<br />

3.4 <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian Meteorites 98<br />

3.5 Carb<strong>on</strong> Compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Meteorites (Carb<strong>on</strong>aceous Ch<strong>on</strong>drites) 101<br />

3.6 Carb<strong>on</strong> Compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> Micrometeorites 103<br />

II.4 Team I: <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Surface Envir<strong>on</strong>ment 109<br />

4.1 Envir<strong>on</strong>ments and Rocks with <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Potential 109<br />

4.1.1 Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Envir<strong>on</strong>ments 109<br />

4.1.2 Sebkha Envir<strong>on</strong>ments 110<br />

4.1.3 <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal-Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g Deposits 113<br />

4.1.4 Duricrusts 113<br />

4.1.5 Glacial Deposits 113


4.1.6 Polar Deposits 114<br />

4.1.7 Ground Ice-Permafrost 114<br />

4.2 General Remarks <strong>on</strong> Subsurface Microbial Fossils 115<br />

4.3 Climatic and Envir<strong>on</strong>mental Models 115<br />

4.4 <str<strong>on</strong>g>The</str<strong>on</strong>g> Radiati<strong>on</strong> Envir<strong>on</strong>ment 117<br />

4.4.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Current Atmospheric Radiati<strong>on</strong> Budget 118<br />

4.4.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Current Particle and Radiati<strong>on</strong> Envir<strong>on</strong>ment 119<br />

4.4.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Radiati<strong>on</strong> Envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Past 119<br />

4.5 <str<strong>on</strong>g>The</str<strong>on</strong>g> Rati<strong>on</strong>ale <str<strong>on</strong>g>for</str<strong>on</strong>g> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Selecti<strong>on</strong> 120<br />

4.6 Rovers and Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g Operati<strong>on</strong>s 122<br />

4.7 Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites 122<br />

II.5 Team II: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Chemical Indicators of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 129<br />

Scientific Objectives:<br />

5.1 Sample Acquisiti<strong>on</strong> and Distributi<strong>on</strong> Subsystem 129<br />

5.2 M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, Petrology and Geochemistry 130<br />

5.2.1 M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and Petrology 130<br />

5.2.2 Geochemistry (Elemental Compositi<strong>on</strong> Analysis) 132<br />

5.3 Isotopic Analysis 132<br />

5.3.1 Carb<strong>on</strong> and Hydrogen 132<br />

5.3.2 Sulphur 133<br />

5.4 Molecular Analysis 133<br />

5.4.1 Inorganics 133<br />

5.4.2 Organics 133<br />

5.5 <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Homochirality 135<br />

Instrumentati<strong>on</strong> to Satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> Scientific Objectives:<br />

5.6 Sample Acquisiti<strong>on</strong> and Distributi<strong>on</strong> Subsystem 135<br />

5.7 M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, Petrology and Geochemistry 135<br />

5.7.1 General C<strong>on</strong>siderati<strong>on</strong>s 135<br />

5.7.2 Optical Microscopy 138<br />

5.7.3 Alpha-Prot<strong>on</strong>-X-ray Spectrometer (APX) 138<br />

5.7.4 Mössbauer Spectrometer 140<br />

5.7.5 I<strong>on</strong>/Electr<strong>on</strong> Probes, X-ray Spectroscopy 142<br />

5.7.6 IR Spectroscopy 142<br />

5.7.7 Raman Spectroscopy 144<br />

5.8 Isotopic Analysis 145<br />

5.9 Molecular Analysis 147<br />

5.9.1 Gas Chromatography (GC) 147<br />

5.9.2 Mass Spectroscopy (MS) 148<br />

5.9.3 Pyrolysis (PYR) 148<br />

5.9.4 Available PYR-GC-MS Techniques 148<br />

5.9.5 Laser Ablati<strong>on</strong>-Inductive Coupled Plasma-MS (LA-ICP-MS) 149<br />

5.9.6 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Techniques 150<br />

5.9.7 <str<strong>on</strong>g>The</str<strong>on</strong>g> Analysis of H 2O 2 150<br />

5.10 Chirality Measurements 151<br />

5.10.1 Bulk Chirality Measurements 151<br />

5.10.2 Enantiomeric Separati<strong>on</strong>s 152<br />

Recommended Payload and Technology Research Programme: 153<br />

II.6 Team III: <str<strong>on</strong>g>The</str<strong>on</strong>g> Inspecti<strong>on</strong> of Subsurface Aliquots and Surface Rocks 157<br />

Scientific Justificati<strong>on</strong>:<br />

6.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Investigati<strong>on</strong> of Unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red Rock Material 157<br />

5


6<br />

6.2 Imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of Fossilised Material <str<strong>on</strong>g>in</str<strong>on</strong>g> Sediments 157<br />

6.2.1 Macroscopic Scale 158<br />

6.2.2 Microscopic Scale 160<br />

6.3 Investigati<strong>on</strong> of Biom<str<strong>on</strong>g>in</str<strong>on</strong>g>erals 161<br />

6.4 Investigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Rock Structure 163<br />

6.4.1 Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct Microbes <str<strong>on</strong>g>in</str<strong>on</strong>g> Rock 163<br />

6.4.2 Rock Formati<strong>on</strong> and Compositi<strong>on</strong> 164<br />

6.5 Investigati<strong>on</strong> of Sedimentary Layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g 165<br />

6.6 Investigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Soil 165<br />

6.7 Investigati<strong>on</strong> of Dust Particles 166<br />

Scientific Method and Requirements:<br />

6.8 Initial Survey and Target Selecti<strong>on</strong> 167<br />

6.9 High-Resoluti<strong>on</strong> Studies 168<br />

6.10 Subsurface Investigati<strong>on</strong>s 170<br />

6.11 Raman Spectrometry 170<br />

6.12 Optical Spectroscopy 170<br />

6.13 Mössbauer Spectroscopy 171<br />

6.14 IR Spectroscopy 171<br />

6.15 <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal-IR Spectroscopy 171<br />

6.16 Chemical Inspecti<strong>on</strong> of Subsurface Material 172<br />

6.17 Summary of Possible Instrumentati<strong>on</strong> 173<br />

Sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g Aspects:<br />

6.18 Mobility Requirements 173<br />

6.19 Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g/Polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g/Immersi<strong>on</strong> 174<br />

6.20 Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g and Digg<str<strong>on</strong>g>in</str<strong>on</strong>g>g 174<br />

6.21 Siev<str<strong>on</strong>g>in</str<strong>on</strong>g>g and Magnetic Separati<strong>on</strong> 174<br />

6.22 Cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g and Saw<str<strong>on</strong>g>in</str<strong>on</strong>g>g 174<br />

6.23 Data Analysis 175<br />

6.24 Summary of Major C<strong>on</strong>clusi<strong>on</strong>s 175<br />

II.7 C<strong>on</strong>clusi<strong>on</strong>s 179<br />

7.1 Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> 179<br />

7.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Sample Acquisiti<strong>on</strong>, Distributi<strong>on</strong> and Preparati<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g> 180<br />

7.2.1 Subsurface Sample: Acquisiti<strong>on</strong> and Preparati<strong>on</strong> 180<br />

7.2.2 Surface Rock Sample: Acquisiti<strong>on</strong> and Preparati<strong>on</strong> 180<br />

7.2.3 Soil Samples 181<br />

7.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Observati<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g> 181<br />

7.4 <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Analysis <str<strong>on</strong>g>System</str<strong>on</strong>g> 181<br />

7.5 A Possible <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Experiment Package 184<br />

and Operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g Arrangement<br />

Annex 1: Team IV. A Manned <strong>Mars</strong> Stati<strong>on</strong> and <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Research 185


FOREWORD


<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Science Team was established <str<strong>on</strong>g>in</str<strong>on</strong>g> September 1996 by Dr. P. Clancy<br />

of <strong>ESA</strong>’s Directorate of Manned Spaceflight and Microgravity. <str<strong>on</strong>g>The</str<strong>on</strong>g> task of <str<strong>on</strong>g>the</str<strong>on</strong>g> Team<br />

was to survey current research <str<strong>on</strong>g>in</str<strong>on</strong>g> exobiology and related fields and <str<strong>on</strong>g>the</str<strong>on</strong>g>n to make<br />

recommendati<strong>on</strong>s to <strong>ESA</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of a future search <str<strong>on</strong>g>for</str<strong>on</strong>g> life elsewhere <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>. In carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out that task, <str<strong>on</strong>g>the</str<strong>on</strong>g> Team has benefited c<strong>on</strong>siderably from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tributi<strong>on</strong>s provided by many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r experts, as listed below.<br />

From a scientific po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view, it is probably <str<strong>on</strong>g>the</str<strong>on</strong>g> first time <str<strong>on</strong>g>in</str<strong>on</strong>g> recent years that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

various relevant aspects <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> a potential search <str<strong>on</strong>g>for</str<strong>on</strong>g> life elsewhere have been<br />

brought toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r and exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> such detail <str<strong>on</strong>g>in</str<strong>on</strong>g> Europe. Likewise, this is <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

attempt to outl<str<strong>on</strong>g>in</str<strong>on</strong>g>e what exobiology space experiments might reas<strong>on</strong>ably be planned,<br />

given <str<strong>on</strong>g>the</str<strong>on</strong>g> limited resources currently available <str<strong>on</strong>g>in</str<strong>on</strong>g> Europe <str<strong>on</strong>g>for</str<strong>on</strong>g> new ventures, however<br />

excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>y may be.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results of this first study are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Part I. For this part, <str<strong>on</strong>g>the</str<strong>on</strong>g> Team<br />

comprised:<br />

Chairman: André Brack, Centre de Biophysique Moléculaire, CNRS, Orléans,<br />

France.<br />

Patrick Forterre, Institut de Génétique et Microbiologie, Université de Paris<br />

Sud, Orsay, France.<br />

Gerda Horneck, Institute of Aerospace Medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, DLR, Porz-Wahn, Germany.<br />

Col<str<strong>on</strong>g>in</str<strong>on</strong>g> Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, Planetary Sciences Research Institute, Open University,<br />

Milt<strong>on</strong> Keynes, UK.<br />

Manfred Schidlowski, Max-Planck Institut für Chemie, Abteilung Biochemie,<br />

Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>z, Germany.<br />

He<str<strong>on</strong>g>in</str<strong>on</strong>g>rich Wänke, Max-Planck Institut für Chemie, Abteilung Kosmochemie,<br />

Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>z, Germany.<br />

Secretary: Brian Fitt<strong>on</strong>, European Science C<strong>on</strong>sultants, Sassenheim,<br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> folow<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tributors:<br />

Nathalie Cabrol, Space Science Divisi<strong>on</strong>, NASA Ames, Moffett Field,<br />

Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia, USA.<br />

Ignasi Casanova, Institute <str<strong>on</strong>g>for</str<strong>on</strong>g> Space Studies, Univ.Politec. Catalunya,<br />

Barcel<strong>on</strong>a, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

August<str<strong>on</strong>g>in</str<strong>on</strong>g> Chicarro, Space Science Department, ESTEC, Noordwijk,<br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

A<str<strong>on</strong>g>the</str<strong>on</strong>g>na Coustenis, DESPA, Observatoire de Paris, Meud<strong>on</strong>, France.<br />

G. Egl<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, Bristol University, Bristol, UK.<br />

M. Fenzi, Technospazio, Milan, Italy.<br />

H.U. Keller, Max Planck Institut für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Alexandra MacDermott, Chemistry Department, Cambridge University,<br />

Cambridge, U.K.<br />

Michel Maurette, CSNSM, Orsay Campus, Orsay, France.<br />

J. Parkes, Bristol University, Bristol, UK.<br />

Francois Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, LISA/CNRS, Universités de Paris 7 & 12, Créteil, France.<br />

Dave Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>ry, Earth Science Dept. Open University, Milt<strong>on</strong> Keynes, UK.<br />

Didier Schmidt, Space Science Department, ESTEC, Noordwijk, Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

Alan Schwartz, Laboratory <str<strong>on</strong>g>for</str<strong>on</strong>g> Evoluti<strong>on</strong>ary Biology, Faculty of Science,<br />

University of Nijmegen, Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

A. Steele, Dept. of Chemistry, University of Portsmouth, Portsmouth, UK.<br />

A major outcome was <str<strong>on</strong>g>the</str<strong>on</strong>g> recommendati<strong>on</strong> to seek evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong>, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a group of six <str<strong>on</strong>g>in</str<strong>on</strong>g>struments. All of <str<strong>on</strong>g>the</str<strong>on</strong>g>se are adaptati<strong>on</strong>s of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>struments that are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r under development or have already flown <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r space<br />

missi<strong>on</strong>s. Toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>for</str<strong>on</strong>g>m an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated package of analysis equipment that<br />

9


SP-1231<br />

10<br />

should be able to provide a c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>g answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong>, ‘Is <str<strong>on</strong>g>the</str<strong>on</strong>g>re evidence here,<br />

at this particular land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site, of previous or exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g life?’ That <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong><br />

system is provisi<strong>on</strong>ally named ‘Pasteur’, to commemorate a great scientist who<br />

proved that life existed where o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs saw <strong>on</strong>ly chemistry. If <str<strong>on</strong>g>the</str<strong>on</strong>g> Pasteur package can<br />

prove <str<strong>on</strong>g>the</str<strong>on</strong>g> same <strong>on</strong> <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t and cost to Europe will have been well<br />

rewarded. Should <str<strong>on</strong>g>the</str<strong>on</strong>g> result be c<strong>on</strong>clusively negative, <str<strong>on</strong>g>the</str<strong>on</strong>g>n that too is of value. But<br />

more than that, <str<strong>on</strong>g>the</str<strong>on</strong>g> enormous amount of <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface geochemistry<br />

and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, which will be acquired as part of <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life, will <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

itself be a major scientific achievement.<br />

To accommodate this <str<strong>on</strong>g>in</str<strong>on</strong>g>strument package, a <strong>Mars</strong> Lander capable of a soft touchdown<br />

is required. <str<strong>on</strong>g>The</str<strong>on</strong>g> possibility of add<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to <strong>ESA</strong>’s <strong>Mars</strong> Express missi<strong>on</strong>,<br />

scheduled <str<strong>on</strong>g>for</str<strong>on</strong>g> launch <str<strong>on</strong>g>in</str<strong>on</strong>g> June 2003, is be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed <strong>Mars</strong> experiments, <str<strong>on</strong>g>the</str<strong>on</strong>g> Team also recommended<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g support <str<strong>on</strong>g>for</str<strong>on</strong>g> programmes that are c<strong>on</strong>cerned with understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> basic<br />

mechanisms lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to life, <str<strong>on</strong>g>the</str<strong>on</strong>g> survivability and effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> space envir<strong>on</strong>ment <strong>on</strong><br />

microorganisms, <str<strong>on</strong>g>the</str<strong>on</strong>g> adaptati<strong>on</strong> of life to extreme envir<strong>on</strong>ments, and <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

meteorite samples of <strong>Mars</strong> sedimentary rocks.<br />

Hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>ESA</strong>’s Rosetta missi<strong>on</strong> to Comet Wirtanen,<br />

which offers <str<strong>on</strong>g>the</str<strong>on</strong>g> prospect of determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> range of organics <str<strong>on</strong>g>in</str<strong>on</strong>g> bodies that may<br />

have c<strong>on</strong>tributed <str<strong>on</strong>g>the</str<strong>on</strong>g> precursors of life <strong>on</strong> Earth. <str<strong>on</strong>g>The</str<strong>on</strong>g> Cass<str<strong>on</strong>g>in</str<strong>on</strong>g>i/Huygens missi<strong>on</strong> to<br />

sample <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and surface comp<strong>on</strong>ents of Titan is also of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to<br />

exobiology, <str<strong>on</strong>g>for</str<strong>on</strong>g> its <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to a world rich <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrocarb<strong>on</strong>s. Likewise, <str<strong>on</strong>g>the</str<strong>on</strong>g> current<br />

experiments <strong>on</strong> Mir and future Internati<strong>on</strong>al Space Stati<strong>on</strong> experiments c<strong>on</strong>cerned<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of microorganisms to space c<strong>on</strong>diti<strong>on</strong>s, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

photochemistry of organics under space irradiati<strong>on</strong>, are of c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g fundamental<br />

importance to exobiology.<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> and its Requirements<br />

Any discussi<strong>on</strong> <strong>on</strong> how to search <str<strong>on</strong>g>for</str<strong>on</strong>g> life must start from a def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of what actually<br />

c<strong>on</strong>stitutes life. Probably <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest statement is that life, to a scientist, is basically<br />

a chemical system that is able to transfer its molecular <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> via self-replicati<strong>on</strong><br />

and to evolve via mutati<strong>on</strong>s.<br />

For life as we know it to emerge, <str<strong>on</strong>g>the</str<strong>on</strong>g>re must be liquid water. Not pure water, <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary reduced organic molecules <str<strong>on</strong>g>the</str<strong>on</strong>g>re will need to be an<br />

associati<strong>on</strong> with C, N, H, O, S and P atoms. In any case, life has c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued to develop<br />

very well <str<strong>on</strong>g>in</str<strong>on</strong>g> water that is very acidic, alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e or is a str<strong>on</strong>g br<str<strong>on</strong>g>in</str<strong>on</strong>g>e soluti<strong>on</strong>. It has also<br />

survived and flourished <str<strong>on</strong>g>in</str<strong>on</strong>g> water at temperatures above 100ºC.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fact that evidence of complex microbial life is to be found <strong>on</strong> Earth stretch<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

back some 3800 milli<strong>on</strong> years – to with<str<strong>on</strong>g>in</str<strong>on</strong>g> about 700 milli<strong>on</strong> years of its <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> –<br />

shows that it emerged very early and that <strong>on</strong>ce established it proved to be adept at<br />

evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g and adapt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a wide range of chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g physical and chemical c<strong>on</strong>diti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> discovery of an active biosphere several hundred metres below <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s<br />

surface is witness to this <str<strong>on</strong>g>in</str<strong>on</strong>g>credible diversity and adaptability of life.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r biomarkers – signatures of life – comm<strong>on</strong> to all life as we know it at present<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude <str<strong>on</strong>g>the</str<strong>on</strong>g> preferential isotopic fracti<strong>on</strong>ati<strong>on</strong> of carb<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> 13 C/ 12 C ratio <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sedimentary organic carb<strong>on</strong>, as compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> same isotopic ratio <str<strong>on</strong>g>for</str<strong>on</strong>g> coexist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

carb<strong>on</strong>ate carb<strong>on</strong>, provides a remarkably c<strong>on</strong>sistent signal of biological carb<strong>on</strong><br />

fixati<strong>on</strong> which has been shown to stretch back over some 3500 milli<strong>on</strong> years of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fossil record of microbial life <strong>on</strong> Earth. <str<strong>on</strong>g>The</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of this fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of<br />

12 C <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biological pathway of carb<strong>on</strong> fixati<strong>on</strong> derives <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most part from a<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic isotope effect imposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first CO 2 – fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g enzymatic carboxylati<strong>on</strong><br />

reacti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway. <str<strong>on</strong>g>The</str<strong>on</strong>g> importance of this biomarker, and of<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r potential isotopic biomarkers (H, N, O and S), is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of a gas chromatograph/mass spectrometer <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> suite of <str<strong>on</strong>g>in</str<strong>on</strong>g>struments<br />

recommended <str<strong>on</strong>g>for</str<strong>on</strong>g> any exobiology package.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r reas<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> its <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> is to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> organic compounds released by


pyrolysis, or similar techniques, from any fossil residue of biological matter that<br />

might be found dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a search. On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk of such ‘kerogen’ material is made<br />

up of highly polymerised aliphatic and aromatic hydrocarb<strong>on</strong>s, represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> end<br />

product of diagenetic alterati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> primary biogenic substances <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediments.<br />

Am<strong>on</strong>g that residue of ancient life can be found trace amounts of quasi-prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

organic molecules (mostly pigments or discrete hydrocarb<strong>on</strong> cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s) that have<br />

preserved <str<strong>on</strong>g>the</str<strong>on</strong>g>ir identity throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> process of decay and evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> record of such biomarker molecules goes back about 1000 milli<strong>on</strong> years <strong>on</strong> Earth.<br />

Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir possible detecti<strong>on</strong> by evolved gas analysis (GCMS), which can also<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular distributi<strong>on</strong> patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> a homologous series of remnant<br />

compounds, such as lipids, as a characteristic <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of biological acti<strong>on</strong>, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> may also be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by IR and Laser Raman spectroscopy, which yields<br />

details of characteristic b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g and structure.<br />

An analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> elemental compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>se residues has also provided an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and habitat of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al source organisms. <str<strong>on</strong>g>The</str<strong>on</strong>g> GCMS<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed Alpha-Prot<strong>on</strong>-X-ray (APX) elemental<br />

analysis <str<strong>on</strong>g>in</str<strong>on</strong>g>strument, is <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to supply that <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> APX <str<strong>on</strong>g>in</str<strong>on</strong>g>strument will<br />

also be used <str<strong>on</strong>g>for</str<strong>on</strong>g> elemental analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical comp<strong>on</strong>ent of samples.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chemical products of metabolism are a key <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of extant life, and <str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exobiology experiments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g lander <strong>on</strong> <strong>Mars</strong>. Cultur<str<strong>on</strong>g>in</str<strong>on</strong>g>g and<br />

subsequent biochemical analysis, e.g. by nucleic acid sequenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g, and prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, lipid<br />

and sugar c<strong>on</strong>tent determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> are classic routes to identificati<strong>on</strong> of liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use under space c<strong>on</strong>diti<strong>on</strong>s would be extremely challeng<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Microscopic exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ms <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal means of detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g both extant<br />

and ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life and equipment <str<strong>on</strong>g>for</str<strong>on</strong>g> that purpose is proposed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument package.<br />

Two levels of observati<strong>on</strong> are <str<strong>on</strong>g>for</str<strong>on</strong>g>eseen. <str<strong>on</strong>g>The</str<strong>on</strong>g> first is an optical microscope which<br />

would be used to search <str<strong>on</strong>g>for</str<strong>on</strong>g> groups of microfossil structures. It could also be used <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

petrological studies and to <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate possible residual carb<strong>on</strong>a-ceous material. If extant<br />

microbial life was present it would also be observable.<br />

In order to observe <str<strong>on</strong>g>the</str<strong>on</strong>g> detailed structural comp<strong>on</strong>ents of any microfossil<br />

structures, or extant equivalents, it will be necessary to achieve a resoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nanometre range. This can be d<strong>on</strong>e us<str<strong>on</strong>g>in</str<strong>on</strong>g>g an Atomic Force Microscope. In this, a<br />

probe scans <str<strong>on</strong>g>the</str<strong>on</strong>g> surface field structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> sample, yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 3D image with a<br />

resoluti<strong>on</strong> of a few nanometres.<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g>: Where Else Might it Exist?<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence that life arose very early <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> young Earth, we might reas<strong>on</strong>ably<br />

expect to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d evidence of life wherever water has existed c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously over a period<br />

comparable with <str<strong>on</strong>g>the</str<strong>on</strong>g> 700 milli<strong>on</strong> years that, at <str<strong>on</strong>g>the</str<strong>on</strong>g> very maximum, it took <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong><br />

Earth to develop.<br />

We have clear evidence that water existed <str<strong>on</strong>g>in</str<strong>on</strong>g> substantial amounts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of<br />

<strong>Mars</strong> at some earlier epoch. How l<strong>on</strong>g it was present at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface is unknown. Nor<br />

do we know if water exists still <str<strong>on</strong>g>in</str<strong>on</strong>g> subsurface aquifers, although <str<strong>on</strong>g>the</str<strong>on</strong>g>re are clear<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of large permafrost regi<strong>on</strong>s and of old water flows out of associated areas.<br />

It rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s a matter of urgency to carry out a radar survey from orbit to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extent of any geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally heated subsurface water table, ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g below <str<strong>on</strong>g>the</str<strong>on</strong>g> cryosphere.<br />

Similarly, high-resoluti<strong>on</strong> orbital surveys to isolate regi<strong>on</strong>s of hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity<br />

and of surface water vapour release are essential <str<strong>on</strong>g>for</str<strong>on</strong>g> any future search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life<br />

<strong>on</strong> <strong>Mars</strong>.<br />

Given <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery of a flourish<str<strong>on</strong>g>in</str<strong>on</strong>g>g biosphere a kilometre below <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s<br />

surface, it is possible that a similar vast microbial community is still present below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong>, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>g ago retreated <str<strong>on</strong>g>in</str<strong>on</strong>g>to that ecological niche follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

disappearance of a surface water envir<strong>on</strong>ment.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> possibility that life may have evolved <strong>on</strong> <strong>Mars</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g an early period when<br />

water existed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and that life may still exist deep below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, marks<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet as a prime candidate <str<strong>on</strong>g>in</str<strong>on</strong>g> a search <str<strong>on</strong>g>for</str<strong>on</strong>g> life bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. It was <str<strong>on</strong>g>for</str<strong>on</strong>g> that<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>eword<br />

11


SP-1231<br />

12<br />

reas<strong>on</strong> – and <str<strong>on</strong>g>the</str<strong>on</strong>g> prospect of <strong>Mars</strong> missi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>eseeable future – that it was<br />

recommended a search <str<strong>on</strong>g>for</str<strong>on</strong>g> life be focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet.<br />

In stat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that life may have begun <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong>, we reveal a natural<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> to c<strong>on</strong>sider life as a planet’s surface phenomen<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> assumpti<strong>on</strong> may yet<br />

be proved wr<strong>on</strong>g, with life perhaps able to develop com<str<strong>on</strong>g>for</str<strong>on</strong>g>tably with<str<strong>on</strong>g>in</str<strong>on</strong>g> a warm wet<br />

subterrannean world.<br />

In that sense, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, life may have actually evolved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface world of<br />

<strong>Mars</strong> and of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets and satellites. For example, Europa, a satellite of Jupiter<br />

heated by gravitati<strong>on</strong>al tidal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces, has an icy carapace envelop<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and<br />

possibly many kilometres thick. Indicati<strong>on</strong>s of cryovolcanic flows at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface po<str<strong>on</strong>g>in</str<strong>on</strong>g>t<br />

to a possible water or br<str<strong>on</strong>g>in</str<strong>on</strong>g>e subsurface regi<strong>on</strong> which might harbour a basic life<str<strong>on</strong>g>for</str<strong>on</strong>g>m.<br />

NASA may mount a missi<strong>on</strong> to Europa to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate that possibility.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong><br />

As an extensi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial general study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>ESA</strong> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Science Team was<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n asked by <strong>ESA</strong> to c<strong>on</strong>sider more specifically <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <strong>Mars</strong>. This is presented<br />

below, <str<strong>on</strong>g>in</str<strong>on</strong>g> Part II. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stituti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Science Team was slightly modified and<br />

expanded from <str<strong>on</strong>g>the</str<strong>on</strong>g> team that undertook <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al broader study <strong>on</strong> ‘<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> For<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> In <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>’. Focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>Mars</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> need to c<strong>on</strong>centrate<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> practical and technical aspects, <str<strong>on</strong>g>in</str<strong>on</strong>g>evitably called <str<strong>on</strong>g>for</str<strong>on</strong>g> some changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Team’s overall c<strong>on</strong>stituti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>ESA</strong> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Study Team of 1998 comprised:<br />

Chairman: André Brack, Centre de Biophysique Moléculaire, CNRS, Orléans,<br />

France.<br />

Beda Hofmann, Naturhistorisches Museum, Bern, Switzerland.<br />

Gerda Horneck, Institute of Aerospace Medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, DLR, Porz-Wahn, Germany.<br />

Gero Kurat, Naturhistorisches Museum, Vienna, Austria.<br />

James Maxwell, Chemistry Department, Bristol University, Bristol, UK.<br />

Gian G. Ori, Dipartimento di Scienze, Universita d’Annunzio, Pescara, Italy.<br />

Col<str<strong>on</strong>g>in</str<strong>on</strong>g> Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, Planetary Sciences Research Institute, Open University,<br />

Milt<strong>on</strong> Keynes, UK.<br />

François Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, LISA, CNRS, Universités de Paris 7 et 12, Créteil, France.<br />

Nicolas Thomas, MPI für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Frances Westall, Dipartimento di Protezi<strong>on</strong>e Agrolimentare, Universita degli<br />

Studi di Bologna, Italy. (Currently at: Planetary Sciences Branch, NASA<br />

Johns<strong>on</strong> Space Center, Houst<strong>on</strong>, USA.)<br />

Secretary: Brian Fitt<strong>on</strong>, European Science C<strong>on</strong>sultants, Noordwijk,<br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

This sec<strong>on</strong>d study was carried out primarily through <str<strong>on</strong>g>the</str<strong>on</strong>g> ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts of three subgroups<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> Science Team, aided by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r specialist advisors. It also benefited from<br />

presentati<strong>on</strong>s and discussi<strong>on</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g an extended meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> Team, which was<br />

attended by a wider group of advisors and specialists, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <strong>ESA</strong> scientific<br />

and technical pers<strong>on</strong>nel.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal tasks of <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroups – Teams I, II and III – are outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed below,<br />

toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> list of c<strong>on</strong>tributors to Part II of this report:<br />

TEAM I<br />

To def<str<strong>on</strong>g>in</str<strong>on</strong>g>e those surface and near-surface envir<strong>on</strong>ments of <strong>Mars</strong> where evidence of<br />

past life might best be sought and to establish a shortlist of preferred land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

a future exobiology missi<strong>on</strong>.<br />

Leader: Gian G.Ori, Dipartimento di Scienze, Universita d’Annunzio, Pescara,<br />

Italy.


Ignasi Casanova, Institute <str<strong>on</strong>g>for</str<strong>on</strong>g> Space Studies, Univ. Politechnica Catalunya,<br />

Barcel<strong>on</strong>a, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Beda Hofmann, Naturhistorisches Museum, Bern, Switzerland.<br />

Gerda Horneck, Institute <str<strong>on</strong>g>for</str<strong>on</strong>g> Aerospace Medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, DLR, Porz-Wahn,<br />

Germany.<br />

Gero Kurat, Naturhistorisches Museum,Vienna,Austria.<br />

Nicolas Thomas, MPI für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

TEAM II<br />

To study specifically <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical analysis aspects of an exobiology multi-user<br />

package. This <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical analysis of surface and subsurface m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and<br />

organics, to search <str<strong>on</strong>g>for</str<strong>on</strong>g> microbial life, past or present, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian soil.<br />

Leader: François Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, LISA, Université de Paris, Créteil, France.<br />

André Brack, Centre de Biophysique Moléculaire, CNRS, Orléans,<br />

France.<br />

Howell Edwards, Chemistry Department, University of Brad<str<strong>on</strong>g>for</str<strong>on</strong>g>d, UK.<br />

Gerda Horneck, Institute <str<strong>on</strong>g>for</str<strong>on</strong>g> Aerospace Medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, DLR, Porz-Wahn,<br />

Germany.<br />

Göstar Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer, Technische Universität Darmstadt, Germany.<br />

Gero Kurat, Naturhistorisches Museum,Vienna, Austria.<br />

Alexandra MacDermott, Chemistry Dept., University of Cambridge, UK.<br />

James Maxwell, Chemistry Dept., Bristol University, UK.<br />

Col<str<strong>on</strong>g>in</str<strong>on</strong>g> Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, PSRI, Open University, Milt<strong>on</strong> Keynes, UK.<br />

Robert Sternberg, LISA, Université de Paris 7 & 12, France.<br />

Harald Strauss, Institut für Geologie, Ruhr University, Bochum, Germany.<br />

Nicolas Thomas, MPI für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

TEAM III<br />

To def<str<strong>on</strong>g>in</str<strong>on</strong>g>e a set of imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g and spectroscopic systems which will allow a search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct microbial life at all scales down to 0.01 µm, whilst also provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and petrography, as a functi<strong>on</strong> of depth, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nearsubsurface<br />

regi<strong>on</strong> of <strong>Mars</strong> and <str<strong>on</strong>g>in</str<strong>on</strong>g> surface rocks.<br />

Leader: Nicolas Thomas, MPI für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Michael Fernandes, MPI für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Beda Hofmann, Naturhistorisches Museum, Bern, Switzerland.<br />

Gero Kurat, Naturhistorisches Museum, Vienna, Austria.<br />

Wojtek Markiewicz, MPI für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Harald Strauss, Ruhr Universität, Bochum, Germany.<br />

Frances Westall, Universita di Bologna, Italy.<br />

In this volume, <str<strong>on</strong>g>the</str<strong>on</strong>g> three separate c<strong>on</strong>tributi<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g>se Teams are <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced<br />

sequentially. From <str<strong>on</strong>g>the</str<strong>on</strong>g>m, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Science Team drew up c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desired strategy <str<strong>on</strong>g>for</str<strong>on</strong>g> searches and <str<strong>on</strong>g>the</str<strong>on</strong>g> set of sample acquisiti<strong>on</strong>, observati<strong>on</strong> and<br />

analysis <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> to fulfil <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific requirements. <str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>clusi<strong>on</strong>s were<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n adapted so that <str<strong>on</strong>g>the</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g exobiology package and <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>al strategies<br />

are reas<strong>on</strong>ably c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> major c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of potential future <strong>Mars</strong> lander<br />

missi<strong>on</strong>s. That has been achieved without a major loss of scientific potential.<br />

Later, ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r subgroup (Team IV) embarked up<strong>on</strong> an analysis, from an exobiology<br />

viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t, of <str<strong>on</strong>g>the</str<strong>on</strong>g> potential value of human explorati<strong>on</strong> of <strong>Mars</strong>. Its<br />

c<strong>on</strong>clusi<strong>on</strong>s and recommendati<strong>on</strong>s <strong>on</strong> this critical subject are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Annex 1.<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>eword<br />

13


SP-1231<br />

14<br />

TEAM IV<br />

To analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed ideas <str<strong>on</strong>g>for</str<strong>on</strong>g> a manned missi<strong>on</strong> to <strong>Mars</strong> from an exobiology<br />

viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> order to advise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> advantages offered and <str<strong>on</strong>g>the</str<strong>on</strong>g> precauti<strong>on</strong>s that need<br />

to be taken.<br />

Leader: André Brack, Centre de Biophysique Moléculaire, CNRS, Orléans,<br />

France.<br />

Christian de Duve, Institute of Cellular Pathology, Brussels, Belgium.<br />

Gerda Horneck, Institute <str<strong>on</strong>g>for</str<strong>on</strong>g> Aerospace Medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, DLR, Porz-Wahn,<br />

Germany.<br />

Col<str<strong>on</strong>g>in</str<strong>on</strong>g> Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, PSRI, Open University, Milt<strong>on</strong> Keynes, UK.<br />

Daniel Prieur, Stati<strong>on</strong> Biologique, Roscoff, France.<br />

Karl Stetter, Lehrstuhl der Mikrobiologie, Universität Regensberg, Germany.<br />

Didier Vassaux, Prospective Spatiale, CNES, Paris, France.<br />

Wolfram Zillig, MPI für Biochemie, Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>sried, Germany.<br />

Part II develops from Part I and provides <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g that leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> specified multi-user <str<strong>on</strong>g>in</str<strong>on</strong>g>strument package. <str<strong>on</strong>g>The</str<strong>on</strong>g> technical design of that package<br />

is now be<str<strong>on</strong>g>in</str<strong>on</strong>g>g undertaken by <strong>ESA</strong>.<br />

In develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se ideas, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>ESA</strong> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Team has been greatly assisted by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g Advisors, whose c<strong>on</strong>tributi<strong>on</strong>s have also eased <str<strong>on</strong>g>the</str<strong>on</strong>g> task of prepar<str<strong>on</strong>g>in</str<strong>on</strong>g>g this<br />

Report:<br />

Nathalie Cabrol, Space Science Divisi<strong>on</strong>, NASA Ames, Moffett Field,<br />

Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia, USA.<br />

Ignasi Casanova, Institute <str<strong>on</strong>g>for</str<strong>on</strong>g> Space Studies, Univ. Politec. Catalunya,<br />

Barcel<strong>on</strong>a, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Howell Edwards, Chemistry Department, Brad<str<strong>on</strong>g>for</str<strong>on</strong>g>d University, Brad<str<strong>on</strong>g>for</str<strong>on</strong>g>d, UK.<br />

Michael Fernandes, Max Planck Inst. für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Göstar Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer, Technische Universität, Darmstadt, Germany.<br />

Jens Knudsen, Niels Bohr Institute, Örsted Laboratory, Copenhagen,<br />

Denmark.<br />

Alexandra MacDermott, Chemistry Department, Cambridge University,<br />

Cambridge, UK.<br />

Wojtek Markiewicz, Max Planck Institut für Aer<strong>on</strong>omie, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dau, Germany.<br />

Dave Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>ry, Earth Science Department, Open University, Milt<strong>on</strong> Keynes,<br />

UK.<br />

Manfred Schidlowski, Max Planck Institut für Chemie, Abt.Biochemie,<br />

Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>z,Germany.<br />

Robert Sternberg, LISA, Université de Paris 7 & 12, Cretéil, France.<br />

Harald Strauss, Institut für Geologie, Ruhr Universität, Bochum, Germany.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Team would also like to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>ESA</strong> pers<strong>on</strong>nel <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

c<strong>on</strong>tributi<strong>on</strong>s and assistance: August<str<strong>on</strong>g>in</str<strong>on</strong>g> Chicarro, Pierre Coste, Elena Grif<strong>on</strong>i, Gerhard<br />

Km<str<strong>on</strong>g>in</str<strong>on</strong>g>ek, Franco Ongaro, Peter Schiller and Gün<str<strong>on</strong>g>the</str<strong>on</strong>g>r Seibert.<br />

This study of <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> <strong>Mars</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> earlier study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

possibility of life elsewhere <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, was undertaken <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itiative of<br />

<strong>ESA</strong>’s Directorate of Manned Spaceflight and Microgravity. <str<strong>on</strong>g>The</str<strong>on</strong>g> Team is grateful <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Directorate’s support and, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> work of Paul Clancy <str<strong>on</strong>g>in</str<strong>on</strong>g> develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>itiative, establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Team and guid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir activities.


I<br />

AN EXOBIOLOGICAL VIEW<br />

OF THE<br />

SOLAR SYSTEM


I.1 Introducti<strong>on</strong><br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> its broad def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes <str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, evoluti<strong>on</strong> and<br />

distributi<strong>on</strong> of life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Universe. This volume’s study, which was organised by<br />

P. Clancy and supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>ESA</strong> Directorate of Manned Spaceflight and Microgravity,<br />

is restricted to <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, c<strong>on</strong>sidered as an open<br />

system with pre-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g material. Although it is difficult to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e succ<str<strong>on</strong>g>in</str<strong>on</strong>g>ctly exactly<br />

what is meant by ‘life’, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose of this study we c<strong>on</strong>sider as liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g any<br />

chemical system able to transfer its molecular <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> via self-replicati<strong>on</strong> and to<br />

evolve. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept of evoluti<strong>on</strong> implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> system normally transfers its<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> fairly faithfully but makes a few random errors, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g potentially to a<br />

higher complexity and possibly to a better adaptati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts.<br />

C<strong>on</strong>temporary liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems use organic molecules made of carb<strong>on</strong>, hydrogen,<br />

oxygen, nitrogen, sulphur and phosphorus atoms to store and to transfer <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

chemical <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> two functi<strong>on</strong>s (<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> storage and <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

transfer) are carried out by two sets of dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct organic polymeric molecules: nucleic<br />

acids and enzymes, respectively. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir basic c<strong>on</strong>stituents, nucleotides and am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

acids, have at least <strong>on</strong>e carb<strong>on</strong> atom that is asymmetric and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e exists <str<strong>on</strong>g>in</str<strong>on</strong>g> two<br />

mirror-image <str<strong>on</strong>g>for</str<strong>on</strong>g>ms. <str<strong>on</strong>g>The</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s are based exclusively <strong>on</strong> left-handed (L) am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

acids, whereas DNA and RNA are based exclusively <strong>on</strong> right-handed (D) sugars.<br />

Nucleic acids and enzymes <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves <str<strong>on</strong>g>for</str<strong>on</strong>g>m asymmetric helical structures and<br />

superstructures. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, any chemical reacti<strong>on</strong> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g asymmetric<br />

molecules <str<strong>on</strong>g>in</str<strong>on</strong>g> statistically large numbers that is run <str<strong>on</strong>g>in</str<strong>on</strong>g> a symmetrical envir<strong>on</strong>ment<br />

yields equal quantities of right- and left-handed molecules. In view of <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e-handedness <str<strong>on</strong>g>in</str<strong>on</strong>g> present-day life, it is difficult to imag<str<strong>on</strong>g>in</str<strong>on</strong>g>e a primitive life<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>m us<str<strong>on</strong>g>in</str<strong>on</strong>g>g simultaneously biom<strong>on</strong>omers of both handedness <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same protocell.<br />

By analogy with c<strong>on</strong>temporary life, it is generally believed that primitive life<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ated from <str<strong>on</strong>g>the</str<strong>on</strong>g> process<str<strong>on</strong>g>in</str<strong>on</strong>g>g of reduced organic molecules by liquid water. <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

may also have started with m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral crystals but this <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis still needs<br />

to be supported by experimental results. Detectable liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g chemical systems must<br />

probably develop with<str<strong>on</strong>g>in</str<strong>on</strong>g> a liquid <str<strong>on</strong>g>in</str<strong>on</strong>g> order to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> ready diffusi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>stituents. Terrestrial life uses liquid water. Water molecules are widespread <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Universe as gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s of solid ice or as very dilute water vapour. Normally, liquid water<br />

can persist <strong>on</strong>ly above 0°C but this temperature can be lowered when salts or organic<br />

compounds are dissolved. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric pressure must be higher than<br />

6 mbar. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> size of a planet and its distance from its parent star are two<br />

basic characteristics that will determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of liquid water. If a planet is too<br />

small, like Mercury or <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>, it will not be able to reta<str<strong>on</strong>g>in</str<strong>on</strong>g> any atmosphere and,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, liquid water. If <str<strong>on</strong>g>the</str<strong>on</strong>g> planet is too close to <str<strong>on</strong>g>the</str<strong>on</strong>g> star, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean temperature rises.<br />

Any sea water present would evaporate, deliver<str<strong>on</strong>g>in</str<strong>on</strong>g>g large amounts of water vapour to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and thus c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect, which causes a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

temperature rise. Such a positive feedback loop could lead to a runaway greenhouse.<br />

All of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface water would be transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> upper atmosphere, where<br />

photodissociati<strong>on</strong> by UV light would break <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules <str<strong>on</strong>g>in</str<strong>on</strong>g>to hydrogen and oxygen.<br />

Loss of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere would result from <str<strong>on</strong>g>the</str<strong>on</strong>g> escape of hydrogen to space and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of oxygen with <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. If a planet is far from its star, it may permit <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

existence of liquid water, provided that it can ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a c<strong>on</strong>stant greenhouse<br />

atmosphere. However, water could provoke its own disappearance. <str<strong>on</strong>g>The</str<strong>on</strong>g> atmospheric<br />

greenhouse gas CO 2, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, could be dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans and f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally trapped<br />

as <str<strong>on</strong>g>in</str<strong>on</strong>g>soluble carb<strong>on</strong>ates. (by rock-wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g). This negative feedback could lower <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

17


SP-1231<br />

18<br />

surface pressure of CO 2 and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature to such an extent that water<br />

would be largely frozen. <str<strong>on</strong>g>The</str<strong>on</strong>g> size of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth and its distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun are such<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> planet never experienced ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a runaway greenhouse heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g or a divergent<br />

glaciati<strong>on</strong>.<br />

Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to its molecular weight, water should be a gas under standard terrestrial<br />

c<strong>on</strong>diti<strong>on</strong>s, as are CO 2, SO 2, H 2S, <str<strong>on</strong>g>for</str<strong>on</strong>g> example. Its liquid state derives from its ability<br />

to <str<strong>on</strong>g>for</str<strong>on</strong>g>m hydrogen b<strong>on</strong>ds. <str<strong>on</strong>g>The</str<strong>on</strong>g> hydrogen b<strong>on</strong>ds <str<strong>on</strong>g>for</str<strong>on</strong>g>m a very tight polymeric network of<br />

water molecules and raise <str<strong>on</strong>g>the</str<strong>on</strong>g> boil<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperature to <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively high value of<br />

100°C. Hydrogen b<strong>on</strong>ds are also <str<strong>on</strong>g>for</str<strong>on</strong>g>med between water molecules and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

biomolecules and between <str<strong>on</strong>g>the</str<strong>on</strong>g> biomolecules <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, base-pair<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

via hydrogen b<strong>on</strong>ds is a key feature of <str<strong>on</strong>g>the</str<strong>on</strong>g> biological <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> transfer. Hydrogen<br />

b<strong>on</strong>ds are not restricted to water molecules – alcohols exhibit a similar behaviour.<br />

Hydrogen-rich liquids such as alcohols, liquid hydrogen sulphide and liquid amm<strong>on</strong>ia<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e merit attenti<strong>on</strong> as possible media <str<strong>on</strong>g>for</str<strong>on</strong>g> n<strong>on</strong>-terrestrial liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems.<br />

Unrestricted diffusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a liquid would probably reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>-transfer processes. Terrestrial life restricts <str<strong>on</strong>g>the</str<strong>on</strong>g> extent of <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

process by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g membranes. Any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r way of limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic<br />

molecules, such as m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral surface metabolism, must also be c<strong>on</strong>sidered.<br />

Several sources have been exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> prebiotic organic build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks:<br />

terrestrial primitive atmosphere (methane or carb<strong>on</strong> dioxide), deep-sea hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

systems and cometary and meteoritic gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> import of extraterrestrial organic<br />

molecules ga<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.<br />

By analogy with c<strong>on</strong>temporary liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g cells, it was generally believed that primitive<br />

life required at least boundary molecules, catalytic molecules and <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative<br />

molecules. Until now, it has been impossible to produce significant amounts of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative RNA molecules under prebiotic c<strong>on</strong>diti<strong>on</strong>s. Some scientists are now<br />

tempted to c<strong>on</strong>sider that primitive replicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems must have used simpler<br />

autocatalytic <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>al molecules. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> clues that may help to<br />

understand <str<strong>on</strong>g>the</str<strong>on</strong>g>se very early <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life <strong>on</strong> Earth about 4000 milli<strong>on</strong> years ago have<br />

been erased.<br />

Evidently, <str<strong>on</strong>g>the</str<strong>on</strong>g> basic c<strong>on</strong>diti<strong>on</strong>s that generated terrestrial life appear not to be<br />

restricted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. This report exam<str<strong>on</strong>g>in</str<strong>on</strong>g>es possible sites <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r bodies <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> possible transfer of life from <strong>on</strong>e body to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r.


I.2 Chemical Evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g><br />

Primitive terrestrial life probably emerged <str<strong>on</strong>g>in</str<strong>on</strong>g> water, with <str<strong>on</strong>g>the</str<strong>on</strong>g> first chemical systems<br />

able to transfer <str<strong>on</strong>g>the</str<strong>on</strong>g>ir molecular <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and to evolve. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, <str<strong>on</strong>g>the</str<strong>on</strong>g> direct<br />

clues that may help chemists to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules that participated <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

emergence of life <strong>on</strong> Earth about 4000 milli<strong>on</strong> years ago have been erased by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effects of plate tect<strong>on</strong>ics, <str<strong>on</strong>g>the</str<strong>on</strong>g> permanent presence of runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g water, <str<strong>on</strong>g>the</str<strong>on</strong>g> unshielded UV<br />

radiati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun and <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen produced by life itself. By analogy with<br />

c<strong>on</strong>temporary life, it is generally believed that primitive life orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ated from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g of reduced organic molecules by liquid water. Primitive life may also have<br />

started based <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral crystals. This idea has been developed by Cairns-Smith<br />

(1982) but still needs to be supported by experiments.<br />

I.2.1.1 Terrestrial Producti<strong>on</strong> of Reduced Organic Molecules<br />

Opar<str<strong>on</strong>g>in</str<strong>on</strong>g> (1924) suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> small reduced organic molecules needed <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

primitive life were <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> an early atmosphere dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by methane. <str<strong>on</strong>g>The</str<strong>on</strong>g> idea<br />

was tested <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory by Miller (1953) when he exposed a mixture of methane,<br />

amm<strong>on</strong>ia, hydrogen and water to electrical discharges. In his <str<strong>on</strong>g>in</str<strong>on</strong>g>itial experiment, he<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed four of <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, via <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>termediary<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of hydrogen cyanide and <str<strong>on</strong>g>for</str<strong>on</strong>g>maldehyde. Miller’s laboratory syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids occurs efficiently when a reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g gas mixture c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g significant<br />

amounts of hydrogen is used. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> true compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive Earth’s<br />

atmosphere rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unknown.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> source of <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive terrestrial atmosphere can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> volatiles CO 2, N 2 and H 2O trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks that comprised <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet’s mass (<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal reservoir) and a late-accret<str<strong>on</strong>g>in</str<strong>on</strong>g>g veneer of extraterrestrial<br />

material (external reservoir). <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal reservoir is a natural<br />

c<strong>on</strong>sequence of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s accreti<strong>on</strong>. We<str<strong>on</strong>g>the</str<strong>on</strong>g>rhill (1990) suggested that collisi<strong>on</strong>s<br />

with planetary embryos <str<strong>on</strong>g>in</str<strong>on</strong>g> eccentric orbits should have thoroughly homogenised <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rocky compositi<strong>on</strong> of Venus, Earth and <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> late-accret<str<strong>on</strong>g>in</str<strong>on</strong>g>g veneer c<strong>on</strong>tributed<br />

by some comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of volatile-rich meteorites and comets should also have been<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m from planet to planet. A volative-rich veneer may have replaced <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s early accreti<strong>on</strong>, which was subsequently blown<br />

off by <str<strong>on</strong>g>the</str<strong>on</strong>g> giant impact between <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth and a <strong>Mars</strong>-sized planetary embryo that<br />

generated <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong> and caused <str<strong>on</strong>g>the</str<strong>on</strong>g> early atmosphere massive hydrodynamic loss.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> abundance and isotopic ratios of noble gases ne<strong>on</strong>, arg<strong>on</strong>, krypt<strong>on</strong> and xen<strong>on</strong><br />

suggest that meteorites al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with planetary rocks could not have<br />

produced <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s entire volatile <str<strong>on</strong>g>in</str<strong>on</strong>g>ventory and that a significant c<strong>on</strong>tributi<strong>on</strong> from<br />

icy planetesimals was required (Owen & Bar-Nun, 1995).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> surface temperature of <str<strong>on</strong>g>the</str<strong>on</strong>g> early Earth was very much dependent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

partial pressure of CO 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant view <str<strong>on</strong>g>in</str<strong>on</strong>g> recent years has<br />

been that <str<strong>on</strong>g>the</str<strong>on</strong>g> early atmosphere was a weakly reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g mixture of CO 2, N 2 and H 2O,<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with lesser amounts of CO and H 2 (Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 1993). An efficient greenhouse<br />

effect <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by a high CO 2 partial pressure was <str<strong>on</strong>g>the</str<strong>on</strong>g> most likely mechanism capable<br />

of compensat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fa<str<strong>on</strong>g>in</str<strong>on</strong>g>t young Sun, <str<strong>on</strong>g>the</str<strong>on</strong>g> lum<str<strong>on</strong>g>in</str<strong>on</strong>g>osity of which was about 30%<br />

lower than today. <str<strong>on</strong>g>The</str<strong>on</strong>g> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant s<str<strong>on</strong>g>in</str<strong>on</strong>g>k <str<strong>on</strong>g>for</str<strong>on</strong>g> atmospheric CO 2 is silicate wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

land and subsequent <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and depositi<strong>on</strong> of carb<strong>on</strong>ate sediments <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean.<br />

However, a negative feedback system probably ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s surface<br />

temperature above freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g: if <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature dropped below freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g, silicate<br />

wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g would slow down and volcanic CO 2 would accumulate <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

Walker (1985) suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 partial pressure could have been as high as<br />

I.2.1 Terrestrial Prebiotic<br />

Chemistry<br />

19


SP-1231<br />

20<br />

10 bar be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ents because of limited silicate wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

and c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental carb<strong>on</strong>ate rocks storage. Under <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> early Earth could<br />

have been as hot as 85ºC. Recent analysis of samarium/neodium ratios <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ancient<br />

zirc<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ent grew rapidly, so a dense CO 2 atmosphere may have<br />

been restricted to <str<strong>on</strong>g>the</str<strong>on</strong>g> first few hundreds milli<strong>on</strong> of years of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s history.<br />

Recently, Wächtershäuser (1994) has suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> source <str<strong>on</strong>g>for</str<strong>on</strong>g> life was<br />

carb<strong>on</strong> dioxide. <str<strong>on</strong>g>The</str<strong>on</strong>g> energy source required to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> dioxide is proposed<br />

to be provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidative <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of pyrite (FeS 2) from ir<strong>on</strong> sulphide (FeS)<br />

and hydrogen sulphide. Pyrite has positive surface charges and b<strong>on</strong>ds <str<strong>on</strong>g>the</str<strong>on</strong>g> products of<br />

carb<strong>on</strong> dioxide reducti<strong>on</strong>, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g rise to a 2D reacti<strong>on</strong> system, a surface metabolism.<br />

Experiments are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> order to test this new hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.<br />

Deep-sea hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal systems may also represent likely envir<strong>on</strong>ments <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of prebiotic organic molecules. Experiments have been carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> order<br />

to test whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids can be <str<strong>on</strong>g>for</str<strong>on</strong>g>med under c<strong>on</strong>diti<strong>on</strong>s simulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal alterati<strong>on</strong> of oceanic crust (We<str<strong>on</strong>g>the</str<strong>on</strong>g>rhill, 1990).<br />

I.2.1.2 Extraterrestrial Delivery of Organic Molecules to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> import of extraterrestrial organic molecules is a subject of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

study of meteorites, particularly <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>aceous ch<strong>on</strong>drites, c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g up to 5% by<br />

weight of organic matter, has allowed close exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of extraterrestrial organic<br />

material. Eight prote<str<strong>on</strong>g>in</str<strong>on</strong>g>aceous am<str<strong>on</strong>g>in</str<strong>on</strong>g>o-acids have been identified <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong><br />

meteorite am<strong>on</strong>gst more than 70 am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids (Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> & Pizzarello, 1983). <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids are asymmetric and <str<strong>on</strong>g>the</str<strong>on</strong>g> two handedness <str<strong>on</strong>g>for</str<strong>on</strong>g>ms L and D, are generally<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> equal proporti<strong>on</strong>s. However, Engel (1990) reported that L-alan<str<strong>on</strong>g>in</str<strong>on</strong>g>e was 18%<br />

more abundant that D-alan<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e sample of <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite. This ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g result has been recently c<strong>on</strong>firmed by Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> (1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> latter found that<br />

<strong>on</strong>e-handedness was <str<strong>on</strong>g>in</str<strong>on</strong>g> excess of about 10% <str<strong>on</strong>g>for</str<strong>on</strong>g> isoval<str<strong>on</strong>g>in</str<strong>on</strong>g>e, a-methyl norval<str<strong>on</strong>g>in</str<strong>on</strong>g>e and<br />

a-methyl isoleuc<str<strong>on</strong>g>in</str<strong>on</strong>g>e. <str<strong>on</strong>g>The</str<strong>on</strong>g>se excesses found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite may help us to<br />

understand <str<strong>on</strong>g>the</str<strong>on</strong>g> eventual emergence of a <strong>on</strong>e-handed (homochiral) primitive life.<br />

Indeed, homochirality is now believed to be not just a c<strong>on</strong>sequence of life, but also a<br />

prerequisite <str<strong>on</strong>g>for</str<strong>on</strong>g> life, because stereoregular polymers such as a-sheet polypeptides do<br />

not <str<strong>on</strong>g>for</str<strong>on</strong>g>m with mixtures of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids of both handedness. <str<strong>on</strong>g>The</str<strong>on</strong>g> excess of <strong>on</strong>e-handed<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite may, however, result from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic mantles of <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s by circularly polarised<br />

synchrotr<strong>on</strong> radiati<strong>on</strong> from a neutr<strong>on</strong> star remnant of a supernova (B<strong>on</strong>ner &<br />

Rubenste<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1987).<br />

A large collecti<strong>on</strong> of micrometeorites has been recently extracted from Antarctic<br />

old blue ice and analysed by Maurette (1995). A high percentage of unmelted<br />

ch<strong>on</strong>dritic micrometeorites of 50-100 mm size has been observed, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that a<br />

large fracti<strong>on</strong> crossed <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial atmosphere without suffer<str<strong>on</strong>g>in</str<strong>on</strong>g>g drastic <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

treatment. In this size range, <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>aceous micrometeorites represent 80% of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

samples and c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> 7% of carb<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y may have brought about 10 20 g of carb<strong>on</strong> to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Earth over a period of 300 milli<strong>on</strong> years, corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> late terrestrial<br />

bombardment phase. This delivery represents more carb<strong>on</strong> than that engaged <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surficial biomass, i.e. about 10 18 g. Am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids such as a-am<str<strong>on</strong>g>in</str<strong>on</strong>g>o isobutyric acid have<br />

been recently identified <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se Antarctic micrometeorites, which may have<br />

functi<strong>on</strong>ed as t<str<strong>on</strong>g>in</str<strong>on</strong>g>y ch<strong>on</strong>dritic chemical reactors when reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g oceanic water.<br />

For many decades, it was believed that primitive life emerged as a cell, thus<br />

requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary molecules such as phospholipids, catalytic molecules such as<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> enzymes and <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative molecules such as nucleic acids. Vesicle-<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

fatty acids have been identified <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite (Deamer, 1985). Primitive<br />

membranes could also have <str<strong>on</strong>g>in</str<strong>on</strong>g>itially been <str<strong>on</strong>g>for</str<strong>on</strong>g>med by simple isoprene derivatives<br />

(Ouriss<strong>on</strong> & Nakatani, 1994). Selective c<strong>on</strong>densati<strong>on</strong> of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<br />

of liquid water has been experimentally documented. When hydrophobic and hydrophilic<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids coexist with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same polypeptide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> duality generates<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g topologies such as stereoselective and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmostable a-sheet structures.<br />

Short peptides have also been shown to exhibit catalytic properties (Brack, 1993).


A weakness <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of <str<strong>on</strong>g>the</str<strong>on</strong>g> cellular orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life appeared when nucleotide<br />

chemists failed to dem<strong>on</strong>strate that accumulati<strong>on</strong> of significant quantities of natural<br />

nucleotides, <str<strong>on</strong>g>the</str<strong>on</strong>g> build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks of RNA, was a plausible chemical event <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

primitive Earth. Intense experimental work is presently occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field of RNA<br />

analogues, of which Eschenmoser’s pyranosyl-RNA is a prime example (Eschenmoser,<br />

1994). S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce RNAs have been shown to be able to act simultaneously as<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative and catalytic molecules, it is tempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to c<strong>on</strong>sider RNAs as <str<strong>on</strong>g>the</str<strong>on</strong>g> first liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

systems <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive Earth (RNA world). One should, however, remember that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis under prebiotic c<strong>on</strong>diti<strong>on</strong>s rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s an unsolved challenge. Many<br />

chemists now c<strong>on</strong>sider that primitive life was supported by simpler <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative<br />

molecules and large ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts are now devoted to autocatalytic systems, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

simple organic molecules and micelles.<br />

As discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter I.7, <str<strong>on</strong>g>the</str<strong>on</strong>g> geological record also provides important<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> isotopic signatures of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic carb<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Greenland<br />

metasediments br<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>direct evidence that life may be 3850 milli<strong>on</strong> years old<br />

(Mojzsis et al., 1996). This c<strong>on</strong>clusi<strong>on</strong> is fully c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> remarkable<br />

diversity of <str<strong>on</strong>g>the</str<strong>on</strong>g> 3465 milli<strong>on</strong> year old fossilised microflora reported by Schopf (1993).<br />

I.2.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Icy Bodies<br />

Comets<br />

Comets show a substantial c<strong>on</strong>tent of organic material. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Delsemme’s<br />

analysis (1991), Comet Halley dust particles ejected from <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleus c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> 14%<br />

organic carb<strong>on</strong> by mass. About 30% of cometary gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by light<br />

elements C, H, O, N and 35% are close <str<strong>on</strong>g>in</str<strong>on</strong>g> compositi<strong>on</strong> to carb<strong>on</strong>aceous ch<strong>on</strong>drites<br />

(Kissel & Krueger, 1987; Langev<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1987). Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules identified <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

comets are hydrogen cyanide and <str<strong>on</strong>g>for</str<strong>on</strong>g>maldehyde. <str<strong>on</strong>g>The</str<strong>on</strong>g> presence of pur<str<strong>on</strong>g>in</str<strong>on</strong>g>es, pyrimid<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

and <str<strong>on</strong>g>for</str<strong>on</strong>g>maldehyde polymers has also been <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from <str<strong>on</strong>g>the</str<strong>on</strong>g> fragments analysed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> Giotto PIA and <str<strong>on</strong>g>the</str<strong>on</strong>g> Vega PUMA mass spectrometers. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no<br />

direct identificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> complex organic molecules likely to be present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dust<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cometary nucleus. As already menti<strong>on</strong>ed, cometary gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s may have<br />

been an important source of organic molecules delivered to <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive Earth (Oro,<br />

1961; Chyba et al., 1990; Delsemme, 1992; Greenberg, 1993).<br />

Many chemical species of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology were detected <str<strong>on</strong>g>in</str<strong>on</strong>g> Comet<br />

Hyakutake <str<strong>on</strong>g>in</str<strong>on</strong>g> 1996, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g amm<strong>on</strong>ia, methane, acetylene (C 2H 2), acet<strong>on</strong>itrile<br />

(CH 3CN) and hydrogen isocyanide (HN=C) (Irv<str<strong>on</strong>g>in</str<strong>on</strong>g>e et al., 1996; Bockelée-Morvan,<br />

1997). In additi<strong>on</strong> to hydrogen cyanide and <str<strong>on</strong>g>for</str<strong>on</strong>g>maldehyde (H 2CO), seen <str<strong>on</strong>g>in</str<strong>on</strong>g> several<br />

earlier comets, Comet Hale-Bopp was also shown to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> methane, acetylene,<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mic acid (HCOOH), acet<strong>on</strong>itrile, hydrogen isocyanide, isocyanic acid (HNCO),<br />

cyanoacetylene (HN-C=C-CN) and thio<str<strong>on</strong>g>for</str<strong>on</strong>g>maldehyde (H 2C=S) (Crovisier, 1998).<br />

Europa<br />

Europa is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> most enigmatic of <str<strong>on</strong>g>the</str<strong>on</strong>g> Galilean satellites. With a mean density of<br />

about 3.0 g cm -3 , <str<strong>on</strong>g>the</str<strong>on</strong>g> jovian satellite should be dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by rocks. Surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, it<br />

exhibits an icy surface. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> three models proposed <str<strong>on</strong>g>for</str<strong>on</strong>g> Europa’s <str<strong>on</strong>g>in</str<strong>on</strong>g>terior (Oro<br />

et al., 1992), <str<strong>on</strong>g>the</str<strong>on</strong>g> two most likely are: (i) dehydrated silicates covered with a 100 kmthick<br />

layer of water ice, and (ii) dehydrated silicates covered with a 100 km-thick<br />

liquid water layer, itself covered with a water ice layer 10 km thick. <str<strong>on</strong>g>The</str<strong>on</strong>g> heat source<br />

that may ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> liquid water with<str<strong>on</strong>g>in</str<strong>on</strong>g> Europa is <str<strong>on</strong>g>the</str<strong>on</strong>g> dissipati<strong>on</strong> of tidal energy, which<br />

results from <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> gravitati<strong>on</strong>al field across <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<strong>on</strong>’s body. Heat<br />

transfer from <str<strong>on</strong>g>the</str<strong>on</strong>g> core to <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom of <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, similar to <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial<br />

oceans, is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r possible source of <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of such<br />

an ocean is still uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>, several clues, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent data from Galileo,<br />

support <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of a water ocean below <str<strong>on</strong>g>the</str<strong>on</strong>g> icy surface. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of<br />

Europa <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that it has underg<strong>on</strong>e substantial resurfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g and tect<strong>on</strong>ic activity.<br />

If liquid water is present with<str<strong>on</strong>g>in</str<strong>on</strong>g> Europa, it is quite possible that it <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes organic<br />

matter derived from ch<strong>on</strong>dritic material. <str<strong>on</strong>g>The</str<strong>on</strong>g> impact of large meteorites, several<br />

chemical evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar system/I.2<br />

I.2.2 Chemical Evoluti<strong>on</strong><br />

<strong>on</strong> O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Bodies of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g><br />

21


SP-1231<br />

22<br />

kilometres <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, would have periodically partially melted <str<strong>on</strong>g>the</str<strong>on</strong>g> icy cover down<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, thus seed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> water with exogenous organic material. Terrestrial-like<br />

prebiotic organic chemistry and primitive life may <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e have developed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Europa’s ocean (Reynolds et al., 1983). If Europa has ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed tidal and/or hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

energy <str<strong>on</strong>g>in</str<strong>on</strong>g> its subsurface so far, it is possible that microbial activity is still<br />

present. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of extraterrestrial life present <str<strong>on</strong>g>in</str<strong>on</strong>g> Europa’s hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical<br />

ocean must be seriously c<strong>on</strong>sidered (Carr et al., 1998).<br />

Ganymede<br />

An <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal structure similar to that of Europa has been proposed <str<strong>on</strong>g>for</str<strong>on</strong>g> Ganymede, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

largest satellite of Jupiter. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> model is less documented and appears as less<br />

likely (see I.3.2.2).<br />

I.2.2.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> N<strong>on</strong>-Icy Bodies<br />

Titan<br />

Titan, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest satellite of Saturn, has a dense N 2-CH 4 atmosphere rich <str<strong>on</strong>g>in</str<strong>on</strong>g> organics<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> both gas and aerosol phases and perhaps hydrocarb<strong>on</strong> oceans <strong>on</strong> its surface (Owen<br />

et al., 1992; Coll et al., 1996; Gautier & Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1997). It represents, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, a<br />

natural laboratory <str<strong>on</strong>g>for</str<strong>on</strong>g> study<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of complex organic molecules <strong>on</strong> a<br />

planetary-scale and over geological times. Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Titan’s surface<br />

temperatures are much lower than those found at <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s surface and that liquid<br />

water is totally absent, <str<strong>on</strong>g>the</str<strong>on</strong>g> satellite provides a unique milieu to study, <str<strong>on</strong>g>in</str<strong>on</strong>g> situ, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

products of <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental physical and chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g a planetary<br />

organic chemistry. Titan also serves as a reference laboratory to study, by default, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

role of liquid water <str<strong>on</strong>g>in</str<strong>on</strong>g> exobiology.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> NASA/<strong>ESA</strong> Cass<str<strong>on</strong>g>in</str<strong>on</strong>g>i/Huygens missi<strong>on</strong> will deliver an orbiter to Saturn and<br />

Titan and a probe <str<strong>on</strong>g>in</str<strong>on</strong>g>to Titan’s atmosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g> missi<strong>on</strong>, launched <str<strong>on</strong>g>in</str<strong>on</strong>g> 1997, will arrive<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> 2004. It will systematically study <str<strong>on</strong>g>the</str<strong>on</strong>g> organic chemistry <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s ‘geofluid’. In situ<br />

measurements will provide detailed analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> organics present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> air, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aerosols and at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (Gautier & Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1997).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Giant Planets<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> outer-planet atmospheres, from Jupiter to Pluto, c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> methane as <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

carb<strong>on</strong>-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g molecules. <str<strong>on</strong>g>The</str<strong>on</strong>g> atmospheres of <str<strong>on</strong>g>the</str<strong>on</strong>g> giant planets Jupiter, Saturn<br />

and Uranus are ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly composed of hydrogen and helium, with a noticeable fracti<strong>on</strong><br />

of methane and a lower c<strong>on</strong>tributi<strong>on</strong> of amm<strong>on</strong>ia (Pollack & Atreya, 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

situati<strong>on</strong> is similar <str<strong>on</strong>g>for</str<strong>on</strong>g> Neptune but s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature is lower, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

of amm<strong>on</strong>ia must be much lower (Gautier et al., 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> recent discovery of HCN<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> its atmosphere str<strong>on</strong>gly suggests that nitrogen should be present as a ma<str<strong>on</strong>g>in</str<strong>on</strong>g> nitrogen<br />

atom source (Lellouch et al., 1994). In all <str<strong>on</strong>g>the</str<strong>on</strong>g>se atmospheres, gas-phase organic<br />

chemistry is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by methane photochemistry. <str<strong>on</strong>g>The</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> products are saturated<br />

and unsaturated hydrocarb<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of methane and amm<strong>on</strong>ia (or nitrogen)<br />

photochemistry can produce N-organics. On Saturn, <str<strong>on</strong>g>the</str<strong>on</strong>g> coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of methane and<br />

phosph<str<strong>on</strong>g>in</str<strong>on</strong>g>e (PH 3) photochemistry could produce HCP.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> exobiological <str<strong>on</strong>g>in</str<strong>on</strong>g>terest of <str<strong>on</strong>g>the</str<strong>on</strong>g>se planets is limited, <str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

atmospheric organic chemistries can provide <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g examples of <str<strong>on</strong>g>the</str<strong>on</strong>g> wide variety<br />

of planetary organic processes.<br />

Venus<br />

Venus may perhaps have been Earth-like <str<strong>on</strong>g>in</str<strong>on</strong>g> its past, so its early envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

may have been favourable <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence of life. Today, Venus is too hostile<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface to harbour life. <str<strong>on</strong>g>The</str<strong>on</strong>g> high surface temperature (464ºC) and its permanent<br />

thick clouds of aqueous H 2SO 4 would impede <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> signatures of primitive<br />

life and may even have erased <str<strong>on</strong>g>the</str<strong>on</strong>g> signatures, if any (Col<str<strong>on</strong>g>in</str<strong>on</strong>g> & Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 1992).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Mo<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> data collected <str<strong>on</strong>g>in</str<strong>on</strong>g> 1996 by radio waves beamed from <str<strong>on</strong>g>the</str<strong>on</strong>g> Clement<str<strong>on</strong>g>in</str<strong>on</strong>g>e spacecraft


<str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>’s surface polar regi<strong>on</strong>s suggest that ice most likely exists at <str<strong>on</strong>g>the</str<strong>on</strong>g> Sundeprived<br />

South Pole. Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks and soil scattered <str<strong>on</strong>g>the</str<strong>on</strong>g> waves, but <str<strong>on</strong>g>in</str<strong>on</strong>g> that<br />

regi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> waves were bounced back <str<strong>on</strong>g>in</str<strong>on</strong>g> a coherent pattern by a smooth surface, most<br />

likely water ice. <str<strong>on</strong>g>The</str<strong>on</strong>g> patch of ice is thought to be about 8 m thick and roughly <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

of a lake.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> neutr<strong>on</strong> spectrometer aboard Lunar Prospector <str<strong>on</strong>g>in</str<strong>on</strong>g> 1998 detected high hydrogen<br />

c<strong>on</strong>centrati<strong>on</strong>s at both poles, a tell-tale signature of <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water ice.<br />

Although o<str<strong>on</strong>g>the</str<strong>on</strong>g>r explanati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrogen enhancement are possible, <str<strong>on</strong>g>the</str<strong>on</strong>g> data<br />

suggest that significant quantities of water ice are located <str<strong>on</strong>g>in</str<strong>on</strong>g> permanently shadowed<br />

craters <str<strong>on</strong>g>in</str<strong>on</strong>g> both polar regi<strong>on</strong>s. Each polar regi<strong>on</strong> could c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> as much as roughly<br />

3x10 9 t of water ice (Feldman et al., 1998). <str<strong>on</strong>g>The</str<strong>on</strong>g> ice may have arrived as comets that<br />

ploughed <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong> at or near <str<strong>on</strong>g>the</str<strong>on</strong>g> South Pole, an area that never sees <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

water may <str<strong>on</strong>g>the</str<strong>on</strong>g>n have migrated south <str<strong>on</strong>g>in</str<strong>on</strong>g>to a deep crater at <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>’s darkest part. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

presence of ice does not <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>the</str<strong>on</strong>g> chances of detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g any lunar microbial life, but<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r opens <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong> to cost-effective lunar and planetary explorati<strong>on</strong> by provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

water <str<strong>on</strong>g>for</str<strong>on</strong>g> life support and propellant <str<strong>on</strong>g>for</str<strong>on</strong>g> rockets.<br />

<strong>Mars</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> early histories of <strong>Mars</strong> and Earth clearly show some similarities, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Chapter II.2. Geological observati<strong>on</strong>s collected from <strong>Mars</strong> orbiters suggest that liquid<br />

water was <strong>on</strong>ce stable <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, attest<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of an atmosphere<br />

capable of decelerat<str<strong>on</strong>g>in</str<strong>on</strong>g>g carb<strong>on</strong>aceous micrometeorites. No organic carb<strong>on</strong> was found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian soil by <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1 and 2 gas chromatography-mass spectrometers. It<br />

was c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> most plausible explanati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results was <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of highly reactive oxidants such as H 2O 2, which would have been<br />

photochemically produced <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (Hartman & McKay, 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

lander could not sample soils below 10 cm and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> depth of this apparently<br />

organic-free and oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer is unknown. Bullock et al. (1994) have calculated<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> depth of diffusi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> H 2O 2 is less than 3 m. As discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter<br />

II.3, <str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites clearly show <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of organic molecules (Wright<br />

et al., 1989, Grady et al., 1994; Grady et al., 1996; McKay et al., 1996), suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients required <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence of primitive life may have been<br />

present <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, microorganisms may have developed <strong>on</strong><br />

<strong>Mars</strong> until liquid water disappeared from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <strong>Mars</strong> probably had no<br />

plate tect<strong>on</strong>ics and s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce liquid water seems to have disappeared from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface very<br />

early, <str<strong>on</strong>g>the</str<strong>on</strong>g> martian subsurface perhaps holds a frozen record of <str<strong>on</strong>g>the</str<strong>on</strong>g> very early <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of<br />

an Earth-like life. A detailed study is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Part II of this volume.<br />

Bockelée-Morvan, D. (1997). Spectroscopic results from Comets Hale-Bopp and<br />

Hyakutake. AAS, DPS Meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g #29, #31.01.<br />

B<strong>on</strong>ner, W.A. & Rubenste<str<strong>on</strong>g>in</str<strong>on</strong>g>, E. (1987). Supernovae, Neutr<strong>on</strong> Stars and Biomolecular<br />

Chirality. Bio<str<strong>on</strong>g>System</str<strong>on</strong>g>s 20, 99-111.<br />

Brack, A. (1993). From Am<str<strong>on</strong>g>in</str<strong>on</strong>g>o Acids to Prebiotic Active Peptides: a Chemical<br />

Rec<strong>on</strong>stituti<strong>on</strong>. Pure & Appl. Chem. 65, 1143-1151.<br />

Bullock, M.A., Stoker, C.R., McKay, C.P. & Zent, A.P. (1994). A Coupled Soil-<br />

Atmosphere Model of H 2O 2 <strong>on</strong> <strong>Mars</strong>. Icarus 107, 142-154.<br />

Cairns-Smith, A.G. (1982). Genetic Takeover. Cambridge University Press,<br />

Cambridge, UK.<br />

Carr, M.H. & 21 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. (1998). Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> a subsurface ocean <strong>on</strong> Europa. Nature<br />

391, 363-365.<br />

Chyba, C.F., Thomas, P.J., Brookshaw, L. & Sagan, C. (1990). Cometary Delivery of<br />

Organic Molecules to <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Earth. Science 249, 366-373.<br />

Col<str<strong>on</strong>g>in</str<strong>on</strong>g>, L. & Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.F. (1992). Venus: A <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Clues to Early Biological<br />

Possibilities. In <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> Explorati<strong>on</strong> (Eds. G. Carle, D.<br />

Schwartz & J. Hunt<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>), NASA SP-512, pp45-65.<br />

Coll, P., Coscia, D., Gazeau, M.-C. & Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F. (1996). Review and Latest Results of<br />

chemical evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar system/I.2<br />

References<br />

23


SP-1231<br />

24<br />

Laboratory Investigati<strong>on</strong>s of Titan’s Aerosols. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> Evol. Biosphere 28,<br />

195-213.<br />

Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>, J.R. & Pizzarello, S. (1983). Am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites. Adv. Space Res. 3, 3-<br />

18.<br />

Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>, J.R. & Pizzarello, S. (1996). Enantiomeric Analyses of Chiral Organic<br />

Compounds from <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> Meteorite. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> Evol. Biosphere 26, 248.<br />

Crovisier, J. (1998). Physics and Chemistry of Comets: Recent Results from Comets<br />

Hyakutake and Hale-Bopp. Faraday Discuss., <str<strong>on</strong>g>The</str<strong>on</strong>g> Faraday Div. of <str<strong>on</strong>g>The</str<strong>on</strong>g> Royal Soc.<br />

of Chemistry, L<strong>on</strong>d<strong>on</strong>, p437.<br />

Deamer, D.W. (1985). Boundary Structures are Formed by Organic Comp<strong>on</strong>ents of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> Carb<strong>on</strong>aceous Ch<strong>on</strong>drite. Nature 317, 792-794.<br />

Delsemme, A.H. (1991). Nature and History of <str<strong>on</strong>g>the</str<strong>on</strong>g> Organic Compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> Comets:<br />

an Astrophysical View. In Comets <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Post-Halley Era 1 (Eds. R.L. Newburn Jr.,<br />

M. Neugebauer & J. Rahe), Kluwer, Dordrecht, Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, pp377-428.<br />

Delsemme, A.H. (1992). Cometary Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of Carb<strong>on</strong>, Nitrogen and Water <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> Evol. Biosphere 21, 279-298.<br />

Engel, M.H., Macko, S.A. & Silfer, J.A. (1990). Carb<strong>on</strong> Isotope Compositi<strong>on</strong> of<br />

Individual Am<str<strong>on</strong>g>in</str<strong>on</strong>g>o Acids <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> Meteorite. Nature 348, 47-49.<br />

Eschenmoser, A. (1994). Chemistry of Potentially Prebiological Natural Products.<br />

Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> Evol. Biosphere 24, 389-423.<br />

Feldman, W.C., Maurice, S., B<str<strong>on</strong>g>in</str<strong>on</strong>g>der, A.B., Barraclough, B.L., Elphic, R.C. &<br />

Laurence, D.J. (1998). Fluxes of fast and epi<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal neutr<strong>on</strong>s from Lunar<br />

Prospector: evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> water ice at <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar poles. Science 281, 1496-1500.<br />

Gautier, D., C<strong>on</strong>rath, B.J., Owen, T.C., De Pater, I. & Atreya, S.K. (1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> troposphere<br />

of Neptune. In Neptune and Trit<strong>on</strong> (Ed. D.P. Cruikshank), <str<strong>on</strong>g>The</str<strong>on</strong>g> University<br />

of Ariz<strong>on</strong>a Press, Tucs<strong>on</strong>, USA, pp547-611.<br />

Gautier, D. & Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F. (1997). Chemical Compositi<strong>on</strong> of Titan’s Atmosphere. In<br />

Huygens: Science, Payload and Missi<strong>on</strong> (Eds. Lebret<strong>on</strong> & Wils<strong>on</strong>), <strong>ESA</strong> SP-1177,<br />

359-364.<br />

Grady, M.M., Wright, I.P., Douglas, C. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1994). Carb<strong>on</strong> and Nitrogen<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> ALH 84001. Meteoritics 29, 469-470.<br />

Grady, M.M., Wright, I.P. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1996). Open<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Martian Can of<br />

Worms? Nature 382, 575-576.<br />

Greenberg, J.M. (1993). Physical and Chemical Compositi<strong>on</strong> of Comets. From Interstellar<br />

Space to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. In <str<strong>on</strong>g>The</str<strong>on</strong>g> Chemistry of <str<strong>on</strong>g>Life</str<strong>on</strong>g>’s Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> (Eds. J.M. Greenberg,<br />

C.X. Mendoza-Gomez & V. Pir<strong>on</strong>ello), Kluwer, Dordrecht, Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, pp.195-207.<br />

Hartman, H. & McKay, C.P. (1995). Oxygenic Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis and <str<strong>on</strong>g>the</str<strong>on</strong>g> Oxidati<strong>on</strong><br />

State of <strong>Mars</strong>. Planet. Space Sci. 43, 123-128.<br />

Irv<str<strong>on</strong>g>in</str<strong>on</strong>g>e, W.M. et al. (1996). Spectroscopic Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> Interstellar Ices <str<strong>on</strong>g>in</str<strong>on</strong>g> Comet<br />

Hyakutake. Nature 383, 418-420.<br />

Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.F. (1993). Earth’s Early Atmosphere, Science 259, 920-926.<br />

Kissel, J. & Krueger, F.R. (1987). <str<strong>on</strong>g>The</str<strong>on</strong>g> Organic Comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> Dust from Comet<br />

Halley as Measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> PUMA Mass Spectrometer <strong>on</strong> board of Vega 1. Nature<br />

326, 755-760.<br />

Langev<str<strong>on</strong>g>in</str<strong>on</strong>g>, Y., Kissel, J., Bertaux, J.L. & Chassefiere, E. (1987). First Statistical<br />

Analysis of 5000 Mass Spectra of Cometary Gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s Obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by PUMA 1 (Vega 1)<br />

and PIA (Giotto) Impact I<strong>on</strong>izati<strong>on</strong> Mass Spectrometers <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Compressed Mode.<br />

Astr<strong>on</strong>. Astrophys. 187, 761-766.<br />

Lellouch, E., Romani, P.N. & Rosenqvist, J. (1994). <str<strong>on</strong>g>The</str<strong>on</strong>g> Vertical Distributi<strong>on</strong> and<br />

Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of HCN <str<strong>on</strong>g>in</str<strong>on</strong>g> Neptune’s Atmosphere. Icarus 108, 112-136.<br />

Maurette, M., Brack, A., Kurat, G., Perreau, M. & Engrand, C. (1995). Were<br />

Micrometeorites a Source of Prebiotic Molecules <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Earth? Adv. Space<br />

Res. 15, 113-116.<br />

McKay, D.S. et al. & Zare, R.N. (1996). <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Past <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong>: Possible Relic<br />

Biogenic Activity <str<strong>on</strong>g>in</str<strong>on</strong>g> Martian Meteorite ALH84001. Science 273, 924-930.<br />

Miller, S.L. (1953). <str<strong>on</strong>g>The</str<strong>on</strong>g> Producti<strong>on</strong> of Am<str<strong>on</strong>g>in</str<strong>on</strong>g>o Acids under Possible Primitive Earth<br />

C<strong>on</strong>diti<strong>on</strong>s. Science 117, 528-529.


Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harris<strong>on</strong>, T.M., Nutman, A.P. &<br />

Friend, C.R.L. (1996). Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> Earth be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 3,800 milli<strong>on</strong> years Ago.<br />

Nature 384, 55-59.<br />

Opar<str<strong>on</strong>g>in</str<strong>on</strong>g>, A.I. (1924). Proikhozndenie Zhizni. Izd., Moskowski Rabochi.<br />

Oro, J. (1961). Comets and <str<strong>on</strong>g>the</str<strong>on</strong>g> Formati<strong>on</strong> of Biochemical Compounds <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Primitive Earth. Nature 190, 389-390.<br />

Oro, J., Squyres, S.W., Reynolds, R.T. & Mills, T.M. (1992). Europa: Prospects <str<strong>on</strong>g>for</str<strong>on</strong>g> an<br />

Ocean and Exobiological Implicati<strong>on</strong>s. In <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> Explorati<strong>on</strong><br />

(Eds. G. Carle, D. Schwartz & J. Hunt<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>), NASA SP-512, pp103-125.<br />

Ouriss<strong>on</strong>, G. & Nakatani, Y. (1994). <str<strong>on</strong>g>The</str<strong>on</strong>g> Terpenoid <str<strong>on</strong>g>The</str<strong>on</strong>g>ory of <str<strong>on</strong>g>the</str<strong>on</strong>g> Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of Cellular<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> : <str<strong>on</strong>g>the</str<strong>on</strong>g> Evoluti<strong>on</strong> of Terpenoids to Cholesterol. Chemistry and Biology 1, 11-23.<br />

Owen, T. & Bar-Nun, A. (1995). Comets, Impacts and Atmospheres. Icarus 116, 215-<br />

226.<br />

Owen, T., Gautier, D., Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F. & Scattergood, T. (1992). Titan. In <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> Explorati<strong>on</strong> (Eds. G. Carle, D. Schwartz & J. Hunt<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>), NASA<br />

SP-512, pp127-143.<br />

Pollack, J.B. & Atreya, S.K. (1992). Giant Planets: Clues <strong>on</strong> Current and Past Organic<br />

Chemistry <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Outer <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>. In <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> Explorati<strong>on</strong><br />

(Eds. G. Carle, D. Schwartz & J. Hunt<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>), NASA SP-512, pp83-101.<br />

Reynolds, R., Squyres, S.W., Colburn, D. & McKay, C. (1983). On <str<strong>on</strong>g>the</str<strong>on</strong>g> Habitability<br />

of Europa. Icarus 56, 246-254.<br />

Schopf, J.W. (1993). Microfossils of <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Archean Apex Chert: New Evidence of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Antiquity of <str<strong>on</strong>g>Life</str<strong>on</strong>g>. Science 260, 640-646.<br />

Wächtershäuser, G. (1994). <str<strong>on</strong>g>Life</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a ligand sphere. Proc. Nat. Acad. Sci. USA 91,<br />

4283-4287.<br />

Walker, J.C.G. (1985). Carb<strong>on</strong> Dioxide <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Earth. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> Evol.<br />

Biosphere 16 117-127.<br />

We<str<strong>on</strong>g>the</str<strong>on</strong>g>rhill, G.W. (1990). Formati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. Ann. Rev. Earth Planet. Sci. 18, 205-<br />

256.<br />

Wright, I.P., Grady, M.M. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1989). Organic Materials <str<strong>on</strong>g>in</str<strong>on</strong>g> a Martian<br />

Meteorite. Nature 340, 220-222.<br />

chemical evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar system/I.2<br />

25


I.3 Limits of <str<strong>on</strong>g>Life</str<strong>on</strong>g> Under Extreme C<strong>on</strong>diti<strong>on</strong>s<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> view po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of exobiology, <str<strong>on</strong>g>the</str<strong>on</strong>g> problems raised by life under ‘extreme<br />

c<strong>on</strong>diti<strong>on</strong>s’ (extreme from our human po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view) can be c<strong>on</strong>sidered from two<br />

perspectives: what are <str<strong>on</strong>g>the</str<strong>on</strong>g> most extreme c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> life to proliferate, and what<br />

can life survive (and <str<strong>on</strong>g>for</str<strong>on</strong>g> how l<strong>on</strong>g)? In both cases, we should c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

extreme terrestrial organisms, and if <str<strong>on</strong>g>the</str<strong>on</strong>g>re might be similar organisms elsewhere <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Universe. <str<strong>on</strong>g>The</str<strong>on</strong>g>se two aspects are often c<strong>on</strong>fused, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not necessarily<br />

related. <str<strong>on</strong>g>The</str<strong>on</strong>g> first c<strong>on</strong>cerns terrestrial organisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g optimally under extreme<br />

c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘extremophiles’. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of survival, which<br />

is of utmost importance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossilised life <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets or <str<strong>on</strong>g>for</str<strong>on</strong>g> test<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of panspermia.<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> Earth is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> water. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature limits<br />

compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of life are thus imposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic properties of<br />

chemical b<strong>on</strong>ds <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> this type of chemistry at different temperatures. Two<br />

requirements are mandatory. Firstly, <str<strong>on</strong>g>the</str<strong>on</strong>g> covalent b<strong>on</strong>ds between carb<strong>on</strong> and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

atoms <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of biological molecules should be sufficiently stable<br />

to permit <str<strong>on</strong>g>the</str<strong>on</strong>g> assembly of large macromolecules with catalytic, <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>al properties<br />

or both. Sec<strong>on</strong>dly, n<strong>on</strong>-covalent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks (hydrogen and i<strong>on</strong>ic b<strong>on</strong>ds, Van der Waals<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s) should be labile. This is a very important po<str<strong>on</strong>g>in</str<strong>on</strong>g>t s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <strong>on</strong>ly weak b<strong>on</strong>ds<br />

can allow fast, specific and reversible <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s of biological molecules and<br />

macromolecules. <str<strong>on</strong>g>The</str<strong>on</strong>g>se chemical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts will ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> upper and lower<br />

temperatures <str<strong>on</strong>g>for</str<strong>on</strong>g> life, respectively. As we will see, it is known that terrestrial<br />

organisms can live <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature range from -12ºC to 113ºC (Fig. I.3.2/1).<br />

I.3.2.1 High Temperatures<br />

Presently, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum temperature limit known <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial organisms is around<br />

113ºC. For a l<strong>on</strong>g time, <str<strong>on</strong>g>the</str<strong>on</strong>g> record was 110ºC, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery <str<strong>on</strong>g>in</str<strong>on</strong>g> 1982 of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

0 60 110 oC<br />

EUCARYOTES<br />

PROCARYOTES<br />

0 10 2 10 4 10 6 10 8 10 10<br />

T OK<br />

I.3.1 Introducti<strong>on</strong><br />

I.3.2 Extreme Temperature<br />

Regimes<br />

Fig. I.3.2/1. Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms thrive with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>ly<br />

a small w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow of temperatures found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Universe. Eucaryotes, organisms with a<br />

nucleus, thrive from around 0ºC up to 60ºC,<br />

while some procaryotes (archaea or bacteria),<br />

organisms without a nucleus, can grow at<br />

temperatures up to 113ºC.<br />

27


SP-1231<br />

Fig. I.3.2.1/1 Parental relati<strong>on</strong>ships between<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g be<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, based <strong>on</strong> sequence comparis<strong>on</strong> of<br />

ribosomal RNA. Extreme halophiles are <str<strong>on</strong>g>in</str<strong>on</strong>g> red<br />

and hyperhermophiles are <str<strong>on</strong>g>in</str<strong>on</strong>g> black. <str<strong>on</strong>g>The</str<strong>on</strong>g> short<br />

branches of hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that<br />

sequences of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir rRNA evolve more slowly<br />

than similar sequences from organisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at<br />

lower temperatures (mesophiles). This universal<br />

tree is usually <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as argu<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> favour<br />

of a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic last universal comm<strong>on</strong><br />

ancestor. However, this tree should be regarded<br />

with cauti<strong>on</strong>. For example, it has been shown<br />

recently that microsporidia (represented by<br />

Vairimorpha and Encephalitozo<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> figure)<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g> fact fungi (yeast). <str<strong>on</strong>g>The</str<strong>on</strong>g> difference <str<strong>on</strong>g>in</str<strong>on</strong>g> rate<br />

of evoluti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> various l<str<strong>on</strong>g>in</str<strong>on</strong>g>eages can<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>deed produce artifacts.<br />

28<br />

BACTERIA<br />

Euryotes<br />

ARCHAEA<br />

Plants<br />

Animals fungi<br />

Microsporidia<br />

Crenotes<br />

EUCARYA<br />

Protistes<br />

Halophiles extremes<br />

Hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles<br />

microbe Pyrodictium occultum <str<strong>on</strong>g>in</str<strong>on</strong>g> shallow water near a beach of Vulcano Island <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Italy (Stetter, 1982). This record held <str<strong>on</strong>g>for</str<strong>on</strong>g> 15 years and was <strong>on</strong>ly recently surpassed,<br />

although by <strong>on</strong>ly 3ºC. <str<strong>on</strong>g>The</str<strong>on</strong>g> new record holder, Pyrolobus fumarii, is a deep-sea<br />

microbe, aga<str<strong>on</strong>g>in</str<strong>on</strong>g> described by Stetter’s group (Blöchl et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> claim <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

organisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 250ºC under a pressure of 350 atm was an artifact, as<br />

dem<strong>on</strong>strated by Trent (1984). It should be stressed that <str<strong>on</strong>g>the</str<strong>on</strong>g> actual upper limit is, of<br />

course, unknown, but <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier at 110-113ºC has so far survived <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive search<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> deep-sea vents <str<strong>on</strong>g>for</str<strong>on</strong>g> organisms grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g at higher temperatures.<br />

Many microbes liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at temperatures close to or above <str<strong>on</strong>g>the</str<strong>on</strong>g> boil<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of water,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles, have been found <str<strong>on</strong>g>in</str<strong>on</strong>g> all places with volcanic activity, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

terrestrial or mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Stetter, 1996). In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are also large microbial<br />

populati<strong>on</strong>s at depth with<str<strong>on</strong>g>in</str<strong>on</strong>g> hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, at ocean floor spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g centres,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g>y exploit <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hot vent fluid <str<strong>on</strong>g>for</str<strong>on</strong>g> energy and growth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y are all procaryotes, i.e. small unicellular microorganisms without a nuclear<br />

membrane (chromosomal DNA be<str<strong>on</strong>g>in</str<strong>on</strong>g>g directly <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> cell cytoplasm).<br />

Procaryotes are divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to two phylogenetically dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s (or empires):<br />

Bacteria and Archaea (Fig. I.3.2.1/1.). Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, <str<strong>on</strong>g>the</str<strong>on</strong>g> most hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic<br />

organisms at present all bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaea, <str<strong>on</strong>g>the</str<strong>on</strong>g> upper temperature limit <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Bacteria be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly (!) 95ºC (Stetter, 1996).<br />

It should be noted that Archaea liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 110-113ºC actually have optimal growth


temperatures of 95-106ºC. This suggests that <strong>on</strong>e or several critical factors prevent<br />

terrestrial life from proliferat<str<strong>on</strong>g>in</str<strong>on</strong>g>g efficiently even at 110ºC. This limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor cannot<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement <str<strong>on</strong>g>for</str<strong>on</strong>g> liquid water, because <str<strong>on</strong>g>the</str<strong>on</strong>g>re are pressurised envir<strong>on</strong>ments with<br />

liquid water at higher temperatures (<str<strong>on</strong>g>the</str<strong>on</strong>g> chimneys of hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents), but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

sterile (Trent, 1984). An important factor prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g life at temperatures well above<br />

110ºC is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability of some covalent b<strong>on</strong>ds <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> biological<br />

molecules.<br />

Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s can be very stable at high temperatures – some prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles<br />

are still active <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro after <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> at 140ºC. To achieve such<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmostability, evoluti<strong>on</strong> has <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>the</str<strong>on</strong>g> number of n<strong>on</strong>-covalent <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s<br />

between am<str<strong>on</strong>g>in</str<strong>on</strong>g>o-acids that ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> folded structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> polypeptide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

have also managed to get rid of <str<strong>on</strong>g>the</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o-acid asparag<str<strong>on</strong>g>in</str<strong>on</strong>g>e from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surface –<br />

asparag<str<strong>on</strong>g>in</str<strong>on</strong>g>e be<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapidly deam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated at such temperature (Hensel et al., 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

DNA double-helix is also very stable (at least up to 107ºC) as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> two strands<br />

cannot freely rotate around each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, which corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular situati<strong>on</strong><br />

(Marguet & Forterre, 1994). However, DNA is chemically degraded at high<br />

temperature by different mechanisms, <str<strong>on</strong>g>the</str<strong>on</strong>g> most important be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> removal of pur<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

bases (depur<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>) and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent cleavage of <str<strong>on</strong>g>the</str<strong>on</strong>g> strands at apur<str<strong>on</strong>g>in</str<strong>on</strong>g>ic sites<br />

(L<str<strong>on</strong>g>in</str<strong>on</strong>g>dahl, 1993). Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, powerful repair mechanisms should exist <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles.<br />

In c<strong>on</strong>trast to prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s and DNA, RNA is highly unstable at high temperatures,<br />

because of <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of a reactive OH group <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2' positi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ribose moiety<br />

that can <str<strong>on</strong>g>in</str<strong>on</strong>g>duce <str<strong>on</strong>g>the</str<strong>on</strong>g> cleavage of <str<strong>on</strong>g>the</str<strong>on</strong>g> strands. It has been estimated, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, that an<br />

RNA molecule of 2000 nucleotides (a typical length <str<strong>on</strong>g>for</str<strong>on</strong>g> a messenger RNA) should be<br />

cleaved <str<strong>on</strong>g>in</str<strong>on</strong>g> two pieces <str<strong>on</strong>g>in</str<strong>on</strong>g> about 2 s at 110ºC (Forterre, 1995). Regi<strong>on</strong>s sensitive to heatdestructi<strong>on</strong><br />

appear to be protected <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer and ribosomal RNA of<br />

hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles by methylati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> reactive oxygen. <str<strong>on</strong>g>The</str<strong>on</strong>g> actual stability of<br />

RNA <str<strong>on</strong>g>in</str<strong>on</strong>g> vivo is, however, unclear s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodegradati<strong>on</strong> is str<strong>on</strong>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by<br />

physiological c<strong>on</strong>centrati<strong>on</strong>s of magnesium but protected by m<strong>on</strong>ovalent salts. This<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is under study and is of utmost importance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of life at high<br />

temperatures.<br />

Many metabolites are also highly unstable at temperatures near <str<strong>on</strong>g>the</str<strong>on</strong>g> boil<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of<br />

water, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular <str<strong>on</strong>g>the</str<strong>on</strong>g> rib<strong>on</strong>ucleotides which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> energy-rich b<strong>on</strong>ds, such as ATP<br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> energy supplier of <str<strong>on</strong>g>the</str<strong>on</strong>g> cell) or <str<strong>on</strong>g>the</str<strong>on</strong>g> substrates <str<strong>on</strong>g>for</str<strong>on</strong>g> DNA and RNA replicati<strong>on</strong>. Some<br />

energy-rich covalent b<strong>on</strong>ds are already unstable <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature range typical of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic life (80-110ºC), but hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles have successfully developed<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al strategies to bypass <str<strong>on</strong>g>the</str<strong>on</strong>g>se limitati<strong>on</strong>s. One of <str<strong>on</strong>g>the</str<strong>on</strong>g>m is channell<str<strong>on</strong>g>in</str<strong>on</strong>g>g successive<br />

reacti<strong>on</strong>s of a given biochemical pathway <str<strong>on</strong>g>in</str<strong>on</strong>g>to a set of physically associated enzymes.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r is to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease c<strong>on</strong>siderably <str<strong>on</strong>g>the</str<strong>on</strong>g> aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity and activity of enzymes deal<str<strong>on</strong>g>in</str<strong>on</strong>g>g with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmolabile substrates.<br />

An important limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g life above 110ºC could be related to<br />

membrane permeability. Biological membranes become leaky at high temperature,<br />

allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> free passage of i<strong>on</strong>s (Driessen et al., 1996). This is not compatible with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of i<strong>on</strong>ic gradients across membranes, which is a prerequisite to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

build<str<strong>on</strong>g>in</str<strong>on</strong>g>g of energy transducti<strong>on</strong> systems <str<strong>on</strong>g>in</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms.<br />

In c<strong>on</strong>clusi<strong>on</strong>, unless future work <strong>on</strong> subterranean organisms breaks <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

temperature limit (see I.3.6), we are faced with two possibilities: ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r terrestrial life<br />

has been unable <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> course of its history to design strategies <str<strong>on</strong>g>for</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at<br />

temperatures above 110ºC, or such design is impossible because of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic<br />

limitati<strong>on</strong>s of carb<strong>on</strong> chemistry-based life <strong>on</strong> Earth.<br />

I.3.2.2. Low Temperatures<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> is extremely diverse <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean at temperatures of 2ºC. Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms,<br />

especially microorganisms, are also present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frozen soils of arctic and alp<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

envir<strong>on</strong>ments (Russel, 1992). However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir optimal growth temperatures are usually<br />

well above <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature of <str<strong>on</strong>g>the</str<strong>on</strong>g> site of isolati<strong>on</strong>. Those organisms with optimal<br />

growth temperatures below 15ºC and m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal growth temperatures below 0ºC are<br />

limits of life under extreme c<strong>on</strong>diti<strong>on</strong>s/I.3<br />

29


SP-1231<br />

30<br />

I.3.3 High-Salt<br />

Envir<strong>on</strong>ments<br />

‘psychrophiles’, while those capable of growth at 0ºC but with optimal growth<br />

temperatures above 15°C are ‘psychrotrophs’. Psychrotrophs usually outnumber<br />

psychrophiles <str<strong>on</strong>g>in</str<strong>on</strong>g> a given biotope, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g>y can benefit more efficiently from<br />

transient ‘warm’ c<strong>on</strong>diti<strong>on</strong>s. For example, bacteria liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>side <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks of dry<br />

valleys <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctica grow best at temperatures of 10-20ºC <strong>on</strong> rock faces exposed to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Sun <str<strong>on</strong>g>in</str<strong>on</strong>g> summer (Nienow & Friedman, 1993).<br />

Cold-lov<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms are ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly bacteria (of all types) or eucaryotic microorganisms.<br />

However, putative cold-lov<str<strong>on</strong>g>in</str<strong>on</strong>g>g archaea have been detected recently <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

glacial water from Antarctica by direct amplificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir genetic material<br />

(DeL<strong>on</strong>g et al., 1994). Some of <str<strong>on</strong>g>the</str<strong>on</strong>g> most psychrophilic organisms are algae liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

snow-covered areas, where <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>in</str<strong>on</strong>g>habit <str<strong>on</strong>g>the</str<strong>on</strong>g> upper 1 cm layer of snow. <str<strong>on</strong>g>The</str<strong>on</strong>g>y often<br />

have optimal temperatures below 10ºC.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lower temperature limit <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> Earth is not so clear as <str<strong>on</strong>g>the</str<strong>on</strong>g> upper limit,<br />

because it is very difficult to m<strong>on</strong>itor growth and/or metabolic activity at sub-zero<br />

temperatures. As a c<strong>on</strong>sequence, very few fundamental studies have been d<strong>on</strong>e<br />

regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g this problem. In <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit <str<strong>on</strong>g>for</str<strong>on</strong>g> bacterial growth, -12ºC,<br />

comes from a 30-year-old paper. It would be valuable to resume such studies.<br />

However, -12ºC might be correct, because it could corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature at<br />

which <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular ice is <str<strong>on</strong>g>for</str<strong>on</strong>g>med (Russell, 1992). One can speculate that, at lower<br />

temperatures, n<strong>on</strong>-covalent b<strong>on</strong>ds become too str<strong>on</strong>g <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of reversible<br />

reacti<strong>on</strong>s required <str<strong>on</strong>g>for</str<strong>on</strong>g> life to exist.<br />

A major problem faced by cold-lov<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms at very low temperatures is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

solidificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir membranes, which risks los<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> fluidity required <str<strong>on</strong>g>for</str<strong>on</strong>g> proper<br />

functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g. To bypass this drawback, <str<strong>on</strong>g>the</str<strong>on</strong>g>y usually change <str<strong>on</strong>g>the</str<strong>on</strong>g>ir lipid compositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease membrane fluidity at low temperatures. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from psychrophilic organisms is modified <str<strong>on</strong>g>in</str<strong>on</strong>g> order to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

flexibility such that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir activity is optimal at low temperatures compared to<br />

mesophilic prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> type of modificati<strong>on</strong> is somehow a mirror of those<br />

occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s, i.e. while prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles<br />

are usually more compact than <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mesophilic counterparts, homologous prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

from psychrophiles are often less compact with more side-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s loosely c<strong>on</strong>nected<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> core.<br />

Adaptati<strong>on</strong> to low temperatures appears much easier than adaptati<strong>on</strong> to very high<br />

temperatures <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial life – whereas hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophily is restricted to certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

groups of procaryotes, psychrophily is widespread <str<strong>on</strong>g>in</str<strong>on</strong>g> all procaryotic and eucaryotic<br />

groups. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> this difference is unknown, but <strong>on</strong>e can tentatively speculate<br />

that it might be due to <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodegradati<strong>on</strong> (breakage of covalent b<strong>on</strong>ds), which is<br />

restricted to high temperatures.<br />

A well-studied group of extremophiles are <str<strong>on</strong>g>the</str<strong>on</strong>g> salt-lov<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms known as<br />

extreme halophiles (Gal<str<strong>on</strong>g>in</str<strong>on</strong>g>ski & Tyndall, 1992). M<strong>on</strong>ovalent and divalent salts are<br />

essential <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial life (K + , Na + , Mg ++ , Zn ++ , Mn ++ , Fe ++ , Cl - , etc) because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

required as co-catalysts <str<strong>on</strong>g>in</str<strong>on</strong>g> many enzymatic activities. In that sense, all organisms are<br />

salt-dependent. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> tolerated salt c<strong>on</strong>centrati<strong>on</strong>s are usually quite low<br />

(


(ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly found <str<strong>on</strong>g>in</str<strong>on</strong>g> halophilic archaea) is to accumulate high c<strong>on</strong>centrati<strong>on</strong>s of KCl and<br />

MgCl 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cytoplasm (near-saturati<strong>on</strong>). In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery is<br />

also <str<strong>on</strong>g>in</str<strong>on</strong>g> direct c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> high salt c<strong>on</strong>tent.<br />

In halophilic archaea, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery is adapted to <str<strong>on</strong>g>the</str<strong>on</strong>g> high salt<br />

c<strong>on</strong>centrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplasm, corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to very low water activity. Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

from extreme halophiles are not <strong>on</strong>ly active at very high salt c<strong>on</strong>centrati<strong>on</strong>s, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

are denatured by <str<strong>on</strong>g>the</str<strong>on</strong>g> removal of salt. A most spectacular experience is to add water to<br />

a suspensi<strong>on</strong> of halophilic archaea observed under <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope. <str<strong>on</strong>g>The</str<strong>on</strong>g> cells vanish<br />

as so<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>ic strength reaches a critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t because membrane prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

dissociate when <str<strong>on</strong>g>the</str<strong>on</strong>g> salt c<strong>on</strong>centrati<strong>on</strong> become too low. <str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism of<br />

stabilisati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s at high salt levels is now beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g to emerge from<br />

structural studies. Halophilic prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s exhibit typical networks of negatively-charged<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o-acids at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surfaces, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>m to reta<str<strong>on</strong>g>in</str<strong>on</strong>g> a stabilis<str<strong>on</strong>g>in</str<strong>on</strong>g>g network of salt and<br />

water molecules. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> as to how nucleic acid-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> can<br />

occur <str<strong>on</strong>g>in</str<strong>on</strong>g> 3-4 M KCl rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s a major challenge <str<strong>on</strong>g>for</str<strong>on</strong>g> future work.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chemistry of life <strong>on</strong> Earth is optimised <str<strong>on</strong>g>for</str<strong>on</strong>g> neutral pH. Aga<str<strong>on</strong>g>in</str<strong>on</strong>g>, some microorganisms<br />

have been able to adapt to extreme pH c<strong>on</strong>diti<strong>on</strong>s, from pH 0 (extremely<br />

acidic) to pH 12.5 (extremely alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e), albeit ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular pH<br />

between pH 4 and 9.<br />

Many bacteria and archaea are acidophiles, liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at pH values below 4 (<str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

review see Norris & Ingledew, 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g> record is held by <str<strong>on</strong>g>the</str<strong>on</strong>g> archae<strong>on</strong> Picrophilus<br />

oshimae, which grows optimally at pH 0.7 and still grows at pH 0 (Schleper<br />

et al., 1995). Like many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r acidophiles, this organism is also <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic.<br />

Am<strong>on</strong>g acidophiles, <str<strong>on</strong>g>the</str<strong>on</strong>g> most <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic <strong>on</strong>es are Sulfolobales (archaea), which<br />

can grow at pH 2 and up to 90ºC. In many cases, <str<strong>on</strong>g>the</str<strong>on</strong>g>se organisms are actually<br />

resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> acidity of <str<strong>on</strong>g>the</str<strong>on</strong>g> biotope <str<strong>on</strong>g>in</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g>y live. For example, Sulfolobales<br />

are sulphur-respir<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms and produce sulphuric acid as a by-product<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir metabolism.<br />

Many bacteria and a few archaea, <str<strong>on</strong>g>the</str<strong>on</strong>g> alkaliphiles, live at <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r extreme of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pH range, from pH 9 up to pH 12 (<str<strong>on</strong>g>for</str<strong>on</strong>g> a review see Grant & Horikoshi, 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

are present everywhere <strong>on</strong> Earth. Some of <str<strong>on</strong>g>the</str<strong>on</strong>g>m, which have been discovered <str<strong>on</strong>g>in</str<strong>on</strong>g> soda<br />

lakes rich <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>ates, are also halophiles (haloalkaliphiles). Most alkaliphiles are<br />

mesophiles or moderately <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic, but Stetter and co-workers have recently<br />

described <str<strong>on</strong>g>the</str<strong>on</strong>g> first hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic alkaliphile, <str<strong>on</strong>g>The</str<strong>on</strong>g>rmococcus alkaliphilus (Keller<br />

et al., 1995).<br />

Both acidophiles and alkaliphiles rely <strong>on</strong> sophisticated transport mechanisms to<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular pH near neutrality by pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g or excret<str<strong>on</strong>g>in</str<strong>on</strong>g>g prot<strong>on</strong>s. As <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case of moderate halophiles, <str<strong>on</strong>g>the</str<strong>on</strong>g>y protect <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular envir<strong>on</strong>ment aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> external extreme values of this parameter. <str<strong>on</strong>g>The</str<strong>on</strong>g>y should be also able to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

adequate gradients of prot<strong>on</strong>s or Na + to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energy-produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>m, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles also have to deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> specific problem of<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> correct membrane permeability <str<strong>on</strong>g>in</str<strong>on</strong>g> an unbalanced i<strong>on</strong>ic envir<strong>on</strong>ment.<br />

This may expla<str<strong>on</strong>g>in</str<strong>on</strong>g> why <str<strong>on</strong>g>the</str<strong>on</strong>g> upper temperature limits <str<strong>on</strong>g>for</str<strong>on</strong>g> acidophiles and alkaliphiles is<br />

presently 90ºC and not 110ºC (it might be significant that <str<strong>on</strong>g>the</str<strong>on</strong>g> upper pH limit of<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmococcus alkaliphilus is <strong>on</strong>ly pH 9.5).<br />

As with temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery cannot escape <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of<br />

pressure. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are organisms <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deepest parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean (pressure<br />

1100 bar). <str<strong>on</strong>g>The</str<strong>on</strong>g> extreme pressure limit <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> Earth is unknown – envir<strong>on</strong>ments of<br />

above 1100 bar have not been explored. However, it might be quite high, because<br />

macromolecules and cellular c<strong>on</strong>stituents apparently <strong>on</strong>ly beg<str<strong>on</strong>g>in</str<strong>on</strong>g> to denature at 4-<br />

5000 bar.<br />

Some microorganisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deep ocean can be obligate barophiles, but<br />

most of <str<strong>on</strong>g>the</str<strong>on</strong>g>m are <strong>on</strong>ly barotolerant. In fact, it is not yet clear if barophiles have had<br />

limits of life under extreme c<strong>on</strong>diti<strong>on</strong>s/I.3<br />

I.3.4 Acidic and Alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

Envir<strong>on</strong>ments<br />

I.3.5 High-Pressure<br />

Envir<strong>on</strong>ments<br />

31


SP-1231<br />

32<br />

I.3.6 Subterranean <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>vent specific devices to adapt to high pressure (<str<strong>on</strong>g>for</str<strong>on</strong>g> review, see Prieur, 1992).<br />

High pressure seems to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>the</str<strong>on</strong>g> growth rate of some hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles, but this<br />

phenomen<strong>on</strong> is not general and not very spectacular. Although some prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from<br />

hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles are more active at high pressure, high pressure does not <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stability of macromolecules (Bernhardt et al., 1984).<br />

For a l<strong>on</strong>g time, it was believed that deep subterranean envir<strong>on</strong>ments were sterile. It<br />

has now been recognised that bacteria (and probably archaea, too) actually thrive <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial crust. Subterranean microorganisms are usually detected <str<strong>on</strong>g>in</str<strong>on</strong>g> subterranean<br />

oil-fields or <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> course of drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiments (Parkes & Maxwell, 1993;<br />

Parkes et al., 1994; Stevens & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, 1995). For example, recent research<br />

c<strong>on</strong>ducted with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Ocean Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g Program (ODP) has dem<strong>on</strong>strated<br />

that procaryotes are present much deeper <str<strong>on</strong>g>in</str<strong>on</strong>g> mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments than was previously<br />

thought possible, extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g to at least 750 m below <str<strong>on</strong>g>the</str<strong>on</strong>g> sea floor, and probably much<br />

deeper (Parkes et al., 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g>se microbial populati<strong>on</strong>s are substantial (e.g 10 7 cells<br />

cm -3 at 500 m below sea floor) and likely to be widespread. To depths of at least<br />

432 m, microbes have been identified as alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g volcanic glass, which comprises a<br />

substantial volume of <str<strong>on</strong>g>the</str<strong>on</strong>g> volcanic comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean crust (Furnes et al.,1996),<br />

and may have significance <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical exchange between <str<strong>on</strong>g>the</str<strong>on</strong>g> oceanic crust and<br />

ocean water. <str<strong>on</strong>g>The</str<strong>on</strong>g>se data provide a prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary, and probably c<strong>on</strong>servative, estimate of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> biomass <str<strong>on</strong>g>in</str<strong>on</strong>g> this important new ecosystem: about 10% of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface biosphere.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se discoveries have radically changed our percepti<strong>on</strong> of mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of a largely unexplored deep bacterial biosphere that may even<br />

rival <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s surface biosphere <str<strong>on</strong>g>in</str<strong>on</strong>g> size and diversity!<br />

Elevated procaryotic populati<strong>on</strong>s and activities are also associated with gas<br />

hydrates. This, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of large microbial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> oil<br />

reservoir fluids (Stetter et al., 1993, Harid<strong>on</strong> et al., 1995, Bernard, et al., 1992, Rueter<br />

et al., 1994), suggests that deep bacterial processes may even be <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> oil and<br />

gas <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> by comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> key catalytic role of near-surface procaryotic<br />

communities. Procaryotes are also likely to drive deep geochemical reacti<strong>on</strong>s such as<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and dissoluti<strong>on</strong>, be resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic record via<br />

producti<strong>on</strong> of magnetic m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, produce deep methane gas essential <str<strong>on</strong>g>for</str<strong>on</strong>g> hydrate<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.<br />

Procaryotes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deep biosphere must be uniquely adapted to live <str<strong>on</strong>g>in</str<strong>on</strong>g> this extreme<br />

envir<strong>on</strong>ment, and populati<strong>on</strong>s have even been shown to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease at depth (>200 m) as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y exploit deep geochemical fluxes such as geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal methane and br<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cursi<strong>on</strong>s.<br />

Heterotrophic subterranean communities use ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r remnant organic carb<strong>on</strong><br />

deposited with sediments or dissolved oxygen as a metabolite term<str<strong>on</strong>g>in</str<strong>on</strong>g>al electr<strong>on</strong><br />

acceptor. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are thus actually <str<strong>on</strong>g>in</str<strong>on</strong>g>directly dependent <strong>on</strong> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic activity.<br />

Hence <str<strong>on</strong>g>the</str<strong>on</strong>g>y can become ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct when <str<strong>on</strong>g>the</str<strong>on</strong>g>ir nutrients are exhausted. However,<br />

evidence has also been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of anaerobic subsurface<br />

litoautotrophic microbial systems <str<strong>on</strong>g>in</str<strong>on</strong>g> basalt aquifers (Stevens & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, 1995).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se communities apparently derived <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energy from geochemically-produced<br />

hydrogen. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> energy sources and <str<strong>on</strong>g>in</str<strong>on</strong>g>organic nutrients are both supplied by<br />

geochemical means, such a subsurface lithoautotrophic microbial ecosystem<br />

(SLiME) could a priori persist <str<strong>on</strong>g>in</str<strong>on</strong>g>def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely even if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s<br />

surface became alien to life.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with depth, it has been suggested that<br />

hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular chemiolitoautotrophs, are abundant <str<strong>on</strong>g>in</str<strong>on</strong>g> subterranean<br />

envir<strong>on</strong>ments, <str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g a deep hot biosphere (Gold, 1992). Indeed, procaryotic<br />

activity has even been reported up to 120ºC and possibly even higher (Cragg<br />

&Parkes, 1994), i.e. above <str<strong>on</strong>g>the</str<strong>on</strong>g> upper temperature limit def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

challenge now is to cultivate <str<strong>on</strong>g>the</str<strong>on</strong>g>se putative novel hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles. Up to now, all<br />

microbes sampled from subsurface envir<strong>on</strong>ments have turned out to be close<br />

relatives of well-known bacteria, but <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies have been ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r limited and <strong>on</strong>e


cannot exclude f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g really novel microbes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se relatively unexplored<br />

biotopes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se deep communities clearly suggest that life may also exist deep below <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surfaces of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets. Hence, we need to build this <str<strong>on</strong>g>in</str<strong>on</strong>g>to any assessment of<br />

extraterrestrial life, as c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> life may actually improve below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (e.g.<br />

<strong>Mars</strong>). <str<strong>on</strong>g>The</str<strong>on</strong>g> absence of surface life, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, may not necessarily <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate <str<strong>on</strong>g>the</str<strong>on</strong>g> absence<br />

of all life. Indeed, it seems ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r naïve to limit <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life to a planet’s surface<br />

when we already know that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s are far bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> possible ranges <str<strong>on</strong>g>for</str<strong>on</strong>g> life<br />

<strong>on</strong> Earth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> revival of microorganisms from ancient rocks, salt and coal has been reported<br />

many times. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are several claims of microorganisms be<str<strong>on</strong>g>in</str<strong>on</strong>g>g revived from rocks<br />

more than 100 milli<strong>on</strong>s years old, some even from Precambrian (650 milli<strong>on</strong>s years<br />

old) (<str<strong>on</strong>g>for</str<strong>on</strong>g> an exhaustive review see Kennedy et al., 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g>se claims have usually<br />

been disputed <strong>on</strong> various grounds (c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical impossibility) but<br />

Kennedy et al. c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s are too many to be dismissed en bloc.<br />

In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> US Department of Energy has established a collecti<strong>on</strong> of 5000<br />

revived microorganisms (bacteria and fungi) from various subsurface sites about 200<br />

milli<strong>on</strong> years old. For Kennedy et al. <str<strong>on</strong>g>the</str<strong>on</strong>g> best alternative to revival is <str<strong>on</strong>g>in</str<strong>on</strong>g> situ<br />

reproducti<strong>on</strong>, which is as <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g as real revival from <str<strong>on</strong>g>the</str<strong>on</strong>g> perspective of recover<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ancient liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g>ms <strong>on</strong> <strong>Mars</strong> or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets.<br />

Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> availability of resources, <str<strong>on</strong>g>the</str<strong>on</strong>g> balance between latent life and <str<strong>on</strong>g>in</str<strong>on</strong>g> situ<br />

reproducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> subsurface biotopes should be dependent <strong>on</strong> temperature effects: <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

situ reproducti<strong>on</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g favoured at high temperatures and latency at low<br />

temperatures. Microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> general, and even some macroorganisms, are<br />

extremely resistant to freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperatures. It is well known that microorganisms are<br />

rout<str<strong>on</strong>g>in</str<strong>on</strong>g>ely kept alive <str<strong>on</strong>g>for</str<strong>on</strong>g> years <str<strong>on</strong>g>in</str<strong>on</strong>g> liquid nitrogen. Indeed, at extremely low<br />

temperatures, most deleterious processes l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to metabolic activities that can impair<br />

survival are slowed down.<br />

Many (but not all) of <str<strong>on</strong>g>the</str<strong>on</strong>g> microorganisms revived from ancient material are spore<str<strong>on</strong>g>for</str<strong>on</strong>g>mers.<br />

Bacteria of <str<strong>on</strong>g>the</str<strong>on</strong>g> Gram positive k<str<strong>on</strong>g>in</str<strong>on</strong>g>gdom (<strong>on</strong>e out of <str<strong>on</strong>g>the</str<strong>on</strong>g> roughly 12 bacterial<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>gdoms), have <str<strong>on</strong>g>in</str<strong>on</strong>g>deed developed <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to produce extraord<str<strong>on</strong>g>in</str<strong>on</strong>g>arily resistant<br />

spores that can survive extremely harsh c<strong>on</strong>diti<strong>on</strong>s (high temperature, absence of<br />

nutrients, high doses of radiati<strong>on</strong>). Spores are also produced by fungi and plant m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute<br />

seeds, and protozeoan cysts can be c<strong>on</strong>sidered as k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds of spores.<br />

C<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of latency, a critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t would be <str<strong>on</strong>g>the</str<strong>on</strong>g> stability of DNA<br />

molecules under very l<strong>on</strong>g-term storage, and <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> organism to repair<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lesi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> dormant stage, <strong>on</strong>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s aga<str<strong>on</strong>g>in</str<strong>on</strong>g> become<br />

favourable. Indeed, even <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absence of UV or i<strong>on</strong>is<str<strong>on</strong>g>in</str<strong>on</strong>g>g radiati<strong>on</strong>, DNA is subjected<br />

to sp<strong>on</strong>taneous chemical modificati<strong>on</strong>s such as depur<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, cytos<str<strong>on</strong>g>in</str<strong>on</strong>g>e deamidati<strong>on</strong><br />

and hydrolysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphodiester b<strong>on</strong>d (L<str<strong>on</strong>g>in</str<strong>on</strong>g>dahl, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g>se reacti<strong>on</strong>s are very<br />

slow at low temperatures but can still produce significant damage <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> very l<strong>on</strong>gterm.<br />

This po<str<strong>on</strong>g>in</str<strong>on</strong>g>t has been raised aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of revival <str<strong>on</strong>g>for</str<strong>on</strong>g> organisms<br />

several milli<strong>on</strong>s year old.<br />

DNA <str<strong>on</strong>g>in</str<strong>on</strong>g> spores is protected by specific DNA b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s that prevent<br />

depur<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> and probably o<str<strong>on</strong>g>the</str<strong>on</strong>g>r damage (see below), but it is not clear how effective<br />

this protecti<strong>on</strong> can be over very l<strong>on</strong>g periods. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g to note that high salt<br />

c<strong>on</strong>centrati<strong>on</strong>s protect DNA aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st chemical modificati<strong>on</strong>s (Marguet & Forterre,<br />

1994). Thus, halophilic organisms might have more chance to survive, and/or <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

DNA to rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tact (<str<strong>on</strong>g>for</str<strong>on</strong>g> analyses), than n<strong>on</strong>-halophilic <strong>on</strong>es. <str<strong>on</strong>g>The</str<strong>on</strong>g> best c<strong>on</strong>servati<strong>on</strong><br />

effect would thus be achieved <str<strong>on</strong>g>for</str<strong>on</strong>g> frozen extreme halophiles.<br />

Natural radioactivity <str<strong>on</strong>g>in</str<strong>on</strong>g> rock might be also a problem <str<strong>on</strong>g>for</str<strong>on</strong>g> l<strong>on</strong>g-term DNA stability.<br />

However, some microorganisms are extremely radio-resistant. This can be a<br />

sec<strong>on</strong>dary adaptati<strong>on</strong> to dessicati<strong>on</strong> that produce DNA lesi<strong>on</strong>s lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to doublestranded<br />

breaks when <str<strong>on</strong>g>the</str<strong>on</strong>g> cells are aga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with water. <str<strong>on</strong>g>The</str<strong>on</strong>g> radio-resistant<br />

bacteri<strong>on</strong> De<str<strong>on</strong>g>in</str<strong>on</strong>g>ococcus radiodurans exhibits a very efficient repair-recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

mechanism that allows <str<strong>on</strong>g>the</str<strong>on</strong>g> cell to rec<strong>on</strong>struct <str<strong>on</strong>g>in</str<strong>on</strong>g>tact chromosomes from deficient <strong>on</strong>es<br />

(Smith et al., 1992).<br />

limits of life under extreme c<strong>on</strong>diti<strong>on</strong>s/I.3<br />

33


SP-1231<br />

34<br />

I.3.7 Survival of <str<strong>on</strong>g>Life</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>ms<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Space<br />

In order to study <str<strong>on</strong>g>the</str<strong>on</strong>g> survival of resistant microbial <str<strong>on</strong>g>for</str<strong>on</strong>g>ms <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper atmosphere and<br />

free space, microbial samples have been exposed <str<strong>on</strong>g>in</str<strong>on</strong>g> situ aboard ballo<strong>on</strong>s, rockets and<br />

spacecraft, such as Gem<str<strong>on</strong>g>in</str<strong>on</strong>g>i, Apollo, Spacelab, L<strong>on</strong>g-Durati<strong>on</strong> Exposure Facility<br />

(LDEF), Fot<strong>on</strong> and Eureca, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated after recovery (reviewed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Horneck, 1993). A priori, <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> space seems to be very hostile to life.<br />

This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> high vacuum, an <str<strong>on</strong>g>in</str<strong>on</strong>g>tense radiati<strong>on</strong> of galactic and solar orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, and<br />

extreme temperatures. In <str<strong>on</strong>g>the</str<strong>on</strong>g> endeavour to disentangle <str<strong>on</strong>g>the</str<strong>on</strong>g> network of potential<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters of space, methods have been applied to separate each<br />

parameter and to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate its impact <strong>on</strong> biological <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity, applied s<str<strong>on</strong>g>in</str<strong>on</strong>g>gly or <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

c<strong>on</strong>trolled comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s.<br />

Resp<strong>on</strong>ses to Vacuum<br />

In free <str<strong>on</strong>g>in</str<strong>on</strong>g>terplanetary space, pressures down to 10 -14 Pa prevail. <str<strong>on</strong>g>The</str<strong>on</strong>g> pressure <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of a body because of outgass<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In low Earth orbit, where most of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiments were d<strong>on</strong>e, pressure reaches 10 -4 -10 -6 Pa. Experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> space have<br />

dem<strong>on</strong>strated that certa<str<strong>on</strong>g>in</str<strong>on</strong>g> microorganisms survive exposure <str<strong>on</strong>g>in</str<strong>on</strong>g> space vacuum <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

extended periods of time, provided <str<strong>on</strong>g>the</str<strong>on</strong>g>y are shielded aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tense solar UV<br />

radiati<strong>on</strong>. Most results are available from spores of <str<strong>on</strong>g>the</str<strong>on</strong>g> bacterium Bacillus subtilis. If<br />

shielded aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st UV, spores survive at least 6 years <str<strong>on</strong>g>in</str<strong>on</strong>g> space (Horneck et al., 1994).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> survival time is substantially <str<strong>on</strong>g>in</str<strong>on</strong>g>creased if <str<strong>on</strong>g>the</str<strong>on</strong>g> spores are exposed <str<strong>on</strong>g>in</str<strong>on</strong>g> multiple<br />

layers and/or <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of glucose as a protective. In <str<strong>on</strong>g>the</str<strong>on</strong>g> surviv<str<strong>on</strong>g>in</str<strong>on</strong>g>g spores, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

genetic material is affected, as <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated by an <str<strong>on</strong>g>in</str<strong>on</strong>g>creased mutati<strong>on</strong> rate, delayed<br />

germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g of DNA and prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, DNA strand break<str<strong>on</strong>g>in</str<strong>on</strong>g>g and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

requirement of cellular repair processes to restore viability. This cellular damages is<br />

probably caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> dehydrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> spores <str<strong>on</strong>g>in</str<strong>on</strong>g> vacuum. With <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

exposure time, free water is removed first, followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrated water and,<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, even chemically bound water and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r volatile molecules may be removed.<br />

This has severe c<strong>on</strong>sequences <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stability and functi<strong>on</strong>ality of <str<strong>on</strong>g>the</str<strong>on</strong>g> membranes and<br />

macromolecules.<br />

Resp<strong>on</strong>ses to <str<strong>on</strong>g>Solar</str<strong>on</strong>g> UV Radiati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> spectrum of solar electromagnetic radiati<strong>on</strong> spans several orders of magnitude,<br />

from short-wavelength X-rays to radio frequencies. At <str<strong>on</strong>g>the</str<strong>on</strong>g> distance of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth<br />

(1 AU), solar irradiance amounts to 1360 Wm -2 (<str<strong>on</strong>g>the</str<strong>on</strong>g> solar c<strong>on</strong>stant). Of this radiati<strong>on</strong>,<br />

45% is attributed to IR, 48% to visible and <strong>on</strong>ly 7% to <str<strong>on</strong>g>the</str<strong>on</strong>g> UV range. <str<strong>on</strong>g>Solar</str<strong>on</strong>g> UV<br />

radiati<strong>on</strong> has been found to be <str<strong>on</strong>g>the</str<strong>on</strong>g> most damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor of space as tested with dried<br />

preparati<strong>on</strong>s of viruses, bacterial and fungal spores (Horneck, 1992, 1993; Horneck et<br />

al., 1994). Acti<strong>on</strong> spectra of <str<strong>on</strong>g>the</str<strong>on</strong>g> solar phot<strong>on</strong>s at 160-320 nm <str<strong>on</strong>g>for</str<strong>on</strong>g> kill<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteriophage<br />

T1 or B. subtilis spores closely correlate with <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> spectrum of DNA,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g DNA as <str<strong>on</strong>g>the</str<strong>on</strong>g> critical chromophore <str<strong>on</strong>g>for</str<strong>on</strong>g> lethality. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

spectrum of solar UV light (>170 nm) kills 99% of B. subtilis spores with<str<strong>on</strong>g>in</str<strong>on</strong>g> sec<strong>on</strong>ds.<br />

To have <str<strong>on</strong>g>the</str<strong>on</strong>g> same effect <strong>on</strong> Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> exposure to sunlight takes approximately 1000<br />

times l<strong>on</strong>ger. This difference is attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> oz<strong>on</strong>e layer that protects <str<strong>on</strong>g>the</str<strong>on</strong>g> biosphere<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> most harmful fracti<strong>on</strong> of solar UV radiati<strong>on</strong> (170 nm), as well<br />

as to selected wavelengths. This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> of specific photoproducts <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> DNA of microorganisms exposed to UV light <str<strong>on</strong>g>in</str<strong>on</strong>g> vacuum (Horneck, 1993).


Resp<strong>on</strong>ses to Cosmic Radiati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> radiati<strong>on</strong> field of our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> is governed by comp<strong>on</strong>ents of galactic and<br />

solar orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g> galactic cosmic radiati<strong>on</strong> enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> is composed of<br />

prot<strong>on</strong>s (85%), electr<strong>on</strong>s, alpha-particles (14%) and heavy i<strong>on</strong>s (1%) of charge Z>2<br />

(HZE particles). <str<strong>on</strong>g>The</str<strong>on</strong>g> solar particle radiati<strong>on</strong>, emitted as <str<strong>on</strong>g>the</str<strong>on</strong>g> solar w<str<strong>on</strong>g>in</str<strong>on</strong>g>d and dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

solar flares, comprises 90-95% prot<strong>on</strong>s, 5-10% alpha-particles and a relatively small<br />

number of heavier i<strong>on</strong>s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> belts, prot<strong>on</strong>s and<br />

electr<strong>on</strong>s are trapped by <str<strong>on</strong>g>the</str<strong>on</strong>g> geomagnetic field. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>is<str<strong>on</strong>g>in</str<strong>on</strong>g>g comp<strong>on</strong>ents of<br />

radiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> space, <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy primaries (HZE particles) are <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective species.<br />

To understand how cosmic particle radiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts with biological systems,<br />

methods have been developed to localise precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> trajectory of an HZE particle<br />

relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> biological object and to correlate <str<strong>on</strong>g>the</str<strong>on</strong>g> physical data of <str<strong>on</strong>g>the</str<strong>on</strong>g> particle<br />

relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> observed biological effects al<strong>on</strong>g its path. By use of visual track<br />

detectors sandwiched between layers of biological objects <str<strong>on</strong>g>in</str<strong>on</strong>g> a rest<str<strong>on</strong>g>in</str<strong>on</strong>g>g state – a<br />

c<strong>on</strong>cept known as <str<strong>on</strong>g>the</str<strong>on</strong>g> Biostack (Buecker & Horneck, 1975) – <str<strong>on</strong>g>in</str<strong>on</strong>g> a variety of test<br />

systems <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g viruses, bacterial spores, plant seeds or shrimp cysts, <str<strong>on</strong>g>in</str<strong>on</strong>g>juries such<br />

as somatic mutati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> plant seeds, development disturbances and mal<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sect and salt shrimp embryos, or <str<strong>on</strong>g>in</str<strong>on</strong>g>activati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> bacterial spores were traced back to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> traversal of a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle HZE particle (reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g> Horneck, 1992). Such HZE<br />

particles of cosmic radiati<strong>on</strong> are c<strong>on</strong>jectured as sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate limit <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

survival of spores <str<strong>on</strong>g>in</str<strong>on</strong>g> space because <str<strong>on</strong>g>the</str<strong>on</strong>g>y penetrate even heavy shield<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

maximum time <str<strong>on</strong>g>for</str<strong>on</strong>g> a spore to escape a hit by an HZE particle (e.g. ir<strong>on</strong> of LET<br />

>100 keV/m) has been estimated to be 10 5 -10 6 years.<br />

Resp<strong>on</strong>ses to Temperature Extremes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> temperature of a body <str<strong>on</strong>g>in</str<strong>on</strong>g> space – which is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> and<br />

emissi<strong>on</strong> of energy – depends <strong>on</strong> its positi<strong>on</strong> relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun and its surface type,<br />

size and mass. In Earth orbit, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy sources are solar radiati<strong>on</strong> (1360 Wm -2 ),<br />

Earth albedo (480 Wm -2 ) and terrestrial radiati<strong>on</strong> (230 Wm -2 ). In Earth orbit, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature of a body can reach extreme values. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> major part of a<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical journey through deep space, if shielded from solar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal radiati<strong>on</strong>,<br />

microorganisms are c<strong>on</strong>fr<strong>on</strong>ted with <str<strong>on</strong>g>the</str<strong>on</strong>g> 4K cold empt<str<strong>on</strong>g>in</str<strong>on</strong>g>ess of space. Under <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

very cold c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic and chemical reacti<strong>on</strong>s are nearly frozen. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

photobiological resp<strong>on</strong>se to solar UV radiati<strong>on</strong> may <str<strong>on</strong>g>the</str<strong>on</strong>g>n be completely different from<br />

room-temperature c<strong>on</strong>diti<strong>on</strong>s. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> latter resp<strong>on</strong>se (at room temperature) so far<br />

has been tested <str<strong>on</strong>g>in</str<strong>on</strong>g> space. Laboratory experiments under simulated <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar medium<br />

c<strong>on</strong>diti<strong>on</strong>s po<str<strong>on</strong>g>in</str<strong>on</strong>g>t to a remarkably less damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect of UV radiati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g>se low<br />

temperatures. Treat<str<strong>on</strong>g>in</str<strong>on</strong>g>g B. subtilis spores with three simulated factors simultaneously<br />

(UV >110 nm, vacuum and low temperature of 10K), produces an unexpectedly high<br />

survival rate, even at very high UV fluxes. In this low temperature regime, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>activati<strong>on</strong> cross-secti<strong>on</strong>s obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed are up to 2-3 orders of magnitude lower than at<br />

room temperature (Weber & Greenberg, 1985). <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature profile of bacterial<br />

spore UV-sensitivity shows a maximum at 190K. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se data, it has been<br />

estimated that, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most general envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> space, spores may survive <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

hundreds of years (Weber & Greenberg, 1985).<br />

Chances and Limits of Interplanetary Transfer of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> recent analyses of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorite ALH 84001, with its putative <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s<br />

of enclosed fossils (see Chapter II.3), has <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong><br />

of whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r endolithic microorganisms can survive an <str<strong>on</strong>g>in</str<strong>on</strong>g>terplanetary journey.<br />

Although it will be difficult to prove that life can be transported through our <str<strong>on</strong>g>Solar</str<strong>on</strong>g><br />

<str<strong>on</strong>g>System</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> chances <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different steps of <str<strong>on</strong>g>the</str<strong>on</strong>g> process to occur can be estimated.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se <str<strong>on</strong>g>in</str<strong>on</strong>g>clude (1) <str<strong>on</strong>g>the</str<strong>on</strong>g> escape process, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> removal to space of biological material<br />

that has survived be<str<strong>on</strong>g>in</str<strong>on</strong>g>g lifted from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface to high altitudes; (2) <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terim state<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> space, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> survival of <str<strong>on</strong>g>the</str<strong>on</strong>g> biological material over timescales comparable with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terplanetary passage (3) <str<strong>on</strong>g>the</str<strong>on</strong>g> entry process, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-destructive depositi<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> biological material <strong>on</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r planet. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dentificati<strong>on</strong> of some<br />

limits of life under extreme c<strong>on</strong>diti<strong>on</strong>s/I.3<br />

35


SP-1231<br />

36<br />

I.3.8 Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Future<br />

<str<strong>on</strong>g>Search</str<strong>on</strong>g>es<br />

meteorites of lunar and probably some of martian orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> escape of material<br />

rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from small particles up to boulder-size from a planet after <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of large<br />

meteorites is evidently a feasible process. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g to note that bacterial spores<br />

can survive with low frequency (approximately 10 -4 ) shockwaves produced by a<br />

simulated meteorite impact of 42.5 GPa. C<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> survival dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terim<br />

state <str<strong>on</strong>g>in</str<strong>on</strong>g> space, 6 years is so far <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum observed exposure time of bacterial<br />

spores to space. <str<strong>on</strong>g>The</str<strong>on</strong>g> high survival rate of <str<strong>on</strong>g>the</str<strong>on</strong>g>se spores and <str<strong>on</strong>g>the</str<strong>on</strong>g> high UV-resistance of<br />

microorganisms at <str<strong>on</strong>g>the</str<strong>on</strong>g> low temperatures of deep space are <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g results.<br />

However, travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <strong>on</strong>e planet to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, e.g. from <strong>Mars</strong> to Earth, by chance<br />

requires an estimated mean time of several 10 5 -10 6 years <str<strong>on</strong>g>for</str<strong>on</strong>g> boulder-sized rocks;<br />

periods of <strong>on</strong>ly a few m<strong>on</strong>ths have been calculated <str<strong>on</strong>g>for</str<strong>on</strong>g> microscopic particles.<br />

Evidently, more data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term effects <str<strong>on</strong>g>in</str<strong>on</strong>g> space are required to allow<br />

mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful extrapolati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> time spans required <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terplanetary transport of<br />

life.<br />

When ask<str<strong>on</strong>g>in</str<strong>on</strong>g>g what less<strong>on</strong>s extremophiles and survival <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extreme teach us about<br />

possible extraterrestrial biotopes and our chances of identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g relic or active<br />

extraterrestrial life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, we should make <str<strong>on</strong>g>the</str<strong>on</strong>g> dist<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s required <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence of life from those <str<strong>on</strong>g>for</str<strong>on</strong>g> its evoluti<strong>on</strong> and<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance.<br />

In some <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical scenarios, life appeared at very high temperatures. That means<br />

today’s hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles are viewed as relics of <str<strong>on</strong>g>the</str<strong>on</strong>g> last comm<strong>on</strong> universal ancestor<br />

of all liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g be<str<strong>on</strong>g>in</str<strong>on</strong>g>gs (Stetter, 1996). In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life would have required<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presence of stable warm biotopes at an early stage of planetary evoluti<strong>on</strong>.<br />

However, this hot orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis has been challenged, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that<br />

early life <strong>on</strong> Earth was probably based <strong>on</strong> RNA <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of DNA, and RNA is very<br />

unstable at high temperatures (Forterre, 1995).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> hot-orig<str<strong>on</strong>g>in</str<strong>on</strong>g>-of-life scenario is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> group<str<strong>on</strong>g>in</str<strong>on</strong>g>g of hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> base of <str<strong>on</strong>g>the</str<strong>on</strong>g> universal tree of life deduced from rRNA analysis, <strong>on</strong> each<br />

side of its root (Stetter, 1996). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> root<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> universal tree has been<br />

disputed (Forterre, 1997) and recent data <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that rRNA phylogenies can be very<br />

mislead<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In particular, it is now clear that microsporidia (eucaryotes without<br />

mitoch<strong>on</strong>dria), which were supposed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> most primitive eucaryotes accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

rRNA phylogeny, are <str<strong>on</strong>g>in</str<strong>on</strong>g> fact fungi (see reference <str<strong>on</strong>g>in</str<strong>on</strong>g> Palmer, 1997).<br />

Even if life did not orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ate at very high temperatures, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of efficient<br />

catalysts at freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperatures might have been an impossible task at an early stage<br />

of evoluti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> most attractive hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis might be that life appeared <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

moderately <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic envir<strong>on</strong>ment: hot enough to boost catalytic reacti<strong>on</strong>s, but<br />

cold enough to avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of macromolecule <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodegradati<strong>on</strong>.<br />

It is important to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> new knowledge about hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles to help us def<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> optimal c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life and estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> plausibility of such<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> histories of <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> planets. In particular, it should be kept <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>d that our knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms required <str<strong>on</strong>g>for</str<strong>on</strong>g> life at high temperatures are<br />

far from exhaustive. It might be important to understand thoroughly why <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

apparently an upper limit of 113ºC <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> Earth. Is it possible to imag<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

alternative biochemistry active at higher temperatures?<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r possibility is that life did not <str<strong>on</strong>g>in</str<strong>on</strong>g>vent strategies to proliferate above 110ºC,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature gradient <str<strong>on</strong>g>in</str<strong>on</strong>g> a hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal chimney is very steep, reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

size of <str<strong>on</strong>g>the</str<strong>on</strong>g> potential biotopes with a c<strong>on</strong>stant 110-130ºC. <str<strong>on</strong>g>The</str<strong>on</strong>g> systematic search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

subterranean hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deep terrestrial crust could be most <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this respect, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <strong>on</strong>e expects a gradual transiti<strong>on</strong> of temperature <strong>on</strong> a large<br />

geographic scale.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study of microorganisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> subterranean envir<strong>on</strong>ments can also teach<br />

us much about <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of pressure <strong>on</strong> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. This is of great importance<br />

as many possible biotopes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> system experience ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r very low or very high<br />

pressures. Fundamental studies about <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of pressure <strong>on</strong> enzymes and nucleic


acid to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical limits of pressure <str<strong>on</strong>g>for</str<strong>on</strong>g> life are thus an important l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

future research.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> study of subterranean biotopes may be relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life <str<strong>on</strong>g>in</str<strong>on</strong>g> general. It may have been that life orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally developed <strong>on</strong> Earth<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>the</str<strong>on</strong>g>n grew upwards when c<strong>on</strong>diti<strong>on</strong>s became less extreme <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

early Archean period. If this is correct, life might have appeared <strong>on</strong> several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> bodies <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate temperature z<strong>on</strong>e at <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>dary between<br />

external cold and <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat (see Chapter I.3.2).<br />

What can we learn from <str<strong>on</strong>g>the</str<strong>on</strong>g> biology of terrestrial extremophiles? An important<br />

observati<strong>on</strong> is that most terrestrial extremophiles are procaryotes. This is especially<br />

strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles and hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce all microorganisms<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 60-110ºC are procaryotes. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> this discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is unknown. It<br />

could be related to <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement <str<strong>on</strong>g>for</str<strong>on</strong>g> l<strong>on</strong>g-lived messenger RNA <str<strong>on</strong>g>in</str<strong>on</strong>g> eucaryotes<br />

(Forterre, 1995), but this is a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Why <strong>on</strong>ly archaea thrive above 95ºC is also<br />

still a mystery. More work is needed to understand <str<strong>on</strong>g>the</str<strong>on</strong>g>se different fr<strong>on</strong>tiers. On <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, we have seen that all terrestrial present-day extremophiles, although<br />

procaryotes, are complex microorganisms, <str<strong>on</strong>g>the</str<strong>on</strong>g> products of l<strong>on</strong>g evoluti<strong>on</strong>, which<br />

exhibit elaborate mechanisms <str<strong>on</strong>g>for</str<strong>on</strong>g> cop<str<strong>on</strong>g>in</str<strong>on</strong>g>g with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir extreme envir<strong>on</strong>ments. For<br />

example, terrestrial hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles have developed strategies to protect <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

macromolecules (prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s, DNA and RNA) aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g> damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects of very high<br />

temperatures (Forterre, 1996). Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> two strategies used by halophiles to cope<br />

with salty envir<strong>on</strong>ments (producti<strong>on</strong> of compatible solutes and accumulati<strong>on</strong> of high<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular salt c<strong>on</strong>centrati<strong>on</strong>s) require <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of very effective transport<br />

systems across membranes and/or complex metabolic pathways to syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sise<br />

compatible solutes, two hallmarks of highly evolved organisms. This aga<str<strong>on</strong>g>in</str<strong>on</strong>g> suggests<br />

a priori that life, as we know it, probably evolved first <str<strong>on</strong>g>in</str<strong>on</strong>g> a mild envir<strong>on</strong>ment be<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vad<str<strong>on</strong>g>in</str<strong>on</strong>g>g extreme <strong>on</strong>es. However, would it be possible to imag<str<strong>on</strong>g>in</str<strong>on</strong>g>e simpler and even<br />

more robust extremophiles?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> terrestrial dichotomy between procaryotes and eucaryotes raises o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g questi<strong>on</strong>s. For example, do all life <str<strong>on</strong>g>for</str<strong>on</strong>g>ms <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets automatically<br />

extend at least up to 110ºC or is this expansi<strong>on</strong> dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> appearance of a<br />

procaryotic lifestyle? <str<strong>on</strong>g>The</str<strong>on</strong>g> answer to this questi<strong>on</strong> requires us to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e a priori what<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of procaryotes. Traditi<strong>on</strong>ally, procaryotes are c<strong>on</strong>sidered to be ancient<br />

and primitive <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life <strong>on</strong> Earth. In such a scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> procaryotic type of<br />

cellular organisati<strong>on</strong> is often viewed as an early stage of life evoluti<strong>on</strong>, which should<br />

have been comm<strong>on</strong> to all life, c<strong>on</strong>sequently mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g it <str<strong>on</strong>g>the</str<strong>on</strong>g> most widespread life <str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Universe (hence <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> martian bacteria). However, some authors<br />

c<strong>on</strong>sider that procaryotes are very evolved organisms that orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by reducti<strong>on</strong><br />

from more complex <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life (Reanney, 1974; Forterre, 1995). In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence of life <str<strong>on</strong>g>in</str<strong>on</strong>g> many extremophilic envir<strong>on</strong>ments could be dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

historical appearance of ‘procaryotes’. It might be important to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e which is<br />

correct <str<strong>on</strong>g>in</str<strong>on</strong>g> order to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e more precisely what we are look<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets. In<br />

any case, we should not c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> procaryote/eucaryote dichotomy as valid <str<strong>on</strong>g>for</str<strong>on</strong>g> all<br />

possible life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Universe. Simpler, different or more complex <str<strong>on</strong>g>for</str<strong>on</strong>g>ms could exist.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, we are probably ignor<str<strong>on</strong>g>in</str<strong>on</strong>g>g some of <str<strong>on</strong>g>the</str<strong>on</strong>g> capabilities of terrestrial extremophiles.<br />

It might be worth challeng<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>m with some envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s deduced<br />

from our knowledge of planetary atmospheres, hydrospheres and lithospheres.<br />

Surprises could emerge from such studies.<br />

We have suggested that life might have appeared <strong>on</strong> planets <strong>on</strong>ly with<str<strong>on</strong>g>in</str<strong>on</strong>g> a narrow<br />

spectrum of physical parameters and that, <strong>on</strong>ce life existed, <str<strong>on</strong>g>the</str<strong>on</strong>g>se requirements could<br />

be relaxed (but not too much) <str<strong>on</strong>g>for</str<strong>on</strong>g> evolved life <str<strong>on</strong>g>for</str<strong>on</strong>g>ms to proliferate. However, if <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

c<strong>on</strong>diti<strong>on</strong>s changed drastically <str<strong>on</strong>g>in</str<strong>on</strong>g> some directi<strong>on</strong> (freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g, desiccati<strong>on</strong>), liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

organisms could survive (wait<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> better times) <str<strong>on</strong>g>for</str<strong>on</strong>g> very l<strong>on</strong>g periods, possibly <strong>on</strong><br />

an astr<strong>on</strong>omical scale. Questi<strong>on</strong> marks predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> this area of research. How l<strong>on</strong>g<br />

can extremophiles or resistant <str<strong>on</strong>g>for</str<strong>on</strong>g>ms survive <str<strong>on</strong>g>in</str<strong>on</strong>g> hostile c<strong>on</strong>diti<strong>on</strong>s? Many aspects of<br />

this problem need fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s. Some of <str<strong>on</strong>g>the</str<strong>on</strong>g>m have been reviewed by<br />

Kennedy et al. (1994).What is <str<strong>on</strong>g>the</str<strong>on</strong>g> migrati<strong>on</strong> rate of microorganisms through a rock<br />

limits of life under extreme c<strong>on</strong>diti<strong>on</strong>s/I.3<br />

37


SP-1231<br />

38<br />

References<br />

structure? For how l<strong>on</strong>g can nucleic acids survive l<strong>on</strong>g-term storage? How do we<br />

design new methods to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> antiquity of ‘revived’ terrestrial microorganisms?<br />

How do we study bacterial reproducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> very old samples?<br />

We should keep very open m<str<strong>on</strong>g>in</str<strong>on</strong>g>ds <str<strong>on</strong>g>in</str<strong>on</strong>g> this area. In terms of survival, <strong>on</strong>e immediately<br />

th<str<strong>on</strong>g>in</str<strong>on</strong>g>k of spores, but we should remember that sporulati<strong>on</strong> is not a general<br />

phenomen<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g, but an historical <str<strong>on</strong>g>in</str<strong>on</strong>g>venti<strong>on</strong> that may or may not have<br />

occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> history of life <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we keep our<br />

microorganisms frozen <str<strong>on</strong>g>for</str<strong>on</strong>g> years and, though <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not spores, <str<strong>on</strong>g>the</str<strong>on</strong>g>y survive. We<br />

also tend to th<str<strong>on</strong>g>in</str<strong>on</strong>g>k of procaryotes, but some eucaryotes (acaria) could exhibit<br />

surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g (and scarcely explored) resistant properties.<br />

Bernard, F.P., C<strong>on</strong>nan, J. & Magot, M. (1992). Indigenous microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>nate<br />

water of many oil fields: a new tool <str<strong>on</strong>g>in</str<strong>on</strong>g> explorati<strong>on</strong> and producti<strong>on</strong> techniques. Soc.<br />

Petroleum Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers 67, 467-476.<br />

Bernhardt, G., Luedemann, H.D., Jaenicke, R., Koenig, H. & Stetter, K.O. (1984).<br />

Biomolecules are unstable under black smocker c<strong>on</strong>diti<strong>on</strong>s. Naturwissenschaften<br />

71, 583-586.<br />

Blöchl, E., Rachel, R., Burgraff, S., Hafenbradl, D., Jannash, H.W. & Stetter, K.O.<br />

(1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea,<br />

extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> upper temperature limit <str<strong>on</strong>g>for</str<strong>on</strong>g> life to 113ºC. Extremophiles 1, 14-21<br />

Buecker, H. & Horneck, G. (1975). Studies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of cosmic HZE-particles <strong>on</strong><br />

different biological systems <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Biostack I and II flown <strong>on</strong> board of Apollo 16<br />

and 17. In Radiati<strong>on</strong> Research (Eds. O. F. Nygaard, H. J. Adler & W.K. S<str<strong>on</strong>g>in</str<strong>on</strong>g>clair),<br />

Academic Press, pp1138-1151.<br />

Cragg, B.A. & Parkes, R.J. (1994). Bacterial profiles <str<strong>on</strong>g>in</str<strong>on</strong>g> hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally active deep<br />

sediment layers from Middle Valley (N.E. Pacific) Sites 857 and 858. Proc. Ocean<br />

Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g Prog. Sci. Results 139, 509-516.<br />

DeL<strong>on</strong>g, E.F., Wu, K.Y., Prezel<str<strong>on</strong>g>in</str<strong>on</strong>g>, B.B. & Jov<str<strong>on</strong>g>in</str<strong>on</strong>g>e R.V.M. (1994). High abundance of<br />

Archaea <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctic mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e picoplankt<strong>on</strong>. Nature 371, 695-697.<br />

Driessen, A.J.M., Van de Vossenberg, J.L.C.M. & K<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>gs, W.N. (1996). Membrane<br />

compositi<strong>on</strong> and i<strong>on</strong>-permeability <str<strong>on</strong>g>in</str<strong>on</strong>g> extremophiles. FEMS Microbiol. Rev. 18,<br />

139-148.<br />

Forterre, P. (1995). <str<strong>on</strong>g>The</str<strong>on</strong>g>rmoreducti<strong>on</strong>, a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of procaryotes.<br />

Comptes Rendus de l’Acad. Sci. (Paris) 318, 415-422.<br />

Forterre, P. (1996). A hot topic: <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles. Cell 85, 789-792.<br />

Forterre, P. (1997). Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> versus rRNA: root<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> universal tree of life? ASM News<br />

63 2, 89-95.<br />

Furnes, H., Thorseth, I.H., Tumyr, O., Torsvick, T. & Fisk, M. R. (1996). Microbial<br />

activity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alterati<strong>on</strong> of glass from pillow lavas from hole 896A. Proc. Ocean<br />

Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g Prog. Sci. Results 148, 191-206.<br />

Gal<str<strong>on</strong>g>in</str<strong>on</strong>g>ski, E.A. & Tyndall, B.J. (1992). Biotechnological prospects <str<strong>on</strong>g>for</str<strong>on</strong>g> halophiles and<br />

halotolerant microorganisms. In Molecular Biology and Biotechnology of<br />

Extremophiles (Eds. R.A. Herbert & R.J. Sharp) Blackie, Glasgow & L<strong>on</strong>d<strong>on</strong>,<br />

pp76-114.<br />

Gold, T. (1992). <str<strong>on</strong>g>The</str<strong>on</strong>g> deep, hot biosphere. Proc. Natl. Acad. Sci. 89, 6045-6049.<br />

Grant, W.D. & Horikoshi, K. (1992). Alkaliphiles: ecology and biotechnological<br />

applicati<strong>on</strong>s. In Molecular Biology and Biotechnology of Extremophiles (Eds. R.A.<br />

Herbert & R.J. Sharp) Blackie, Glasgow & L<strong>on</strong>d<strong>on</strong>, pp143-160.<br />

Harid<strong>on</strong>, S.L., Reysenbach, A., Glenat, P., Prieur, D. & Jeanth<strong>on</strong>, C. (1995). Hot<br />

subterranean biosphere <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ental oil reservoir. Nature 377, 223-224.<br />

Hensel, H., Jakob, I., Scheer, H. & Lottspeich, F. (1992). Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic<br />

archaea: stability towards covalent modificati<strong>on</strong> of peptide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>. In <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

archaebacteria: Biochemistry and Biotechnology. Biochemical Soc. Symp. 58,<br />

127-134.<br />

Horneck, G. (1992). Radiobiological experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> space: a review. Nucl. Tracks<br />

Radiat. Meas. 20, 185-205.


Horneck, G. (1993). Resp<strong>on</strong>ses of Bacillus subtilis spores to space envir<strong>on</strong>ment:<br />

results from experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> space. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 2, 37-52.<br />

Horneck, G., Buecker, H. & Reitz, G. (1994). L<strong>on</strong>g-term survival of bacterial spores<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> space. Adv. Space Res. 14 (10)41-(10)45.<br />

Horneck, G., Rettberg, P., Rabbow, E., Strauch, W., Seckmeyer, G., Facius, R., Reitz,<br />

G., Strauch, K. & Schott, J.U. (1996). Biological dosimetry of solar radiati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

different simulated oz<strong>on</strong>e column thicknesses. J. Photochem. Photobiol. B: Biol.<br />

55, 389.<br />

Keller, M., Braun, F.-J., Dirmeier, R., Hafenbradl, D., Burgrraf, S., Rachel, R. &<br />

Stetter, K.O. (1995). <str<strong>on</strong>g>The</str<strong>on</strong>g>rmococcus alcaliphilus sp. nov. a new hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic<br />

archaeum grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> polysulfide at alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e pH. Arch. Microbiol. 164, 390-395.<br />

Kennedy, M.J., Reader, S.L. & Swierczynski, L.M. (1994). Preservati<strong>on</strong> records of<br />

microorganisms: evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> tenacity of life. Microbiol. 140, 2513-2529.<br />

L<str<strong>on</strong>g>in</str<strong>on</strong>g>dhal, T. (1993). Instability and decay of <str<strong>on</strong>g>the</str<strong>on</strong>g> primary structure of DNA. Nature 362,<br />

709-715.<br />

Marguet, E. & Forterre, P. (1994). DNA stability at temperatures typical <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles. Nucl. Acid Res. 22, 1681-1686.<br />

Nienow, J.A. & Friedman, E.I. (1993). Terrestrial lithophytic (rock) communities. In<br />

Antarctica Microbiol. (Ed. E. Friedmann) Wiley, pp343-412.<br />

Norris, P.R. & Ingledew, W.J. (1992). Acidophilic bacteria: adaptati<strong>on</strong>s and<br />

applicati<strong>on</strong>s. In Molecular Biology and Biotechnology of Extremophiles (Eds. R.A.<br />

Herbert & R.J. Sharp) Blackie, Glasgow & L<strong>on</strong>d<strong>on</strong>, pp115-139.<br />

Palmer, J.D. (1997). Organelle genomes: go<str<strong>on</strong>g>in</str<strong>on</strong>g>g, go<str<strong>on</strong>g>in</str<strong>on</strong>g>g, g<strong>on</strong>e. Science, 275, 790-791.<br />

Parkes R.J. & Maxwell, J.R. (1993). Some like it hot (and oily). Nature 365, 694-695.<br />

Parkes, R.J., Cragg, B.A., Bale, S.K. et al. (1994). Deep bacterial biosphere <str<strong>on</strong>g>in</str<strong>on</strong>g> Pacific<br />

Ocean sediments. Nature 371, 410-413.<br />

Prieur, D. (1992). Physiology and biotechnological potential of deep-sea bacteria. In<br />

Molecular Biology and Biotechnology of Extremophiles (Eds. R.A. Herbert & R.J.<br />

Sharp) Blackie, Glasgow & L<strong>on</strong>d<strong>on</strong>, pp163-197.<br />

Reanney, D.C. (1974). On <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of prokaryotes. J. <str<strong>on</strong>g>The</str<strong>on</strong>g>or. Biol. 48, 243-251.<br />

Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>ey, F.A., Jannasch, H.W. &<br />

Widdel, F. (1994). Anaerobic oxidati<strong>on</strong> of hydrocarb<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> crude oil by new types<br />

of sulphate-reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria. Nature 372, 455-458.<br />

Russel, N.J. (1992). Physiology and molecular biology of psychrophilic microorganisms.<br />

In Molecular Biology and Biotechnology of Extremophiles (Eds. R.A.<br />

Herbert & R.J. Sharp) Blackie, Glasgow & L<strong>on</strong>d<strong>on</strong>, pp203-221.<br />

Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U.,<br />

Klenk, H.P. & Zillig, W. (1995). Picrophilus gen nov, fam nov: A novel aerobic,<br />

heterotrophic, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoacidophilic genus and family compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g Archaea capable of<br />

growth around pH 0. J. Bacteriol. 177, 7050-7059.<br />

Smith, M.D., Masters, C.I. & Moseley, B.E.B (1992). Molecular biology of radiati<strong>on</strong>resistant<br />

bacteria. In Molecular Biology and Biotechnology of Extremophiles (Eds.<br />

R.A. Herbert & R.J. Sharp) Blackie, Glasgow & L<strong>on</strong>d<strong>on</strong>, pp258-277.<br />

Stetter, K.O. (1982). Ultra-th<str<strong>on</strong>g>in</str<strong>on</strong>g> mycelia-<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms from submar<str<strong>on</strong>g>in</str<strong>on</strong>g>e volcanic<br />

areas hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g an optimum growth temperature of 105ºC. Nature 300, 258-260.<br />

Stetter, K.O. (1996). Hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic procaryotes. FEMS Microbiol. Reviews 18,<br />

149-158.<br />

Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H. &<br />

Vance, I. (1993). Hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic archaea are thriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> deep North Sea and<br />

Alaskan oil reservoirs. Nature 365, 743-745.<br />

Stevens, T.O. & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, J.P. (1995). Lithoautotrophic microbial ecosystems <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

deep basalt aquifer. Science 270, 450-454.<br />

Trent, J.D., Chastian, R.A. & Yayanos, A.A. (1984). Possible artefactual basis <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

apparent bacterial growth at 250ºC. Nature 307, 737-740.<br />

Weber, P. & Greenberg, J.M. (1985). Can spores survive <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar space? Nature<br />

316, 403-407.<br />

limits of life under extreme c<strong>on</strong>diti<strong>on</strong>s/I.3<br />

39


I.4 Morphological and Biochemical Signatures of<br />

Extraterrestrial <str<strong>on</strong>g>Life</str<strong>on</strong>g>: Utility of Terrestrial<br />

Analogues<br />

Any veneer of life cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of a planet will likely <str<strong>on</strong>g>in</str<strong>on</strong>g>teract with <str<strong>on</strong>g>the</str<strong>on</strong>g> solid<br />

and fluid phases with which it is <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact. Specifically, it is bound to impose a<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic gradient <strong>on</strong> all planetary near-surface envir<strong>on</strong>ments (<str<strong>on</strong>g>in</str<strong>on</strong>g>clusive of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere and hydrosphere), which ultimately stems from <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> of<br />

negative entropy by liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems. C<strong>on</strong>sequently, life acts as a driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g>ce <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

number of globally-relevant chemical trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. On Earth, typical examples of<br />

such life-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>equilibria are <str<strong>on</strong>g>the</str<strong>on</strong>g> glar<str<strong>on</strong>g>in</str<strong>on</strong>g>g redox imbalance at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

terrestrial surface caused by photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic oxygen, or <str<strong>on</strong>g>the</str<strong>on</strong>g> release of large quantities<br />

of hydrogen sulphide by sulphate-reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e realm. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dynamic persistence of metastable atmospheric gas mixtures (such as O 2, N 2 and CH 4<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial atmosphere), and of isotopic disequilibria (e.g. between water-bound<br />

oxygen of <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere and atmospheric O 2), is ultimately susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic imbalance imposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> biosphere <strong>on</strong> its envir<strong>on</strong>ment.<br />

C<strong>on</strong>spicuous <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic <str<strong>on</strong>g>in</str<strong>on</strong>g>equilibria with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous and liquid envelopes of<br />

a planet may, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, be taken as a priori evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of life (cf.<br />

Hitchcock & Lovelock, 1967; Lovelock, 1979). Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g this criteri<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> present<br />

compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere (Owen et al., 1977), <str<strong>on</strong>g>the</str<strong>on</strong>g> latter gives little, if<br />

any, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of c<strong>on</strong>temporary biological activity.<br />

Moreover, a planetary biosphere is apt to leave discrete vestiges <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic habitat. Rely<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> terrestrial analogues, it is safe to say that organisms<br />

comm<strong>on</strong>ly generate a morphological and biochemical record of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>for</str<strong>on</strong>g>mer existence<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary rocks. Though <str<strong>on</strong>g>in</str<strong>on</strong>g> part highly selective, this record may survive, under<br />

favourable circumstances, over billi<strong>on</strong>s of years be<str<strong>on</strong>g>for</str<strong>on</strong>g>e be<str<strong>on</strong>g>in</str<strong>on</strong>g>g annealed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metamorphic and anatectic rec<strong>on</strong>stituti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> host rock. This is particularly true <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

relics of multicellular life (Metaphyta and Metazoa), but also – albeit with restricti<strong>on</strong>s<br />

– <str<strong>on</strong>g>for</str<strong>on</strong>g> microorganisms that held dom<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> first 3000 milli<strong>on</strong><br />

years of recorded geological history.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, an overview is presented of <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal morphological and<br />

biogeochemical evidence <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of life <strong>on</strong> a planetary surface.<br />

Secti<strong>on</strong> 4.2 summarises this evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> an extant biosphere, while Secti<strong>on</strong> 4.3<br />

reviews <str<strong>on</strong>g>the</str<strong>on</strong>g> respective signatures of fossil life (with special reference to <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest<br />

terrestrial record because Early Martian scenarios should have largely resembled<br />

those <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaean Earth).<br />

I.4.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Microbial World<br />

Microbial prokaryotes have flourished <strong>on</strong> Earth <str<strong>on</strong>g>for</str<strong>on</strong>g> more than 3.5 Gyr. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s biosphere dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> first 2 Gyr of its history be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

unicellular mitotic eukaryotes appeared. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>in</str<strong>on</strong>g> a search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life bey<strong>on</strong>d<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, microorganisms are <str<strong>on</strong>g>the</str<strong>on</strong>g> most likely candidates <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biota of an extraterrestrial<br />

habitat. Structural, functi<strong>on</strong>al and chemical characteristics that have been<br />

frequently used to identify terrestrial microbial communities are discussed below.<br />

This <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes signatures <str<strong>on</strong>g>for</str<strong>on</strong>g> actively metabolis<str<strong>on</strong>g>in</str<strong>on</strong>g>g or even proliferat<str<strong>on</strong>g>in</str<strong>on</strong>g>g life<str<strong>on</strong>g>for</str<strong>on</strong>g>ms<br />

(active state) as well as <str<strong>on</strong>g>for</str<strong>on</strong>g> rest<str<strong>on</strong>g>in</str<strong>on</strong>g>g life<str<strong>on</strong>g>for</str<strong>on</strong>g>ms, such as dehydrated or frozen organisms<br />

or bacterial spores (dormant state). Special attenti<strong>on</strong> is given to methods to detect<br />

microbial biota of extreme envir<strong>on</strong>ments, such as hot vents, permafrost, permanent<br />

ice, subsurface regi<strong>on</strong>s, high atmosphere, rocks and salt crystals. <str<strong>on</strong>g>The</str<strong>on</strong>g>se envir<strong>on</strong>mental<br />

extremes may be c<strong>on</strong>sidered as terrestrial analogues of possible ec<strong>on</strong>iches <strong>on</strong> <strong>Mars</strong><br />

and <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r selected planets and mo<strong>on</strong>s of our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>.<br />

I.4.1 Introducti<strong>on</strong><br />

I.4.2 Evidence of<br />

Extant <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

41


SP-1231<br />

Fig. I.4.2.2/1. Size distributi<strong>on</strong> of unicellar<br />

cyanobacteria observed by phase-c<strong>on</strong>trast<br />

microscopy <str<strong>on</strong>g>in</str<strong>on</strong>g> an evaporite (from Rothshild et<br />

al., 1994).<br />

42<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most comm<strong>on</strong>ly used direct methods to detect and analyse microbial communities<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> extreme envir<strong>on</strong>ments <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• Direct observati<strong>on</strong>s of structural characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> micro- and macroscale;<br />

• Culture techniques <str<strong>on</strong>g>for</str<strong>on</strong>g> isolat<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> pure culture and <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se cultures <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir biochemical properties;<br />

• Activity measurements <str<strong>on</strong>g>in</str<strong>on</strong>g> microcosms focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> net effects of microbial<br />

processes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> community;<br />

• Chemical marker techniques to record characteristic biochemical primary<br />

substances or chemical sec<strong>on</strong>dary products.<br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g its >3.5 Gyr history, life <strong>on</strong> Earth has substantially<br />

modified <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial lithosphere, hydrosphere and atmosphere, <str<strong>on</strong>g>in</str<strong>on</strong>g>direct proofs of<br />

life will also be c<strong>on</strong>sidered. <str<strong>on</strong>g>The</str<strong>on</strong>g> applicability of <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods <str<strong>on</strong>g>in</str<strong>on</strong>g> a search <str<strong>on</strong>g>for</str<strong>on</strong>g> life at<br />

extraterrestrial sites are discussed later.<br />

I.4.2.2 Structural Indicati<strong>on</strong>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

Cells and subcellular structures can be detected directly by microscopy. Microbial<br />

cells have been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> samples collected from natural envir<strong>on</strong>ments, such as<br />

smears of soil or subsurface aquifer sediments, droplets taken from hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

vents or br<str<strong>on</strong>g>in</str<strong>on</strong>g>e, airborne microorganisms trapped <strong>on</strong> a sticky surface, or th<str<strong>on</strong>g>in</str<strong>on</strong>g> fractures<br />

or slices of rocks or salt crystals (evaporites). Most of <str<strong>on</strong>g>the</str<strong>on</strong>g>m are sphere-, ovoid- or rodshaped<br />

objects of <strong>on</strong>e or a few micr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> size. Fig. I.4.2.2/1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

distributi<strong>on</strong> of a unicellular cyanobacterium observed by phase-c<strong>on</strong>trast microscopy<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> coloured layers of an evaporite (Rothschild et al., 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g> direct<br />

microscopical observati<strong>on</strong> also allows us to dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish between divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g and n<strong>on</strong>divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

cells (Fig. I.4.2.2/1). <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> of divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g cells, i.e. paired cells or<br />

cells <str<strong>on</strong>g>in</str<strong>on</strong>g> cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s, would <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> cells were actively grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> situ immediately<br />

be<str<strong>on</strong>g>for</str<strong>on</strong>g>e or dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure; this is direct evidence of how microbes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teract with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir envir<strong>on</strong>ment.


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

To differentiate between cellular structures and similar structures of abiotic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

e.g. soil particles or aerosols, dyes have been used that specifically b<str<strong>on</strong>g>in</str<strong>on</strong>g>d to subcellular<br />

comp<strong>on</strong>ents (e.g. acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e orange b<str<strong>on</strong>g>in</str<strong>on</strong>g>ds with cellular nucleic acids to <str<strong>on</strong>g>for</str<strong>on</strong>g>m a<br />

fluorescent dye). When excited by UV light, <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleic acid-acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e orange complex<br />

emits visible light which can be observed by fluorescence microscopy (Chapelle,<br />

1993). However, it should be po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e orange may also b<str<strong>on</strong>g>in</str<strong>on</strong>g>d with<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral or organic particles <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample and that a clear-cut identificati<strong>on</strong> of cellular<br />

structures requires experience and skill.<br />

Recently, c<strong>on</strong>focal laser scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g microscopy (CLSM) has been <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced to<br />

st<strong>on</strong>e ecology to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a 3D visualisati<strong>on</strong> of st<strong>on</strong>e-<str<strong>on</strong>g>in</str<strong>on</strong>g>habit<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial communities<br />

(Quader & Bock, 1996; Bartosch et al., 1996). Signals from <str<strong>on</strong>g>the</str<strong>on</strong>g> plane of focus of an<br />

object c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of an image. By sequentially mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

microscopic stage, series of optical secti<strong>on</strong>s can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed and calculated <str<strong>on</strong>g>in</str<strong>on</strong>g>to a 3D<br />

image. This CLSM method allows to visualise microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> transparent st<strong>on</strong>es<br />

(e.g. quartzite) over a depth of approximately 200 m. Fig. I.4.2.2/2 shows CLMS<br />

images of sandst<strong>on</strong>e after sta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g with acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e orange (Quader & Bock, 1996). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

green fluorescent bacteria are easily dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishable from <str<strong>on</strong>g>the</str<strong>on</strong>g> red fluorescent clays.<br />

CLMS gives a snapshot <str<strong>on</strong>g>in</str<strong>on</strong>g>side <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>on</strong>e matrix of <str<strong>on</strong>g>the</str<strong>on</strong>g> resident microbial community<br />

which c<strong>on</strong>sists of microorganisms of different sizes and shapes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g also <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

micro-aggregates or microcol<strong>on</strong>ies composed of from several up to hundreds of cells.<br />

To observe fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute details of <str<strong>on</strong>g>the</str<strong>on</strong>g> cells, which are not visible <str<strong>on</strong>g>in</str<strong>on</strong>g> light<br />

microscopy, such as cell walls, membranes and vacuoles, scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g electr<strong>on</strong><br />

microscopy (SEM) and transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM) have been applied.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se methods provide fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r details <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of subcellular comp<strong>on</strong>ents, e.g.<br />

gram-positive or gram-negative cell walls, and <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence of <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s typical<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> a metabolic pathway, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> energy-stor<str<strong>on</strong>g>in</str<strong>on</strong>g>g compound polybetahydroxybutyrate<br />

(Chapelle, 1993). Fig. I.4.2.2/3 shows a series of scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g electr<strong>on</strong><br />

micrographs of microorganisms with<str<strong>on</strong>g>in</str<strong>on</strong>g> ancient layers of <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctica ice sheet at<br />

depths of 1.6-2.4 m (Abyzov, 1993).<br />

Large microbial communities are also macroscopically visible. Examples are<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> evaporites of up to 4 cm <str<strong>on</strong>g>in</str<strong>on</strong>g> thickness which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e or two horiz<strong>on</strong>tal<br />

coloured bands several mm <str<strong>on</strong>g>in</str<strong>on</strong>g> thickness well below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (Rothschild et al.,<br />

1994). <str<strong>on</strong>g>The</str<strong>on</strong>g>se layers appear <str<strong>on</strong>g>in</str<strong>on</strong>g> different colours, from tan to p<str<strong>on</strong>g>in</str<strong>on</strong>g>k-brown to green or<br />

green-grey with<str<strong>on</strong>g>in</str<strong>on</strong>g> a basically white salt matrix (Fig. I.4.2.2/4). Similar signatures<br />

have been observed <str<strong>on</strong>g>for</str<strong>on</strong>g> cryptoendolithic microbial communities col<strong>on</strong>is<str<strong>on</strong>g>in</str<strong>on</strong>g>g sandst<strong>on</strong>e<br />

a b<br />

c<br />

Fig. I.4.2.2/2. C<strong>on</strong>focal laser scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

microscopy (CLSM) of microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

green sandst<strong>on</strong>e after sta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g with acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

orange. Upper left: green fluorescent bacteria;<br />

upper right: red fluorescent clay; lower right:<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of both pictures, now <str<strong>on</strong>g>the</str<strong>on</strong>g> bacteria<br />

appear yellow. Bar = 5 µm (from Quader &<br />

Bock, 1996).<br />

Fig. I.4.2.2/3. Scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g of ice-core samples from<br />

ancient layers of <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic ice sheet at<br />

depths of 1.6 m (a) and 2.4 m (b and c). <str<strong>on</strong>g>The</str<strong>on</strong>g> bar<br />

represents 1 µm. (From Abyzov, 1993).<br />

43


SP-1231<br />

Fig. I.4.2.2/4. Evaporite with horiz<strong>on</strong>tal bands<br />

of endoevaporitic microbial communities (from<br />

Rothshild et al., 1994).<br />

44<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> cold and hot deserts (Friedmann, 1982; Nienow & Friedmann, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

col<strong>on</strong>ised z<strong>on</strong>e below <str<strong>on</strong>g>the</str<strong>on</strong>g> rock crust reaches up to 10 mm deep and is composed of<br />

dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct parallel bands of black, white, green and blue-green. Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

col<strong>on</strong>ised z<strong>on</strong>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> brown ir<strong>on</strong> oxyhydroxide sta<str<strong>on</strong>g>in</str<strong>on</strong>g> is leached out, probably by<br />

biogenic oxalic acid, and <str<strong>on</strong>g>the</str<strong>on</strong>g> quartz appears colourless. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g to note that<br />

both <str<strong>on</strong>g>the</str<strong>on</strong>g> endoevaporitic and endolithic communities are found liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g embedded<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> a few mm of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matrix. <str<strong>on</strong>g>Solar</str<strong>on</strong>g> irradiance is attenuated by<br />

almost <strong>on</strong>e order of magnitude by <str<strong>on</strong>g>the</str<strong>on</strong>g> overly<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral layers. Hence, endoevaporitic<br />

and endolithic communities obviously have c<strong>on</strong>quered an ecological niche<br />

that allows microorganisms to live <str<strong>on</strong>g>in</str<strong>on</strong>g> an o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise hostile envir<strong>on</strong>ment.<br />

Desert crusts, <str<strong>on</strong>g>for</str<strong>on</strong>g>med by microorganisms, may cover even larger areas of hundreds<br />

of square metres with a thickness of a few cm (Campbell, 1979). <str<strong>on</strong>g>The</str<strong>on</strong>g>se mats,<br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by cyanobacteria, show stromatolitic features, such as sediment trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

and accreti<strong>on</strong>, a c<strong>on</strong>voluted surface and polyg<strong>on</strong>al crack<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Sand and clay particles<br />

are trapped with<str<strong>on</strong>g>in</str<strong>on</strong>g> a network of filamentous cyanobacteria which secrete mucous<br />

sheets to which <str<strong>on</strong>g>the</str<strong>on</strong>g> particles adhere. Such desert crusts are observed <strong>on</strong> rocks or soil<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> areas of flat topography. Comparable large areas of stratified mats of microbial<br />

communities are also observed <str<strong>on</strong>g>in</str<strong>on</strong>g> evaporite flats of hypersal<str<strong>on</strong>g>in</str<strong>on</strong>g>e lago<strong>on</strong>s, such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Laguna Figueroa <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific coast of <str<strong>on</strong>g>the</str<strong>on</strong>g> Baja Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia (Stolz & Margulis, 1984;<br />

Stolz, 1985) and a host of related habits.<br />

I.4.2.3. Evidence of Microbial Activity as a Functi<strong>on</strong>al Characteristic of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most unequivocal <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of microbial life is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>the</str<strong>on</strong>g> isolati<strong>on</strong> of<br />

microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> pure culture from a sample under <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>, followed by a<br />

detailed analysis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir biochemical properties. Microbial isolates have been<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from diverse extreme habitats. Examples are deep crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e rock aquifers<br />

several hundreds of metres below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (Stevens & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, 1995), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teriors of ice-cores from drill<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic ice down to a depth of several<br />

thousand metres (Abyzov, 1993) and cores from drill<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> permafrost regi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

Siberia at similar depths (Gilich<str<strong>on</strong>g>in</str<strong>on</strong>g>sky et al., 1993). It was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teriors of<br />

rocks <str<strong>on</strong>g>in</str<strong>on</strong>g> cold and hot deserts provide ecological niches <str<strong>on</strong>g>for</str<strong>on</strong>g> endolithic microbial<br />

communities (Siebert & Hirsch, 1988; Friedmann, 1993) just as do crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e salts<br />

from evaporite deposits (Rothschild et al., 1994). Microorganisms have been isolated<br />

from extremely cold envir<strong>on</strong>ments, such as Antarctic soils (Vishniac, 1993), as well<br />

as from hot envir<strong>on</strong>ments at temperatures of 80-115ºC, which are usually associated<br />

with active volcanism as hot spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, solfataric fields, shallow submar<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, abyssal hot vent systems (‘black smokers,) as well as oil-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

deep geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally heated soils (Stetter, 1996). Microbial communities are found<br />

buried <str<strong>on</strong>g>in</str<strong>on</strong>g> river and lake sediments (Kolbel-Boekel et al., 1988), and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

regi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere up to an altitude of about 70 km (Imshenetsky et al., 1978).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> successful isolati<strong>on</strong> and revival of bacterial spores from <str<strong>on</strong>g>the</str<strong>on</strong>g> abdomen tissue of<br />

25-40 milli<strong>on</strong>-year-old bees that had been preserved <str<strong>on</strong>g>in</str<strong>on</strong>g> amber was recently reported<br />

(Cano & Borucki, 1995). For <str<strong>on</strong>g>the</str<strong>on</strong>g> enrichment of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous microorganisms, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cultur<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s must corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al envir<strong>on</strong>ment as closely as<br />

possible. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, special care has to be taken to avoid c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> by n<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>digenous<br />

organisms dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> process of sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, transportati<strong>on</strong>, isolati<strong>on</strong> and<br />

enrichment <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory. Successful cultivati<strong>on</strong> of microorganisms from extreme<br />

envir<strong>on</strong>ments provides a unique tool <str<strong>on</strong>g>for</str<strong>on</strong>g> understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial<br />

communities, e.g. between primary producers and c<strong>on</strong>sumers of organic matter. After<br />

successful isolati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous microbial species, technologies <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

microbiology and molecular biology can be applied <str<strong>on</strong>g>in</str<strong>on</strong>g> order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phylogenetic and physiological properties.<br />

Nucleic acid sequenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g technology has provided a powerful tool <str<strong>on</strong>g>for</str<strong>on</strong>g> establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary relati<strong>on</strong>ships of organisms and <str<strong>on</strong>g>for</str<strong>on</strong>g> group<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms<br />

accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir genotype, <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent of any phenotypic observati<strong>on</strong>. This is based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that basic biochemical features, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> genetic code, <str<strong>on</strong>g>the</str<strong>on</strong>g> set of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

acids <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery of transcripti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> genetic code and its<br />

translati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s are comm<strong>on</strong> to all <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life <strong>on</strong> Earth. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

evoluti<strong>on</strong> of life <strong>on</strong> Earth, at <str<strong>on</strong>g>the</str<strong>on</strong>g> level of <str<strong>on</strong>g>the</str<strong>on</strong>g> genotype, changes c<strong>on</strong>stantly occur<br />

randomly <str<strong>on</strong>g>in</str<strong>on</strong>g> time. By compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> genotypic <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> stored <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleic acids<br />

and prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s, all organisms are grouped with<str<strong>on</strong>g>in</str<strong>on</strong>g> three doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> phylogenetic tree:<br />

Bacteria, Archaea and Eukarya (Woese, 1987). As biological macromolecules, 16S<br />

rRNA, DNA-dependent polymerases and prot<strong>on</strong>-pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g ATPases have been most<br />

comm<strong>on</strong>ly used. Different methods are applied to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> percent sequence<br />

similarity of <str<strong>on</strong>g>the</str<strong>on</strong>g> macromolecules of an unknown organism with that of a wellestablished<br />

representative of a doma<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

However, it should be borne <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d that, even under terrestrial c<strong>on</strong>diti<strong>on</strong>s, a large<br />

number of microorganisms are not amenable to cultivati<strong>on</strong>. Included are those from<br />

hot spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, where <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of a large number of hi<str<strong>on</strong>g>the</str<strong>on</strong>g>rto unknown species has<br />

been identified by <str<strong>on</strong>g>the</str<strong>on</strong>g> DNA extracted from samples, which was <str<strong>on</strong>g>the</str<strong>on</strong>g>n amplified and<br />

compared with known 16S rRNA sequences (Barns et al., 1994).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> viability of microorganisms collected from extreme envir<strong>on</strong>ments and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

biomass can also be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed directly from biochemical analyses without<br />

cultivati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> cells. An example is <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of<br />

adenos<str<strong>on</strong>g>in</str<strong>on</strong>g>e 5´-triphosphate (ATP) or of total adenylates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells (Karl et al., 1980).<br />

A high c<strong>on</strong>centrati<strong>on</strong> of ATP or total adenylates <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates a substantial populati<strong>on</strong> of<br />

viable microorganisms. <str<strong>on</strong>g>The</str<strong>on</strong>g> ATP c<strong>on</strong>centrati<strong>on</strong> can also be c<strong>on</strong>verted to liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

biomass carb<strong>on</strong> by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>versi<strong>on</strong> factor of microbial C/ATP of 200-500<br />

(Jannasch & Mottl, 1985). If <str<strong>on</strong>g>the</str<strong>on</strong>g> guanos<str<strong>on</strong>g>in</str<strong>on</strong>g>e 5´-triphosphate (GTP) is simultaneously<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio GTP/ATP (which is positively related with <str<strong>on</strong>g>the</str<strong>on</strong>g> microbial growth<br />

rate) can be used as an <str<strong>on</strong>g>in</str<strong>on</strong>g>dex of <str<strong>on</strong>g>the</str<strong>on</strong>g> rate of cellular biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (Karl et al., 1980).<br />

As an alternative to <str<strong>on</strong>g>the</str<strong>on</strong>g> isolati<strong>on</strong> of microorganisms from sites under <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>in</str<strong>on</strong>g> situ exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> undisturbed envir<strong>on</strong>ment allows an adequate<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> extent and distributi<strong>on</strong> of microbial col<strong>on</strong>isati<strong>on</strong> and <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s<br />

am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> different representatives of <str<strong>on</strong>g>the</str<strong>on</strong>g> microbial community. This has been<br />

achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic fellfield soils by a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of epifluorescence<br />

45


SP-1231<br />

Fig. I.4.2.3/1A (left). Net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic<br />

resp<strong>on</strong>se and dark respirati<strong>on</strong> of a<br />

cryptoendolythic community <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctica at<br />

different levels of solar irradiance (100, 700,<br />

1500 mol phot<strong>on</strong>s m -2 s -1 ). Fig. I.4.2.3/1B. Annual<br />

gross productivity (whole bars) and net<br />

photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic ga<str<strong>on</strong>g>in</str<strong>on</strong>g> (dark bars) by <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

cryptoendilitic community. (From Nienow &<br />

Friedmann, 1993)<br />

46<br />

microscopy and televisi<strong>on</strong> image analysis (Wynn-Williams, 1988). It uses <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

autofluorescence of primary producers, e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> primary photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pigment<br />

chlorophyll and phycocyan<str<strong>on</strong>g>in</str<strong>on</strong>g>e or phycoerythr<str<strong>on</strong>g>in</str<strong>on</strong>g> as accessory pigments of cyanobacteria,<br />

and detects <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of heterotrophs by means of fluorochromes, e.g.<br />

fluoresce<str<strong>on</strong>g>in</str<strong>on</strong>g>, isothiocyanate or acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e orange. This technique makes cells visible<br />

relative to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir opaque substrate. By us<str<strong>on</strong>g>in</str<strong>on</strong>g>g sta<str<strong>on</strong>g>in</str<strong>on</strong>g>s that selectively sta<str<strong>on</strong>g>in</str<strong>on</strong>g> viable cells<br />

better than n<strong>on</strong>-viable <strong>on</strong>es, <str<strong>on</strong>g>the</str<strong>on</strong>g> degree of viability of <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> can be<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (Wynn-Williams, 1988). Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g this technique, <str<strong>on</strong>g>the</str<strong>on</strong>g> microalgal col<strong>on</strong>isati<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic soil surface was successfully recorded over a period of 6 years<br />

(Wynn-Williams, 1996). To detect microorganisms that are not amenable to<br />

cultivati<strong>on</strong>, fluorescently labelled rRNA-targeted olig<strong>on</strong>ucleotide probes have been<br />

used to identify <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual prokaryotic cells (Amann et al., 1992). Such rRNAtargeted<br />

nucleic acid probes are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r highly specific at <str<strong>on</strong>g>the</str<strong>on</strong>g> species/subspecies level<br />

or ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r unspecific react<str<strong>on</strong>g>in</str<strong>on</strong>g>g with all liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have been widely used<br />

to identify <str<strong>on</strong>g>in</str<strong>on</strong>g> situ <str<strong>on</strong>g>the</str<strong>on</strong>g> phylogeny of uncultured microorganisms and to analyse<br />

complex microbial communities (Amann et al., 1992).<br />

Direct tests of carb<strong>on</strong> and nitrogen metabolism can be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> situ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

envir<strong>on</strong>ment under <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> productivity of primary producers is generally<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>the</str<strong>on</strong>g> rate of total carb<strong>on</strong> uptake, e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of radioactively labelled<br />

bicarb<strong>on</strong>ate, <str<strong>on</strong>g>in</str<strong>on</strong>g> crushed rock samples c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g endolithic communities or <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tact<br />

endolithic communities by <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 gas exchange at <str<strong>on</strong>g>the</str<strong>on</strong>g> rock surface (Fig. I.4.2.3/1A).<br />

From such data, <str<strong>on</strong>g>the</str<strong>on</strong>g> annual gross productivity and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic ga<str<strong>on</strong>g>in</str<strong>on</strong>g> can be<br />

assessed, as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. I.4.2.3/1B (Nienow & Friedmann, 1993). Similarly, carb<strong>on</strong><br />

fixati<strong>on</strong> was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Sun-exposed evaporites c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms<br />

(Rothschild et al., 1994). In deep sea hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of primary<br />

producers was proven by <str<strong>on</strong>g>in</str<strong>on</strong>g> situ measurements of <str<strong>on</strong>g>the</str<strong>on</strong>g> uptake of 14 CO 2 over a period of<br />

several days (Karl et al., 1980). <str<strong>on</strong>g>The</str<strong>on</strong>g> presence and activity of nitrogen fixati<strong>on</strong> was<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> evaporites by measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g acetylene reducti<strong>on</strong> (Rothschild et al., 1994),<br />

denitrificati<strong>on</strong> activity was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed essentially by <str<strong>on</strong>g>the</str<strong>on</strong>g> same method, with acetylene<br />

used to block nitrous oxide reductase. <str<strong>on</strong>g>The</str<strong>on</strong>g> activity is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by gas<br />

chromatography from periodically collected gas samples (Rothschild et al., 1994). All<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> situ analyses described above require carefully planned c<strong>on</strong>trol experiments.<br />

It is worth menti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>the</str<strong>on</strong>g> life-detecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument package of <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

missi<strong>on</strong>s which, am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>r scientific issues, addressed <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> of extant life <strong>on</strong><br />

<strong>Mars</strong>, comprised three experiments to detect metabolic activity of potential microbial<br />

soil communities:<br />

1. <str<strong>on</strong>g>the</str<strong>on</strong>g> pyrolitic release experiment tested carb<strong>on</strong> assimilati<strong>on</strong>, i.e. photoautotrophy,<br />

as a method of <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g radioactively labelled carb<strong>on</strong> dioxide <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence of sunlight (Horowitz et al., 1977);


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

2. <str<strong>on</strong>g>the</str<strong>on</strong>g> labelled release experiment tested catabolic activity, e.g. digesti<strong>on</strong> of food,<br />

as a metabolic capability to release radioactively labelled carb<strong>on</strong> from organic<br />

nutrient compounds (Lev<str<strong>on</strong>g>in</str<strong>on</strong>g> & Straat, 1977);<br />

3. <str<strong>on</strong>g>the</str<strong>on</strong>g> gas-exchange experiment tested respirati<strong>on</strong> as metabolic producti<strong>on</strong> of<br />

gaseous byproducts <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water and nutrients (Oyama et al., 1977).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, all three Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g biology experiments gave results <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of<br />

active chemical or even biological processes when samples of martian soil were<br />

subjected to <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s that were imposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>m. However,<br />

when tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> data toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g results, n<strong>on</strong>-biological processes<br />

have generally been <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted to be resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> observed reacti<strong>on</strong>s (Kle<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

1979). <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>gest argument aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st extant life was <str<strong>on</strong>g>the</str<strong>on</strong>g> complete lack of any<br />

organic residues <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil samples <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated by gas chromatographymass<br />

spectrometry (GCMS). <str<strong>on</strong>g>The</str<strong>on</strong>g> detecti<strong>on</strong> limit was <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range of ppb <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

compounds c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g three carb<strong>on</strong> atoms or more, and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range of ppm <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

molecules with <strong>on</strong>e or two carb<strong>on</strong> atoms. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> is that extant life is absent<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> two Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites. So far, <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> biology<br />

experiments are not known. <str<strong>on</strong>g>The</str<strong>on</strong>g> most likely explanati<strong>on</strong> suggests <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of<br />

highly reactive peroxides produced <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tense unfiltered solar UV<br />

radiati<strong>on</strong>, which is also resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lack of organics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples (reviewed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Horneck, 1995).<br />

I.4.2.4. Chemical Signatures and Biomarkers<br />

Microorganisms that are isolated and enriched from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir primary habitats can be<br />

subjected to a thorough biochemical analysis, such as determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

biomass and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent of prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s, nucleic acids, lipids, sugars etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> detailed<br />

characterisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> pattern of biomarker mixtures from a sample permits <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

assessment of <str<strong>on</strong>g>the</str<strong>on</strong>g> major c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g species and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir metabolic state, e.g. actively<br />

metabolis<str<strong>on</strong>g>in</str<strong>on</strong>g>g, dormant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct. Phospholipids, which are part of every bacterial<br />

membrane, have been c<strong>on</strong>sidered as valuable <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of <str<strong>on</strong>g>the</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g biomass that is<br />

present because <str<strong>on</strong>g>the</str<strong>on</strong>g>y ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a relatively c<strong>on</strong>stant porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> cell mass and<br />

dis<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrate fairly rapidly after cellular death (Chapelle, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> pattern of lipids<br />

is also diagnostic <str<strong>on</strong>g>for</str<strong>on</strong>g> different species of a microbial community, such as phototrophic<br />

cyanobacteria, photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic bacteria, bacterial heterotrophs and achaea (Summ<strong>on</strong>s<br />

et al., 1996).<br />

Isotopic ratios are ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r valuable set of chemical biomarkers. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enzymatic uptake of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is typically associated<br />

with a discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st 13 C relative to 12 C (e.g. Schidlowski, 1993a). It is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g to note that <str<strong>on</strong>g>the</str<strong>on</strong>g> δ 13 C values of average biomass usually range about 20-<br />

30‰ more negative than those of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se low δ 13 C values are<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>servatively over <str<strong>on</strong>g>the</str<strong>on</strong>g> whole history of life <strong>on</strong> Earth (see<br />

Fig. I.4.3.2.2/1 and relevant discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> I.4.3.2.2.). By <str<strong>on</strong>g>the</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of<br />

compound-specific isotopic <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> with diagnostic molecular structure a<br />

powerful tool is available <str<strong>on</strong>g>for</str<strong>on</strong>g> characteris<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stituents of a microbial<br />

community (Summ<strong>on</strong>s et al., 1996).<br />

Optical handedness of m<strong>on</strong>omers, e.g. am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s and sugars <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

nucleic acids, is a s<str<strong>on</strong>g>in</str<strong>on</strong>g>e qua n<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary, tertiary and quaternary<br />

structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers and is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e c<strong>on</strong>sidered as a basic requirement <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

terrestrial life. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> optical activity <str<strong>on</strong>g>in</str<strong>on</strong>g> a class of compounds that<br />

may make up polymers represents an <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g biomarker. Measurements of optical<br />

activity can be d<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> extracts by gas chromatography (Pollock et al., 1970) or<br />

directly with <str<strong>on</strong>g>the</str<strong>on</strong>g> sample collected us<str<strong>on</strong>g>in</str<strong>on</strong>g>g polarised light and a light detector<br />

(MacDermott et al., 1996).<br />

A n<strong>on</strong>-<str<strong>on</strong>g>in</str<strong>on</strong>g>trusive <str<strong>on</strong>g>in</str<strong>on</strong>g> situ high-precisi<strong>on</strong> analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> of organic and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic comp<strong>on</strong>ents of samples c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by<br />

Fourier trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m Raman spectroscopy (Edwards et al., 1995). From <str<strong>on</strong>g>the</str<strong>on</strong>g> vibrati<strong>on</strong>al<br />

bands, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of organic compounds, such as chlorophyll and calcium oxalate<br />

di- and m<strong>on</strong>ohydrate, was detected <str<strong>on</strong>g>in</str<strong>on</strong>g> different z<strong>on</strong>es of endolithic communities.<br />

47


SP-1231<br />

48<br />

A detailed chemical analysis of martian surface soil was per<str<strong>on</strong>g>for</str<strong>on</strong>g>med dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g missi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> elemental compositi<strong>on</strong> was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by X-ray fluorescence,<br />

which analysed <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> elements heavier than Mg. It was shown that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most essential major elements that make up <str<strong>on</strong>g>the</str<strong>on</strong>g> biological matter, such as C, H, O, N,<br />

P, K, Ca, Mg and S, are present <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong>. However, organic compounds<br />

were not detected by GCMS, which was capable of detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic residues <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

martian soil down to ppb <str<strong>on</strong>g>for</str<strong>on</strong>g> compounds c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g three or more C and to ppm <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

compounds with <strong>on</strong>e or two C (Biemann et al., 1977).<br />

I.4.2.5 Indirect F<str<strong>on</strong>g>in</str<strong>on</strong>g>gerpr<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g its >3.5 Gyr history, life <strong>on</strong> Earth has substantially modified <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial<br />

lithosphere, hydrosphere and atmosphere. Examples are <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil deposits of<br />

petroleum and coal, <str<strong>on</strong>g>the</str<strong>on</strong>g> sediments of shell limest<strong>on</strong>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> coral reefs and <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits<br />

of banded ir<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, biom<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> and biowea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g, which all bear<br />

witness to biological activity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geological past. Stromatolites and related<br />

biosedimentary build-ups are examples of microbial biom<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong>, which are<br />

widespread <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geological record (Walter, 1976).<br />

Compositi<strong>on</strong> and dynamic cycles of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial hydrosphere and atmosphere are<br />

decisively <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial biosphere. Examples are <str<strong>on</strong>g>the</str<strong>on</strong>g> water, CO 2 and<br />

nitrogen cycles. <str<strong>on</strong>g>The</str<strong>on</strong>g> albedo of our planet is also modified by <str<strong>on</strong>g>the</str<strong>on</strong>g> surface vegetati<strong>on</strong>.<br />

C<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> water cycle, evapotranspirati<strong>on</strong>, especially of <str<strong>on</strong>g>the</str<strong>on</strong>g> tropic ra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>est, is<br />

an important biogenic effect c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> release of water. <str<strong>on</strong>g>The</str<strong>on</strong>g> atmospheric O 2<br />

is largely a product of photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic activity that began <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early history of life<br />

with cyanobacteria as <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> primary producers. Photodissociati<strong>on</strong> of O 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper layers of our atmosphere has led to <str<strong>on</strong>g>the</str<strong>on</strong>g> build-up of <str<strong>on</strong>g>the</str<strong>on</strong>g> UV-protective oz<strong>on</strong>e<br />

layer <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stratosphere. C<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 cycle, <str<strong>on</strong>g>the</str<strong>on</strong>g> mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e phytoplankt<strong>on</strong><br />

c<strong>on</strong>stitutes a large CO 2 s<str<strong>on</strong>g>in</str<strong>on</strong>g>k, which is essential <str<strong>on</strong>g>for</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> steady-state.<br />

Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaia hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, proposed by Lovelock, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>,<br />

oxidative-reductive state and temperature of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere are actively regulated by<br />

life activities (Lovelock, 1979). However, it is also possible that life<str<strong>on</strong>g>for</str<strong>on</strong>g>ms have<br />

c<strong>on</strong>quered ecological micr<strong>on</strong>iches, where a symbiosis of photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic primary<br />

producers and heterotrophic c<strong>on</strong>sumers may produce a steady-state where <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>flux<br />

and efflux of carb<strong>on</strong> are equal (Morita, 1975). <str<strong>on</strong>g>The</str<strong>on</strong>g>se ‘hidden’ ec<strong>on</strong>iches would not<br />

necessarily c<strong>on</strong>tribute to global cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re exist several biogenic m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, which have dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive crystallographies,<br />

morphologies and isotopic ratios that make <str<strong>on</strong>g>the</str<strong>on</strong>g>m dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishable from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

abiotically-produced counterparts of <str<strong>on</strong>g>the</str<strong>on</strong>g> same chemical compositi<strong>on</strong>. Those m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

that result from genetically-c<strong>on</strong>trolled m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> processes and that are <str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> a pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med organic framework have n<strong>on</strong>-<str<strong>on</strong>g>in</str<strong>on</strong>g>terchangeable characteristics, such<br />

as orientati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallographic axes and <str<strong>on</strong>g>the</str<strong>on</strong>g> microarchitecture. Examples are<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> skelet<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> unicellular mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e Acantharia (composed of str<strong>on</strong>tium sulphate),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> shells of amorphous silicate of diatoms, and <str<strong>on</strong>g>the</str<strong>on</strong>g> biogenic magnetite <str<strong>on</strong>g>for</str<strong>on</strong>g>med by<br />

bacteria (Schwartz et al., 1992). It is important to note that m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals produced under<br />

biologically-c<strong>on</strong>trolled processes are not necessarily <str<strong>on</strong>g>in</str<strong>on</strong>g> equilibrium with <str<strong>on</strong>g>the</str<strong>on</strong>g> extracellular<br />

envir<strong>on</strong>ment. In c<strong>on</strong>trast, those m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals that are <str<strong>on</strong>g>for</str<strong>on</strong>g>med extracellularly by<br />

biologically-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> processes can be less easily dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir abiotically-<str<strong>on</strong>g>for</str<strong>on</strong>g>med counterparts. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> an open envir<strong>on</strong>ment and<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g> equilibrium with this envir<strong>on</strong>ment.<br />

I.4.2.6 C<strong>on</strong>clusi<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> signatures <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of extant life <strong>on</strong> <strong>Mars</strong> or <strong>on</strong> any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r celestial<br />

body of exobiological <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> can <strong>on</strong>ly be <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al steps<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quest <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial life. For future exobiology explorati<strong>on</strong> of <strong>Mars</strong>, a<br />

stepwise approach might be <str<strong>on</strong>g>the</str<strong>on</strong>g> most promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigative strategy (Chicarro et al.,<br />

1989). In particular, be<str<strong>on</strong>g>for</str<strong>on</strong>g>e any search-<str<strong>on</strong>g>for</str<strong>on</strong>g>-extant-life experiment, more data are<br />

required <strong>on</strong> martian geology (paleolakes, volcanism, hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, carb<strong>on</strong>ates),<br />

climate (hydrosphere, durati<strong>on</strong> of phases that allow liquid water), <str<strong>on</strong>g>the</str<strong>on</strong>g> past and present


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

and radiati<strong>on</strong> envir<strong>on</strong>ment, as well as organic molecules <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments. <str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

possible biological oases will be c<strong>on</strong>nected with <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> of areas where liquid<br />

water still exists under <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> that planet. By analogy with<br />

terrestrial ecosystems, potential protected niches have been postulated <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>, such<br />

as sulphur-rich subsurface areas <str<strong>on</strong>g>for</str<strong>on</strong>g> chemoautotrophic communities, rocks <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

endolithic communities, permafrost regi<strong>on</strong>s, hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, soil and evaporite<br />

crystals.<br />

Much <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from remote-sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g global measurements,<br />

such as <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al atmospheric and surface water distributi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ventory and distributi<strong>on</strong>, geomorphologic features obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with high spatial<br />

resoluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of potential volcanic regi<strong>on</strong>s to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e possible<br />

geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally active sites, and trace gases such as H 2, H 2S, CH 4, SOx, and NOx.<br />

It is <strong>on</strong>ly after identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites that are suitable envir<strong>on</strong>ments <str<strong>on</strong>g>for</str<strong>on</strong>g> a potential<br />

martian biota that landers are required <str<strong>on</strong>g>for</str<strong>on</strong>g> more detailed characterisati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>n<br />

analyses of <str<strong>on</strong>g>the</str<strong>on</strong>g> elemental and isotopic compositi<strong>on</strong>s, of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral compositi<strong>on</strong> and<br />

structure, and of organic compounds can follow. C<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>Mars</strong>, it is also very<br />

important to explore and understand <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g oxidative processes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> situ <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s c<strong>on</strong>firm that <str<strong>on</strong>g>the</str<strong>on</strong>g> sites c<strong>on</strong>stitute potential biological<br />

oases, detailed searches <str<strong>on</strong>g>for</str<strong>on</strong>g> direct and <str<strong>on</strong>g>in</str<strong>on</strong>g>direct biomarkers should follow. <str<strong>on</strong>g>The</str<strong>on</strong>g> search<br />

protocol, i.e. what methods to apply, depend largely <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

offered by <str<strong>on</strong>g>the</str<strong>on</strong>g> sites. Alternatively, <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of samples collected and returned to<br />

Earth should be c<strong>on</strong>sidered. This would allow much more crucial tests <str<strong>on</strong>g>for</str<strong>on</strong>g> extant<br />

biology <str<strong>on</strong>g>in</str<strong>on</strong>g> ground-based laboratories. However, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latter case, a str<str<strong>on</strong>g>in</str<strong>on</strong>g>gent<br />

planetary protecti<strong>on</strong> programme is required.<br />

I.4.3.1 Pale<strong>on</strong>tological Evidence<br />

Given <str<strong>on</strong>g>the</str<strong>on</strong>g> validity of terrestrial analogues, <str<strong>on</strong>g>the</str<strong>on</strong>g> stratigraphic (sedimentary) record of<br />

any planet should serve as a potential store <str<strong>on</strong>g>for</str<strong>on</strong>g> both bodily remnants of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer<br />

organisms and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r possible traces of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir life activities. This should also apply to<br />

<strong>Mars</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages of its history, when <str<strong>on</strong>g>the</str<strong>on</strong>g> planet may have been ba<str<strong>on</strong>g>the</str<strong>on</strong>g>d <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

abundant water and envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface did not differ much from<br />

those <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> early Earth (Carr & Wänke, 1992; Carr, 1996). If all terrestrial planets –<br />

and notably <strong>Mars</strong> and Earth – had occupied comparable start<str<strong>on</strong>g>in</str<strong>on</strong>g>g positi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of<br />

solar distance, c<strong>on</strong>densati<strong>on</strong> history and primary endowment with matter from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

parent solar nebula (Moroz & Mukh<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1978), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> surface c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> both<br />

planets should have been very similar <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir juvenile states.<br />

Specifically, with evidence at hand <str<strong>on</strong>g>for</str<strong>on</strong>g> a denser atmosphere and extensive aqueous<br />

activity <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s early history, a c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>g case can<br />

be made that <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive martian envir<strong>on</strong>ment was no less c<strong>on</strong>ducive to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itiati<strong>on</strong> of life processes and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent emplacement of prolific microbial<br />

ecosystems, than <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <str<strong>on</strong>g>the</str<strong>on</strong>g> ancient Earth (McKay, 1991; McKay & Stoker,<br />

1989). Even if <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary pathways of both planets diverged dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir later<br />

histories, so that life became ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <strong>on</strong> <strong>Mars</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> gradual deteriorati<strong>on</strong> of surface<br />

c<strong>on</strong>diti<strong>on</strong>s rendered <str<strong>on</strong>g>the</str<strong>on</strong>g> planet <str<strong>on</strong>g>in</str<strong>on</strong>g>hospitable to prote<str<strong>on</strong>g>in</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> widest sense,<br />

<strong>Mars</strong> could still have started off with a veneer of microbial (prokaryotic) life<br />

comparable to that exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaean Earth (Schopf, 1983; Schidlowski,<br />

1993a). Given <str<strong>on</strong>g>the</str<strong>on</strong>g> apparent failure of <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g life-detecti<strong>on</strong> experiment <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present martian regolith (Biemann et al., 1977), <str<strong>on</strong>g>the</str<strong>on</strong>g> prime objective of a search <str<strong>on</strong>g>for</str<strong>on</strong>g> life<br />

<strong>on</strong> <strong>Mars</strong> should be to seek evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct (fossil) life. <str<strong>on</strong>g>The</str<strong>on</strong>g> oldest Martian<br />

sediments would be appropriate targets <str<strong>on</strong>g>for</str<strong>on</strong>g> such ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts.<br />

In any search <str<strong>on</strong>g>for</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life <strong>on</strong> <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> basic problem would not rest with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cognitive aspects of <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil evidence, but ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

serendipity <str<strong>on</strong>g>in</str<strong>on</strong>g>evitably <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> and recovery of suitable sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

material from <str<strong>on</strong>g>the</str<strong>on</strong>g> vast stretches of potential host rocks exposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> planetary<br />

surface. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> two-thirds of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface deemed to be covered by rocks<br />

older than 3.8 Gyr (McKay, 1986), <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several occurrences of well-bedded<br />

I.4.3 Evidence of Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct<br />

(Fossil) Extraterrestrial<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

49


SP-1231<br />

Fig. I.4.3.1.1/1. Scheme of pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal<br />

morphologies of lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated microbial<br />

ecosystems that thrive at <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment-water<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terface. <str<strong>on</strong>g>The</str<strong>on</strong>g>se structures subsequently lend<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>mselves to lithificati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of<br />

‘stromatolites’ (see Fig. I.4.3.1.1/2). <str<strong>on</strong>g>The</str<strong>on</strong>g> mat<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

is mostly made up of cyanobacteria.<br />

Fig. I.4.3.1.1/2. Typical microbialite (or<br />

‘stromatolite) from <str<strong>on</strong>g>the</str<strong>on</strong>g> Precambrian Transvaal<br />

Dolomite (~2.3 Gyr) that is made up of a<br />

successi<strong>on</strong> of superimposed fossil microbial<br />

mats. <str<strong>on</strong>g>The</str<strong>on</strong>g> bun-shaped and partially <str<strong>on</strong>g>in</str<strong>on</strong>g>terfer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ae represent c<strong>on</strong>secutive growth stages of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> primary microbial community.<br />

50


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

sediments (notably <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Tharsis regi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated Valles Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris cany<strong>on</strong><br />

system, see II.2.7) that are <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as lake deposits and believed to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude thick<br />

sequences of carb<strong>on</strong>ates (McKay & Nedell, 1988). If present at all <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se early<br />

martian <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, morphological relics of fossil life should lend <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves to as<br />

ready a detecti<strong>on</strong> as do <str<strong>on</strong>g>the</str<strong>on</strong>g>ir terrestrial counterparts <str<strong>on</strong>g>in</str<strong>on</strong>g> Archaean sediments, provided<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> host rock is accessible to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r robotic sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g or direct <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

sample return missi<strong>on</strong>.<br />

In that regard, it seems to be a reas<strong>on</strong>able c<strong>on</strong>jecture to resort to <str<strong>on</strong>g>the</str<strong>on</strong>g> pale<strong>on</strong>tological<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ventory of <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest terrestrial sediments (3.50-3.85 Gyr old) <str<strong>on</strong>g>for</str<strong>on</strong>g> guidance c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

potential fossil evidence from coeval martian rocks. On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest<br />

prokaryotic (bacterial and archaebacterial) microbial ecosystems have basically left<br />

two categories of morphological evidence, namely (i) stromatolite-type biosedimentary<br />

structures (‘microbialites’) and (ii) cellular relics of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual microorganisms<br />

(‘microfossils’).<br />

I.4.3.1.1 Microbialites<br />

Microbialites or ‘stromatolites’ (cf. Burne & Moore, 1987) are lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

biosedimentary structures that preserve <str<strong>on</strong>g>the</str<strong>on</strong>g> matt<str<strong>on</strong>g>in</str<strong>on</strong>g>g behaviour of bacterial and algal<br />

(primarily prokaryotic) microbenthos. Microbial buildups of this type represent stacks<br />

of f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated lithified microbial communities that orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally thrived as organic<br />

films at <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment-water <str<strong>on</strong>g>in</str<strong>on</strong>g>terface, with younger mat generati<strong>on</strong>s successively<br />

superimposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> older <strong>on</strong>es (cf. Figs. I.4.3.1.1/1 and I.4.3.1.1/2). <str<strong>on</strong>g>The</str<strong>on</strong>g> structures<br />

derive from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> primary biologically active microbial layer with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ambient sedimentary envir<strong>on</strong>ment, <str<strong>on</strong>g>the</str<strong>on</strong>g> fossilisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ae result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g, b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g or biologically mediated precipitati<strong>on</strong> of selected m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

c<strong>on</strong>stituents.<br />

In terrestrial sediments, microbialites represent <str<strong>on</strong>g>the</str<strong>on</strong>g> most obvious (macroscopic)<br />

expressi<strong>on</strong> of fossil microbial life, with a record extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g back to <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Archaean<br />

(~3.5 Gyr ago). This c<strong>on</strong>stitutes prima facie evidence that benthic prokaryotes were<br />

already widespread <str<strong>on</strong>g>in</str<strong>on</strong>g> suitable aquatic habitats of <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaean Earth. Both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

morphological <str<strong>on</strong>g>in</str<strong>on</strong>g>ventory of <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest stromatolites and <str<strong>on</strong>g>the</str<strong>on</strong>g> observed microfossil<br />

c<strong>on</strong>tent of <str<strong>on</strong>g>the</str<strong>on</strong>g> ambient rock or coeval sequences (see below) allow a fairly elaborate<br />

rec<strong>on</strong>structi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s earliest microbial ecosystems, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that Archaean<br />

stromatolite builders were not markedly different from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir geologically younger<br />

counterparts (<str<strong>on</strong>g>in</str<strong>on</strong>g>clusive of c<strong>on</strong>temporary species). It appears well established that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal microbial mat builders were filamentous and unicellular prokaryotes<br />

capable of phototactic resp<strong>on</strong>ses and photoautotrophic carb<strong>on</strong> fixati<strong>on</strong> (Walter, 1983).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> unbroken stromatolite record from Archaean to present times attests, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

to an astound<str<strong>on</strong>g>in</str<strong>on</strong>g>g degree of c<strong>on</strong>servatism and uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physiological<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance and communal organisati<strong>on</strong> of prokaryotic microbenthos over 3.5 Gyr<br />

of geological history.<br />

I.4.3.1.2 Cellular Microfossils<br />

Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> macroscopic vestiges of past microbial activity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of<br />

stromatolites and related biosedimentary structures, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sec<strong>on</strong>d (microscopic)<br />

category of pale<strong>on</strong>tological evidence stored <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary record. This<br />

microscopic or cellular evidence is currently supposed to go back to at least ~3.5 Gyr<br />

(as <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of microbialites), with <str<strong>on</strong>g>the</str<strong>on</strong>g> biogenicity of microfossil-like morphologies<br />

reported from <str<strong>on</strong>g>the</str<strong>on</strong>g> ~3.8 Gyr-old Isua metasedimentary suite from West Greenland<br />

(Pflug, 1978) still be<str<strong>on</strong>g>in</str<strong>on</strong>g>g debated.<br />

While a wealth of au<str<strong>on</strong>g>the</str<strong>on</strong>g>ntic microbial communities has been reported from Early<br />

and Middle Precambrian (Proterozoic) <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> unequivocal identificati<strong>on</strong> of<br />

cellular microfossils becomes notoriously difficult with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g age of <str<strong>on</strong>g>the</str<strong>on</strong>g> host<br />

rock. In Early Precambrian (Archaean) sediments, both <str<strong>on</strong>g>the</str<strong>on</strong>g> progressive diagenetic<br />

alterati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> metamorphic rec<strong>on</strong>stituti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> enclos<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matrix tend to<br />

blur <str<strong>on</strong>g>the</str<strong>on</strong>g> primary morphologies of delicate organic microstructures. This results <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

large-scale loss of c<strong>on</strong>tours and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r critical morphological detail. At <str<strong>on</strong>g>the</str<strong>on</strong>g> extreme of<br />

51


SP-1231<br />

Fig. I.4.3.1.2/1. A: Comparis<strong>on</strong> of Hur<strong>on</strong>iospora<br />

sp. from <str<strong>on</strong>g>the</str<strong>on</strong>g> ~2.0 Gyr-old Gunfl<str<strong>on</strong>g>in</str<strong>on</strong>g>t ir<strong>on</strong><br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, Ontario (a-c) with Isuasphaera sp.<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> ~3.8 Gyr-old Isua metasedimentary<br />

suite, West Greenland (d-f). <str<strong>on</strong>g>The</str<strong>on</strong>g> optically<br />

dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al rim may be expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as a<br />

relic of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al cell wall. B: Laser Raman<br />

spectra obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from Hur<strong>on</strong>iospora sp. as an<br />

isolated particle (a) and <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong>s (b)<br />

compared with those from Isuaphaera sp. (c, d)<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> close<br />

resemblance of <str<strong>on</strong>g>the</str<strong>on</strong>g> spectra suggests similarities<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> residual organic<br />

comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> two types of microstructures<br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent peak close to 1610 cm -1 is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of aromatic double b<strong>on</strong>ds am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong> atoms of <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structure).<br />

Adapted from Pflug (1987).<br />

52<br />

such alterati<strong>on</strong> series lie <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called ‘dubiofossils’, with variable and sometimes<br />

questi<strong>on</strong>able c<strong>on</strong>fidence levels. To ascerta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biogenicity of possible cellular<br />

morphotypes <str<strong>on</strong>g>in</str<strong>on</strong>g> Archaean rocks, a hierarchical set of selecti<strong>on</strong> criteria has been<br />

proposed, postulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that genu<str<strong>on</strong>g>in</str<strong>on</strong>g>e microfossils (i) be au<str<strong>on</strong>g>the</str<strong>on</strong>g>ntic c<strong>on</strong>stituents of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rock as testified by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir exposure <str<strong>on</strong>g>in</str<strong>on</strong>g> petrographic th<str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong>s, (ii) occur <str<strong>on</strong>g>in</str<strong>on</strong>g> vast<br />

multiples, (iii) be associated with residual carb<strong>on</strong>aceous matter, (iv) equal or exceed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum size of viable cells and display a central cavity plus structural detail <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

excess of that result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>in</str<strong>on</strong>g>organic processes. Moreover, it has been proposed<br />

that, as a matter of pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, putative evidence from metamorphosed sediments<br />

should not be c<strong>on</strong>sidered.<br />

In spite of <str<strong>on</strong>g>the</str<strong>on</strong>g> evident impoverishment of <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaean record, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are, however,<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle reports of well-preserved microfossils that, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most part, comply with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

above criteria. Most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se assemblages are chert-embedded<br />

microfloras from <str<strong>on</strong>g>the</str<strong>on</strong>g> Warrawo<strong>on</strong>a Group of Western Australia, which closely<br />

approach <str<strong>on</strong>g>the</str<strong>on</strong>g> 3.5 Gyr age mark. After an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>troversy about <str<strong>on</strong>g>the</str<strong>on</strong>g> au<str<strong>on</strong>g>the</str<strong>on</strong>g>nticity of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se fossil communities <strong>on</strong> grounds of imprecisely c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed petrographic<br />

background parameters <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host lithologies (Awramik et al., 1983; Buick, 1991),<br />

Schopf & Packer (1987) and notably Schopf (1993) have <str<strong>on</strong>g>for</str<strong>on</strong>g>warded evidence<br />

prompt<str<strong>on</strong>g>in</str<strong>on</strong>g>g an acceptance of <str<strong>on</strong>g>the</str<strong>on</strong>g> observed morphotypes as b<strong>on</strong>a fide microfossils.<br />

C<strong>on</strong>spicuous with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Warrawo<strong>on</strong>a microbial community are both <str<strong>on</strong>g>the</str<strong>on</strong>g> coccoidal and<br />

filamentous (trichomic) micromorphologies that have been found to abound <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cyanobacterial precursor floras of Proterozoic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. While <str<strong>on</strong>g>the</str<strong>on</strong>g> septate filaments<br />

stand <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil trichomes that could be attributed to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r filamentous cyanobacteria<br />

or more primitive prokaryotes (such as flexibacteria), <str<strong>on</strong>g>the</str<strong>on</strong>g> coccoidal aggregates<br />

described by Schopf & Packer (1987) have been claimed to strictly exclude o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<br />

cyanobacterial aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ities.<br />

Given <str<strong>on</strong>g>the</str<strong>on</strong>g> remarkable degree of diversificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Warrawo<strong>on</strong>a microflora, we<br />

must, of necessity, <str<strong>on</strong>g>in</str<strong>on</strong>g>fer that <str<strong>on</strong>g>the</str<strong>on</strong>g> genetic l<str<strong>on</strong>g>in</str<strong>on</strong>g>eages of <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal microbial species<br />

had emerged well be<str<strong>on</strong>g>for</str<strong>on</strong>g>e Warrawo<strong>on</strong>a times. We may, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, reas<strong>on</strong>ably assume


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

that precursor floras had been extant prior to ~3.5 Gyr when <str<strong>on</strong>g>the</str<strong>on</strong>g> preserved rock record<br />

becomes scant and <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly metamorphosed. In this c<strong>on</strong>text, <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> of<br />

cell-like carb<strong>on</strong>aceous structures <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3.8 Gyr-old metasediments from Isua, West-<br />

Greenland, attracted c<strong>on</strong>siderable attenti<strong>on</strong>. Described as Isuasphaera isua (Pflug,<br />

1978), <str<strong>on</strong>g>the</str<strong>on</strong>g> biogenicity of this morphotype (Fig. I.4.3.1.2/1) has been violently<br />

disputed, specifically <strong>on</strong> grounds of <str<strong>on</strong>g>the</str<strong>on</strong>g> improbability of survival of delicate cell<br />

structures dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> amphibolite-grade metamorphism of <str<strong>on</strong>g>the</str<strong>on</strong>g> host rock.<br />

Meanwhile, however, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is ample evidence that fossils <str<strong>on</strong>g>in</str<strong>on</strong>g> general and microfossils<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> particular may – <str<strong>on</strong>g>in</str<strong>on</strong>g> variable degree – withstand obliterati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rocks subjected<br />

to medium-grade metamorphism. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, we cannot a priori exclude microbial<br />

aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ities <str<strong>on</strong>g>for</str<strong>on</strong>g> selected cell-like microstructures from <str<strong>on</strong>g>the</str<strong>on</strong>g> Isua metasediments, and<br />

notably <str<strong>on</strong>g>for</str<strong>on</strong>g> Isuasphaera-type micromorphs that show a strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g resemblance to a<br />

possible counterpart of recognised biogenicity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> younger (Proterozoic) record<br />

described as Hur<strong>on</strong>iospora sp. In spite of <str<strong>on</strong>g>the</str<strong>on</strong>g> uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g a large number<br />

of morphotypes described from Isua, and of occasi<strong>on</strong>al c<strong>on</strong>vergences with purely<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical features, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a reas<strong>on</strong>able chance that <str<strong>on</strong>g>the</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>in</str<strong>on</strong>g>ventory<br />

as a whole <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes at least some elements of a structurally degenerated microfossil<br />

assemblage such as might result from metamorphic impairment of a Warrawo<strong>on</strong>atype<br />

microflora. As detailed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> I.4.3.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>in</str<strong>on</strong>g> Isua times of microbial<br />

ecosystems would not <strong>on</strong>ly be c<strong>on</strong>sistent with, but also c<strong>on</strong>diti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> actually<br />

observed carb<strong>on</strong> c<strong>on</strong>tent and carb<strong>on</strong> isotope geochemistry of <str<strong>on</strong>g>the</str<strong>on</strong>g> Isua suite.<br />

I.4.3.2 Biogeochemical Evidence<br />

Apart from morphological relics, organisms also leave a chemical record of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mer existence. While <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk of <str<strong>on</strong>g>the</str<strong>on</strong>g> body material degrades after <str<strong>on</strong>g>the</str<strong>on</strong>g> death of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

organism (with <str<strong>on</strong>g>the</str<strong>on</strong>g> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant carb<strong>on</strong> comp<strong>on</strong>ent rem<str<strong>on</strong>g>in</str<strong>on</strong>g>eralised as CO 2), a m<str<strong>on</strong>g>in</str<strong>on</strong>g>iscule<br />

fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic substance (between 10 -3 and 10 -4 ) usually escapes decompositi<strong>on</strong><br />

by burial <str<strong>on</strong>g>in</str<strong>on</strong>g> newly-<str<strong>on</strong>g>for</str<strong>on</strong>g>med sediments. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> primary biopolymers undergo<br />

a large-scale rec<strong>on</strong>stituti<strong>on</strong> (‘humificati<strong>on</strong>’ with subsequent trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong> polymers), result<str<strong>on</strong>g>in</str<strong>on</strong>g>g f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of kerogen, a<br />

chemically <str<strong>on</strong>g>in</str<strong>on</strong>g>ert (acid-<str<strong>on</strong>g>in</str<strong>on</strong>g>soluble) polyc<strong>on</strong>densed aggregate of aliphatic and aromatic<br />

hydrocarb<strong>on</strong>s that represents <str<strong>on</strong>g>the</str<strong>on</strong>g> end-product of <str<strong>on</strong>g>the</str<strong>on</strong>g> diagenetic alterati<strong>on</strong> of primary<br />

biogenic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments (Durand, 1980). Represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> residuum of liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

substances, kerogenous materials and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir graphitic derivatives c<strong>on</strong>stitute per se<br />

first-order proxies of past biological activity.<br />

Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogenous carb<strong>on</strong> c<strong>on</strong>stituents gives<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r testim<strong>on</strong>y to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir biogenicity as it reflects 13 C/ 12 C fracti<strong>on</strong>ati<strong>on</strong>s of a magnitude<br />

and directi<strong>on</strong> that are typically obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> assimilatory (photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic)<br />

pathways, notably <str<strong>on</strong>g>the</str<strong>on</strong>g> ribulose bisphosphate (RuBP) carboxylase reacti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Calv<str<strong>on</strong>g>in</str<strong>on</strong>g> Cycle that operates <str<strong>on</strong>g>in</str<strong>on</strong>g> C3 photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Particularly if seen <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> isotope record of coexist<str<strong>on</strong>g>in</str<strong>on</strong>g>g carb<strong>on</strong>ate, <str<strong>on</strong>g>the</str<strong>on</strong>g> 13 C/ 12 C compositi<strong>on</strong>s of<br />

sedimentary organic carb<strong>on</strong> c<strong>on</strong>vey a remarkably c<strong>on</strong>sistent signal of biological<br />

carb<strong>on</strong> fixati<strong>on</strong> that derives, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most part, from a k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic isotope effect imposed <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first CO 2-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g enzymatic carboxylati<strong>on</strong> reacti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway.<br />

A third category of biochemical evidence of ancient life is represented by quasiprist<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

organic molecules (mostly pigments or s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle discrete hydrocarb<strong>on</strong> cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s)<br />

that have preserved <str<strong>on</strong>g>the</str<strong>on</strong>g>ir identities over <str<strong>on</strong>g>the</str<strong>on</strong>g> entire pathway of kerogen evoluti<strong>on</strong> from<br />

dead organic matter to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymerised aggregates of solid hydrocarb<strong>on</strong>s that mark<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> end of <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> series of primary biogenic substances. <str<strong>on</strong>g>The</str<strong>on</strong>g> record of such<br />

‘biomarker’ molecules or ‘chemofossils’, respectively (Egl<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong> & Calv<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1967),<br />

goes far back <str<strong>on</strong>g>in</str<strong>on</strong>g>to Precambrian times, ga<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g special significance <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geologically oldest (Proterozoic) petroleum occurrences (Summ<strong>on</strong>s & Powell,<br />

1992). Current work <strong>on</strong> molecular fossils from <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen fracti<strong>on</strong> of Precambrian<br />

rocks (Hoer<str<strong>on</strong>g>in</str<strong>on</strong>g>g & Navale, 1987) holds <str<strong>on</strong>g>the</str<strong>on</strong>g> promise of c<strong>on</strong>siderable potential <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r elucidati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> early history of life.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>the</str<strong>on</strong>g> above categories of evidence that document <str<strong>on</strong>g>the</str<strong>on</strong>g> biochemical<br />

record of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer life are characterised <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail.<br />

53


SP-1231<br />

54<br />

I.4.3.2.1 Sedimentary Organic Carb<strong>on</strong> as a Recorder of Former <str<strong>on</strong>g>Life</str<strong>on</strong>g> Processes<br />

As set out above, reduced or organic carb<strong>on</strong> (C org) stored <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary rocks<br />

c<strong>on</strong>stitutes <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil residue of biological matter, <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk of which is made up of<br />

highly polymerised aliphatic and aromatic hydrocarb<strong>on</strong>s (‘kerogen’) that figure as<br />

end-products of <str<strong>on</strong>g>the</str<strong>on</strong>g> diagenetic alterati<strong>on</strong> of primary biogenic substances <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sediment. <str<strong>on</strong>g>The</str<strong>on</strong>g> C org-c<strong>on</strong>tent of <str<strong>on</strong>g>the</str<strong>on</strong>g> average sedimentary rock normally lies between<br />

0.5% and 0.6% (R<strong>on</strong>ov et al., 1990). With a total mass of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s sedimentary<br />

envelope of about 2.4×10 24 g, this would imply that, over geologic time, 1.2-1.4×10 22 g<br />

C org had leaked out from <str<strong>on</strong>g>the</str<strong>on</strong>g> surficial carb<strong>on</strong> cycle and come to be stored <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust,<br />

thus mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g kerogen <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>for</str<strong>on</strong>g>m of organic matter <strong>on</strong> this planet. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

fossil relics of biogenic matter thus accumulated can be traced back to <str<strong>on</strong>g>the</str<strong>on</strong>g> very<br />

beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary record some 3.8 Gyr ago (Schidlowski et al., 1979),<br />

with shales represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> C org-richest (up to 12-16%) and sandst<strong>on</strong>es <str<strong>on</strong>g>the</str<strong>on</strong>g> C orgpoorest<br />

lithologies. <str<strong>on</strong>g>The</str<strong>on</strong>g> mobile (volatile) fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary C org-burden has<br />

comm<strong>on</strong>ly oozed out from <str<strong>on</strong>g>the</str<strong>on</strong>g> source sediment dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> process of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kerogenous substances, assembl<str<strong>on</strong>g>in</str<strong>on</strong>g>g as oil and gaseous hydrocarb<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> suitable host<br />

rocks.<br />

<str<strong>on</strong>g>System</str<strong>on</strong>g>atic assays <str<strong>on</strong>g>for</str<strong>on</strong>g> C org carried out <strong>on</strong> Phanerozoic (


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

Fig. I.4.3.2.2/1. Isotope age functi<strong>on</strong>s of organic carb<strong>on</strong> (C org) and<br />

carb<strong>on</strong>ate carb<strong>on</strong> (C carb) compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic compositi<strong>on</strong>s<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir progenitor substances <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present envir<strong>on</strong>ment (mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

bicarb<strong>on</strong>ate and biogenic matter of various parentage, cf. right box).<br />

Isotopic compositi<strong>on</strong>s are given as δ 13 C values <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a<br />

relative <str<strong>on</strong>g>in</str<strong>on</strong>g>crease (+) or decrease (-) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 13 C/ 12 C ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

respective subtance (<str<strong>on</strong>g>in</str<strong>on</strong>g> ‰ difference) compared with that of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PDB (Peedee belemnite) standard, which def<str<strong>on</strong>g>in</str<strong>on</strong>g>es 0‰ <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> δ-scale.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> δ 13 C org spread of <str<strong>on</strong>g>the</str<strong>on</strong>g> extant biomass is basically<br />

transcribed <str<strong>on</strong>g>in</str<strong>on</strong>g>to recent mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent record<br />

back to 3.8 Gyr, with <str<strong>on</strong>g>the</str<strong>on</strong>g> Isua values moderately reset by<br />

amphibolite-grade metamorphism [associated bars show values <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

carb<strong>on</strong>aceous <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> apatite gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from a 3.85 Gyr-old Isua<br />

banded ir<strong>on</strong>-<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (A1) and from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Isua ir<strong>on</strong>-<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s<br />

carb<strong>on</strong> fixati<strong>on</strong>. This is primarily <str<strong>on</strong>g>the</str<strong>on</strong>g> assimilati<strong>on</strong> of CO 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> bicarb<strong>on</strong>ate i<strong>on</strong><br />

(HCO 3 - ) by plants and microorganisms that proceeds by a limited number of pathways<br />

which <str<strong>on</strong>g>in</str<strong>on</strong>g>variably discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy carb<strong>on</strong> isotope ( 13 C), mostly as a<br />

result of a k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic isotope effect <str<strong>on</strong>g>in</str<strong>on</strong>g>herent <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first irreversible enzymatic CO 2-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

carboxylati<strong>on</strong> reacti<strong>on</strong> (cf. O’Leary, 1981; Schidlowski et al., 1983). This latter<br />

reacti<strong>on</strong> promotes <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> of CO 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> carboxyl (COOH) group of an<br />

organic acid which, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, lends itself to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent metabolic<br />

pathways. As biochemical carb<strong>on</strong>-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong>s are largely enzyme-c<strong>on</strong>trolled, and<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems c<strong>on</strong>stitute dynamic states undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapid cycles of anabolism and<br />

catabolism, it is generally accepted that most biological isotope fracti<strong>on</strong>ati<strong>on</strong>s are due<br />

to k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than equilibrium effects.<br />

Because of <str<strong>on</strong>g>the</str<strong>on</strong>g> discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st ‘heavy’ carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> carb<strong>on</strong>-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

pathways, we observe a marked enrichment of 12 C <str<strong>on</strong>g>in</str<strong>on</strong>g> all <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of biogenic (reduced)<br />

carb<strong>on</strong> as compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic feeder pool of oxidised carb<strong>on</strong> c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of atmospheric CO 2 and dissolved mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e bicarb<strong>on</strong>ate i<strong>on</strong> (HCO 3 - ). In terms<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al notati<strong>on</strong>, δ 13 C values of average biomass usually turn out to be 20-<br />

30‰ more negative than those of mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e bicarb<strong>on</strong>ate, <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

carb<strong>on</strong> species <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

(A2), accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Mojzsis et al. (1996)]. <str<strong>on</strong>g>The</str<strong>on</strong>g> envelope <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil<br />

organic carb<strong>on</strong> is an update of <str<strong>on</strong>g>the</str<strong>on</strong>g> database presented by<br />

Schidlowski et al. (1983), compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> means of some 150<br />

Precambrian kerogen prov<str<strong>on</strong>g>in</str<strong>on</strong>g>ces as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> currently available<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Phanerozoic record. <str<strong>on</strong>g>The</str<strong>on</strong>g> negative spikes at<br />

2.7 Gyr and 2.1 Gyr <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate a large-scale <str<strong>on</strong>g>in</str<strong>on</strong>g>volvement of methane<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> respective kerogen precursors. C<strong>on</strong>tributors<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>temporary biomass are (1) C3 plants, (2) C4 plants; (3)<br />

CAM plants; (4) eukayotic algae; (5 a,b) natural and cultures<br />

cyanobacteria; (6) groups of photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic bacteria o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<br />

cyanobacteria; (7) methanogenic bacteria; (8) methanotrophic<br />

bacteria. <str<strong>on</strong>g>The</str<strong>on</strong>g> δ 13 C org range <str<strong>on</strong>g>in</str<strong>on</strong>g> recent mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments is from<br />

De<str<strong>on</strong>g>in</str<strong>on</strong>g>es (1980) and based <strong>on</strong> some 1600 data po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (black <str<strong>on</strong>g>in</str<strong>on</strong>g>sert<br />

covers >90% of <str<strong>on</strong>g>the</str<strong>on</strong>g> database).<br />

55


SP-1231<br />

56<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> isotopic difference thus established between organic (biogenic) carb<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surficial bicarb<strong>on</strong>ate-carb<strong>on</strong>ate pool is largely reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed when organic and carb<strong>on</strong>ate<br />

carb<strong>on</strong> enter newly-<str<strong>on</strong>g>for</str<strong>on</strong>g>med sediments. As is obvious from Fig. I.4.3.2.2/1, both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong> isotope spreads of extant primary producers and those of mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e carb<strong>on</strong>ate and<br />

bicarb<strong>on</strong>ate are basically transcribed <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary record back to 3.5 Gyr or<br />

even 3.8 Gyr ago. This would imply that organic carb<strong>on</strong> and carb<strong>on</strong>ate carb<strong>on</strong> had<br />

always been transferred from <str<strong>on</strong>g>the</str<strong>on</strong>g> surficial envir<strong>on</strong>ment to <str<strong>on</strong>g>the</str<strong>on</strong>g> crust with relatively<br />

little change <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir isotopic compositi<strong>on</strong>s. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> δ 13 C org spread <str<strong>on</strong>g>in</str<strong>on</strong>g> recent<br />

mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments (cf. Fig. I.4.3.2.2/1) faithfully <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrates over <str<strong>on</strong>g>the</str<strong>on</strong>g> spread of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>temporary liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g biomass with just <str<strong>on</strong>g>the</str<strong>on</strong>g> extremes elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effect of a later diagenetic overpr<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> primary isotope values is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r limited<br />

(usually below 3‰) and, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most part, gets lost with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> broad scatter of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al values. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic isotope effect <str<strong>on</strong>g>in</str<strong>on</strong>g>herent <str<strong>on</strong>g>in</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic<br />

carb<strong>on</strong> fixati<strong>on</strong> is propagated from <str<strong>on</strong>g>the</str<strong>on</strong>g> biosphere <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> rock secti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong><br />

cycle almost unaltered, which opens up <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of trac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic<br />

signature of this process back <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> geologic past.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g>se relati<strong>on</strong>ships established, decod<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> vast body of isotopic<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> stored <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary record is fairly straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is little<br />

doubt that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>spicuous 12 C-enrichment displayed by <str<strong>on</strong>g>the</str<strong>on</strong>g> data envelope <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil<br />

organic carb<strong>on</strong> (Fig. I.4.3.2.2/1) c<strong>on</strong>stitutes a coherent signal of autotrophic carb<strong>on</strong><br />

fixati<strong>on</strong> over almost 4 Gyr of recorded Earth history as it ultimately rests with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process that gave rise to <str<strong>on</strong>g>the</str<strong>on</strong>g> biological precursor materials. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity of <str<strong>on</strong>g>the</str<strong>on</strong>g> signal attests to an extreme degree of c<strong>on</strong>servatism of <str<strong>on</strong>g>the</str<strong>on</strong>g> basic<br />

biochemical mechanisms of carb<strong>on</strong> fixati<strong>on</strong>. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>stream of <str<strong>on</strong>g>the</str<strong>on</strong>g> envelope<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> δ 13 C org depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. I.4.3.2.2/1 can be most readily expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geochemical manifestati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> isotope-discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties of <strong>on</strong>e s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle<br />

enzyme, namely, ribulose-1,5-bisphosphate (RuBP) carboxylase, <str<strong>on</strong>g>the</str<strong>on</strong>g> key enzyme of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Calv<str<strong>on</strong>g>in</str<strong>on</strong>g> Cycle.<br />

It is well known today that <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> transfer from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic to <str<strong>on</strong>g>the</str<strong>on</strong>g> organic<br />

world largely proceeds via <str<strong>on</strong>g>the</str<strong>on</strong>g> RuBP carboxylase reacti<strong>on</strong> that feeds CO 2 directly <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Calv<str<strong>on</strong>g>in</str<strong>on</strong>g> Cycle as a 3-carb<strong>on</strong> compound (phosphoglycerate). Most autotrophic<br />

microorganisms and all green plants operate al<strong>on</strong>g this pathway of carb<strong>on</strong><br />

assimilati<strong>on</strong>; higher plants rely<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> it entirely are termed C3 plants. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bulk of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s biomass (both extant and fossil) bears <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic signature of C3<br />

(or Calv<str<strong>on</strong>g>in</str<strong>on</strong>g> Cycle) photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis characterised by <str<strong>on</strong>g>the</str<strong>on</strong>g> sizeable fracti<strong>on</strong>ati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

RuBP carboxylase reacti<strong>on</strong> that assigns a mean δ 13 C org range of -26±7‰ to most<br />

biogenic matter.<br />

Occasi<strong>on</strong>al negative offshoots from this l<strong>on</strong>g-term average (Fig. I.4.3.2.2/1) are<br />

comm<strong>on</strong>ly restricted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Precambrian (Hayes et al., 1983; Schidlowski et al., 1983)<br />

and suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>volvement of methanotrophic pathways <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

respective kerogen precursors. Basically, <str<strong>on</strong>g>the</str<strong>on</strong>g>se excursi<strong>on</strong>s appear to be oddities<br />

c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to side stages of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> cycle that have never affected <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global cycle as a whole.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly apparent disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> δ 13 C org record depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. I.4.3.2.2/1 is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> break between <str<strong>on</strong>g>the</str<strong>on</strong>g> ~3.8 Gyr-old Isua metasediments from West Greenland and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole of <str<strong>on</strong>g>the</str<strong>on</strong>g> post-Isua record. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed isotope shift is, however, fully c<strong>on</strong>sistent<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> predictable effects of an isotopic re-equilibrati<strong>on</strong> between coexist<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic<br />

carb<strong>on</strong> and carb<strong>on</strong>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> amphibolite-grade metamorphism<br />

experienced by <str<strong>on</strong>g>the</str<strong>on</strong>g> Isua suite. Both currently available <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data <strong>on</strong> 13 C/ 12 C<br />

exchange between C org and carb<strong>on</strong>ate carb<strong>on</strong> (C carb) as a functi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

metamorphic temperatures and observati<strong>on</strong>al evidence from a host of geologically<br />

younger metamorphic terranes make it virtually certa<str<strong>on</strong>g>in</str<strong>on</strong>g> that <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘normal’ sedimentary<br />

δ 13 C org and δ 13 C carb records had orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally extended back to 3.8 Gyr ago, and that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Isua anomaly is clearly due to a metamorphic overpr<str<strong>on</strong>g>in</str<strong>on</strong>g>t (Schidlowski et al., 1979;<br />

1983). Apparently prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e δ 13 C org values <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range -21‰ to -49‰ (average -7±3‰)<br />

have been recently reported <str<strong>on</strong>g>for</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>or carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> apatite gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from<br />

3.85 Gyr-old Isua banded ir<strong>on</strong>-<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (Mojzsis et al., 1996). Here, carb<strong>on</strong>aceous


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

material sealed <str<strong>on</strong>g>in</str<strong>on</strong>g> a m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matrix and hosted by a carb<strong>on</strong>ate-free lithology had<br />

obviously escaped high-temperature isotope exchange, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby preserv<str<strong>on</strong>g>in</str<strong>on</strong>g>g its orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

biogenic δ 13 C org spread with probably little alterati<strong>on</strong>.<br />

I.4.3.2.3 Molecular Biomarkers (‘Chemical Fossils’) <str<strong>on</strong>g>in</str<strong>on</strong>g> Sediments<br />

As menti<strong>on</strong>ed earlier, biological markers, or ‘biomarkers’, are terms used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wide<br />

variety of organic compounds that are derived from liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organims and can be found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> sediments. Such compounds have also been termed ‘chemical fossils’ but <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

comm<strong>on</strong>ly-used term is that of biomarker (Peters & Moldowan, 1993; Engel &<br />

Macko, 1983; Killops & Killops, 1993). Those biomarkers show<str<strong>on</strong>g>in</str<strong>on</strong>g>g little or no<br />

change <str<strong>on</strong>g>in</str<strong>on</strong>g> structure from those of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biochemical compounds are easily<br />

recognised <str<strong>on</strong>g>in</str<strong>on</strong>g> extracts of sediments, but compounds with str<strong>on</strong>gly diagenetically or<br />

catagenetically altered structures, where<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> skelet<strong>on</strong>s differ from those of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biological compounds yet carry sufficient residual porti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

structures, may still be useful biomarkers.<br />

Biomarkers are extractable from sediments and fossils by organic solvents, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most studied be<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> lipid type, although certa<str<strong>on</strong>g>in</str<strong>on</strong>g> pigments, e.g. metal porphyr<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

are also referred to as biomarkers. <str<strong>on</strong>g>The</str<strong>on</strong>g> key to <str<strong>on</strong>g>the</str<strong>on</strong>g> use of biomarkers is frequently <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

complexity of structure, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce this represents a major <str<strong>on</strong>g>in</str<strong>on</strong>g>heritance of orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

biologically-derived <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular distributi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative amounts can be highly <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative, as <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis imparts<br />

characteristic distributi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> different compounds. However, subsequent<br />

diagenetic alterati<strong>on</strong>s and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> modify those patterns. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

biochemist generally prefers to work with unaltered, orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al molecular biomarkers,<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>se compounds carry <str<strong>on</strong>g>the</str<strong>on</strong>g> full orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biochemical <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and exhibit<br />

an extremely high degree of order both <str<strong>on</strong>g>in</str<strong>on</strong>g> structure and <str<strong>on</strong>g>in</str<strong>on</strong>g> relative abundances.<br />

Molecular Characteristics of <str<strong>on</strong>g>the</str<strong>on</strong>g> Biosphere<br />

What is <str<strong>on</strong>g>the</str<strong>on</strong>g> recognisable record of <str<strong>on</strong>g>the</str<strong>on</strong>g> past biosphere <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth? In<br />

general terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic impr<str<strong>on</strong>g>in</str<strong>on</strong>g>t of a liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organism is seen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong><br />

skelet<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>alities and <str<strong>on</strong>g>the</str<strong>on</strong>g> stereochemistries of <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds it<br />

manufactures under enzymic, molecular mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental scheme of life’s<br />

universal, but extremely precise, molecular mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery is simply:<br />

DNA ====> RNA ====> Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s ====> Metabolites<br />

DNA and RNA c<strong>on</strong>sist of genetically determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed sequences of five different<br />

nucleotide bases, with <str<strong>on</strong>g>the</str<strong>on</strong>g> DNA sequence determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> RNA sequence. It, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn,<br />

c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from some 20 homochiral alpha am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>sist of short (10-10 3 am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids) polypeptide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s and normally<br />

generate <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own specific <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> precise<br />

shape and locati<strong>on</strong> of reactive functi<strong>on</strong>alities required <str<strong>on</strong>g>for</str<strong>on</strong>g> enzymatic activity. Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> turn catalyse <str<strong>on</strong>g>the</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of specific metabolites and homologous metabolic<br />

series. Enzymatic syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (metabolism) and breakdown (catabolism) of molecules<br />

provides <str<strong>on</strong>g>for</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> needs of <str<strong>on</strong>g>the</str<strong>on</strong>g> organisms. <str<strong>on</strong>g>The</str<strong>on</strong>g> metabolites comprise a large range of<br />

molecules that <str<strong>on</strong>g>in</str<strong>on</strong>g>clude, <str<strong>on</strong>g>in</str<strong>on</strong>g>ter alia, <str<strong>on</strong>g>the</str<strong>on</strong>g> build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks to syn<str<strong>on</strong>g>the</str<strong>on</strong>g>size a variety of<br />

cellular biochemicals, such as lipids, polysaccharides, and co-enzymes.<br />

Chiral centres such as those at a s<str<strong>on</strong>g>in</str<strong>on</strong>g>glem tetrahedrally substituted carb<strong>on</strong> atom are<br />

almost always syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised with a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle chirality. Very unusually, an organism may<br />

make both, while, <str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r rare <str<strong>on</strong>g>in</str<strong>on</strong>g>stances, <strong>on</strong>e enantiometer may be made by <strong>on</strong>e<br />

species and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by a different species. Cholesterol, a sterol widely distributed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

eukaryotes, is an example of a highly ordered carb<strong>on</strong> skelet<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g> overall<br />

shape is dependent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stereochemistry of <str<strong>on</strong>g>the</str<strong>on</strong>g> r<str<strong>on</strong>g>in</str<strong>on</strong>g>g fusi<strong>on</strong>s and of <str<strong>on</strong>g>the</str<strong>on</strong>g> methyl and<br />

hydroxyl substituents of <str<strong>on</strong>g>the</str<strong>on</strong>g> r<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. It has eight chiral centres, as <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Fig. I.4.3.2.3/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> structure is highly specific, both <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gross skelet<strong>on</strong> and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stereochemistry, so that it makes an excellent biomarker, <strong>on</strong>e which has been traced<br />

back hundreds of milli<strong>on</strong>s of years <str<strong>on</strong>g>in</str<strong>on</strong>g> immature sediments. It is also a carrier of<br />

57


SP-1231<br />

Fig. I.4.3.2.3/1. Cholesterol as an example of a<br />

biomarker molecule. (A) is a c<strong>on</strong>venti<strong>on</strong>al l<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

draw<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structure <str<strong>on</strong>g>in</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stereochemistry of <str<strong>on</strong>g>the</str<strong>on</strong>g> r<str<strong>on</strong>g>in</str<strong>on</strong>g>g juncti<strong>on</strong>s and<br />

C-atom substituti<strong>on</strong>s is <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated, <str<strong>on</strong>g>in</str<strong>on</strong>g> part, by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> thick and <str<strong>on</strong>g>the</str<strong>on</strong>g> dotted l<str<strong>on</strong>g>in</str<strong>on</strong>g>es at <str<strong>on</strong>g>the</str<strong>on</strong>g> chiral<br />

carb<strong>on</strong> centres denoted by an asterisk. (B) is a<br />

simple 3D representati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure,<br />

show<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> flat tabular shape created from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

four r<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

58<br />

abundant isotopic <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis pathway. Thus carb<strong>on</strong> isotope<br />

measurements can help to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of <str<strong>on</strong>g>the</str<strong>on</strong>g> cholesterol found <str<strong>on</strong>g>in</str<strong>on</strong>g> such<br />

sediments, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce its δ 13 C value will reflect that of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> pool from which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual C5 units were assembled. Normally, of course, <str<strong>on</strong>g>the</str<strong>on</strong>g> gross averaged isotopic<br />

compositi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole compound is measured, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is c<strong>on</strong>siderable scope <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> isotopic compositi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic reacti<strong>on</strong> sequences will generate <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular order by<br />

processes that <str<strong>on</strong>g>in</str<strong>on</strong>g>volve :<br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> use of pre-syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised units;<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> sequential coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of such units;<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>trol of functi<strong>on</strong>ality and of any cyclisati<strong>on</strong> steps <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced;<br />

4. Stereochemical c<strong>on</strong>trols of all steps, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> chirality of any asymetrically<br />

substituted carb<strong>on</strong> or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r centres;<br />

5. <str<strong>on</strong>g>The</str<strong>on</strong>g> isotopic fracti<strong>on</strong>ati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> fixati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of units, and <str<strong>on</strong>g>in</str<strong>on</strong>g> functi<strong>on</strong>ality changes.<br />

Intermolecular order is also <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol of <str<strong>on</strong>g>the</str<strong>on</strong>g> amounts of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different compounds biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised. For a homologous series of compounds, this<br />

frequently results <str<strong>on</strong>g>in</str<strong>on</strong>g> characteristic molecular distributi<strong>on</strong> patterns whereby<br />

homologues maximise around a particular carb<strong>on</strong> number, with <str<strong>on</strong>g>the</str<strong>on</strong>g> amounts of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r homologues decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapidly to lower and higher carb<strong>on</strong> number.<br />

Molecular distributi<strong>on</strong>s of this type are characteristic <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> of<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. This is true of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual species, whole groups of families, orders<br />

and, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> k<str<strong>on</strong>g>in</str<strong>on</strong>g>gdoms of liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. Thus, straight-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong><br />

compounds are syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised almost universally by <str<strong>on</strong>g>the</str<strong>on</strong>g> acetate pathway, operated by an<br />

evoluti<strong>on</strong>ary highly c<strong>on</strong>served polyketide enzyme system. <str<strong>on</strong>g>The</str<strong>on</strong>g> result is an<br />

assemblage of l<strong>on</strong>g-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> compounds distributed over a range of carb<strong>on</strong> numbers that<br />

often maximises at a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle carb<strong>on</strong> number and displays a marked odd-over-even or<br />

even-over-odd dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ancy. <str<strong>on</strong>g>The</str<strong>on</strong>g>se distributi<strong>on</strong>s and accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g carb<strong>on</strong> isotope<br />

characteristics are seen <str<strong>on</strong>g>in</str<strong>on</strong>g> extracts of sediments from <str<strong>on</strong>g>the</str<strong>on</strong>g> present time right back to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Archean period. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>temporary biota use enzyme systems <str<strong>on</strong>g>in</str<strong>on</strong>g>herited more<br />

or less unchanged from <str<strong>on</strong>g>the</str<strong>on</strong>g> Archean. Similar carb<strong>on</strong> number distributi<strong>on</strong> systematics<br />

apply to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic molecular assemblages such as isoprenoids and<br />

oxygenated aromatics. Hence, a number of characteristic biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic patterns of<br />

carb<strong>on</strong> compound abundances are obvious <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracts of both recent and ancient<br />

sediments. Abiotic reacti<strong>on</strong> systems are not capable of produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g such highly ordered<br />

distributi<strong>on</strong> patterns. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are with<str<strong>on</strong>g>in</str<strong>on</strong>g> each organic compound fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

impr<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic values of each carb<strong>on</strong> atom. Such<br />

impr<str<strong>on</strong>g>in</str<strong>on</strong>g>ts must also reside <str<strong>on</strong>g>in</str<strong>on</strong>g> any atoms o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structures, notably<br />

hydrogen, oxygen and sulphur, but this area of knowledge rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s almost entirely<br />

unexplored.<br />

Fig. I.4.3.2.3/2 is an example of such a homologous series. <str<strong>on</strong>g>The</str<strong>on</strong>g> four different<br />

groups of compounds (acids, aldehydes, alcohols and hydrocarb<strong>on</strong>s) are all biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tically<br />

related through reducti<strong>on</strong> and decarboxylati<strong>on</strong> steps. <str<strong>on</strong>g>The</str<strong>on</strong>g> alkanoic acids are


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

typically syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised by almost all organisms from C2 units as a homologous series<br />

reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g to C30 (with a marked dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance of even-over-odd carb<strong>on</strong> number).<br />

Corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, <str<strong>on</strong>g>the</str<strong>on</strong>g> derived series of alkanals and alkanols display a similar evenover-odd<br />

predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance. In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> alkanes (<str<strong>on</strong>g>for</str<strong>on</strong>g>med by decarboxylati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

acids) show a predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance of odd carb<strong>on</strong> numbers. <str<strong>on</strong>g>The</str<strong>on</strong>g>se biological patterns of<br />

biomarker distributi<strong>on</strong> carry through <str<strong>on</strong>g>in</str<strong>on</strong>g>to sediments. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> odd-over-even<br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n-alkanes is gradually lost when <str<strong>on</strong>g>the</str<strong>on</strong>g>se compounds are subjected to<br />

geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal alterati<strong>on</strong>.<br />

In general, <str<strong>on</strong>g>the</str<strong>on</strong>g>se straight-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>ed homologues do not carry such organism-specific<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g>y are of such universal biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Only <str<strong>on</strong>g>the</str<strong>on</strong>g>ir 13 C/ 12 C<br />

compositi<strong>on</strong>s rema<str<strong>on</strong>g>in</str<strong>on</strong>g> significantly <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mative, because <str<strong>on</strong>g>the</str<strong>on</strong>g>se are c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

respective ratios of <str<strong>on</strong>g>the</str<strong>on</strong>g> C2 precursor units which are, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, dependent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic patway of carb<strong>on</strong> dioxide fixati<strong>on</strong>, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> I.4.3.<br />

Impr<str<strong>on</strong>g>in</str<strong>on</strong>g>t of <str<strong>on</strong>g>the</str<strong>on</strong>g> Biosphere <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Geosphere<br />

Standard methods <str<strong>on</strong>g>for</str<strong>on</strong>g> exam<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g biota, when applied to young immature<br />

sediments, reveal morphological evidence of decayed biota as microscopically<br />

recognisable organic debris and molecular evidence as detectable c<strong>on</strong>centrati<strong>on</strong>s of<br />

simple and complex biochemicals of both orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al and diagentically modified<br />

structures. For example, am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid analyses of teeth, b<strong>on</strong>es and shells <str<strong>on</strong>g>in</str<strong>on</strong>g> young<br />

sediments display distributi<strong>on</strong>s characteristic of prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s which reveal <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

racemisati<strong>on</strong> with related temperature and time of burial, a measure that can even be<br />

used <str<strong>on</strong>g>for</str<strong>on</strong>g> dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g and chr<strong>on</strong>ostratigraphy. Similar c<strong>on</strong>siderati<strong>on</strong>s apply to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types of<br />

molecules, e.g. steroids, triterpenoids, alkaloids and <str<strong>on</strong>g>the</str<strong>on</strong>g> whole suite of sec<strong>on</strong>dary<br />

metabolites syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised by <str<strong>on</strong>g>the</str<strong>on</strong>g> enzymes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial record is very close to that of c<strong>on</strong>temporary biochemistry, with small<br />

amounts of fairly well-preserved DNA, prote<str<strong>on</strong>g>in</str<strong>on</strong>g> and carbohydrates still detectable.<br />

Most of this <str<strong>on</strong>g>in</str<strong>on</strong>g>itial record is rapidly removed with<str<strong>on</strong>g>in</str<strong>on</strong>g> a few tens of years, pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipally<br />

by microbial acti<strong>on</strong>. However, removal and destructi<strong>on</strong> is selective, patchy and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>complete. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> end result is that relatively easily biodegraded compounds and<br />

biopolymers survive <str<strong>on</strong>g>in</str<strong>on</strong>g> small to trace amounts <str<strong>on</strong>g>for</str<strong>on</strong>g> thousands to milli<strong>on</strong>s of years <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

aquatic sediments that have not been deeply buried and subjected to geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Some depositi<strong>on</strong>al microenvir<strong>on</strong>ments e.g. frozen sediments, anoxic<br />

sediments, organic res<str<strong>on</strong>g>in</str<strong>on</strong>g>s, copal and amber, result <str<strong>on</strong>g>in</str<strong>on</strong>g> an excepti<strong>on</strong>al preservati<strong>on</strong> of<br />

biochemicals. Certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly, low temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> of access af<str<strong>on</strong>g>for</str<strong>on</strong>g>ded by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

close pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g of clay particles, absence of reactive species such as free radicals, lack<br />

of nutrients (e.g. electr<strong>on</strong> d<strong>on</strong>ors such as nitrate, sulphate), and lack of liquid water<br />

all have a preservative role. At <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular level, <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental factors<br />

facilitat<str<strong>on</strong>g>in</str<strong>on</strong>g>g preservati<strong>on</strong> seem to be restricti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility of molecules and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased steric h<str<strong>on</strong>g>in</str<strong>on</strong>g>drance at reactive centres, both <str<strong>on</strong>g>in</str<strong>on</strong>g>tra- and <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecularly. All<br />

molecules are ultimately degradable, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r by microbiota, reagents and heat,<br />

operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g through time, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r s<str<strong>on</strong>g>in</str<strong>on</strong>g>gly or toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. But differences <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular<br />

b<strong>on</strong>d strengths are fundamental c<strong>on</strong>trols <strong>on</strong> molecular persistence, especially <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Fig. I.4.3.2.3/2. A homologous series of l<strong>on</strong>g,<br />

straight-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, alipathic lipid biomarkers,<br />

which are biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tically related through<br />

reducti<strong>on</strong> and decarboxylati<strong>on</strong> steps.<br />

59


SP-1231<br />

60<br />

References<br />

regard to n<strong>on</strong>-biologically mediated reacti<strong>on</strong>s. Thus, novel aliphatic type and<br />

aromatic type biopolymers, whose skelet<strong>on</strong>s are based essentially <strong>on</strong> carb<strong>on</strong> carb<strong>on</strong><br />

b<strong>on</strong>ds, have been detected recently <str<strong>on</strong>g>in</str<strong>on</strong>g> several species of aquatic unicellular algae, and<br />

have been shown to persist <str<strong>on</strong>g>in</str<strong>on</strong>g> significant amounts <str<strong>on</strong>g>in</str<strong>on</strong>g> both recently deposited aand<br />

ancient sediments. <str<strong>on</strong>g>The</str<strong>on</strong>g>se biomaterials, or ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>ir alterati<strong>on</strong> products, may make<br />

up a significant porti<strong>on</strong> of sedimentary organic matter.<br />

Bulk Terrestrial Organic Matter<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> bulk (circa 98%) of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic matter held <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary rocks of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth’s crust is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>soluble, amorphous, heteropolymeric organic ‘kerogen’. In<br />

young, immature sediments it is rich <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrogen and c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements such as<br />

oxygen, sulphur and nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> lesser amounts, while <str<strong>on</strong>g>in</str<strong>on</strong>g> old, mature sediments it is<br />

highly carb<strong>on</strong>aceous, even graphitic, and is very low <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrogen and elements o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

than carb<strong>on</strong>. Whatever its state, kerogen is almost entirely derived ultimately from<br />

biological debris which, when immature, c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s comp<strong>on</strong>ent pieces of biomacromolecules<br />

and smaller metabolites crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ked <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen structure by carb<strong>on</strong>carb<strong>on</strong>,<br />

carb<strong>on</strong>-sulphur and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r b<strong>on</strong>ds. Some comp<strong>on</strong>ents may be trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

molecular <str<strong>on</strong>g>in</str<strong>on</strong>g>terstices, while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs may have suffered additi<strong>on</strong>al modificati<strong>on</strong> through<br />

oxidati<strong>on</strong> and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r processes. Experiments specifically designed to release molecular<br />

moieties from this heteropolymeric material have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen matrix has<br />

protected some comp<strong>on</strong>ents from diagenetic and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r changes experienced by free<br />

unb<strong>on</strong>ded biomarkers <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same sediment. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic order<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>corporated as molecular comp<strong>on</strong>ents of <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen is gradually obscured and<br />

destroyed by <str<strong>on</strong>g>the</str<strong>on</strong>g> diagenetic processes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment. Indeed, deep burial with<br />

accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g rise <str<strong>on</strong>g>in</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal temperature, pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g> passage of time<br />

eventually erases almost all of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic order as <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>isati<strong>on</strong><br />

proceeds, e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance of odd-over-even carb<strong>on</strong> numbers <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

C30 regi<strong>on</strong> of plant wax alkanes is gradually replaced by a smooth distributi<strong>on</strong> at<br />

lower carb<strong>on</strong> numbers, as <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules are broken down through <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

carb<strong>on</strong>-carb<strong>on</strong> b<strong>on</strong>d breakage.<br />

Improved analytical methodologies are now needed to maximise <str<strong>on</strong>g>the</str<strong>on</strong>g> retrieval of<br />

biomarker <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> from kerogens. We need to release <str<strong>on</strong>g>the</str<strong>on</strong>g> bound and trapped<br />

biochemical moieties with m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal loss of order, both <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of<br />

detailed molecular structures, and <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative abundances.<br />

Pyrolysis techniques are good candidates, especially where <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

step is extremely brief and recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> pyrolysates is m<str<strong>on</strong>g>in</str<strong>on</strong>g>imised. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> pyrolysates by gas chromatography/mass spectrometry (GCMS)<br />

provides <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al organic material c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kerogen. <str<strong>on</strong>g>The</str<strong>on</strong>g> pyrolysis provides a reflecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic order <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structures of <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds released, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir abundance patterns and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir isotopic<br />

distributi<strong>on</strong>s.<br />

Abyzov, S.S. (1993). Microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic ice. In Antarctic Microbiology<br />

(Ed. E. Friedmann), Wiley & S<strong>on</strong>s, New York, USA, pp265-295.<br />

Amann, R., Ludwig, W. & Schleifer, K.-H. (1992). Identificati<strong>on</strong> and <str<strong>on</strong>g>in</str<strong>on</strong>g> situ detecti<strong>on</strong><br />

of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual bacterial cells. FEMS Microbiol. Lett. 100, 45-50.<br />

Awramik, S.M., Schopf, J.W. & Walter, M.R. (1983) Filamentous fossil bacteria from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Archaean of Western Australia. In Developments and Interacti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Precambrian Atmosphere, Lithosphere and Biosphere (Developments <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Precambrian Geology 7) (Eds. B. Nagy, R. Weber, J.C. Guerrero & M.<br />

Schidlowski), Elsevier, Amsterdam, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, pp249-266.<br />

Barns, S.M., Fundyga, R.E., Jeffries, M.W. & Pace, N.R. (1994). Remarkable<br />

archaeal diversity detected <str<strong>on</strong>g>in</str<strong>on</strong>g> a Yellowst<strong>on</strong>e Nati<strong>on</strong>al Park hot spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ment.<br />

Proc. Natl. Acad. Sci. USA 91,1609-1613.<br />

Bartosch, S., Quader, H. & Bock. E. (1996). C<strong>on</strong>focal laser scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g microscopy: A


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

new method <str<strong>on</strong>g>for</str<strong>on</strong>g> detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> natural st<strong>on</strong>e, DECHEMA<br />

M<strong>on</strong>ographs 133, 37-43.<br />

Biemann, K, Oro, J., Toulm<str<strong>on</strong>g>in</str<strong>on</strong>g>, P., Orgel, L.E., Nier, A.O., Anders<strong>on</strong>, D.M.,<br />

Simm<strong>on</strong>ds, P.G., Flory, D., Diaz, A.V., Rushneck, D.R., Biller, J.E. & Lafleur, A.L.<br />

(1977). <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> organic substances and <str<strong>on</strong>g>in</str<strong>on</strong>g>organic volatile compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface of <strong>Mars</strong>. J. Geophys. Res. 82, 4641-4658.<br />

Buick, R. (1991). Microfossil recogniti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Archaean rocks: An appraisal of<br />

spheroids and filaments from a 3500 m.y. old cherbarit unit at North-Pole, Western<br />

Australia. Palaios 5, 441-459.<br />

Burne, R.V. & Moore, L.S. (1987). Microbialites: Organosedimentary deposits of<br />

benthic microbial communities. Palaios 2, 241-254.<br />

Campbell, S.E. (1979). Soil stabilizati<strong>on</strong> by a procaryotic desert crust: implicati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

precambrian land biota. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 9, 335-348.<br />

Cano, R.J. & Borucki, M.K. (1995). Revival and identificati<strong>on</strong> of bacterial spores <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

25- to 40-milli<strong>on</strong>-year-old Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ican amber. Science 26, 1060-1064.<br />

Carr, M.H. (Ed.) (1996). Water <strong>on</strong> <strong>Mars</strong>. Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d Univ. Press, Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d, UK, pp229.<br />

Carr, M.H. & Wänke, H. (1992). Earth and <strong>Mars</strong>: Water <str<strong>on</strong>g>in</str<strong>on</strong>g>ventories as clues to<br />

accreti<strong>on</strong>al histories. Icarus 98, 61-71.<br />

Chapelle, F. (1993). Ground-Water Microbiology and Geochemistry, Wiley & S<strong>on</strong>s,<br />

New York, USA.<br />

Chicarro, A.L., Sco<strong>on</strong>, G.E.N. & Corad<str<strong>on</strong>g>in</str<strong>on</strong>g>i, M. (Eds.) (1989). Missi<strong>on</strong> to <strong>Mars</strong>, Report<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Explorati<strong>on</strong> Study Team, <strong>ESA</strong> SP-1117, <strong>ESA</strong> Publicati<strong>on</strong>s Divisi<strong>on</strong>,<br />

Noordwijk, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

De<str<strong>on</strong>g>in</str<strong>on</strong>g>es, P. (1980). <str<strong>on</strong>g>The</str<strong>on</strong>g> isotopic compositi<strong>on</strong> of reduced organic carb<strong>on</strong>. In Handbook<br />

of Envir<strong>on</strong>mental Isotope Geochemistry (Eds. P. Fritz & J.C. F<strong>on</strong>tes), Elsevier,<br />

Amsterdam, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, Vol. 1, pp329-406.<br />

Durand, B. (Ed.) (1980). Kerogen-Insoluble Organic Matter from Sedimentary Rocks,<br />

Editi<strong>on</strong>s Techniq, Paris, France, pp519.<br />

Egl<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>, G. & Calv<str<strong>on</strong>g>in</str<strong>on</strong>g>, M. (1967). Chemical fossils. Sci. Am. 216, 32-43.<br />

Engel, M.H. & Macko, S.A. (1983). Organic Chemistry, Plenum Press, New York,<br />

USA.<br />

Friedmann, E.I. (1982). Endolithic microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic cold desert.<br />

Science 215, 1945-1953.<br />

Gilich<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, D.A., So<str<strong>on</strong>g>in</str<strong>on</strong>g>a, V.S. & Petrova, M.A. (1993). Cryoprotective properties of<br />

water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth cryolithosphere and its role <str<strong>on</strong>g>in</str<strong>on</strong>g> exobiology, Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 23,<br />

65-75.<br />

Hayes, J.M., Kaplan, I.R. & Wedek<str<strong>on</strong>g>in</str<strong>on</strong>g>g, K.W. (1983). Precambrian organic geochemistry:<br />

Preservati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> record. In Earth Earliest Biosphere: Its Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and<br />

Evoluti<strong>on</strong> (Ed. J.W. Schopf), Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong> University Press, Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong>, N.J., USA,<br />

pp93-134.<br />

Hitchcock, D.R. & Lovelock, J.E. (1967). <str<strong>on</strong>g>Life</str<strong>on</strong>g> detecti<strong>on</strong> by atmospheric analysis.<br />

Icarus 7, 149-159.<br />

Hoer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, T.C. & Navale, V. (1987). A search <str<strong>on</strong>g>for</str<strong>on</strong>g> modular fossils <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen of<br />

Precambrian sedimentary rocks. Precambrian Res. 34, 247-267.<br />

Horneck, G. (1995). <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, evoluti<strong>on</strong> and distributi<strong>on</strong> of<br />

life with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text of cosmic evloluti<strong>on</strong>: a review. Planet. Space Sci. 43, 189-<br />

217.<br />

Horowitz, N.H., Hobby, G.L. & Hubbard, J.S. (1977). Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>Mars</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong><br />

assimilati<strong>on</strong> experiments. J. Geophys. Res. 82, 4559-4662.<br />

Imshenetsky, A.A., Lysenko, D.V. & Kazakov, G.A. (1978). Upper boundary of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

biosphere. Appl. Envir<strong>on</strong>m. Microbiol. 35, 1-5.<br />

Jannasch, H.W. & Mottl, M.J. (1985). Geomicrobiology and deep-sea hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

vents. Science 229, 717-725.<br />

Karl, D.M., Wirsen, C.O. & Jannasch, H.W. (1980). Deep-sea primary producti<strong>on</strong> at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Galapagos hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents. Science 20, 1345-1347.<br />

Killops, S.D. & Killops, V.J. (1993). An <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to Organic Geochemistry,<br />

L<strong>on</strong>gman, UK.<br />

61


SP-1231<br />

62<br />

Kle<str<strong>on</strong>g>in</str<strong>on</strong>g>, H.P. (1979). <str<strong>on</strong>g>The</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g missi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> <strong>Mars</strong>. Rev. Geophys.<br />

Space Phys. 17, 1655-1662.<br />

Kolbel-Boekel, J., Anders, E. & Nehrkorn, A. (1988). Microbial communities <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturated groundwater envir<strong>on</strong>ment, II. Diversity of bacterial communities <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

Pleistocene sand aquifer and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro activities. Microbial. Ecology 16, 31-<br />

48.<br />

Lev<str<strong>on</strong>g>in</str<strong>on</strong>g>, G.V. & Straat, P.A. (1977). Recent results from <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g labeled release<br />

experiment <strong>on</strong> <strong>Mars</strong>. J. Geophys. Res. 82, 4663-4667.<br />

Lovelock, J.E. (1979). Gaia, Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d University Press, Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d, UK.<br />

MacDermott, A.J., Barr<strong>on</strong>, L.d., Brack, A., Buhse, T., Drake, F., Emery, R., Gottarelli,<br />

G., Greenberg, J.M., Haberle, R., Hegstrom, R.A., Hobbs, K., K<strong>on</strong>deputi. D.K.,<br />

McKay, C., Moorbath, S., Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F., Sand<str<strong>on</strong>g>for</str<strong>on</strong>g>d, M., Schwartzman, D.W.,<br />

Thiemann, W.H.-P., Tranter, G.E. & Zarnecki J.C. (1996). Homochirality as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

signature of life: <str<strong>on</strong>g>the</str<strong>on</strong>g> SETH Cigar. Planet. Space Sci. 44, 1441-1446.<br />

McKay, C.P. (1986). <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> and future <strong>Mars</strong> missi<strong>on</strong>s: <str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>’<br />

earliest biosphere. Adv. Space Res. 6(12), 269-285.<br />

McKay, C.P. (1991). Planetary evoluti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life. Icarus 91, 93-100.<br />

McKay, C.P. & Nedell, S.S. (1988). Are <str<strong>on</strong>g>the</str<strong>on</strong>g>re carb<strong>on</strong>ate deposits <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Valles<br />

Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris, <strong>Mars</strong>? Icarus 73, 142-148.<br />

McKay, C.P. & Stoker, C.R. (1989). <str<strong>on</strong>g>The</str<strong>on</strong>g> early envir<strong>on</strong>ment and its evoluti<strong>on</strong> <strong>on</strong> <strong>Mars</strong>:<br />

Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> life. Rev. Geophys. 27, 189-214.<br />

Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harris<strong>on</strong>, T.M., Nutman, A.P. &<br />

Friend, R.L. (1996). Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> Earth be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 3,800 milli<strong>on</strong> years ago.<br />

Nature 384, 55-59.<br />

Morita, R.Y. (1975). Microbial c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘steady state’<br />

carb<strong>on</strong> dioxide system. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 6, 37-44.<br />

Moroz, V.I. & Mukh<str<strong>on</strong>g>in</str<strong>on</strong>g>, L.M. (Eds.) (1978). About <str<strong>on</strong>g>the</str<strong>on</strong>g> Initial Evoluti<strong>on</strong> of Atmosphere<br />

and Climate of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth-Type Planets, Inst. Space Res. USSR Acad. Sci.,<br />

Moscow, Publicati<strong>on</strong> D-255, pp44.<br />

Nienow, J.A. & Friedmann, E.I. (1993). Terrestrial lithophytic (rock) communities. In<br />

Antarctic Microbiology (Ed. E. Friedmann), Wiley & S<strong>on</strong>s, New York, USA,<br />

pp343-412.<br />

O’Leary, M.H. (1981). Carb<strong>on</strong> isotope fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> plants. Phytochemistry 20, 55-<br />

567.<br />

Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W. & Lafleur, A.L.<br />

(1977). <str<strong>on</strong>g>The</str<strong>on</strong>g> compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong>. J. Geophys Res.<br />

82, 4635-3639.<br />

Oyama, V.I., Berdahl, B.J. & Carle, G.C. (1977). Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

gas exchange experiment and a model <str<strong>on</strong>g>for</str<strong>on</strong>g> Martian surface chemistry. Nature 265,<br />

110-114.<br />

Peters, K.E. & Moldowan, J.M. (1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> Biomarker Guide, Prentice Hall, USA.<br />

Pflug, H.D. (1978). Yeast-like microfossils detected <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest sediments of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth. Naturwissenschaften 65, 611-615.<br />

Pflug, H.D. (1987). Chemical fossils <str<strong>on</strong>g>in</str<strong>on</strong>g> early m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. Topics <str<strong>on</strong>g>in</str<strong>on</strong>g> Current Chemistry<br />

139, 1-55.<br />

Pollock, G.E., Miyamoto, A.K. & Oyama, V.I. (1970). <str<strong>on</strong>g>The</str<strong>on</strong>g> detecti<strong>on</strong> of optical<br />

asymmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> biogenic molecules by gas chromatography <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial space<br />

explorati<strong>on</strong>: sample process<str<strong>on</strong>g>in</str<strong>on</strong>g>g studies. <str<strong>on</strong>g>Life</str<strong>on</strong>g> Sci. & Sp. Res. 8, 9-107.<br />

Quader, H. & Bock, E. (1995). K<strong>on</strong>fokale-Laser-Raster-Mikroskopie: E<str<strong>on</strong>g>in</str<strong>on</strong>g>e neue<br />

Möglichkeit geste<str<strong>on</strong>g>in</str<strong>on</strong>g>sbewohnende Mikroorganismen zu untersuchen. Int. J.<br />

Restorati<strong>on</strong> of Build<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 1, 295-304.<br />

R<strong>on</strong>ov, A.B., Yaroshevsky, A.A. & Migdisov, A.A. (Eds.) (1990). Khimicheskoe<br />

Stroyenie Zemnoi Kory i Khimicheski Balans Glavnykh Elementov (Chemical<br />

Structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s Crust and Chemical Balance of Major Elements (<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Russian)). Izdatel’stvo Nauka, Moscow, Russia, pp181.<br />

Rothschild, L.J., Giver, L.J., White, M.R. & Manc<str<strong>on</strong>g>in</str<strong>on</strong>g>elli, R.L. (1994). Metabolic<br />

activity of microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> evaporites. J. Physiol. 30, 431-438.


morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

Schidlowski, M. (1982). C<strong>on</strong>tent and isotopic compositi<strong>on</strong> of reduced carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sediments. In M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral Deposit and <str<strong>on</strong>g>the</str<strong>on</strong>g> Evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Biosphere (Eds. H.D.<br />

Holland & M. Schidlowski), Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>, Germany, pp103-122.<br />

Schidlowski, M. (1993a). <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itiati<strong>on</strong> of biological processes <strong>on</strong> Earth: Summary<br />

of empirical evidence. In Organic Geochemistry (Eds. M.H. Engel & S.A. Macko),<br />

Plenum Press, New York, USA, pp 639-655.<br />

Schidlowski, M. (1993b). <str<strong>on</strong>g>The</str<strong>on</strong>g> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of life <strong>on</strong> Earth: evidence from geological<br />

record. In <str<strong>on</strong>g>The</str<strong>on</strong>g> Chemistry of <str<strong>on</strong>g>Life</str<strong>on</strong>g>’s Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> (Eds. J.M. Greenberg et al.), Kluwer<br />

Academic Publ., <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, pp.389-414.<br />

Schidlowski, M., Appel, P.W.V., Eichmann, R. & Junge, C.E. (1979). Carb<strong>on</strong> isotope<br />

geochemistry of <str<strong>on</strong>g>the</str<strong>on</strong>g> 3.7 x 10 9 yr old Ishua sediments, West Greenland: Implicati<strong>on</strong>s<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaean carb<strong>on</strong> and oxygen cycles. Geochim. Cosmochim. Acta 43, 189-<br />

199.<br />

Schidlowski, M., Hayes, J.M. & Kaplan, I.R. (1983). Isotopic <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences of ancient<br />

biochemistries: Carb<strong>on</strong>, sulfur, hydrogen and nitrogen. In Earth’s Earliest<br />

Biosphere: Its Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and Evoluti<strong>on</strong> (Ed. J.W. Schopf), Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong> University Press,<br />

Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong>, NJ, USA, pp149-186.<br />

Schopf, J.W. (Ed.) (1983). Earth’s Earliest Biosphere: Its Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and Evoluti<strong>on</strong>.<br />

Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong> University Press, Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong>, NJ, USA, ppXXV+543.<br />

Schopf, J.W. (1993). Microfossils of <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Archaean Apex Chert: New evidence<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> antiquity of life. Science 260, 640-646.<br />

Schopf, J.W. & Packer, B.M. (1987). Early Archaean (3.3-billi<strong>on</strong> to 3.5-billi<strong>on</strong>-yearold)<br />

microfossils from Warrawo<strong>on</strong>a Group, Australia. Science 237, 70-73.<br />

Schwartz, D.E., Manc<str<strong>on</strong>g>in</str<strong>on</strong>g>elli, R.L. & Kaneshiro, E.S. (1992). <str<strong>on</strong>g>The</str<strong>on</strong>g> use of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

crystals as biomarkers <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> <strong>Mars</strong>. Adv. Space Res. 12, (4)117-<br />

(4)119.<br />

Siebert, J. & Hirsch, P. (1988). Characterizati<strong>on</strong> of 15 selected coccal bacteria isolated<br />

from Antarctic rock and soil samples from <str<strong>on</strong>g>the</str<strong>on</strong>g> McMurdo-Dry Valleys (South<br />

Victoria land). Polar Biol. 8, 37-44.<br />

Stetter, K.O. (1996). Hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic procaryotes, FEMS Microbiol. Rev. 18, 149-<br />

158.<br />

Stevens, T.O. & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, J.P. (1995). Lithoautotrophic microbial ecosystems <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

deep basalt aquifers. Science 270, 450-454.<br />

Stolz, J.F. (1985). <str<strong>on</strong>g>The</str<strong>on</strong>g> microbial community at Laguna Figueroa, Baja Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia<br />

Mexico: from miles to micr<strong>on</strong>s. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 15, 347-352.<br />

Stolz, J.F. & Margulis, L. (1984). <str<strong>on</strong>g>The</str<strong>on</strong>g> stratified microbial community at Laguna<br />

Figueroa, Baja Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia, Mexico: a possible model <str<strong>on</strong>g>for</str<strong>on</strong>g> Prephanaerozoic<br />

lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated microbial communities preserved <str<strong>on</strong>g>in</str<strong>on</strong>g> cherts. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>Life</str<strong>on</strong>g> 14, 671-679.<br />

Summ<strong>on</strong>s, R.E., Jahnke, L.L. & Sim<strong>on</strong>eit, B.R.T. (1996). Lipid biomarkers <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

bacterial ecosystems: studies of cultured organisms, hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal envir<strong>on</strong>ments<br />

and ancient sediments. In Evoluti<strong>on</strong> of Hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Ecosystems <strong>on</strong> Earth. CIBA<br />

Foundati<strong>on</strong> Symposium 202 (Eds. G.R. Bock & J.A. Goode), J. Wiley & S<strong>on</strong>s,<br />

Chichester, UK, pp174-193.<br />

Summ<strong>on</strong>s, R.E. & Powell, T.G. (1992). Hydrocarb<strong>on</strong> compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> late<br />

proterozoic oils of <str<strong>on</strong>g>the</str<strong>on</strong>g> Siberian Plat<str<strong>on</strong>g>for</str<strong>on</strong>g>m: Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depositi<strong>on</strong>al<br />

envir<strong>on</strong>ment of source rocks. In Early Organic Evoluti<strong>on</strong>: Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral and Energy Resources (Eds. M. Schidlowski, S. Golubic, M.M.<br />

Kimberley, D.M. McKiroy & P.A. Trud<str<strong>on</strong>g>in</str<strong>on</strong>g>ger), Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>, Germany, pp296-<br />

307.<br />

Vishniac, H.S. (1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> microbiology of Antarctic soils. In Antarctic Microbiology<br />

(Ed. E. Friedmann), Wiley & S<strong>on</strong>s, New York, USA, pp. 297-341.<br />

Walter, M.R. (Ed.). (1976). Stromatolites, Elsevier, Amsterdam, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

Walter, M.R. (1983). Archaean stromatolites: Evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s earliest benthos.<br />

In Earth’s Earliest Biopshere: Its Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and Evoluti<strong>on</strong> (Ed. J.W. Schopf),<br />

Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong> University Press, Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong>, NJ, USA, pp187-213.<br />

Woese, C.R. (1987). Bacterial evoluti<strong>on</strong>. Microbiol. Rev. 51, 221-271.<br />

Wynn-Williams, D.D. (1988). 3.5 Televisi<strong>on</strong> image analysis of microbial commun-<br />

63


SP-1231<br />

64<br />

ities <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctic fellfields. Polar<str<strong>on</strong>g>for</str<strong>on</strong>g>schung 58, 239-249.<br />

Wynn-Williams, D.D. (1996). Resp<strong>on</strong>se of pi<strong>on</strong>eer soil microalgal col<strong>on</strong>ists to<br />

envir<strong>on</strong>mental change <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctica. Microb. Ecol. 31, 177-188.


I.5 Potential N<strong>on</strong>-Martian Sites <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Extraterrestrial <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> outer regi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> icy satellites have water (albeit frozen) <str<strong>on</strong>g>in</str<strong>on</strong>g> abundance. One of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> necessary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> life is thus met. We can c<strong>on</strong>ceive of life exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> or <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

an icy satellite provided <str<strong>on</strong>g>the</str<strong>on</strong>g>re are sites where nutrients and an energy source are<br />

available.<br />

Hot vents <strong>on</strong> Earth’s deep ocean floors (see I.3.2.1) are sites where bacteria and<br />

bacteria-like organisms (<str<strong>on</strong>g>the</str<strong>on</strong>g> hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic archea) feed off <str<strong>on</strong>g>the</str<strong>on</strong>g> supply of chemical<br />

energy, and are entirely <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent of energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun. <str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> Earth may have<br />

begun <str<strong>on</strong>g>in</str<strong>on</strong>g> such a sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g, perhaps at bubble membranes between alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g-water<br />

and acidic sea-water (Russell & Hall, 1997). Many of <str<strong>on</strong>g>the</str<strong>on</strong>g> icy satellites probably <strong>on</strong>ce<br />

hosted comparable envir<strong>on</strong>ments, and a few may still do so today. Given an adequate<br />

source of heat with<str<strong>on</strong>g>in</str<strong>on</strong>g> an icy satellite, we would expect water to be drawn down <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rocky core, to emerge elsewhere as a hot sal<str<strong>on</strong>g>in</str<strong>on</strong>g>e fluid bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g many c<strong>on</strong>stituents<br />

dissolved from <str<strong>on</strong>g>the</str<strong>on</strong>g> rock. <str<strong>on</strong>g>The</str<strong>on</strong>g>se could act both as nutrients and as an energy source to<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g> life, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as <str<strong>on</strong>g>the</str<strong>on</strong>g> effluent at hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s deep<br />

ocean floors. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g body of evidence that life was established <strong>on</strong> Earth no<br />

more than 700 milli<strong>on</strong> years after <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (Mojzsis et al., 1996; Schopf,<br />

1993), and so <str<strong>on</strong>g>the</str<strong>on</strong>g> limited durati<strong>on</strong> of comparable c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> most icy satellites<br />

cannot be used as an objecti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> development of life <str<strong>on</strong>g>in</str<strong>on</strong>g> those sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is a less credible energy source of life <str<strong>on</strong>g>in</str<strong>on</strong>g> icy satellites, <str<strong>on</strong>g>for</str<strong>on</strong>g> two<br />

reas<strong>on</strong>s: 1) <str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun means that each square metre of Jupiter’s<br />

satellites receives <strong>on</strong>ly 4% <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of solar power <str<strong>on</strong>g>in</str<strong>on</strong>g>cident <strong>on</strong> Earth; 2) it would<br />

be viable <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uppermost few metres of ice, a l<strong>on</strong>g way from any easily<br />

replenishable source of nutrients (unless <str<strong>on</strong>g>the</str<strong>on</strong>g>se could be supplied by cometary <str<strong>on</strong>g>in</str<strong>on</strong>g>fall).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> latter drawback is least serious <str<strong>on</strong>g>in</str<strong>on</strong>g> those bodies undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g (or have recently<br />

underg<strong>on</strong>e) resurfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g by processes capable of br<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g fresh nutrients from below<br />

(e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> br<str<strong>on</strong>g>in</str<strong>on</strong>g>es), so whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r search<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally-susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed or photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic life it is <str<strong>on</strong>g>the</str<strong>on</strong>g> active or recently active icy<br />

satellites that are <str<strong>on</strong>g>the</str<strong>on</strong>g> primary targets.<br />

I.5.1.1 Europa<br />

It is very likely that Europa is heated by tidal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces at present. Europa’s 2:1 orbital<br />

res<strong>on</strong>ance with Io is <str<strong>on</strong>g>the</str<strong>on</strong>g> cause of <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that makes Io <str<strong>on</strong>g>the</str<strong>on</strong>g> most volcanically<br />

active body <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, and we expect a smaller, but far from negligible, rate<br />

of heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g with<str<strong>on</strong>g>in</str<strong>on</strong>g> Europa. Dissipati<strong>on</strong> of tidal energy with<str<strong>on</strong>g>in</str<strong>on</strong>g> Europa’s rocky layer<br />

would require heat to be transported to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface through its ice/water shell. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Voyager images showed very few impact craters <strong>on</strong> Europa’s surface, c<strong>on</strong>firm<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

recent (probably c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g) resurfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g by cryovolcanic and tect<strong>on</strong>ic processes.<br />

Galileo images have revealed more small impact craters, but too few to dem<strong>on</strong>strate<br />

that resurfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g has ceased (Belt<strong>on</strong> et al., 1996).<br />

Europa has <str<strong>on</strong>g>the</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g>nest icy carapace of any large icy satellite. In <str<strong>on</strong>g>the</str<strong>on</strong>g> absence of<br />

seismic data, its thickness cannot be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ty. Density arguments<br />

depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> size of Europa’s metallic core and <str<strong>on</strong>g>the</str<strong>on</strong>g> extent of hydrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> outer<br />

part of <str<strong>on</strong>g>the</str<strong>on</strong>g> rocky layer. An estimate based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first two Galileo encounters with<br />

Europa has an ice (or ice plus water) shell 100-200 km (Anders<strong>on</strong> et al., 1997).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence of a global water ocean between Europa’s ice and <str<strong>on</strong>g>the</str<strong>on</strong>g> rocky <str<strong>on</strong>g>in</str<strong>on</strong>g>terior<br />

is c<strong>on</strong>troversial, but Galileo’s high-resoluti<strong>on</strong> images (Figs I.5.1.1/1 and I.5.1.1/2)<br />

make it very hard to deny at least <str<strong>on</strong>g>the</str<strong>on</strong>g> temporary occurrence of localised melts with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

or below <str<strong>on</strong>g>the</str<strong>on</strong>g> icy layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al scale of <str<strong>on</strong>g>the</str<strong>on</strong>g> texture of some of <str<strong>on</strong>g>the</str<strong>on</strong>g> ridge and groove<br />

patterns can be used to argue <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of th<str<strong>on</strong>g>in</str<strong>on</strong>g>-sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ned tect<strong>on</strong>ics (with a de<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

I.5.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Icy Satellites<br />

65


SP-1231<br />

Fig. I.5.1.1/1. A 34×42 km area of Europa<br />

imaged by Galileo, where ice floes have<br />

apparently drifted apart, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r float<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a<br />

liquid sea or lubricated at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir bases by a<br />

mushy icy layer (P-48526, NASA).<br />

66<br />

layer of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of 1 km thick), but clearly <str<strong>on</strong>g>the</str<strong>on</strong>g> ice is generally much thicker than this.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most likely sites <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life would be at hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents below <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

recently resurfaced areas. To study <str<strong>on</strong>g>the</str<strong>on</strong>g>se directly would require mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g a borehole<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> ice <str<strong>on</strong>g>in</str<strong>on</strong>g> order to deploy a robotic submersible. <str<strong>on</strong>g>The</str<strong>on</strong>g> technology <str<strong>on</strong>g>for</str<strong>on</strong>g> such<br />

submersibles already exists, but <str<strong>on</strong>g>the</str<strong>on</strong>g> means of penetrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ice of unknown thickness<br />

poses a greater challenge. However, biological processes <str<strong>on</strong>g>in</str<strong>on</strong>g> and around hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

vents could produce biomarkers that would appear as traces <str<strong>on</strong>g>in</str<strong>on</strong>g> cryovolcanic erupti<strong>on</strong>s<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby be available at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> situ analysis or sample return. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

nutrients delivered through cryovolcanic erupti<strong>on</strong> would make <str<strong>on</strong>g>the</str<strong>on</strong>g> same locati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

best candidates <str<strong>on</strong>g>for</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic life.<br />

I.5.1.2 Ganymede<br />

Large tracts of Ganymede have been resurfaced by some k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of tect<strong>on</strong>ovolcanic<br />

process. Galileo images reveal that <str<strong>on</strong>g>the</str<strong>on</strong>g> ridge and groove patterns are repeated <strong>on</strong> a<br />

scale an order of magnitude smaller than that of those discovered by Voyager (Belt<strong>on</strong><br />

et al, 1996). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> density of superposed impact structures even of Ganymede’s<br />

youngest terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that this activity ceased l<strong>on</strong>g ago (probably more than<br />

1 Gyr). Moreover, Ganymede’s ice is probably more than 1000 km thick, so m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

nutrients are likely to be very deeply buried. Thus, although hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmally susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

life at <str<strong>on</strong>g>the</str<strong>on</strong>g> ice-rock <str<strong>on</strong>g>in</str<strong>on</strong>g>terface could have been viable <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distant past, <str<strong>on</strong>g>the</str<strong>on</strong>g> prospects of<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g biomarkers <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present surface ice are much poorer than <str<strong>on</strong>g>for</str<strong>on</strong>g> Europa.


I.5.1.3 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Icy Satellites<br />

Several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r icy bodies have experienced episodes of tidal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, and moreover<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y would have had hotter <str<strong>on</strong>g>in</str<strong>on</strong>g>teriors <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distant past when radioactive decay was a<br />

more potent heat source. Saturn’s small satellite Enceladus has terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

impact crater record has been erased by recent resurfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates an episode<br />

of enhanced tidal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that could have supported hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal life. Indirect<br />

evidence that hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal reacti<strong>on</strong>s have occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> icy satellites comes from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

apparent absence of carb<strong>on</strong> m<strong>on</strong>oxide and <str<strong>on</strong>g>the</str<strong>on</strong>g> prep<strong>on</strong>derance of methane <str<strong>on</strong>g>in</str<strong>on</strong>g> outer<br />

<str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> ices (Sim<strong>on</strong>elli et al., 1989). This could have been caused by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidati<strong>on</strong> of rock, and may have been organically mediated. Neptune’s large satellite<br />

Trit<strong>on</strong> has abundant methane and a degree of relatively recent cryovolcanic resurfac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

and <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g geyser activity (Soderblom et al., 1990) that make it <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

entic<str<strong>on</strong>g>in</str<strong>on</strong>g>g target bey<strong>on</strong>d Saturn, as discussed below.<br />

I.5.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Titan Atmosphere<br />

Titan’s atmosphere was revealed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by <str<strong>on</strong>g>the</str<strong>on</strong>g> Voyager-1 missi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1980, which<br />

yielded <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk compositi<strong>on</strong> (90% molecular nitrogen and about 1-8% methane).<br />

Also, a great number of trace c<strong>on</strong>stituents were observed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of hydrocarb<strong>on</strong>s<br />

(acetylene, ethane, ethylene, etc) nitriles (HCN, C 2N 2, HC 3N) and oxygen compounds<br />

(CO and CO 2). Recent analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> Voyager-1 spectroscopic data provided precise<br />

potential n<strong>on</strong>-martian sites <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial life/I.5<br />

Fig I.5.1.1/2. An 80×95 km area of Europa<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> youngest features are domes that are<br />

probably viscous cryovolcanic flows or sites of<br />

shallow <str<strong>on</strong>g>in</str<strong>on</strong>g>trusi<strong>on</strong>. Ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r explanati<strong>on</strong> would<br />

make <str<strong>on</strong>g>the</str<strong>on</strong>g>se features good sites to search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

traces of life. (Galileo image released 18 April<br />

1997, NASA.)<br />

I.5.2 Titan<br />

67


SP-1231<br />

Fig. I.5.2.1/1. Titan’s atmospheric l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

compositi<strong>on</strong> variati<strong>on</strong>s. (From Coustenis &<br />

Bézard, 1995.)<br />

Fig. I.5.2.1/2. Variati<strong>on</strong> with latitude of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature of Titan’s upper atmosphere.<br />

(From Coustenis & Bézard, 1995.)<br />

68


abundances at various locati<strong>on</strong>s over Titan’s disc (Coustenis & Bézard, 1995).<br />

Seas<strong>on</strong>al effects caused an enhancement of some of <str<strong>on</strong>g>the</str<strong>on</strong>g> less abundant m<str<strong>on</strong>g>in</str<strong>on</strong>g>or comp<strong>on</strong>ents<br />

over Titan’s North Pole at <str<strong>on</strong>g>the</str<strong>on</strong>g> time of <str<strong>on</strong>g>the</str<strong>on</strong>g> Voyager encounter (Fig. I.5.2.1/1).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> exact degree of complexity of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic chemistry active <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s<br />

atmosphere is not well known. More complex organic compounds are still be<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

discovered <str<strong>on</strong>g>in</str<strong>on</strong>g> gaseous or solid <str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

Titan is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly o<str<strong>on</strong>g>the</str<strong>on</strong>g>r object <str<strong>on</strong>g>in</str<strong>on</strong>g> our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> to bear a str<strong>on</strong>g resemblance to<br />

our own planet <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of atmospheric compositi<strong>on</strong> and temperature structure. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

latter shows an <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> tropopause and <str<strong>on</strong>g>in</str<strong>on</strong>g>creases towards <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

(T=94K) ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a small greenhouse effect. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature profile <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stratosphere<br />

also varies as a functi<strong>on</strong> of latitude (Fig. I.5.2.1/2).<br />

Measurements by <strong>ESA</strong>’s Infrared Space Observatory (ISO) <str<strong>on</strong>g>in</str<strong>on</strong>g> January 1997 have<br />

c<strong>on</strong>firmed models based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Voyager data (Coustenis et al., 1993), and are still<br />

under analysis. <str<strong>on</strong>g>The</str<strong>on</strong>g>y provide more accurate abundance measurements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

mode (although <strong>on</strong> a disc-averaged basis) and even provide vertical distributi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

some of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>or comp<strong>on</strong>ents by use of <str<strong>on</strong>g>the</str<strong>on</strong>g> Fabry-Perot mode.<br />

Water vapour was discovered <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s atmosphere by ISO/SWS (Coustenis et al.,<br />

1998).<br />

I.5.2.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Titan Surface<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> surface of Titan has never been viewed directly because of <str<strong>on</strong>g>the</str<strong>on</strong>g> thick cloud deck<br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> satellite. Models have predicted <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of oceans or large lakes<br />

of hydrocarb<strong>on</strong> material <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground. <str<strong>on</strong>g>The</str<strong>on</strong>g>se models have recently been disputed by<br />

ground-based and Hubble Space Telescope (HST) spectroscopic observati<strong>on</strong>s.<br />

Observati<strong>on</strong>s of Titan have been per<str<strong>on</strong>g>for</str<strong>on</strong>g>med with <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

Spectrometer at <str<strong>on</strong>g>the</str<strong>on</strong>g> CFH Telescope <str<strong>on</strong>g>in</str<strong>on</strong>g> Hawaii. <str<strong>on</strong>g>The</str<strong>on</strong>g> spectra were recorded over a<br />

period of 5 years (1991-1996) and cover most of Titan’s orbit (16 days) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1-<br />

2.5 µm regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong>s show that, with<str<strong>on</strong>g>in</str<strong>on</strong>g> an orbit, Titan’s geometric albedo<br />

exhibits significant variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of a brighter lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere (fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth) and a darker trail<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e (Fig. I.5.2.2/1). <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum albedo appears near<br />

120±20º LCM (L<strong>on</strong>gitude of Central Meridian) and <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum near 230±20º<br />

LCM. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong>s (25-35%) have been observed <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently by various groups<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce 1989 and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are recurrent. <str<strong>on</strong>g>The</str<strong>on</strong>g>y must <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e be correlated with Titan’s<br />

potential n<strong>on</strong>-martian sites <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial life/I.5<br />

Fig. I.5.2.2/1 Titan’s geometric albedo, 1991-<br />

1995 (Coustenis, private communicati<strong>on</strong>).<br />

69


SP-1231<br />

Fig. I.5.2.2/2. Modelled Titan surface spectrum<br />

(Coustenis et al., 1999, <str<strong>on</strong>g>in</str<strong>on</strong>g> preparati<strong>on</strong>).<br />

70<br />

surface morphology, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than atmospheric cloud structures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Titan surface spectrum, as modelled from <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s (Fig. I.5.2.2/2), is<br />

remarkably c<strong>on</strong>sistent with a mostly solid surface dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by water ice and it<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e resembles that of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r satellites, such as Hyperi<strong>on</strong> or Callisto (Coustenis et<br />

al., 1995).<br />

Spatially-resolved images of Titan, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> European Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Observatory<br />

(ESO) 3.6 m. telescope and ADONIS optics, were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> October 1993,<br />

September 1994, October 1995 and November 1996 (Coustenis et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

images were recorded through a set of narrowband filters (K1, H1, J1), def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to maximise <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> light reflected by Titan’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

signal recorded at <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.0, 1.6 and 1.28 µm transparency w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows of<br />

Titans atmosphere. At those three wavelengths, Titan’s atmosphere is transparent<br />

because of very low molecular methane absorpti<strong>on</strong>. In order to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> subtracti<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> stratospheric c<strong>on</strong>tributi<strong>on</strong> and hence improve <str<strong>on</strong>g>the</str<strong>on</strong>g> visibility of ground features,<br />

images were recorded <str<strong>on</strong>g>in</str<strong>on</strong>g> adjacent narrowband filters (K2, H2, J2) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

str<strong>on</strong>g methane bands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> 2.2 µm ADONIS images show <str<strong>on</strong>g>the</str<strong>on</strong>g> expected north-south asymmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stratosphere, <str<strong>on</strong>g>the</str<strong>on</strong>g> South Pole brighter than <str<strong>on</strong>g>the</str<strong>on</strong>g> North Pole, reversed with respect to<br />

Voyager and due to seas<strong>on</strong>al effects. After dec<strong>on</strong>voluti<strong>on</strong>, correcti<strong>on</strong> of centre-limb<br />

effects and subtracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric comp<strong>on</strong>ent, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.0 µm surface images<br />

show a bright well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed equatorial spot at around 120º LCM (lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere)<br />

extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g over 60º <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>gitude and 30 º <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude, and some smaller and less<br />

c<strong>on</strong>trasted features near <str<strong>on</strong>g>the</str<strong>on</strong>g> poles, all rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g over six c<strong>on</strong>secutive nights at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

expected rotati<strong>on</strong> rate of Titan’s solid body. <str<strong>on</strong>g>The</str<strong>on</strong>g> area attributed to ground features is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with HST images (Smith et al., 1996) taken near 1 µm, both as to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> spatial resoluti<strong>on</strong> is at <str<strong>on</strong>g>the</str<strong>on</strong>g> limit of diffracti<strong>on</strong> (0.13 arcsec<br />

at 2.0 µm), very similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> HST images. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> ADONIS images of Titan’s<br />

trail<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere show high-latitude bright z<strong>on</strong>es with a north-south asymmetry;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn latitudes appear brighter by about a factor two with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> south<br />

(Fig. I.5.2.2/3). <str<strong>on</strong>g>The</str<strong>on</strong>g>se bright z<strong>on</strong>es might exist over Titan’s entire disc.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entire surface of Titan appears quite dark <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water ice bands, <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement<br />

with spectroscopic measurements by Coustenis et al., 1997. <str<strong>on</strong>g>The</str<strong>on</strong>g> model of a global<br />

ocean cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface must be ruled out. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred that large cloud structures


are not present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> troposphere. It is suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> observed quite complex<br />

bright z<strong>on</strong>es may be related to local porti<strong>on</strong>s covered by icy methane (or ethane),<br />

which is bright at 2 µm and is plausible at temperatures below 90K, expected <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

example at <str<strong>on</strong>g>the</str<strong>on</strong>g> poles, or <strong>on</strong> top of a mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> near <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorial regi<strong>on</strong>s. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

possibility <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polar brightness would be a permanent polar cloud deck (or mist)<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> low troposphere. Patchy methane clouds have been suggested <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tropopause.<br />

I.5.2.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Cass<str<strong>on</strong>g>in</str<strong>on</strong>g>i/Huygens Missi<strong>on</strong><br />

Launched <str<strong>on</strong>g>in</str<strong>on</strong>g> October 1997, <str<strong>on</strong>g>the</str<strong>on</strong>g> spacecraft will arrive <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of Saturn <str<strong>on</strong>g>in</str<strong>on</strong>g> 2004<br />

and per<str<strong>on</strong>g>for</str<strong>on</strong>g>m several flybys of Titan, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g spectroscopic, imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g, radar and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

measurements. <str<strong>on</strong>g>The</str<strong>on</strong>g> Huygens Probe will penetrate <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere to reveal its true<br />

nature.<br />

Anders<strong>on</strong>, J.D., Lau, E.L., Sjorgren, W.L. Schubert, G. & Moore, W.B. (1997).<br />

Europa’s differentiated <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal structure: <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences from two Galileo encounters.<br />

Science 276, 1236-9.<br />

Belt<strong>on</strong>, M.J.S. & 33 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (1996). Galileo’s first images of Jupiter and <str<strong>on</strong>g>the</str<strong>on</strong>g> galilean<br />

satellites. Science 274, 377-85.<br />

Combes, M. et al. (1997). Spatially resolved images of Titan by means of adaptive<br />

optics. Icarus 129, 482.<br />

Coustenis, A. & Bézard, B. (1995). Titan’s atmosphere from Voyager I.R. observati<strong>on</strong>s.<br />

Icarus 115, 126-140.<br />

Coustenis, A. et al. (1993). Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g Titan’s <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>in</str<strong>on</strong>g>frared spectrum <str<strong>on</strong>g>for</str<strong>on</strong>g> high<br />

resoluti<strong>on</strong> space observati<strong>on</strong>s. Icarus 102, 240-260.<br />

Coustenis, A. et al. (1997). Titan’s surface compositi<strong>on</strong> and variability from <str<strong>on</strong>g>the</str<strong>on</strong>g> near-<br />

IR albedo. Icarus 118, 87-104.<br />

Coustenis, A. Salama, A., Lellouch, E. Encrenaz, Th., Bjoraker, G.L., Samuels<strong>on</strong>,<br />

R.E., De Graauw, Th., Feuchtgruber, H. & Kessler, M.F. (1998). Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

water vapor <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s atmosphere from ISO/SWS data. A&A 336, L85-L89.<br />

potential n<strong>on</strong>-martian sites <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial life/I.5<br />

Fig. I.5.2.2/3. Images of Titan’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

near-IR. At left is <str<strong>on</strong>g>the</str<strong>on</strong>g> lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere; <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trail<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere is at right. (From Combes<br />

et al., 1997.)<br />

References<br />

71


SP-1231<br />

72<br />

Galileo: images available at http://www.jpl.nasa.gov:80/galileo/<br />

Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harris<strong>on</strong> T.M., Nutman, A.P. & Friend,<br />

C.R.L. (1996). Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> Earth be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 3,800 milli<strong>on</strong> years ago. Nature<br />

384, 55-59.<br />

Russell, M.J. & Hall, A.J. (1977). <str<strong>on</strong>g>The</str<strong>on</strong>g> emergence of life from ir<strong>on</strong> m<strong>on</strong>osulphide bubbles<br />

at a submar<str<strong>on</strong>g>in</str<strong>on</strong>g>e hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal redox and pH fr<strong>on</strong>t. J. Geol. Soc. 154, 377-402.<br />

Schopf, J.W. (1993). Microfossils of <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Archean Apex Chert: New Evidence of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Antiquity of <str<strong>on</strong>g>Life</str<strong>on</strong>g>. Science 260, 640-646.<br />

Sim<strong>on</strong>elli, D.P., Pollack, J.B., McKay, C.P., Reynolds, P.T. & Summers, A. (1989).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> carb<strong>on</strong> budget <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer solar nebula. Icarus 82, 1-35.<br />

Smith, P.H. et al. (1996). Titan’s surface revealed by HST imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Icarus 119, 336-<br />

349.<br />

Soderblom, L.A., Kieffer, S.W., Becker, T.L., Brown, R.H., Cook II, A.F., Hansen,<br />

C.J., Johns<strong>on</strong>, T.V., Kirk, R.L. & Shoemaker, E.M. (1990). Trit<strong>on</strong>’s geyser-like<br />

plumes: discovery and basic characterizati<strong>on</strong>. Science 250, 410-415.


I.6 Science and Experiment Strategy<br />

‘Dans le champs de l’observati<strong>on</strong> le hasard ne favorise que les esprits préparés.’ – Louis Pasteur, 1854.<br />

(‘Where observati<strong>on</strong> is c<strong>on</strong>cerned, chance favours <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> prepared m<str<strong>on</strong>g>in</str<strong>on</strong>g>d.’)<br />

Pasteur’s observati<strong>on</strong> is particularly appropriate <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text of <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life<br />

bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is <str<strong>on</strong>g>in</str<strong>on</strong>g>evitably a large measure of chance <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct microbial life, and especially so when search<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g life.<br />

But <str<strong>on</strong>g>the</str<strong>on</strong>g> chances of success can be improved by tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g note of <str<strong>on</strong>g>the</str<strong>on</strong>g> less<strong>on</strong>s to be learned<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g missi<strong>on</strong>, from <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant studies <strong>on</strong> Earth, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong>s<br />

I.3 and I.4, and from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> derived from studies of <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian meteorites,<br />

discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> II.3.<br />

To maximise <str<strong>on</strong>g>the</str<strong>on</strong>g> chances of clear and unambiguous c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct or extant life <str<strong>on</strong>g>in</str<strong>on</strong>g> any analysis, it is absolutely essential that <str<strong>on</strong>g>the</str<strong>on</strong>g> coverage of<br />

search <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> be broad enough to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunities <str<strong>on</strong>g>for</str<strong>on</strong>g> alternative<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, each comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g>strument must be carefully<br />

designed so that it does not <str<strong>on</strong>g>for</str<strong>on</strong>g>m a serious weak l<str<strong>on</strong>g>in</str<strong>on</strong>g>k <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cha<str<strong>on</strong>g>in</str<strong>on</strong>g> of observati<strong>on</strong>s<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument array.<br />

C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> search science strategy is to provide, as far as possible, a selfc<strong>on</strong>sistent<br />

set of <str<strong>on</strong>g>in</str<strong>on</strong>g>struments that will give c<strong>on</strong>crete evidence, <str<strong>on</strong>g>for</str<strong>on</strong>g> or aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

existence of a range of biosignatures and associated images at a given search site. In<br />

order to do that, an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated package of analysis <str<strong>on</strong>g>in</str<strong>on</strong>g>struments is required.<br />

What must not be attempted, under any circumstances, is a search <str<strong>on</strong>g>for</str<strong>on</strong>g> biosignatures<br />

with <str<strong>on</strong>g>in</str<strong>on</strong>g>adequate <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong>. It would be foolhardy to attempt to establish <str<strong>on</strong>g>the</str<strong>on</strong>g> existence,<br />

or o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise, of life signs <strong>on</strong> <strong>Mars</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> example, by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of a small narrowlybased<br />

measurement unit located at <strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g>adequately characterised land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>evitable result<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>fusi<strong>on</strong> would simply discredit <str<strong>on</strong>g>the</str<strong>on</strong>g> subject of exobiology.<br />

Clearly, a strategy rely<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> careful collecti<strong>on</strong> of samples from <str<strong>on</strong>g>the</str<strong>on</strong>g> planet and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir return to Earth is highly desirable. <str<strong>on</strong>g>The</str<strong>on</strong>g> experience from <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar programme<br />

c<strong>on</strong>firms this. Indeed, this is <str<strong>on</strong>g>the</str<strong>on</strong>g> route preferred by NASA <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong><br />

<strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> returned samples can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be subjected to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

spectrum of <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> available <strong>on</strong> Earth by a diverse range of experts.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> problem with such a strategy is that, quite apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> cost and technical<br />

difficulties, it would be leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g too much to chance to mount such a project be<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out a careful programme of explorati<strong>on</strong> and <str<strong>on</strong>g>in</str<strong>on</strong>g> situ analysis at several<br />

selected locati<strong>on</strong>s <strong>on</strong> <strong>Mars</strong>. We do not yet know, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, from what depth<br />

samples must be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> order to be entirely free from <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

oxidant. Nor do we know which of <str<strong>on</strong>g>the</str<strong>on</strong>g> currently listed sites <strong>on</strong> <strong>Mars</strong> are actually <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is much to be d<strong>on</strong>e, and d<strong>on</strong>e well, be<str<strong>on</strong>g>for</str<strong>on</strong>g>e a sample return<br />

missi<strong>on</strong> should be attempted.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> meantime, a sophisticated automated analysis system of <str<strong>on</strong>g>the</str<strong>on</strong>g> type c<strong>on</strong>sidered<br />

here can pave <str<strong>on</strong>g>the</str<strong>on</strong>g> way with essential observati<strong>on</strong>s, as well as <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g a large amount<br />

of <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> geochemistry and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy. It can do this with a reas<strong>on</strong>able<br />

chance of succeed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first detecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> signatures of life.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> preced<str<strong>on</strong>g>in</str<strong>on</strong>g>g chapters we have seen that life as we know it relies up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

existence of water, above all else. Without that, life ceases or goes <str<strong>on</strong>g>in</str<strong>on</strong>g>to a quiescent<br />

mode. Hence, a search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life translates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first place <str<strong>on</strong>g>in</str<strong>on</strong>g>to a search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

liquid water. This may lie at some c<strong>on</strong>siderable depth below <str<strong>on</strong>g>the</str<strong>on</strong>g> sterile surface of a<br />

planet, as could be <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>in</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> areas of <strong>Mars</strong>. An orbital survey to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water-ice boundary across <strong>Mars</strong> is of paramount importance. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of Europa,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> water-ice boundary is likely to be many kilometres below <str<strong>on</strong>g>the</str<strong>on</strong>g> icy carapace, except<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> localised regi<strong>on</strong>s subjected to cryovolcanic flows.<br />

I.6.1 Where to <str<strong>on</strong>g>Search</str<strong>on</strong>g>?<br />

73


SP-1231<br />

74<br />

TABLE I.6.2/1 EVIDENCE OF EXTANT LIFE<br />

1. Structural Indicati<strong>on</strong>s:<br />

Microscopic Observati<strong>on</strong>: of cells and subcellular structures. Size distributi<strong>on</strong>s, divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g cells, and selective dyes to identify<br />

specific cellular comp<strong>on</strong>ents, e.g. acrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e orange can <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate nucleic acid.<br />

C<strong>on</strong>focal Laser Scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g Microscopy: provides very high-resoluti<strong>on</strong> 3D imagery, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong> of communities <str<strong>on</strong>g>in</str<strong>on</strong>g>side<br />

transparent rocks.<br />

Electr<strong>on</strong> Microscope: to provide nm-resoluti<strong>on</strong> of cell walls, membranes, vacuoles, etc.<br />

Macroscopic Observati<strong>on</strong>: of large (10 mm) microbial communities <str<strong>on</strong>g>in</str<strong>on</strong>g>, e.g. sandst<strong>on</strong>e and evaporites. Desert crusts of<br />

cyanobacteria and mats <strong>on</strong> hypersal<str<strong>on</strong>g>in</str<strong>on</strong>g>e lago<strong>on</strong>s may be cm thick.<br />

2. Culture Indicators: isolati<strong>on</strong> and successful cultur<str<strong>on</strong>g>in</str<strong>on</strong>g>g, with subsequent biochemical analysis, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, of nucleic acid<br />

sequenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, lipid and sugar c<strong>on</strong>tent, provides <str<strong>on</strong>g>the</str<strong>on</strong>g> most unequivocal evidence of extant life.<br />

3. Metabolic Indicators: <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical products of metabolism, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous products, can be observed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

culture or <str<strong>on</strong>g>in</str<strong>on</strong>g> situ col<strong>on</strong>ies, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g isotopic tracers or direct analysis, e.g. gas chromatography. <str<strong>on</strong>g>The</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiments<br />

were based <strong>on</strong> test<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> carb<strong>on</strong> assimilati<strong>on</strong>, catabolic activity and respirati<strong>on</strong>.<br />

4. Isotopic Indicators: <str<strong>on</strong>g>the</str<strong>on</strong>g> discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st 13C relative to 12C dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g enzymatic uptake of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is a<br />

valuable biomarker, whose record extends back 3.5 Gyr. Comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g compound-specific isotopic data with diagnostic<br />

structural <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> permits specific characterisati<strong>on</strong>.<br />

5. Chirality Indicator: homochirality is a characteristic of life; without it, polymerisati<strong>on</strong> and template replicati<strong>on</strong> do not<br />

proceed effectively. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> can be by observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g optical activity.<br />

6. Spectral Observati<strong>on</strong>s: vibrati<strong>on</strong>al spectroscopy, e.g. Raman spectroscopy, can detect a variety of organic compounds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems.<br />

To susta<str<strong>on</strong>g>in</str<strong>on</strong>g> a water envir<strong>on</strong>ment requires a heat source. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <strong>Mars</strong>, that is<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal outflow. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of Europa, it is likely to be due to <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>ces, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> I.5.1.1.<br />

Even <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life, <str<strong>on</strong>g>the</str<strong>on</strong>g> search strategy will <str<strong>on</strong>g>in</str<strong>on</strong>g>evitably focus up<strong>on</strong> sites<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally occupied by bodies of water over extended periods of time. Hence, martian<br />

search sites will be sedimentary deposits <str<strong>on</strong>g>in</str<strong>on</strong>g> ancient lake beds, outflow po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of past<br />

water channels and hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> II.2.7.<br />

Given that water is now unstable <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface, solar energy is unlikely<br />

to be a determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g factor as regards any exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g life, although it may well have<br />

provided a significant energy source to surface microbial life <str<strong>on</strong>g>in</str<strong>on</strong>g> earlier ae<strong>on</strong>s.<br />

C<strong>on</strong>sequently, a search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life <strong>on</strong> <strong>Mars</strong> will likely focus <strong>on</strong> a search of<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface regi<strong>on</strong>s, if evidence is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

existence of a water table at accessible depths.<br />

Current research <strong>on</strong> subterranean life <strong>on</strong> Earth (Secti<strong>on</strong> I.3.6) po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts to a thriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

biosphere at depths several hundred metres below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. It would not be<br />

surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d evidence of similar microbial activity <strong>on</strong> <strong>Mars</strong>, and<br />

possibly <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r bodies, where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are active subterranean water supplies heated<br />

by <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal energy sources and carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary nutrients to support life.<br />

In answer<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> ‘Where to search?’ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> general sense, <str<strong>on</strong>g>the</str<strong>on</strong>g> strategy<br />

must <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e be to look to a planet where <str<strong>on</strong>g>the</str<strong>on</strong>g> above c<strong>on</strong>diti<strong>on</strong>s seem to exist and<br />

about which <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a solid body of survey <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> available. That is clearly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case with <strong>Mars</strong> and it is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e recommended as <str<strong>on</strong>g>the</str<strong>on</strong>g> prime locati<strong>on</strong> to search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

life.<br />

Several fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>Mars</strong> survey missi<strong>on</strong>s are already underway, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e from<br />

<strong>ESA</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> 2003. This <strong>Mars</strong> Express missi<strong>on</strong> will probably <str<strong>on</strong>g>in</str<strong>on</strong>g>clude a Lander and with<br />

that perhaps <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of a serious attempt to search <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life<br />

<strong>on</strong> <strong>Mars</strong>.<br />

Given that opportunity, Europe has <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility to be am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> first to discover<br />

evidence of life bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth.


TABLE I.6.2/2 EVIDENCE OF EXTINCT LIFE<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chances of f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence of exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g life <strong>on</strong> a planet at this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t are remote.<br />

We cannot reach deep below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface with any equipment transportable <strong>on</strong> current<br />

lander missi<strong>on</strong>s. Nor would we know just now where to look. Perhaps a future<br />

detailed survey will identify an active surface hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal system by means of water<br />

vapour emissi<strong>on</strong> and a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal signature. If so, a specialised Lander to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate that<br />

regi<strong>on</strong> would be warranted. At <str<strong>on</strong>g>the</str<strong>on</strong>g> moment, however, we must c<strong>on</strong>centrate <str<strong>on</strong>g>the</str<strong>on</strong>g> search<br />

<strong>on</strong> evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life. To that end, it will be necessary to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g:<br />

i. clear images of groups of fossil ‘organisms'’ and high-resoluti<strong>on</strong> studies of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual structural features;<br />

ii. accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g geochemical and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical evidence, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of<br />

biosignatures, which are related both spatially and temporally (<str<strong>on</strong>g>in</str<strong>on</strong>g> geological<br />

terms) with <str<strong>on</strong>g>the</str<strong>on</strong>g> imaged structures;<br />

iii. organic residuals, shown to be of biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g>se small-scale features, we may also seek evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct<br />

microbial matt<str<strong>on</strong>g>in</str<strong>on</strong>g>g communities through <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> of macroscopically visible<br />

lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called stromatolite structures. However, c<strong>on</strong>firmati<strong>on</strong> of a<br />

biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> any such observed structures will still require, as <strong>on</strong> Earth,<br />

accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated <str<strong>on</strong>g>in</str<strong>on</strong>g> (ii) and (iii) above.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts are summarised <str<strong>on</strong>g>in</str<strong>on</strong>g> Tables I.6.2/1 and I.6.2/2.<br />

science and experiment strategy/I.6<br />

1. Structural Indicators:<br />

Microscopic Observati<strong>on</strong>s: of groups of possible microfossil structures <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary deposits, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g petrological analysis<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> associated m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and <str<strong>on</strong>g>the</str<strong>on</strong>g> study of any residual carb<strong>on</strong>aceous matter.<br />

Electr<strong>on</strong> Microscopy: to provide nm-resoluti<strong>on</strong> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of possible microfossils detected by optical microscopy<br />

and to search <str<strong>on</strong>g>for</str<strong>on</strong>g> ‘nanofossils’.<br />

Atomic Force Microscopy: to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> 3D images of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure, at nm-resoluti<strong>on</strong>, of possible microfossils and associated<br />

material.<br />

Macroscopic Observati<strong>on</strong>: of stromatolite-type biosedimentary structures <str<strong>on</strong>g>in</str<strong>on</strong>g> freshly exposed scarps or <str<strong>on</strong>g>in</str<strong>on</strong>g> rock secti<strong>on</strong>s, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a telemicroscope or telescope with IR or Raman spectroscopic capability to c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral and carb<strong>on</strong>aceous<br />

c<strong>on</strong>stituents.<br />

2. Biogeochemical Indicators: from <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> elemental abundances <str<strong>on</strong>g>in</str<strong>on</strong>g> reduced (organic) carb<strong>on</strong> remnants<br />

us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Gas Chromatograph/Mass Spectrometer (GCMS) and Alpha-Prot<strong>on</strong>-X-ray Spectrometer (APX), to give e.g. H/C<br />

ratio as <str<strong>on</strong>g>in</str<strong>on</strong>g>dex of aromaticity by assay of <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘organic’ to ‘carb<strong>on</strong>ate’ carb<strong>on</strong> c<strong>on</strong>tent of fossil-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g sediments from<br />

an analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> volatile (hydrocarb<strong>on</strong>) comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced carb<strong>on</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>in</str<strong>on</strong>g> associated sedimentary<br />

material, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g pyrolysis/gas chromatography/mass spectroscopy.<br />

3. Isotopic Indicators: <str<strong>on</strong>g>the</str<strong>on</strong>g> enhancement of <str<strong>on</strong>g>the</str<strong>on</strong>g> 12C isotope to 13C dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>versi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong> to organic <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

autotrophic fixati<strong>on</strong> is reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> biogenic carb<strong>on</strong> residues. It provides a dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct biomark when compared with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong> pool. <str<strong>on</strong>g>The</str<strong>on</strong>g> Pyrolyser/GCMS is used. An I<strong>on</strong> Microprobe is used <str<strong>on</strong>g>for</str<strong>on</strong>g> microstructures. Similarly, D/H<br />

fracti<strong>on</strong>ati<strong>on</strong> and 34S/ 32S isotope compositi<strong>on</strong> change between sulphides and sulphates can be <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of earlier<br />

biological activity.<br />

4. Molecular Indicators: certa<str<strong>on</strong>g>in</str<strong>on</strong>g> dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct biochemical compounds, e.g. lipid type and pigments, may withstand degradati<strong>on</strong><br />

over very l<strong>on</strong>g periods as part of <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen residue. <str<strong>on</strong>g>The</str<strong>on</strong>g>y may be extracted by organic solvents from residues and<br />

fossils <str<strong>on</strong>g>for</str<strong>on</strong>g> analysis (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g chiral and isotopic) to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al body.<br />

5. Chirality Indicator: homochirality is characteristic of life and this structural feature is reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> death of <str<strong>on</strong>g>the</str<strong>on</strong>g> organism.<br />

Racemisati<strong>on</strong> proceeds very slowly under cold dry c<strong>on</strong>diti<strong>on</strong>s such as now exist <strong>on</strong> <strong>Mars</strong>. An optical rotati<strong>on</strong> detector is<br />

used.<br />

6. Spectral Observati<strong>on</strong>s: vibrati<strong>on</strong>al spectra of organic compounds provide a valuable analytical tool which can be applied<br />

to help unravel <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of sedimentary carb<strong>on</strong>aceous samples of biological and abiotic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. It also is able to<br />

identify <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical c<strong>on</strong>tent of <str<strong>on</strong>g>the</str<strong>on</strong>g> associated sediment. IR and Raman spectroscopy predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate and can be<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microscopy.<br />

I.6.2 What to <str<strong>on</strong>g>Search</str<strong>on</strong>g> For?<br />

75


SP-1231<br />

I.6.3 What to <str<strong>on</strong>g>Search</str<strong>on</strong>g> With?<br />

76<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> preced<str<strong>on</strong>g>in</str<strong>on</strong>g>g Tables <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate <str<strong>on</strong>g>the</str<strong>on</strong>g> types of <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> that would normally be<br />

required <str<strong>on</strong>g>in</str<strong>on</strong>g> order to search <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence of extant and ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life <strong>on</strong> <strong>Mars</strong>.<br />

Focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g requirements:<br />

1. Optical Microscope, with a range from medium- to high-power to cover sample<br />

selecti<strong>on</strong> through to high-resoluti<strong>on</strong> observati<strong>on</strong> of larger ‘fossil’-like structures<br />

and associated m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals.<br />

2. IR or Raman Spectrometer, designed to work <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope<br />

system <str<strong>on</strong>g>for</str<strong>on</strong>g> analysis of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s and any associated organic material.<br />

3. Atomic Force Microscope, allied to <str<strong>on</strong>g>the</str<strong>on</strong>g> stage of <str<strong>on</strong>g>the</str<strong>on</strong>g> optical microscope, to<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> 3D <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nm-range selected elements of <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope field<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g possible fossils.<br />

4. Alpha-Prot<strong>on</strong>-X-ray Spectrometer, to carry out elemental analysis (exclud<str<strong>on</strong>g>in</str<strong>on</strong>g>g H),<br />

<strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals associated with ‘fossil’ sediments and <strong>on</strong> any associated<br />

carb<strong>on</strong>aceous material.<br />

5. Gas Chromatograph/Mass Spectrometer, to analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> volatiles from carb<strong>on</strong><br />

residues, to provide elemental, molecular, and isotopic abundances, and<br />

compositi<strong>on</strong>s. Various types of vaporisers can be used.<br />

6. I<strong>on</strong> Microprobe, could be valuable, <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope, to<br />

analyse specific regi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples that are associated with ‘fossils’ and to<br />

give structurally def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed 13 C/ 12 C ratios <str<strong>on</strong>g>for</str<strong>on</strong>g> organic traces.<br />

7. Homochirality detector, to search <str<strong>on</strong>g>for</str<strong>on</strong>g> optical activity. This may be a dedicated<br />

optical <str<strong>on</strong>g>in</str<strong>on</strong>g>strument us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a liquid sample or it may be simply a chiral column<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas chromatograph.<br />

8. Telescope, to search <str<strong>on</strong>g>for</str<strong>on</strong>g> macrostructures of possible biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> cleaved<br />

rocks or at outcrops. It would need to be associated with a spectroscopic<br />

capability.<br />

Clearly, it will not be feasible to carry all of <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>in</str<strong>on</strong>g>struments <strong>on</strong> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle small<br />

Lander. In mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g a selecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>struments to <str<strong>on</strong>g>for</str<strong>on</strong>g>m a unified package we have<br />

been c<strong>on</strong>scious of <str<strong>on</strong>g>the</str<strong>on</strong>g> need to use <str<strong>on</strong>g>in</str<strong>on</strong>g>struments that have already flown or are under<br />

development <str<strong>on</strong>g>for</str<strong>on</strong>g> flight. In that c<strong>on</strong>text, we have looked to <str<strong>on</strong>g>the</str<strong>on</strong>g> European <str<strong>on</strong>g>in</str<strong>on</strong>g>struments<br />

that are already associated with a <strong>Mars</strong> programme or are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g produced <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

relevant <strong>ESA</strong> missi<strong>on</strong>, such as Rosetta.<br />

From that analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>struments were identified <str<strong>on</strong>g>for</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r study at<br />

this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, especially a spectrometer, may be c<strong>on</strong>sidered later if circumstances<br />

change):<br />

Optical Telemicroscope<br />

Alpha, Prot<strong>on</strong>, X-ray Spectrometer<br />

Atomic Force Microscope<br />

Gas Chromatograph/Mass Spectrometer<br />

Homochirality Detector


I.7 Summary of <str<strong>on</strong>g>the</str<strong>on</strong>g> Science Team<br />

Recommendati<strong>on</strong>s<br />

MARS is <str<strong>on</strong>g>the</str<strong>on</strong>g> prime target. <str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> <strong>Mars</strong> is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Part II of this<br />

volume.<br />

EUROPA and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r bodies possibly hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g subsurface water, with <str<strong>on</strong>g>the</str<strong>on</strong>g> accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat sources, are also candidates <str<strong>on</strong>g>for</str<strong>on</strong>g> both extant and ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life<br />

searches <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> future. NASA has an outl<str<strong>on</strong>g>in</str<strong>on</strong>g>e plan <str<strong>on</strong>g>for</str<strong>on</strong>g> a Europa Orbiter missi<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> 2004 and a Lander <str<strong>on</strong>g>in</str<strong>on</strong>g> 2011.<br />

TITAN has an atmosphere of nitrogen (90%) and methane, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with a great<br />

number of trace hydrocarb<strong>on</strong>s, nitriles and oxygen compounds (CO, CO 2).<br />

Surface deposits of hydrocarb<strong>on</strong>s have been predicted, although water ice is<br />

now c<strong>on</strong>sidered to be dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant. Interest lies <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study of fundamental<br />

physical and chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g a planetary organic chemistry and <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> possible development of a life system <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absence of liquid water but with<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquids. <str<strong>on</strong>g>The</str<strong>on</strong>g> NASA/<strong>ESA</strong> Cass<str<strong>on</strong>g>in</str<strong>on</strong>g>i/Huygens missi<strong>on</strong> will deliver an<br />

atmosphere/surface probe to Titan <str<strong>on</strong>g>in</str<strong>on</strong>g> 2004. A NASA Titan Aerobot missi<strong>on</strong> is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicated <str<strong>on</strong>g>for</str<strong>on</strong>g> 2013.<br />

METEORITES provide a sample of various types of solar ‘debris’ and a sample of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material ejected from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> bodies – <strong>Mars</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sources of a small number of meteorites of identified orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>Mars</strong><br />

meteorites are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g closely studied <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life. Ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts should<br />

be made to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> bias of <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite-collecti<strong>on</strong> process <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field, which<br />

tends to favour <str<strong>on</strong>g>the</str<strong>on</strong>g> more readily dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishable meteorites of igneous orig<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> acquisiti<strong>on</strong> of a sample derived from martian sedimentary material would<br />

be a major breakthrough and <strong>on</strong>e that would likely yield important <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of life <strong>on</strong> <strong>Mars</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> associated geochemistry.<br />

COMETS were probably an important source of organics <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive Earth and<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planetary bodies at that early epoch. Hence <strong>ESA</strong>’s Rosetta missi<strong>on</strong>,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g a lander, to Comet Wirtanen, launched <str<strong>on</strong>g>in</str<strong>on</strong>g> 2003 and culm<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

2013. Rosetta will be a major step <str<strong>on</strong>g>for</str<strong>on</strong>g>ward <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> full nature of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

range of cometary materials and establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir likely role as precursors of<br />

life.<br />

METEORITES and MICROMETEORITES have also been resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> import<br />

of major amounts of extraterrestrial organic material to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. It has been<br />

estimated that <str<strong>on</strong>g>the</str<strong>on</strong>g>y may have brought <str<strong>on</strong>g>in</str<strong>on</strong>g> about 10 20 g of carb<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> 300<br />

milli<strong>on</strong> years of <str<strong>on</strong>g>the</str<strong>on</strong>g> late bombardment phase. This exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current biomass (10 18 g). C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g studies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> organic comp<strong>on</strong>ents of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>aceous ch<strong>on</strong>drites and improved collecti<strong>on</strong> of micrometeorites to<br />

allow unambiguous analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic comp<strong>on</strong>ents are needed. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter<br />

will <str<strong>on</strong>g>in</str<strong>on</strong>g>volve <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r development of <str<strong>on</strong>g>in</str<strong>on</strong>g>-orbit collecti<strong>on</strong> techniques to be used<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Space Stati<strong>on</strong> and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r vehicles.<br />

I.7.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Extant<br />

and Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

I.7.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Study of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Precursors of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

77


SP-1231<br />

78<br />

I.7.3 Organic Chemistry<br />

Processes and<br />

Microorganisms <str<strong>on</strong>g>in</str<strong>on</strong>g> Space<br />

I.7.4 Laboratory-based<br />

Studies<br />

ORGANIC MOLECULES, represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g potential build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks of pre-biological<br />

materials, may suffer degradati<strong>on</strong> and racemisati<strong>on</strong> under space c<strong>on</strong>diti<strong>on</strong>s. It is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e necessary to study <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of space c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> organics such as<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, sugars, lipids and nucleic acid bases. <str<strong>on</strong>g>The</str<strong>on</strong>g> potential protective<br />

effects of associati<strong>on</strong> with m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral dust particles will <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorite and cometary envir<strong>on</strong>ments. Similar studies are also needed<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polycyclic aromatic hydrocarb<strong>on</strong>s (PAHs). Experiments of this type will<br />

require access to <str<strong>on</strong>g>the</str<strong>on</strong>g> external envir<strong>on</strong>ment of a space stati<strong>on</strong> or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r vehicle<br />

with dedicated facilities.<br />

MICROORGANISMS subjected to <str<strong>on</strong>g>the</str<strong>on</strong>g> space envir<strong>on</strong>ment, especially <str<strong>on</strong>g>the</str<strong>on</strong>g> UV<br />

radiati<strong>on</strong> and high-Z particle flux, will tend to be damaged progressively and<br />

die. It is possible, however, <str<strong>on</strong>g>for</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> types of organisms to survive <str<strong>on</strong>g>in</str<strong>on</strong>g> space<br />

over l<strong>on</strong>g periods, especially if screened with<str<strong>on</strong>g>in</str<strong>on</strong>g> meteorite-like structures.<br />

C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiments us<str<strong>on</strong>g>in</str<strong>on</strong>g>g space vehicles and eventually <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

Space Stati<strong>on</strong> will improve <str<strong>on</strong>g>the</str<strong>on</strong>g> understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g damage<br />

processes, <str<strong>on</strong>g>the</str<strong>on</strong>g> survivability of a range of organisms, and <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of life<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g distributed am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> by meteorite delivery.<br />

LABORATORY SIMULATIONS can provide valuable <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> organic<br />

chemistry processes <str<strong>on</strong>g>in</str<strong>on</strong>g> comets, <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s and <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites. <str<strong>on</strong>g>The</str<strong>on</strong>g>y can<br />

lead to a better understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

of organic residues <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments. Simulati<strong>on</strong> of planetary envir<strong>on</strong>ments<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <strong>on</strong> microorganisms will have both fundamental and<br />

practical value.<br />

LABORATORY STUDIES will c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> essential fundamental<br />

experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest steps <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence of<br />

life. Careful studies of <str<strong>on</strong>g>the</str<strong>on</strong>g> most ancient sedimentary rocks may yet yield fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> that process. In c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>in</str<strong>on</strong>g> situ experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field,<br />

laboratory observati<strong>on</strong>s will c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to make important c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

knowledge of how life develops and survives under extreme c<strong>on</strong>diti<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g deep subterranean life and its applicati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life<br />

elsewhere <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>.


II<br />

THE SEARCH FOR LIFE<br />

ON MARS


II.1 Introducti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g Lander experiments failed to detect any organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil,<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface or from samples collected a few centimetres below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s were that str<strong>on</strong>g oxidati<strong>on</strong> processes were at work at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

Subsequent <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical studies have shown that photochemical processes, as well as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> effects of oxidants such as hydrogen peroxide, are likely to be resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

destructi<strong>on</strong> of all such material <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface regi<strong>on</strong>. That will be true whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

organics are of an <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic martian orig<str<strong>on</strong>g>in</str<strong>on</strong>g> or have been imported via carb<strong>on</strong>aceous<br />

meteorite and micrometeorite bombardment over geological time.<br />

In order, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, to have any chance of detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g and analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic organic<br />

material <strong>on</strong> <strong>Mars</strong>, it will be necessary to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> samples from several centimetres<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> chemically-affected ‘r<str<strong>on</strong>g>in</str<strong>on</strong>g>d’ that covers <str<strong>on</strong>g>the</str<strong>on</strong>g> surface rocks. Similarly, if we are<br />

to explore <str<strong>on</strong>g>the</str<strong>on</strong>g> true regolith, it will be necessary to drill deep below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> order<br />

to escape <str<strong>on</strong>g>the</str<strong>on</strong>g> likely effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidant diffusi<strong>on</strong> reacti<strong>on</strong>s. How deep is unknown<br />

and probably cannot be accurately modelled, because <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of regolith<br />

‘churn<str<strong>on</strong>g>in</str<strong>on</strong>g>g’ are highly uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g> approach adopted <str<strong>on</strong>g>in</str<strong>on</strong>g> this study was to aim <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

subsurface drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum depth that is technically feasible <strong>on</strong> a given<br />

missi<strong>on</strong>. Typically, this will be at least 1 m.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chances of a successful detecti<strong>on</strong> of organics are greatly improved if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site is selected to be a major sedimentary bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, composed of highly<br />

compacted dense material. Not <strong>on</strong>ly will <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidant penetrati<strong>on</strong> be more limited but<br />

also, by analogy with <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> <strong>on</strong> Earth, such sites are more likely to have hosted<br />

life at some earlier epoch.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed aspects (oxidant-free samples collected from sedimentary<br />

doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s) must be satisfied if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is to be any reas<strong>on</strong>able chance of f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g organics<br />

<strong>on</strong> <strong>Mars</strong> and of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood of observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g fossils of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life. To<br />

improve those chances fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, mobility is necessary to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> such<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g>se three requirements are fundamental to any future search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

evidence of life <strong>on</strong> <strong>Mars</strong>.<br />

While excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> itself, simply detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g some basic organic compounds or<br />

observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g some morphology set that looks like bacteria are unlikely <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own to<br />

c<strong>on</strong>firm unambiguously that life <strong>on</strong>ce existed <strong>on</strong> <strong>Mars</strong>. Much of <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Part I, which is extended here, is c<strong>on</strong>cerned with establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum set of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terlock<str<strong>on</strong>g>in</str<strong>on</strong>g>g measurements and observati<strong>on</strong>s that, taken toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, are likely to provide<br />

c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> or aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct, or extant, life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

samples.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> core of <str<strong>on</strong>g>the</str<strong>on</strong>g>se experiments c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators or requirements<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> extant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life. <str<strong>on</strong>g>The</str<strong>on</strong>g>se analyses will <str<strong>on</strong>g>in</str<strong>on</strong>g>clude not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

carb<strong>on</strong>aceous residues and organics, but also particular <str<strong>on</strong>g>in</str<strong>on</strong>g>organic m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as<br />

carb<strong>on</strong>ates and phosphates, which can serve as biomarkers. <str<strong>on</strong>g>The</str<strong>on</strong>g> detecti<strong>on</strong> of water<br />

and its depth profile is obviously important. So, too, is <str<strong>on</strong>g>the</str<strong>on</strong>g> accurate determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic ratios <str<strong>on</strong>g>for</str<strong>on</strong>g> hydrogen, carb<strong>on</strong>, oxygen, sulphur and nitrogen, which can give<br />

clear evidence of biologically mediated fracti<strong>on</strong>ati<strong>on</strong>s.<br />

Besides <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and spectroscopic equipment needed <str<strong>on</strong>g>for</str<strong>on</strong>g> those analyses,<br />

microscopes are required to study m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral structures and to search <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of<br />

fossils, <strong>on</strong> scales rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from about 1 µm up to 1 mm. Observati<strong>on</strong>s and visual<br />

selecti<strong>on</strong> is also a prerequisite <str<strong>on</strong>g>for</str<strong>on</strong>g> subsequent sophisticated chemical and<br />

spectroscopic analysis, especially of localised areas.<br />

It can be argued that <str<strong>on</strong>g>in</str<strong>on</strong>g> situ analysis could never match <str<strong>on</strong>g>the</str<strong>on</strong>g> results us<str<strong>on</strong>g>in</str<strong>on</strong>g>g samples<br />

returned from <strong>Mars</strong>, so why not wait until that opportunity arises? Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

S. Lee (Univ. Colorado), J. Bell (Cornell Univ.),<br />

M. Wolff (Space Science Inst.) and NASA.<br />

81


SP-1231<br />

82<br />

obvious delay <str<strong>on</strong>g>in</str<strong>on</strong>g> await<str<strong>on</strong>g>in</str<strong>on</strong>g>g such an event and <str<strong>on</strong>g>the</str<strong>on</strong>g> uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties attend<str<strong>on</strong>g>in</str<strong>on</strong>g>g that endeavour,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are good reas<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g a soundly based <str<strong>on</strong>g>in</str<strong>on</strong>g> situ programme of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

type set out here. First, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> of terrestrial carb<strong>on</strong> c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

levels detectable <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se experiments. We have seen how <str<strong>on</strong>g>the</str<strong>on</strong>g> Apollo lunar samples<br />

became c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated, despite all of <str<strong>on</strong>g>the</str<strong>on</strong>g> precauti<strong>on</strong>s. In situ experiments will<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise that problem. Apart from that factor, <str<strong>on</strong>g>the</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <strong>on</strong>-site analysis and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> of samples by a mobile system is potentially a very powerful technique,<br />

if used correctly. It becomes possible to target specific types of samples, if required,<br />

or to expand <str<strong>on</strong>g>the</str<strong>on</strong>g> range and diversity. Coupled with a sample return missi<strong>on</strong>, such a<br />

system provides major ga<str<strong>on</strong>g>in</str<strong>on</strong>g>s and can also reduce, by careful selecti<strong>on</strong> after analysis,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> total amount of samples returned to cover a specified m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical range.


II.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Planet <strong>Mars</strong><br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> two Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g Landers touched down about 6500 km apart (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g-1:<br />

Chryse Planitia, 22ºN/48ºW; Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g-2: Utopia Planitia, 44ºN/110ºW; both <str<strong>on</strong>g>in</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

lowlands), <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface soil was found to be almost<br />

identical. Large areas of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface and especially <str<strong>on</strong>g>the</str<strong>on</strong>g> lowlands are obviously<br />

covered with a soil thoroughly mixed by repeated dust storms. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

both <str<strong>on</strong>g>the</str<strong>on</strong>g> IR and gamma-ray spectrometers of Phobos-2 found c<strong>on</strong>siderable regi<strong>on</strong>al<br />

variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface chemistry. <str<strong>on</strong>g>The</str<strong>on</strong>g> data <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> martian crust has a mafic<br />

nature (Mg- and Fe-rich), with <strong>on</strong>ly a low degree of fracti<strong>on</strong>ati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> geology of <strong>Mars</strong> is highly diverse. <str<strong>on</strong>g>The</str<strong>on</strong>g> heavily cratered sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn highlands<br />

represent <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest surface, rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g topographically almost unaltered s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet’s accreti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y extend to almost two-thirds of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface at elevati<strong>on</strong>s of 2-<br />

5 km above <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s. A large impact at <str<strong>on</strong>g>the</str<strong>on</strong>g> end of accreti<strong>on</strong> has been<br />

discussed as <str<strong>on</strong>g>the</str<strong>on</strong>g> cause of this strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g asymmetry. Compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar highlands,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> craters of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian highlands are highly degraded, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g high erosi<strong>on</strong> rates<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> early <strong>Mars</strong>, perhaps ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> warm and wet climate at that time. <str<strong>on</strong>g>The</str<strong>on</strong>g> lobed<br />

ejecta patterns of many of <str<strong>on</strong>g>the</str<strong>on</strong>g> craters <str<strong>on</strong>g>the</str<strong>on</strong>g>re have been attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> pervasive<br />

presence of ground ice (Fig. II.2.1/1). <str<strong>on</strong>g>The</str<strong>on</strong>g>re are also numerous branch<str<strong>on</strong>g>in</str<strong>on</strong>g>g valley<br />

networks that superficially resemble terrestrial river valleys (Fig. II.2.1/2).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s or lowlands cover most of that hemisphere. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

crater densities <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>for</str<strong>on</strong>g>med throughout martian history. <str<strong>on</strong>g>The</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s are diverse. On some, numerous flow fr<strong>on</strong>ts can be seen, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> by lava flows superimposed <strong>on</strong> <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> lava flows is<br />

most comm<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> volcanic centres of Tharsis and Elysium. Volcanic features,<br />

but no flows, have been recognised <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Wr<str<strong>on</strong>g>in</str<strong>on</strong>g>kly ridges <str<strong>on</strong>g>in</str<strong>on</strong>g> Lunae Planum<br />

have also been observed.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> vast majority of <str<strong>on</strong>g>the</str<strong>on</strong>g> low-ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s lack obvious volcanic<br />

Fig. II.2.1/1. Fluidised ejecta deposits around <str<strong>on</strong>g>the</str<strong>on</strong>g> crater Yuty.<br />

This 18 km-diameter crater is surrounded by ejecta flows<br />

created when <str<strong>on</strong>g>the</str<strong>on</strong>g> energy of impact melted <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface ice.<br />

This type of crater is comm<strong>on</strong> at equatorial and mid-latitudes,<br />

suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g a subsurface cryosphere. (NASA)<br />

II.2.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Geology of <strong>Mars</strong><br />

Fig. II.2.1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g> source area of <str<strong>on</strong>g>the</str<strong>on</strong>g> Ravi Vallis outflow channel (1ºS/42ºW),<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of subsurface ice/water. This 300 km-l<strong>on</strong>g porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

channel beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s abruptly, without tributaries. It suggests that water was released<br />

under great pressure from below a layer of frozen ground, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface to<br />

collapse. Fluidised ejecta can also be seen around <str<strong>on</strong>g>the</str<strong>on</strong>g> crater at bottom left. (NASA)<br />

83


SP-1231<br />

Fig. II.2.2/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> central porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Valles<br />

Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris (12ºS/64ºW). <str<strong>on</strong>g>The</str<strong>on</strong>g>se two parallel<br />

troughs were created by tect<strong>on</strong>ic activity and<br />

are about 500 km l<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

(NASA/Lunar & Planetary Institute)<br />

Fig. II.2.2/2. A landslide <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Valles Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris<br />

trough. This collapse extends across about<br />

20 km and reveals dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

subsurface regi<strong>on</strong>. Observati<strong>on</strong> of such layers<br />

by a Lander telescope/spectrometer could be<br />

reward<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life and <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy/geochemistry. (NASA)<br />

84<br />

II.2.2 Volcanism and<br />

Tect<strong>on</strong>ism<br />

features. Many of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir characteristics have been attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> of ground ice<br />

or to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir locati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end of large flood features where lakes must have been<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>med and sediments deposited. In some areas, particularly around <str<strong>on</strong>g>the</str<strong>on</strong>g> North Pole,<br />

dune fields are visible.<br />

In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s are complex <str<strong>on</strong>g>in</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g been <str<strong>on</strong>g>for</str<strong>on</strong>g>med by volcanism and<br />

sedimentati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y were <str<strong>on</strong>g>the</str<strong>on</strong>g>n modified to vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g extents by tect<strong>on</strong>ism and w<str<strong>on</strong>g>in</str<strong>on</strong>g>d,<br />

water and ice.<br />

One of <str<strong>on</strong>g>the</str<strong>on</strong>g> most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent geophysical features of <strong>Mars</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> large Tharsis bulge, a<br />

de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> greater than 4000 km across and up to 10 km high. Three large volcanoes<br />

(Arsia M<strong>on</strong>s, Pav<strong>on</strong>is M<strong>on</strong>s, Ascraeus M<strong>on</strong>s) are close to summit of Tharsis and<br />

Olympus M<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest volcano <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> (550 km<br />

across, 27 km high) is located <strong>on</strong> its north-west flank.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> small number of impact craters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flanks of <str<strong>on</strong>g>the</str<strong>on</strong>g> huge Tharsis volcanoes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> uppermost flows are young. <str<strong>on</strong>g>The</str<strong>on</strong>g> large size of <str<strong>on</strong>g>the</str<strong>on</strong>g> volcanoes suggests<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>y have developed over a l<strong>on</strong>g time by a series of Hawaiian-style fluid lava<br />

erupti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absence of plate tect<strong>on</strong>ics. Apart from this quiet effusi<strong>on</strong> of fluid lava,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are also examples of more violent pyroclastic erupti<strong>on</strong>s result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> extensive<br />

ash deposits.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crystallisati<strong>on</strong> ages of <str<strong>on</strong>g>the</str<strong>on</strong>g> SNC (shergottite, nakhlite, chassignite) meteorites


cover <str<strong>on</strong>g>the</str<strong>on</strong>g> range 4.5-0.16 Gyr. Hence, <strong>Mars</strong> had active volcanism throughout its<br />

history and it is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is some volcanic activity even today.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is widespread evidence <strong>on</strong> <strong>Mars</strong> of surface de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> caused both by<br />

extensi<strong>on</strong> as well as by compressi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> most obvious of <str<strong>on</strong>g>the</str<strong>on</strong>g>se features are<br />

associated with Tharsis. Around this bulge <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a vast system of radial grabens<br />

affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g about <strong>on</strong>e third of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. Fractures also occur <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r locati<strong>on</strong>s around<br />

large impact bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s and around large volcanoes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent result of crustal de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> spectacular Valles<br />

Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris (Figs. II.2.2/1 and II.2.2/2), a large cany<strong>on</strong> extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g from Tharsis about<br />

4000 km to <str<strong>on</strong>g>the</str<strong>on</strong>g> east. In its central secti<strong>on</strong>, where several cany<strong>on</strong>s merge, <str<strong>on</strong>g>the</str<strong>on</strong>g> valley<br />

has a width of 600 km and a depth of several kilometres.<br />

All SNC meteorites (see Secti<strong>on</strong> II.3), assumed to be of <strong>Mars</strong> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, are igneous<br />

rocks of quite variable compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> high FeO c<strong>on</strong>tents of <str<strong>on</strong>g>the</str<strong>on</strong>g> SNCs reflect a high<br />

FeO c<strong>on</strong>tent of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle, while <str<strong>on</strong>g>the</str<strong>on</strong>g>ir high MnO and Cr 2O 3 c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that, c<strong>on</strong>trary to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s mantle, <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle is not depleted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

MnO and Cr 2O 3.<br />

Dreibus & Wänke (1984) used element correlati<strong>on</strong>s observed <str<strong>on</strong>g>in</str<strong>on</strong>g> SNC meteorites<br />

(see example Fig. II.2.3/1) and certa<str<strong>on</strong>g>in</str<strong>on</strong>g> cosmochemical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk<br />

compositi<strong>on</strong> of <strong>Mars</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ratio FeO/MnO is extraord<str<strong>on</strong>g>in</str<strong>on</strong>g>arily c<strong>on</strong>stant <str<strong>on</strong>g>in</str<strong>on</strong>g> all shergottites, with an MnO<br />

abundance equal 1.00 (normalised to C1 and Si; where C 1 = carb<strong>on</strong>aceous ch<strong>on</strong>drites<br />

type 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> most primitive meteorites, c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g all ‘c<strong>on</strong>densable’ elements <str<strong>on</strong>g>in</str<strong>on</strong>g> solar<br />

abundances). An abundance of FeO of 0.399, corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to 17.9% FeO, was<br />

derived <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle. For <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r major elements (MgO, Al 2O 3, SiO 2,<br />

CaO), Dreibus & Wänke assumed strictly C1 abundances. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of ir<strong>on</strong>, a C1<br />

Fe/Si ratio was assumed to be valid <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole planet. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> of ir<strong>on</strong><br />

not present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of FeO <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle is assumed to have segregated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

core <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of ir<strong>on</strong> metal or FeS. It was fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r assumed that all refractory<br />

lithophile elements are also present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle <str<strong>on</strong>g>in</str<strong>on</strong>g> C1 abundances, as <strong>on</strong>ly<br />

small fracti<strong>on</strong>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>se elements has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s mantle and <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

meteorites. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g element correlati<strong>on</strong>s observed <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites, <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle abundances<br />

of many siderophile (W, Ni, Co, etc) and moderately volatile and volatile (Na, K, Rb,<br />

Cs, F, Br, etc) elements could be calculated (see Table II.2.3/1 and Fig. II.2.3/1).<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet mars/II.2<br />

Fig. II.2.3/1. Correlati<strong>on</strong> of K vs La <str<strong>on</strong>g>in</str<strong>on</strong>g> SNC<br />

meteorites from <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> Eucrite Parent Body<br />

(EPB), <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth and Mo<strong>on</strong>. Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g a C1<br />

abundance of <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory element La<br />

(= 0.48 ppm) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

abundance of <str<strong>on</strong>g>the</str<strong>on</strong>g> moderately volatile element K<br />

(= 315 ppm) can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from this<br />

correlati<strong>on</strong>.<br />

II.2.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Bulk Chemical<br />

Compositi<strong>on</strong> of <strong>Mars</strong><br />

85


SP-1231<br />

86<br />

Table II.2.3/1. Bulk Compositi<strong>on</strong> of<br />

<strong>Mars</strong> Derived from SNC Meteorites.<br />

(Dreibus & Wänke, 1987).<br />

Mantle/Crust<br />

% ppm<br />

MgO 30.2 K 305<br />

Al 2 O 3 3.02 Rb 1.06<br />

SiO 2 44.4 Cs 0.07<br />

CaO 2.45 F 32<br />

TiO 2 0.14 Cl 38<br />

FeO 17.9 Co 68<br />

Na 2 O 0.5 Ni 400<br />

P 2 O 5 0.16 Cu 5.5<br />

Cr 2 O 3 0.76 Zn 62<br />

MnO 0.46 Ga 6.6<br />

ppb<br />

Br 145<br />

I 32<br />

Mo 118<br />

In 14<br />

La 480<br />

Tl 3.6<br />

W 105<br />

Th 56<br />

U 16<br />

Core (21.7% of <strong>Mars</strong> mass)<br />

%<br />

Fe 77.8<br />

Ni 7.6<br />

Co 0.36<br />

S 14.24<br />

H 2O added dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g accreti<strong>on</strong> = 3.4%; H 2O<br />

reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle = 36 ppm, equivalent<br />

to a surface layer 130 m deep (100%<br />

degass<str<strong>on</strong>g>in</str<strong>on</strong>g>g).<br />

Fig. II.2.3/2. Estimated elemental abundances <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Martian mantle as derived from SNC<br />

meteorites. <str<strong>on</strong>g>The</str<strong>on</strong>g> higher abundances of<br />

moderately volatile (Na, Ga, P, K, F, Rb, Zn)<br />

and volatile elements (Cl, Br) compared to<br />

those <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial mantle is obvious. Note<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> of all chalcophile elements (In, Co,<br />

Cu, Ni) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle. Note especially<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> high mantle abundance of P <strong>on</strong> <strong>Mars</strong> and its<br />

depleti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s mantle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> similar abundances of several geochemically (W to Rb <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. II.2.3/2) very<br />

different elements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle of <strong>Mars</strong> is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r str<strong>on</strong>g evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ner planets from two compositi<strong>on</strong>ally different comp<strong>on</strong>ents (R<str<strong>on</strong>g>in</str<strong>on</strong>g>gwood,<br />

1977; 1979; Wänke, 1981; Dreibus & Wänke, 1984). <str<strong>on</strong>g>The</str<strong>on</strong>g>se comp<strong>on</strong>ents are:<br />

Comp<strong>on</strong>ent A: Highly reduced and free of all elements with equal or higher volatility<br />

than Na, but c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements <str<strong>on</strong>g>in</str<strong>on</strong>g> C1 abundance ratios. Fe and all<br />

siderophile elements are metallic, and even Si might be partly present <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>m.<br />

Comp<strong>on</strong>ent B: Oxidised and c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g all elements (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> volatiles) <str<strong>on</strong>g>in</str<strong>on</strong>g> C1<br />

abundances. Fe and all siderophile (Co, Ni, Cu, Ga, W, etc) and lithophile elements<br />

are present ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly as oxides.<br />

As seen from Table II.2.3/1 and Fig. II.2.3/2, <str<strong>on</strong>g>the</str<strong>on</strong>g> SNC meteorites <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate<br />

abundances of moderately volatile (Na, K, Rb, Zn) and volatile elements (Cl, Br, I) <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle <str<strong>on</strong>g>in</str<strong>on</strong>g> excess of those <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial mantle. A mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g ratio of<br />

comp<strong>on</strong>ents A:B of 60:40 is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>, compared to 85:15 <str<strong>on</strong>g>for</str<strong>on</strong>g> Earth. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

are, however, a number of elements supposedly derived from comp<strong>on</strong>ent B, which <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s mantle have abundances similar to those of Fe, Na, Ga, K, F and Rb, but<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle have c<strong>on</strong>siderably lower abundances (Co, Ni, Cu, In). <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

elements all have str<strong>on</strong>g chalcophile character. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir low abundances are taken to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate a homogeneous accreti<strong>on</strong> of <strong>Mars</strong>. Hence, c<strong>on</strong>trary to an <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous<br />

accreti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, as frequently favoured, <strong>on</strong> <strong>Mars</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two comp<strong>on</strong>ents had <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chance to equilibrate and were probably supplied almost simultaneously to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g planet. <str<strong>on</strong>g>The</str<strong>on</strong>g> high abundance of comp<strong>on</strong>ent B, which supplied large amounts<br />

of sulphur, was obviously resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> FeS becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g a major phase and at its<br />

segregati<strong>on</strong> extracted all chalcophile elements accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sulphide-silicate<br />

partiti<strong>on</strong> coefficients.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sulphide-silicate equilibrium <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates its saturati<strong>on</strong> with<br />

FeS. <str<strong>on</strong>g>The</str<strong>on</strong>g> mantle’s FeO c<strong>on</strong>tent is about a factor of 2 higher than that of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial<br />

mantle. As a c<strong>on</strong>sequence, <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphur abundance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle is expected<br />

to be substantially above <str<strong>on</strong>g>the</str<strong>on</strong>g> S abundance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s mantle, because <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility<br />

of FeS <str<strong>on</strong>g>in</str<strong>on</strong>g> silicates <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with <str<strong>on</strong>g>the</str<strong>on</strong>g> FeO c<strong>on</strong>tent. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> observed high<br />

c<strong>on</strong>centrati<strong>on</strong>s of sulphur <str<strong>on</strong>g>in</str<strong>on</strong>g> mantle-derived magmas as represented by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shergottites (sulphur c<strong>on</strong>tent 600-2800 ppm) is not surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> water abundance given <str<strong>on</strong>g>in</str<strong>on</strong>g> Table II.2.3/1 is derived from element correlati<strong>on</strong>s<br />

observed <str<strong>on</strong>g>in</str<strong>on</strong>g> shergottites and cosmochemical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. Two quite different<br />

approaches yielded an almost identical value. It might, however, be an upper limit<br />

<strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle.


<str<strong>on</strong>g>The</str<strong>on</strong>g> depleti<strong>on</strong> of chalcophile elements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle has been used to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer<br />

a homogeneous accreti<strong>on</strong> scenario <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as discussed above <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

sulphur, homogeneous accreti<strong>on</strong> had <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequence that water added to <str<strong>on</strong>g>the</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

planet by comp<strong>on</strong>ent B reacted with <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic Fe of comp<strong>on</strong>ent A, oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to<br />

FeO, while <str<strong>on</strong>g>the</str<strong>on</strong>g> generated hydrogen escaped. Hence, we should expect a very dry<br />

Martian mantle, because water, although added <str<strong>on</strong>g>in</str<strong>on</strong>g> large quantities to <str<strong>on</strong>g>the</str<strong>on</strong>g> planet dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

accreti<strong>on</strong>, was reduced to H 2 except <str<strong>on</strong>g>for</str<strong>on</strong>g> trace amounts.<br />

Two of <str<strong>on</strong>g>the</str<strong>on</strong>g> seven known shergottites, Shergotty and Zagami, have compositi<strong>on</strong>s very<br />

similar to that of <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil (Table II.2.4/1). <str<strong>on</strong>g>The</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r SNC meteorites differ<br />

c<strong>on</strong>siderably <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical compositi<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> large c<strong>on</strong>centrati<strong>on</strong>s of sulphur (3.5%) and chlor<str<strong>on</strong>g>in</str<strong>on</strong>g>e (0.8%) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

do not seem to be noticeably accompanied by respective cati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> most likely<br />

cati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphates, Mg and Ca, have even higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Shergotty<br />

and Zagami than <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. This suggests direct <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of SO 2 or H 2S<br />

and probably also HCl to <str<strong>on</strong>g>the</str<strong>on</strong>g> martian regolith via gas-solid reacti<strong>on</strong>s.<br />

With respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tradictory evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> a dry martian mantle, supported by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> low water c<strong>on</strong>tent of SNC meteorites but opposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> martian erosi<strong>on</strong>al surface<br />

features (which seem to require large amounts of water), <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxygen isotopes (Karlss<strong>on</strong> et al., 1991) and <str<strong>on</strong>g>the</str<strong>on</strong>g> H/D ratio (Wats<strong>on</strong> et al., 1991) of<br />

water extracted from SNC meteorites is of great <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. It was observed that, <str<strong>on</strong>g>for</str<strong>on</strong>g> all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> SNC meteorites analysed and apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of terrestrial c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>,<br />

a large fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> water is not derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle, but obviously<br />

represents martian surface water: <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen isotope compositi<strong>on</strong> is up to three times<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away from <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial isotope fracti<strong>on</strong>ati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e than <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

silicates of SNC meteorites. At <str<strong>on</strong>g>the</str<strong>on</strong>g> high temperatures of magma generati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian mantle, isotopic equilibrati<strong>on</strong> between oxygen of <str<strong>on</strong>g>the</str<strong>on</strong>g> silicates and of water<br />

would certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly have been established. Hence, <strong>on</strong>ly a fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> water found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

SNC meteorites can be mantle-derived and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-terrestrial part must come<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> oxygen isotopes of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface comp<strong>on</strong>ent might have<br />

been created by n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear isotope fracti<strong>on</strong>ati<strong>on</strong> by n<strong>on</strong>-<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal escape of oxygen to<br />

space (see Secti<strong>on</strong> II.3).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradictory evidence of a dry martian mantle (Table II.2.3/1) and <str<strong>on</strong>g>the</str<strong>on</strong>g> geo-<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet mars/II.2<br />

II.2.4 <str<strong>on</strong>g>The</str<strong>on</strong>g> Geochemistry<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian Surface<br />

Layers<br />

Fig. II.2.4/1. A 70 km-wide view of layered<br />

deposites <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> north polar cap regi<strong>on</strong>. Below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ice cap <str<strong>on</strong>g>the</str<strong>on</strong>g>re are successive layers of dust<br />

and ice, each about 50 m thick. <str<strong>on</strong>g>The</str<strong>on</strong>g> layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

may be due to period variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit of<br />

<strong>Mars</strong> caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g climatic changes. Erosi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

500 m-high cliffs, possibly by w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds, produced<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dark ripple-textured areas at <str<strong>on</strong>g>the</str<strong>on</strong>g> base.<br />

Table II.2.4/1. Comparis<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

% Compositi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> Shergotty<br />

Meteorite (Dreibus et al., 1982) and<br />

Martian Soil (Clark et al., 1976).<br />

Shergotty <strong>Mars</strong> Soil<br />

SiO 2 51.4 43.0<br />

FeO 19.4 16.2<br />

CaO 10.0 5.8<br />

MgO 9.28 6.0<br />

Al 2O 37.06 7.2<br />

TiO 2 0.87 0.6<br />

Na 2O 1.29 n.d.<br />

P 2O 5 0.80 n.d.<br />

S 0.13 3.5<br />

Cl 0.01


SP-1231<br />

Fig. II.2.5/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site,<br />

about 300×200 km, outside <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

huge water-cut channel of Ares Vallis<br />

(19.5ºN/32.8ºW). Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der’s Sojourner rover<br />

analysed rocks and soil washed down from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ancient sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn highlands and <str<strong>on</strong>g>the</str<strong>on</strong>g> basalt<br />

pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

88<br />

II.2.5 Water and Ground<br />

Ice<br />

logical evidence of water-erosi<strong>on</strong> surface features can be expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed if <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

water is derived from a veneer of water-rich material added late <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s<br />

accreti<strong>on</strong> stage (Carr & Wänke, 1992). C<strong>on</strong>trary to <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> <strong>on</strong> Earth, subducti<strong>on</strong><br />

of crustal material seems not to occur <strong>on</strong> <strong>Mars</strong>. Material from a late veneer could<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e have been added to <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust <strong>on</strong>ly and would rema<str<strong>on</strong>g>in</str<strong>on</strong>g> unrecognised <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

mantle-derived magmas.<br />

At this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, we can <strong>on</strong>ly speculate where all <str<strong>on</strong>g>the</str<strong>on</strong>g> water that created all of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

erosi<strong>on</strong> features now resides. <str<strong>on</strong>g>The</str<strong>on</strong>g> water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn polar cap amounts to <strong>on</strong>ly a<br />

small fracti<strong>on</strong> of what is required to cause <str<strong>on</strong>g>the</str<strong>on</strong>g> observed erosi<strong>on</strong> features. A huge<br />

fracti<strong>on</strong> was obviously lost to space, as <str<strong>on</strong>g>the</str<strong>on</strong>g> D/H ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmospheric<br />

water (five times greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial ratio) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates. How much water is still<br />

present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of ground water or ground ice is unknown and deserves early<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>, especially with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exobiology c<strong>on</strong>text.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> high phosphorus c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface rocks (SNC meteorites)<br />

and mantle is of special <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. Because of <str<strong>on</strong>g>the</str<strong>on</strong>g> high mantle abundance of phosphorus,<br />

phosphates crystallised as an <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral phase and took up many of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geochemically very important trace elements such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Rare Earth Elements<br />

(REE), uranium, thorium, etc. Phosphorus is also an important bioelement. On Earth,<br />

phosphate-rich rocks often reflect decompositi<strong>on</strong> of sedimented organic matter.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most puzzl<str<strong>on</strong>g>in</str<strong>on</strong>g>g features <strong>on</strong> <strong>Mars</strong> are those <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of large quantities<br />

of surface water (Carr, 1987; 1996) because <str<strong>on</strong>g>the</str<strong>on</strong>g> present climate does not allow<br />

liquid water <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> present temperatures <strong>on</strong> <strong>Mars</strong> range from 150K at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter poles, where CO 2 freezes out to, a maximum of 290K at summer midday at low<br />

latitudes. Under <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s and with <str<strong>on</strong>g>the</str<strong>on</strong>g> present mean atmospheric pressure of<br />

<strong>on</strong>ly 7 mbar, liquid water cannot exist anywhere <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> water erosi<strong>on</strong> are <str<strong>on</strong>g>the</str<strong>on</strong>g> large dry valleys which are<br />

thought to have been <str<strong>on</strong>g>for</str<strong>on</strong>g>med by large floods. Many of <str<strong>on</strong>g>the</str<strong>on</strong>g>se valleys start from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chaotic terra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Margaritifer S<str<strong>on</strong>g>in</str<strong>on</strong>g>us regi<strong>on</strong>, south of <str<strong>on</strong>g>the</str<strong>on</strong>g> Chryse bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, and extend<br />

northward <str<strong>on</strong>g>for</str<strong>on</strong>g> hundreds of kilometres. Several c<strong>on</strong>verge <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Chryse bas<str<strong>on</strong>g>in</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r north, merg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> low-ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> valleys start<br />

full-size and rarely have any tributaries.<br />

In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas, <str<strong>on</strong>g>the</str<strong>on</strong>g> fluvial features <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate slow erosi<strong>on</strong> (Fig. II.2.5/1). Branch<str<strong>on</strong>g>in</str<strong>on</strong>g>g


valley networks (Fig. II.2.5/2) are found all over <str<strong>on</strong>g>the</str<strong>on</strong>g> heavily cratered sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn terra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

but occasi<strong>on</strong>ally also <strong>on</strong> younger areas. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are similar to terrestrial river valleys as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y have tributaries and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir widths <str<strong>on</strong>g>in</str<strong>on</strong>g>crease downstream. <str<strong>on</strong>g>The</str<strong>on</strong>g> networks extend<br />

generally <strong>on</strong>ly over a few hundred kilometres, hence <str<strong>on</strong>g>the</str<strong>on</strong>g>y are much shorter than<br />

terrestrial river systems. Water ice is unstable at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface at low latitudes but may<br />

be present at depths of a few to several hundred metres. <str<strong>on</strong>g>The</str<strong>on</strong>g> almost global presence<br />

of lobate flows around impact craters larger than a few kilometres is taken as str<strong>on</strong>g<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of ice at shallow depth at high latitudes and of ice or ground<br />

water at greater depth at low latitudes. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> present surface temperature<br />

c<strong>on</strong>diti<strong>on</strong>s, water can exist <strong>on</strong>ly as f<str<strong>on</strong>g>in</str<strong>on</strong>g>e water ice particles (Fig. II.2.7/1) or frost<br />

(Fig. II.2.7/2).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> geochemical evidence suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> climate <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early days of <strong>Mars</strong>, be<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

about 3.5 Gyr ago, was wet and warm, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> observed<br />

erosi<strong>on</strong>al features. It has been suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature has been raised by a<br />

str<strong>on</strong>g greenhouse effect ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a thick CO 2 atmosphere (Moroz & Mukh<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1978;<br />

Pollack et al., 1987). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> required surface pressure of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of 5-10 bar<br />

would lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of CO 2 ice clouds at high altitudes. <str<strong>on</strong>g>The</str<strong>on</strong>g>se would reflect<br />

sunlight and also limit <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of CO 2 resid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 1991).<br />

Hence, it seems necessary that <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time of a warm and wet climate <str<strong>on</strong>g>the</str<strong>on</strong>g>re were<br />

greenhouse gases o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than CO 2. Am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, methane and amm<strong>on</strong>ia have been<br />

suggested.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> light of <str<strong>on</strong>g>the</str<strong>on</strong>g> high sulphur c<strong>on</strong>tent of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian basalts (shergottites), SO 2 or<br />

H 2S are also worth c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g as possible additi<strong>on</strong>al greenhouse gases (Postawko &<br />

Kuhn, 1986). <str<strong>on</strong>g>The</str<strong>on</strong>g> lifetime of <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphur compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> an atmosphere with traces of<br />

water vapour is limited to a few m<strong>on</strong>ths. Although it seems likely that SO 2 or H 2S<br />

dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>the</str<strong>on</strong>g> volcanic exhalati<strong>on</strong>s, that producti<strong>on</strong> rate appears to be too small <str<strong>on</strong>g>for</str<strong>on</strong>g> any<br />

significant greenhouse effect. It has been argued, however, that SO 2 from volcanic<br />

exhalati<strong>on</strong> may have been stored <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of liquid or solid SO 2 tables at shallow<br />

depth. A sudden release of <str<strong>on</strong>g>the</str<strong>on</strong>g> stored SO 2 by impact or volcanic erupti<strong>on</strong> could <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

br<str<strong>on</strong>g>in</str<strong>on</strong>g>g enough <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere <str<strong>on</strong>g>for</str<strong>on</strong>g> a substantial temperature rise that could,<br />

supported by feedback effects, last hundreds of years (Wänke & Dreibus, 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

large c<strong>on</strong>centrati<strong>on</strong> of sulphur <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil, most likely as sulphates, may be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet mars/II.2<br />

Fig. II.2.5/2. An area about 200 km across of<br />

valley networks <strong>on</strong> <strong>Mars</strong>. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>y may<br />

appear to resemble terrestrial dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age systems,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y lack small-scale feeder streams. It is<br />

thought that <str<strong>on</strong>g>the</str<strong>on</strong>g>y might have been created by<br />

groundwater flow ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than ra<str<strong>on</strong>g>in</str<strong>on</strong>g>water runoff.<br />

Alternatively, because <str<strong>on</strong>g>the</str<strong>on</strong>g> valley networks are<br />

c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to relatively ancient regi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

might <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <strong>Mars</strong> at <strong>on</strong>e time had a<br />

warmer and wetter climate. (NASA/Lunar &<br />

Planetary Institute)<br />

II.2.6 <str<strong>on</strong>g>The</str<strong>on</strong>g> Climate of <strong>Mars</strong><br />

89


SP-1231<br />

Fig. II.2.7/1. Early morn<str<strong>on</strong>g>in</str<strong>on</strong>g>g fog <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Noctis<br />

Labyr<str<strong>on</strong>g>in</str<strong>on</strong>g>this (10ºS/95ºW). This regi<strong>on</strong>, about<br />

300 km wide, lies at <str<strong>on</strong>g>the</str<strong>on</strong>g> western end of Valles<br />

Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris. This low-ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g fog is probably<br />

caused by f<str<strong>on</strong>g>in</str<strong>on</strong>g>e water ice particles. (NASA)<br />

II.2.7 NASA-Proposed<br />

Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> Explorati<strong>on</strong><br />

90<br />

signature of such an SO 2 effect. In this c<strong>on</strong>text, it is important to menti<strong>on</strong> that we do<br />

not know if <str<strong>on</strong>g>the</str<strong>on</strong>g> observed erosi<strong>on</strong>al features were <str<strong>on</strong>g>for</str<strong>on</strong>g>med c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously or dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual periods of elevated temperatures separated by milli<strong>on</strong>s of years.<br />

It was menti<strong>on</strong>ed above that, at present, CO 2 freezes out at <str<strong>on</strong>g>the</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter poles. This<br />

translates to very large seas<strong>on</strong>al variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> CO 2 pressure of more than 30%. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

surface of <strong>Mars</strong> has an elevati<strong>on</strong> range of more than 30 km, which corresp<strong>on</strong>ds to a<br />

pressure of 13 mbar <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hellas bas<str<strong>on</strong>g>in</str<strong>on</strong>g> to 0.2 mbar <strong>on</strong> top of Olympus M<strong>on</strong>s.<br />

As <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of water, it is unclear where <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 from a massive atmosphere<br />

went. So far, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been no clear evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> large quantities of carb<strong>on</strong>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian soil. Loss of CO 2 to space has been observed but it is still uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g> if <str<strong>on</strong>g>the</str<strong>on</strong>g> rates<br />

are high enough to lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> present situati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> selecti<strong>on</strong> of sites <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology explorati<strong>on</strong> <strong>on</strong> <strong>Mars</strong> is based <strong>on</strong> two fundamental<br />

propositi<strong>on</strong>s:<br />

1. early <strong>Mars</strong> was sufficiently similar to Earth to provide a suitable envir<strong>on</strong>ment<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cepti<strong>on</strong> and development of life;<br />

2. <str<strong>on</strong>g>the</str<strong>on</strong>g> basic requirements <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of martian liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems, or <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

preservati<strong>on</strong> as fossils, are comparable to those <str<strong>on</strong>g>for</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>cepts lead to two doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>: ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct and extant martian<br />

life. <str<strong>on</strong>g>The</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r major aspect of <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> <strong>Mars</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge it can<br />

provide <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> precursor organic compounds, <str<strong>on</strong>g>the</str<strong>on</strong>g> traces of which are no l<strong>on</strong>ger<br />

observed <strong>on</strong> Earth because of <str<strong>on</strong>g>the</str<strong>on</strong>g> recycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of ancient rocks by plate tect<strong>on</strong>ics. As no


plate tect<strong>on</strong>ic evidence has been observed <strong>on</strong> <strong>Mars</strong>, it is expected that legacies of such<br />

compounds can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> aqueous sedimentary deposits <str<strong>on</strong>g>in</str<strong>on</strong>g> ancient Martian cratered<br />

terra<str<strong>on</strong>g>in</str<strong>on</strong>g> (NASA SP-530, 1995). Water be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> major requirement <str<strong>on</strong>g>for</str<strong>on</strong>g> life, seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g life<br />

equates to search<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> traces of water activity (Greeley & Thomas, 1994).<br />

As outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed earlier, <str<strong>on</strong>g>the</str<strong>on</strong>g> present c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>Mars</strong> do not allow <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of<br />

liquid water <strong>on</strong> its surface. Today, liquid water may be found <strong>on</strong>ly beneath <str<strong>on</strong>g>the</str<strong>on</strong>g> surface,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are higher temperatures and pressures. That means at a depth of more<br />

than just a few metres and, hence, bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> access of probes <str<strong>on</strong>g>for</str<strong>on</strong>g> some time to come.<br />

C<strong>on</strong>sequently, we could look today <strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> envir<strong>on</strong>ments where ancient life might<br />

have been preserved or <str<strong>on</strong>g>for</str<strong>on</strong>g> natural processes that might have brought extant<br />

subsurface life up to more accessible depths.<br />

II.2.7.1 Water and a Favourable Envir<strong>on</strong>ment<br />

With its current th<str<strong>on</strong>g>in</str<strong>on</strong>g> atmosphere giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g no UV protecti<strong>on</strong> and a cold, dry climate,<br />

<strong>Mars</strong> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>the</str<strong>on</strong>g> most severe c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cepti<strong>on</strong> of life. However,<br />

c<strong>on</strong>diti<strong>on</strong>s were different <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> past, and evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> water activity and aqueous<br />

sedimentary bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s have been dem<strong>on</strong>strated (Cabrol & Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1995; Carr, 1996). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

durati<strong>on</strong> of water activity and liquid habitats is also a critical issue (McKay & Davis,<br />

1991). Though <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s might have been more favourable dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

15 Gyr of martian history, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no evidence that large bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s such as Elysium were<br />

active dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Amaz<strong>on</strong>ian era (Scott, 1995; Scott & Chapman, 1991). Even more<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>trigu<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> activati<strong>on</strong> of large runoff valleys, and development<br />

of smaller-scale lakes <str<strong>on</strong>g>in</str<strong>on</strong>g> highland craters, such as <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gusev and Gale craters<br />

(Cabrol et al., 1996; Gr<str<strong>on</strong>g>in</str<strong>on</strong>g> & Cabrol, 1997) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> same geological period.<br />

Morphologic evidence show <str<strong>on</strong>g>the</str<strong>on</strong>g>se lakes to have existed over l<strong>on</strong>g periods and <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

may have provided oases <str<strong>on</strong>g>for</str<strong>on</strong>g> life more recently.<br />

Fluvial valley networks and channels <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highlands and <strong>on</strong> volcano slopes,<br />

ancient bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s and lakes are, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, <str<strong>on</strong>g>the</str<strong>on</strong>g> best evidence of a water-rich past. This<br />

evidence, coupled with <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery <strong>on</strong> Earth of microbiota able to survive <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

<strong>Mars</strong>-analogue envir<strong>on</strong>ment (Friedman & Ocampo, 1976) and <str<strong>on</strong>g>the</str<strong>on</strong>g> better understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> early evoluti<strong>on</strong> of life <strong>on</strong> Earth, have allowed researchers to identify<br />

candidate sites <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiological explorati<strong>on</strong> <strong>on</strong> <strong>Mars</strong> (Greeley & Thomas, 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

selecti<strong>on</strong> of sites <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology is thus based <strong>on</strong> geologic and geomorphic evidence<br />

of paleowaterflows, p<strong>on</strong>ds, ice and hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet mars/II.2<br />

Fig. II.2.7/2. Frost deposit at <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g-2<br />

Lander locati<strong>on</strong> (48ºN/226ºW). This May 1979<br />

image shows a coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g of ice a few micr<strong>on</strong>s<br />

thick. (NASA)<br />

91


SP-1231<br />

92<br />

A list of basic exploratory features <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology sites has been developed by<br />

Farmer & DesMarais:<br />

Deposits Features<br />

Fluvial Dendritic dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age networks: simple; complex (higher order)<br />

Channel morphology: widen<str<strong>on</strong>g>in</str<strong>on</strong>g>g down slope; meander<str<strong>on</strong>g>in</str<strong>on</strong>g>g;<br />

flood pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s; stream terraces<br />

Accessibility: layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g visible; impact craters<br />

Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age bas<str<strong>on</strong>g>in</str<strong>on</strong>g> fed by: simple channels; complex channels;<br />

Shorel<str<strong>on</strong>g>in</str<strong>on</strong>g>e features: lake terraces; deltas<br />

Accessibility: lava flows; aeolian cover; impact craters<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g Dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age system: simple channels; po<str<strong>on</strong>g>in</str<strong>on</strong>g>t source<br />

Localised heat source: surface (volcanic centre); subsurface<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmokarst<br />

Surface ice High latitude (>60º): lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated terra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Subsurface ice Mid-latitude (30-60º): patterned ground; alases; p<str<strong>on</strong>g>in</str<strong>on</strong>g>gos;<br />

fluidised crater ejecta.<br />

(After J.D. Farmer & D.J. DesMarais (1994). In <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Catalogue, (Eds.<br />

R. Greeley & P.E. Thomas), NASA RP-1238, 2nd Editi<strong>on</strong>; with permissi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

editors.)<br />

II.2.7.2 Explorati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

If <strong>Mars</strong> and Earth did actually experience broadly comparable c<strong>on</strong>diti<strong>on</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first 1.5 Gyr of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir histories, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is likely that life appeared dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that same<br />

period. Evidence of such life <strong>on</strong> <strong>Mars</strong> may be preserved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of fossils and <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

various biosignatures.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> NASA studies <str<strong>on</strong>g>for</str<strong>on</strong>g> site selecti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> exopalae<strong>on</strong>tology, priority is given to<br />

land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites <str<strong>on</strong>g>in</str<strong>on</strong>g> ancient terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s where hydrological systems <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g liquid water<br />

appear to have been l<strong>on</strong>g-lived and which exhibit a high probability of hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

surficial aqueous m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral deposits. Preference is given to m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral deposits that might<br />

have had a l<strong>on</strong>g residence time <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian crust, i.e. those that are diagenetic stable<br />

and resistant to chemical wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

On Earth, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> occurred <str<strong>on</strong>g>in</str<strong>on</strong>g> many Precambrian examples very rapidly,<br />

prior to cellular decompositi<strong>on</strong>, and probably when organisms were still viable. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

best preservati<strong>on</strong> is observed where organic materials were rapidly perfused with<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed silica or phosphate. Evaporites <str<strong>on</strong>g>for</str<strong>on</strong>g>m ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r group of potential host<br />

phases. Whereas <strong>on</strong> Earth <str<strong>on</strong>g>the</str<strong>on</strong>g>se are readily dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> hydrologic cycles, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> very<br />

dry martian climate <str<strong>on</strong>g>the</str<strong>on</strong>g>ir residence time might be prol<strong>on</strong>ged.<br />

Hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal systems are excellent targets <str<strong>on</strong>g>for</str<strong>on</strong>g> a search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil records of<br />

biological activity. Volcanic terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s are abundant <strong>on</strong> <strong>Mars</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is ample<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> ground water or ground ice. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

activity, which <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e should also be abundant <strong>on</strong> <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> NASA search<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life (fossils) strategy <strong>on</strong> <strong>Mars</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e gives priority to <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

sites, which should also provide a good preservati<strong>on</strong> envir<strong>on</strong>ment <str<strong>on</strong>g>for</str<strong>on</strong>g> microbial<br />

fossils and to stable lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e envir<strong>on</strong>ments and outflow channel deposits. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

types of sites give almost a planetwide range <str<strong>on</strong>g>for</str<strong>on</strong>g> explorati<strong>on</strong> (Greeley & Thomas<br />

1994).<br />

II.2.7.3 Explorati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Extant <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

Extant life, if present, probably resides <str<strong>on</strong>g>in</str<strong>on</strong>g> subsurface habitats where liquid water<br />

might be present and, hence, would be most likely of a chemosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic <str<strong>on</strong>g>for</str<strong>on</strong>g>m. It seems<br />

possible that recent flows of subsurface water have brought such organisms <str<strong>on</strong>g>in</str<strong>on</strong>g>to nearsurface<br />

envir<strong>on</strong>ments where <str<strong>on</strong>g>the</str<strong>on</strong>g>y have been cyropreserved <str<strong>on</strong>g>in</str<strong>on</strong>g> ground ice. It has been<br />

suggested that microorganisms may survive <str<strong>on</strong>g>in</str<strong>on</strong>g> ground ice <str<strong>on</strong>g>for</str<strong>on</strong>g> milli<strong>on</strong>s of years and <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

evaporite deposits <str<strong>on</strong>g>for</str<strong>on</strong>g> hundreds of milli<strong>on</strong> of years. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest priority


Table II.2.7.4/1. Potential <strong>Mars</strong> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites.<br />

Regi<strong>on</strong> (site name) Locati<strong>on</strong> Priority<br />

Fluvio-lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Eridania NW 37.0ºS / 230.0ºW h<br />

Parana Valles 22.0ºS / 11.0ºW h<br />

Mare Tyrrhenum 22.8ºS / 230.0ºW h<br />

Terra Tyrrhenum 24.8ºS / 285.8ºW h<br />

Aeolis SE 15.5ºS / 184.5ºW h<br />

Aeolis NE (Gusev) 7.3ºS / 305.0ºW h<br />

Iapygia NW 8.5ºS / 159.5ºW h<br />

Mangala Valles 6.3ºS / 149.5ºW h<br />

Ismenius Laous SW 33.5ºN / 342.5ºW h<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>us Sabeus NE 8.0ºS / 335.0ºW h/m<br />

Diacria SE 39.5ºN / 135.5ºW m<br />

Iapygia 11.0ºS / 279.5ºW m<br />

Terra Cimmeria 43.2ºS / 208.1ºW m<br />

Candor Mensa 6.05ºS / 73.75ºW m<br />

Eridania SE 57.0ºS / 197.0ºW m<br />

Ares 2.0ºN / 16.0ºW m<br />

Hebes Chasma 1.5ºS / 76.5ºW m<br />

Memn<strong>on</strong>ia NW 14.5ºS / 175.0ºW m<br />

Phasth<strong>on</strong>tis NC 37.5ºS / 146.0ºW m<br />

Oxia Palu NE 21.3ºN / 0.8ºW m<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g Dao Vallis 33.2ºS / 88.4ºW h<br />

Ares 2.0ºN / 16.0ºW m<br />

Ground ice Ismenius Lacusm SC 44.3ºN / 333.0ºW h<br />

Cassius SE 38.0ºN / 256.0ºW m<br />

Oxia Palus NW 21.1ºN / 36.7ºW m<br />

h=high, m=moderate. Adapted, by permissi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> editors, from Table 5.4 p16, <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Site Catalogue (Eds. R. Greeley & P.E. Thomas), NASA RP-1238, 2nd Editi<strong>on</strong>, 1994.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life has <str<strong>on</strong>g>the</str<strong>on</strong>g> very youngest martian terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s at high latitudes,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> north polar cap, as an objective. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> recent ice-covered<br />

lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e activity <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tertropical band of <strong>Mars</strong> may also offer potential <str<strong>on</strong>g>for</str<strong>on</strong>g> extant<br />

life explorati<strong>on</strong>. Ice-covered lakes, such as those that developed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gusev and<br />

Gale craters, had <str<strong>on</strong>g>the</str<strong>on</strong>g>ir f<str<strong>on</strong>g>in</str<strong>on</strong>g>al activity dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Amaz<strong>on</strong>ian era but, at least <str<strong>on</strong>g>for</str<strong>on</strong>g> Gusev,<br />

it has been shown that lakes may have occupied <str<strong>on</strong>g>the</str<strong>on</strong>g> crater episodically s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce its<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Noachian period (Cabrol et al., 1996). In Gusev, as <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r comparable sites, life<str<strong>on</strong>g>for</str<strong>on</strong>g>ms may have had <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to adapt <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> icecovered<br />

lakes envir<strong>on</strong>ment and to survive up to <str<strong>on</strong>g>the</str<strong>on</strong>g> present, especially if <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<br />

of ice-cored (p<str<strong>on</strong>g>in</str<strong>on</strong>g>go-like) structures is c<strong>on</strong>firmed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Global Surveyor<br />

missi<strong>on</strong>. Thus, new c<strong>on</strong>cepts of drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g and wells may enable us to discover oases of<br />

life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface, even at mid-latitudes.<br />

II.2.7.4 NASA Priority Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g><br />

C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> new developments and results <str<strong>on</strong>g>in</str<strong>on</strong>g> exobiology and martian geology,<br />

NASA has established a list of priority sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search of life <strong>on</strong> <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> list is<br />

presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Table II.2.7.4/1 by courtesy of <str<strong>on</strong>g>the</str<strong>on</strong>g> NASA Ames Research Center (c<strong>on</strong>tributi<strong>on</strong><br />

of Dr. N. Cabrol).<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet mars/II.2<br />

93


SP-1231<br />

94<br />

References<br />

Cabrol, N.A. & Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>, E.A. (1995). A morphological view <strong>on</strong> potential niches <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

exobiology <strong>on</strong> <strong>Mars</strong>. Planet. Space Sci. 43, 179-188.<br />

Cabrol, N.A. et al. (1996). Ma’adim Vallis revisited through new topographical data:<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> an ancient <str<strong>on</strong>g>in</str<strong>on</strong>g>travalley lake. Icarus 123, 269-283.<br />

Carr, M.H. (1987). Water <strong>on</strong> <strong>Mars</strong>. Nature 326, 30-34.<br />

Carr, M.H. (1996). Water <strong>on</strong> <strong>Mars</strong>. Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d Univ. Press, Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d, UK.<br />

Carr, M.H. & Wänke, H. (1992). Earth and <strong>Mars</strong>: Water <str<strong>on</strong>g>in</str<strong>on</strong>g>ventories as clues to<br />

accreti<strong>on</strong>al histories. Icarus 98, 61-71.<br />

Clark, B.C., Baird, A.K., Rose, Jr., H.J., Toulm<str<strong>on</strong>g>in</str<strong>on</strong>g>, P., Keil, K., Castro, A.J., Kelliher,<br />

W.C., Rowe, C.D. & Evans, P.H. (1976). Inorganic analyses of Martian surface<br />

samples at <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g lander sites. Science 194, 1283-1288.<br />

Dreibus, G., Palme, H., Rammensee, W., Spettel, B., Weckwerth, G. & Wänke, H.<br />

(1982). Compositi<strong>on</strong> of Shergotty parent body: Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r evidence of a two<br />

comp<strong>on</strong>ent model of planet <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Lunar Planet. Sci. XIII, 186-187.<br />

Dreibus, G. & Wänke, H. (1984). Accreti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ner planets. In<br />

Proc. 27th Intern. Geol. C<strong>on</strong>. Vol. 11, VNU Science Press, Utrecht, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands,<br />

pp1-20.<br />

Dreibus, G. & Wänke, H. (1987). Volatiles <strong>on</strong> Earth and <strong>Mars</strong>: A comparis<strong>on</strong>. Icarus<br />

71, 225-240.<br />

Friedman, E.I. & Ocampo, R. (1976). Endolithic blue-green algae <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dry valleys:<br />

primary producers <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic desert ecosystem. Science 193, 1247.<br />

Greeley, R. & Thomas, P.E. (Eds.) (1994). <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Catalogue, NASA RP-<br />

1238, 2nd ed.<br />

Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>, E.A. & Cabrol, N.A. (1997). Limnological analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> Gusev paleolake,<br />

<strong>Mars</strong>. Icarus 130, 80-94.<br />

Karlss<strong>on</strong>, H.R., Clayt<strong>on</strong>, R.N., Gibs<strong>on</strong>, E.K., Mayeda, T.K. & Socki, R.A. (1991).<br />

Extraterrestrial water of possible Martian orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> SNC meteorites: C<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts<br />

from oxygen isotopes. Meteoritics 26, 354-355.<br />

Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.F. (1991). CO 2 c<strong>on</strong>densati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> climate of early <strong>Mars</strong>. Icarus 94, 1-13.<br />

McKay, C.P. & Davis, W.L. (1991). Durati<strong>on</strong> of liquid water habitats <strong>on</strong> early <strong>Mars</strong>.<br />

Icarus 90, 214-221.<br />

Moroz, V.I. & Mukh<str<strong>on</strong>g>in</str<strong>on</strong>g>, L.M. (1978). On <str<strong>on</strong>g>the</str<strong>on</strong>g> early stage of evoluti<strong>on</strong> of atmosphere<br />

and climate of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s group planets. Kosmicheskiye Issleg. 3, no.2.<br />

Pollack, J.B., Kast<str<strong>on</strong>g>in</str<strong>on</strong>g>g, J.F., Richards<strong>on</strong>, S.M. & Poliakoff, K. (1987). <str<strong>on</strong>g>The</str<strong>on</strong>g> case <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

wet, warm climate <strong>on</strong> early <strong>Mars</strong>. Icarus 71, 203-204.<br />

Postawko, S.E. & Kuhn, W.R. (1986). Effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse gases (CO 2, H 2O,<br />

SO 2) <strong>on</strong> Martian paleoclimate. In Proc. XVI Lunar and Planet. Sci. C<strong>on</strong>f., J.<br />

Geophys. Res. 91, (B4), D431-D438.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>gwood, A.E. (1977). Compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> core and implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth. Geochem. J. 11, 111-135.<br />

R<str<strong>on</strong>g>in</str<strong>on</strong>g>gwood, A.E. (1979). On <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth and Mo<strong>on</strong>, Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger Verlag, New<br />

York USA.<br />

Scott, D.H. & Chapman, M.G. (1991). Proc. 22th Lun. Plan. Sci. C<strong>on</strong>f., pp53-62.<br />

Scott, D.H. et al. (1995). US Geol. Serv. Misc. Inv. Ser., Map I-2461.<br />

Walter, M.R. & DesMarais, D.J. (1993). Preservati<strong>on</strong> of biological <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits: develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g a strategy <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil life <strong>on</strong> <strong>Mars</strong>.<br />

Icarus 101, 129-143.<br />

Wänke, H. (1981). C<strong>on</strong>stituti<strong>on</strong> of terrestrial planets. Phil. Trans. R. Soc., L<strong>on</strong>d., A,<br />

303, 287-302.<br />

Wänke, H. & Dreibus, G. (1994). Chemistry and accreti<strong>on</strong> history of <strong>Mars</strong>. Phil.<br />

Trans. R. Soc. L<strong>on</strong>d. A, 349, 285-293.<br />

Wats<strong>on</strong>, L.L., Epste<str<strong>on</strong>g>in</str<strong>on</strong>g>, S. & Stolper, E.M. (1991). Hydrogen and carb<strong>on</strong> isotopic<br />

compositi<strong>on</strong> of volatiles <str<strong>on</strong>g>in</str<strong>on</strong>g> Nakhla: Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>Mars</strong>. In<br />

Workshop <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian surface and atmosphere through time, Lunar and<br />

Planetary Institute, Houst<strong>on</strong>, USA, LPI Tech. Report No. 92-02, pp165-166.


II.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Martian Meteorites<br />

‘When two great masses come <str<strong>on</strong>g>in</str<strong>on</strong>g>to collisi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> space it is certa<str<strong>on</strong>g>in</str<strong>on</strong>g> that a large part of each is melted; but it seems also quite certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g> many cases a large quantity of debris must be shot <str<strong>on</strong>g>for</str<strong>on</strong>g>th <str<strong>on</strong>g>in</str<strong>on</strong>g> all directi<strong>on</strong>s; much of which may have experienced no greater<br />

violence than <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual pieces of rock experience <str<strong>on</strong>g>in</str<strong>on</strong>g> a land slip or <str<strong>on</strong>g>in</str<strong>on</strong>g> blast<str<strong>on</strong>g>in</str<strong>on</strong>g>g by gunpowder.’<br />

Lord Kelv<str<strong>on</strong>g>in</str<strong>on</strong>g>, address<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> British Associati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1871<br />

Our <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites here is two-fold. Firstly, as menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> I.2, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

provided <str<strong>on</strong>g>the</str<strong>on</strong>g> early Earth with substantial amounts of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic and organic<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>ms. Sec<strong>on</strong>dly, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can provide <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stituti<strong>on</strong> and c<strong>on</strong>diti<strong>on</strong>s of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al parent bodies. Of especial <str<strong>on</strong>g>in</str<strong>on</strong>g>terest here are those few meteorite samples<br />

that appear to have orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ated from <strong>Mars</strong>. Indeed, <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s that exobiology<br />

is excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g much debate is <str<strong>on</strong>g>the</str<strong>on</strong>g> announcement c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of biological<br />

fossils <str<strong>on</strong>g>in</str<strong>on</strong>g> martian meteorite ALH 84001 (hereafter referred to as A84) (McKay et al.,<br />

1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> obvious implicati<strong>on</strong> of this observati<strong>on</strong>, if <str<strong>on</strong>g>the</str<strong>on</strong>g>y are biological fossils, is<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was <strong>on</strong>ce life <strong>on</strong> <strong>Mars</strong>.<br />

Actually witness<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> fall of a meteorite is a rare event; <strong>on</strong>ly 5-8 are reported<br />

each year. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r than that, a few meteorites are found simply ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground.<br />

This all adds up to a museum-based meteorite collecti<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> world of about<br />

2500 specimens. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorites collected by dedicated<br />

expediti<strong>on</strong>s to Antarctica and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r deserts, by <str<strong>on</strong>g>the</str<strong>on</strong>g> US, Japan, Australia and Europe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se may return with 200-1000 fragments per year, but often <str<strong>on</strong>g>the</str<strong>on</strong>g>re may be many<br />

separate pieces of a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle meteorite. Clearly, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, it is difficult to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total number of meteorites retrieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> trips. A best guess of <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

number ever collected (i.e. museum-based and by systematic searches) is somewhere<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> of 5000-8000.<br />

Most meteorites orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ate from bodies <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> asteroid belt. Some can even be<br />

tracked to a specific asteroid, Vesta. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r 18 samples from <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>.<br />

In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are currently 12 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs that are lumped toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of a<br />

number of comm<strong>on</strong> characteristics (some of which make <str<strong>on</strong>g>the</str<strong>on</strong>g> samples quite clearly<br />

dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct from asteroidal debris). Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g>se were called <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘SNC meteorites’, <strong>on</strong><br />

account of <str<strong>on</strong>g>the</str<strong>on</strong>g>re be<str<strong>on</strong>g>in</str<strong>on</strong>g>g three subgroups that had been recognised historically (<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Shergottites, Nakhlites and Chassignites).<br />

II.3.1 Introducti<strong>on</strong><br />

Fig. II.3.1/1. Martian meteorite ALH 84001,<br />

derived from a lava flow 4.5 Gyr ago. It was<br />

ejected from <strong>Mars</strong> about 16 milli<strong>on</strong> years ago<br />

and entered <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s atmosphere some<br />

13 000 years ago, land<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctica. (NASA<br />

Johns<strong>on</strong> Space Center)<br />

95


SP-1231<br />

96<br />

II.3.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of<br />

SNC Meteorites<br />

Clearly, SNC meteorites are numerically rare, so perhaps a better way to assess<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative significance is to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> total mass of those specimens observed to<br />

fall with <str<strong>on</strong>g>the</str<strong>on</strong>g> total mass of all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r meteorite falls. This must be d<strong>on</strong>e with falls,<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g> sample set of those returned by collecti<strong>on</strong> trips and found by members of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> public suffers horribly from bias. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, certa<str<strong>on</strong>g>in</str<strong>on</strong>g> types of samples are more<br />

resistant to wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g and so after land<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> Earth tend to be more resilient to<br />

erosi<strong>on</strong> than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. Thus over about a thousand years, <str<strong>on</strong>g>the</str<strong>on</strong>g>y appear to be more<br />

comm<strong>on</strong> than <str<strong>on</strong>g>the</str<strong>on</strong>g>y really are. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r bias<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect is that some samples look more<br />

like meteorites than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (or perhaps it is more appropriate to say <str<strong>on</strong>g>the</str<strong>on</strong>g>y look less like<br />

ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary terrestrial rocks, enhanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir probability of collecti<strong>on</strong>)! C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> observed falls, it transpires that SNC meteorites c<strong>on</strong>stitute, by mass, some 0.25%<br />

of all meteorites. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> total annual flux of extraterrestrial material to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth is<br />

estimated to be 40 000 t (much of it <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of micrometeorites, as will be<br />

discussed later), <str<strong>on</strong>g>the</str<strong>on</strong>g>n statistically, some 100 t of SNC meteorites arrive at <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth<br />

each year. So, while SNC meteorites may be relatively rare with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong>s,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y may be actually quite comm<strong>on</strong>place.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental questi<strong>on</strong> is, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, where do <str<strong>on</strong>g>the</str<strong>on</strong>g> SNC meteorites orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ate? How can<br />

we know if <str<strong>on</strong>g>the</str<strong>on</strong>g>y come from <strong>Mars</strong>? Two th<str<strong>on</strong>g>in</str<strong>on</strong>g>gs made <str<strong>on</strong>g>the</str<strong>on</strong>g>m stand out to researchers <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 1960s and 1970s. Firstly, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were obviously igneous <str<strong>on</strong>g>in</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallisati<strong>on</strong><br />

products of volcanic activity. This, <str<strong>on</strong>g>in</str<strong>on</strong>g> itself, is not unusual. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

classes of meteorite with this characteristic, represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> end-products of melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

events that took place <strong>on</strong> asteroids early <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> history of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> (>4.5 Gyr<br />

ago). However, what made SNC meteorites different was that <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rare-earth elements was more like that of terrestrial basalts than melted meteorites. In<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, <str<strong>on</strong>g>the</str<strong>on</strong>g>y had planetary ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than asteroidal characteristics. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d<br />

phenomen<strong>on</strong> was that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> ages were substantially younger (i.e. 1.3 Gyr)<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> age of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> (e.g. Gale et al., 1975; Jagoutz & Wänke, 1986). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<strong>on</strong>ly reas<strong>on</strong>able way that this could happen was if <str<strong>on</strong>g>the</str<strong>on</strong>g> samples were <str<strong>on</strong>g>for</str<strong>on</strong>g>med <strong>on</strong> a<br />

geologically active planetary body, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than an asteroid. Wass<strong>on</strong> & We<str<strong>on</strong>g>the</str<strong>on</strong>g>rill<br />

(1979) are generally acknowledged as first suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>t that <strong>Mars</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

likely possibility. But <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a problem: at that time no lunar meteorites had been<br />

found and <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics of transport<str<strong>on</strong>g>in</str<strong>on</strong>g>g samples from <strong>Mars</strong> (which at its nearest po<str<strong>on</strong>g>in</str<strong>on</strong>g>t<br />

to Earth is 77 milli<strong>on</strong> km distant) are much more difficult than <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong> (0.4<br />

milli<strong>on</strong> km).<br />

This c<strong>on</strong>undrum was resolved early <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1980s when <str<strong>on</strong>g>the</str<strong>on</strong>g> first lunar meteorite was<br />

identified. (In fact, this was a most unc<strong>on</strong>troversial sample; all scientists agreed that<br />

it had to be from <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>.) (L<str<strong>on</strong>g>in</str<strong>on</strong>g>dstrom, 1989). At about <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, a recently<br />

retrieved SNC meteorite, EET A79001 (from Antarctica; hereafter E79), was<br />

analysed and found to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> gases that were <str<strong>on</strong>g>in</str<strong>on</strong>g> most respects identical to those<br />

analysed at <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface by Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, it was recognised that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> noble gas isotope ratios of gas trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> what was believed to be shock-produced<br />

glass (possibly a product of <str<strong>on</strong>g>the</str<strong>on</strong>g> impact that ejected E79 from its parent) lay <strong>on</strong> a<br />

mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>e between that of <strong>Mars</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth (Bogard & Johns<strong>on</strong>, 1983). It looked<br />

very much as though E79 c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed martian gases c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by species absorbed<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial atmosphere. This c<strong>on</strong>cept was extended and c<strong>on</strong>firmed by a<br />

c<strong>on</strong>siderati<strong>on</strong> of nitrogen. Nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere has a very dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive<br />

isotopic compositi<strong>on</strong>, highly enriched <str<strong>on</strong>g>in</str<strong>on</strong>g> 15 N (McElroy et al., 1976). 15 N-enriched<br />

nitrogen was also found <str<strong>on</strong>g>in</str<strong>on</strong>g> E79 (Becker & Pep<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1984). But noble gases are trace<br />

comp<strong>on</strong>ents, and nitrogen is a m<str<strong>on</strong>g>in</str<strong>on</strong>g>or c<strong>on</strong>tributor to <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere. If <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

SNCs came from <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> major species of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere would have<br />

to be <str<strong>on</strong>g>the</str<strong>on</strong>g>re <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant amounts. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>firm<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence was duly found by Carr<br />

et al. (1985) and all <str<strong>on</strong>g>the</str<strong>on</strong>g> data (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g and meteorite results) were showed to plot <strong>on</strong> a<br />

trend across more than 10 orders of magnitude. It is now accepted that by study<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

E79 it is possible to ref<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements made by Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby provide<br />

new c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> 12 C/ 13 C ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g>


pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal atmospheric comp<strong>on</strong>ent, CO 2, now quoted <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> is, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite<br />

measurement, not from <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g data.<br />

Once <strong>on</strong>e sample from <strong>Mars</strong> was identified it was possible to c<strong>on</strong>firm that o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> and returned from Antarctica were also martian. Because martian gases<br />

are not readily apparent <str<strong>on</strong>g>in</str<strong>on</strong>g> all of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir presence or absence could not be<br />

taken as diagnostic. Indeed, some of <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorites do not have any residual martian<br />

atmosphere. A far more useful and generalised criteri<strong>on</strong> is a sample’s oxygen stable<br />

isotopic compositi<strong>on</strong> (a measurement requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly a few milligrammes of sample).<br />

Indeed, this is how A84 was c<strong>on</strong>firmed as a martian sample – <str<strong>on</strong>g>in</str<strong>on</strong>g> most o<str<strong>on</strong>g>the</str<strong>on</strong>g>r respects,<br />

it is different to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs of <str<strong>on</strong>g>the</str<strong>on</strong>g> family. Most notably it is extremely old (4.5 Gyr) –<br />

as old as <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. Until recently, old age would almost certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly have c<strong>on</strong>signed it<br />

to be<str<strong>on</strong>g>in</str<strong>on</strong>g>g of asteroidal orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. Indeed, it is ir<strong>on</strong>ic that A84 languished <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic<br />

collecti<strong>on</strong> at Houst<strong>on</strong>, unrecognised and believed to be diogenite (Mittlefehldt, 1994).<br />

As already menti<strong>on</strong>ed, oxygen isotope systematics are <str<strong>on</strong>g>the</str<strong>on</strong>g> vital criteri<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g meteorite families. Oxygen is 45wt‰ of any silicate-rich meteorite, so<br />

any characteristic discovered am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen isotopes can be c<strong>on</strong>sidered as<br />

diagnostic. Fortunately, oxygen has three isotopes: 16 O (most abundant), 17 O (1/200th<br />

of total) and 18 O (1/500th). <str<strong>on</strong>g>The</str<strong>on</strong>g> exact relative proporti<strong>on</strong>s of 17 O and 18 O can be<br />

measured very precisely and quoted accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> general <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g> δ 17 O and<br />

δ 18 O (‰, per mil).<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between 16 O and 17 O is 1 mass unit and between 16 O and 18 O is 2<br />

mass units, any samples from a homogenised parent body affected <strong>on</strong>ly by geological<br />

events must plot <strong>on</strong> a l<str<strong>on</strong>g>in</str<strong>on</strong>g>e of slope 1/2 (actually 0.52). All <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks <strong>on</strong> Earth, its water<br />

etc def<str<strong>on</strong>g>in</str<strong>on</strong>g>e a well-accepted reference l<str<strong>on</strong>g>in</str<strong>on</strong>g>e called <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial fracti<strong>on</strong>ati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e.<br />

Robert Clayt<strong>on</strong> and his colleagues at <str<strong>on</strong>g>the</str<strong>on</strong>g> University of Chicago (e.g. Clayt<strong>on</strong> &<br />

Mayeda, 1983) found that dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct meteorite groups, or groups that were related, had<br />

separate l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <strong>on</strong> an oxygen isotope diagram, because <str<strong>on</strong>g>the</str<strong>on</strong>g> solar nebula was not<br />

adequately mixed be<str<strong>on</strong>g>for</str<strong>on</strong>g>e solid silicate bodies separated out. On this basis, <strong>Mars</strong> might<br />

be expected to have a dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Indeed it does, although it is predictable that<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> a terrestrial type-planet, <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between<br />

<strong>Mars</strong> and Earth is small. <str<strong>on</strong>g>The</str<strong>on</strong>g> important parameter <str<strong>on</strong>g>in</str<strong>on</strong>g> def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>Mars</strong> (from martian<br />

meteorites) is <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen isotope compositi<strong>on</strong> of SNC<br />

meteorites and Earth, designated ∆ 17 O <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> ∆ 17 O <strong>Mars</strong> has now been measured to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites/II.3<br />

Fig. II.3.3/1. Carb<strong>on</strong>ate globules <str<strong>on</strong>g>in</str<strong>on</strong>g> ALH 84001.<br />

A th<str<strong>on</strong>g>in</str<strong>on</strong>g>-secti<strong>on</strong> view, cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g about 0.5 mm. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

‘nanofossil’ structures are found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rounded<br />

brownish and clear globules. <str<strong>on</strong>g>The</str<strong>on</strong>g> globules are<br />

made up of <str<strong>on</strong>g>the</str<strong>on</strong>g> brownish ir<strong>on</strong> carb<strong>on</strong>ate<br />

(siderite) and clear magnesium carb<strong>on</strong>ate<br />

(magnesite). <str<strong>on</strong>g>The</str<strong>on</strong>g> dark rims c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> ir<strong>on</strong> oxide<br />

and sulphide materials. (A. Treiman/Lunar &<br />

Planetary Institute)<br />

II.3.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Martian<br />

Meteorites<br />

97


SP-1231<br />

98<br />

II.3.4 <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Martian Meteorites<br />

very high precisi<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g laser-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced fluor<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> methods, which can af<str<strong>on</strong>g>for</str<strong>on</strong>g>d repeat<br />

measurements <strong>on</strong> small samples, with decreased c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> and <strong>on</strong> a rapid duty<br />

cycle. Thus ∆ 17 O <strong>Mars</strong> has been def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as 0.32±0.013 (Franchi et al., 1997a) from 10<br />

martian samples (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g A84) which has a ∆ 17 O of 0.327, thus c<strong>on</strong>firm<str<strong>on</strong>g>in</str<strong>on</strong>g>g its<br />

membership.<br />

It is now generally accepted that SNC meteorites do come from <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigators specialis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> low-temperature geochemistry use <str<strong>on</strong>g>the</str<strong>on</strong>g>m <str<strong>on</strong>g>for</str<strong>on</strong>g> studies characteris<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

martian envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. (Incidentally, even if ‘martian meteorites’<br />

turn out not to come from <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir features are so <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g and relevant <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

exobiology that it might almost be more excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g!) In <str<strong>on</strong>g>the</str<strong>on</strong>g> first <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, this means <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of martian carb<strong>on</strong>ates, which can be found at levels up to 1wt%.<br />

Hydrous m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals have been known about s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1970s (Ashworth &<br />

Hutchis<strong>on</strong>, 1975), but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are far less abundant and thus more difficult to study.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> early measurements of martian meteorites such as Nakhla (Carr et al., 1985),<br />

which led to <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery of carb<strong>on</strong>ates, suggested typical carb<strong>on</strong>ate c<strong>on</strong>centrati<strong>on</strong>s<br />

of about 0.02wt%. Later, A79 was found to have discrete pockets of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ve<str<strong>on</strong>g>in</str<strong>on</strong>g>s and cracks <str<strong>on</strong>g>in</str<strong>on</strong>g> A84 have been found to be rich <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>ates, broken open<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is cleaved (Romanek et al., 1994). M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral chemistry of <str<strong>on</strong>g>the</str<strong>on</strong>g> A84<br />

carb<strong>on</strong>ates suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>for</str<strong>on</strong>g>med at high (~700ºC) temperature (Harvey &<br />

McSween, 1996). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen isotopic compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates, (a<br />

method regularly used <strong>on</strong> Earth to work out carb<strong>on</strong>ate-<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> temperatures),<br />

suggested <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate ve<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> A84 <str<strong>on</strong>g>for</str<strong>on</strong>g>med at low temperatures (0-80ºC) by<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity, i.e. a process <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g liquid water. Of course, A84 is<br />

now under <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive study and <str<strong>on</strong>g>the</str<strong>on</strong>g> latest results suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen isotopic<br />

compositi<strong>on</strong>s of carb<strong>on</strong>ates are highly variable and possibly <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e of multiple<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> lower <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature of <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> more likely carb<strong>on</strong>ates are a<br />

good place to look <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of past life <strong>on</strong> <strong>Mars</strong>. If <str<strong>on</strong>g>the</str<strong>on</strong>g> high-temperature<br />

philosophy is correct, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>for</str<strong>on</strong>g> A84 carb<strong>on</strong>ates is that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral was generated by impact <str<strong>on</strong>g>in</str<strong>on</strong>g>to CO 2-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g permafrosts.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time as study<str<strong>on</strong>g>in</str<strong>on</strong>g>g carb<strong>on</strong>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> A84, Grady et al. (1994) looked at any<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample. <str<strong>on</strong>g>The</str<strong>on</strong>g>re was a very good reas<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> this. A previous<br />

study of E79 uncovered an unexpected phenomen<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates were<br />

accompanied by organic materials. <str<strong>on</strong>g>The</str<strong>on</strong>g> ratio of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two <str<strong>on</strong>g>for</str<strong>on</strong>g>ms was about 3<br />

(carb<strong>on</strong> as carb<strong>on</strong>ates/carb<strong>on</strong> as organics) (Wright et al., 1989). Clearly, this was a<br />

discovery of great significance, but <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence available it could not be decided<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> material was biogenic or abiogenic. It is extremely difficult to imag<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic ways of mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic deposits toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with carb<strong>on</strong>ates <strong>on</strong> <strong>Mars</strong>. A84 is<br />

a sample c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g so much carb<strong>on</strong>ate that <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals are visible to <str<strong>on</strong>g>the</str<strong>on</strong>g> naked eye.<br />

It also has associated organic material, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative c<strong>on</strong>centrati<strong>on</strong> of organics be<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

even higher than <str<strong>on</strong>g>in</str<strong>on</strong>g> E79 (carb<strong>on</strong> as carb<strong>on</strong>ate/carb<strong>on</strong> as organics ~1). <str<strong>on</strong>g>The</str<strong>on</strong>g>se results<br />

(Grady et al., 1994) al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> isotope data from Romanek et al. (1994) were of<br />

milest<strong>on</strong>e importance, and paved <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery of <str<strong>on</strong>g>the</str<strong>on</strong>g> putative fossils<br />

described by McKay et al. (1996).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> images of <str<strong>on</strong>g>the</str<strong>on</strong>g> purported biological microfossils <str<strong>on</strong>g>in</str<strong>on</strong>g> A84 (Fig. II.3.4/1; McKay et<br />

al., 1996) have been seen worldwide. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘microfossils’ would be more<br />

correctly called ‘nanofossils’ <strong>on</strong> account of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir small size. Although similar objects<br />

have been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial rocks, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no evidence as yet that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir small size, compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum dimensi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

accommodati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> biochemical molecules <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms, has led<br />

many to doubt that liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g replicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms of <str<strong>on</strong>g>the</str<strong>on</strong>g>se dimensi<strong>on</strong>s are viable.<br />

N<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence is taken seriously and research aimed at elucidat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘nanobacteria’ of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial envir<strong>on</strong>ment is underway. For now,<br />

however, it would seem that <str<strong>on</strong>g>the</str<strong>on</strong>g> A84 images are a matter of faith – you ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r believe<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y represent martian biological nanofossils, or <str<strong>on</strong>g>the</str<strong>on</strong>g>y are <str<strong>on</strong>g>the</str<strong>on</strong>g> result of some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, as<br />

yet unknown, process.


L<str<strong>on</strong>g>in</str<strong>on</strong>g>es of evidence o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than images and morphology have been c<strong>on</strong>sidered by<br />

McKay et al. (1996). For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, <str<strong>on</strong>g>the</str<strong>on</strong>g> polycyclic aromatic hydrocarb<strong>on</strong>s (PAHs) are<br />

not <str<strong>on</strong>g>the</str<strong>on</strong>g> k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of chemical fossils we expect from biology. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are, however,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>digenous to <str<strong>on</strong>g>the</str<strong>on</strong>g> samples. That is, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are more abundant <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior of carb<strong>on</strong>ate<br />

globules than <str<strong>on</strong>g>the</str<strong>on</strong>g> exterior and give a pattern by laser desorpti<strong>on</strong> that is different from<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>re could be o<str<strong>on</strong>g>the</str<strong>on</strong>g>r explanati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> PAHs, and it<br />

should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are ubiquitous, not just <strong>on</strong> Earth or <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>, but<br />

also <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar space, where few would venture to call <str<strong>on</strong>g>the</str<strong>on</strong>g>m evidence of life.<br />

To assess <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood of <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term existence of life <strong>on</strong> <strong>Mars</strong>, be<str<strong>on</strong>g>for</str<strong>on</strong>g>e a space<br />

missi<strong>on</strong> (which could deliver samples to Earth), martian meteorites of different ages<br />

have been studied. As stated above, A84 might be c<strong>on</strong>sidered to represent an endpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t,<br />

hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g an age almost as old as <str<strong>on</strong>g>the</str<strong>on</strong>g> planet itself. Nakhlites and Chassigny have<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>termediate crystallisati<strong>on</strong> ages of around 1.3 Gyr (e.g. Gale et al., 1975). In c<strong>on</strong>trast,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basaltic and lherzolitic shergottites could be as young as 0.18 Gyr (e.g. Jagoutz &<br />

Wänke, 1986) but this rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s a c<strong>on</strong>troversial subject. Regardless, <str<strong>on</strong>g>in</str<strong>on</strong>g> order to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of recent life <strong>on</strong> <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence found <str<strong>on</strong>g>in</str<strong>on</strong>g> shergottites<br />

has to be c<strong>on</strong>sidered.<br />

Martian meteorites are hardly ideal samples with<str<strong>on</strong>g>in</str<strong>on</strong>g> which to look <str<strong>on</strong>g>for</str<strong>on</strong>g> signs of life.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y represent relatively fresh samples of igneous rocks, produced by volcanic<br />

activity ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r at high or low levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian crust. Hence from <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

primary features, it is apparent that <str<strong>on</strong>g>the</str<strong>on</strong>g>y should not record any evidence of life. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case of martian rocks, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent histories of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples that are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated – sec<strong>on</strong>dary events such as wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g, hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity and<br />

atmospheric exposure. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, processes that occurred after <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks<br />

crystallised and cooled down. <str<strong>on</strong>g>The</str<strong>on</strong>g> available martian meteorites have been affected to<br />

lesser or greater extents by such sec<strong>on</strong>dary alterati<strong>on</strong>. Cracks and ve<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> A84 record<br />

<strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> most extensive episodes of sec<strong>on</strong>dary process<str<strong>on</strong>g>in</str<strong>on</strong>g>g, and <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e model <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong>ate m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals have been <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as low-temperature hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal products<br />

that could preserve evidence of life if it were <str<strong>on</strong>g>the</str<strong>on</strong>g>re <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first place. An alternative<br />

scenario suggests <str<strong>on</strong>g>the</str<strong>on</strong>g>y are rapidly deposited high-temperature m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals produced by<br />

an impact-driven process with<str<strong>on</strong>g>in</str<strong>on</strong>g> which fossilised life would not be expected to<br />

survive. (e.g. Scott et al., 1997)<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r sample with very obvious evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> sec<strong>on</strong>dary activity is E79, which<br />

was <str<strong>on</strong>g>the</str<strong>on</strong>g> first meteorite found to have tangible amounts of carb<strong>on</strong>ate. Moreover, it is<br />

associated with amounts of uncharacterised organic matter far <str<strong>on</strong>g>in</str<strong>on</strong>g> excess of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites/II.3<br />

Fig. II.3.4/1. A possible fossil microorganism<br />

observed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ALH 84001 meteorite. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

segmented rod-like object is about 200 nm l<strong>on</strong>g.<br />

It was found to be <str<strong>on</strong>g>in</str<strong>on</strong>g> associati<strong>on</strong> with martian<br />

organic chemicals and is assumed to be of<br />

martian orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. Although resembl<str<strong>on</strong>g>in</str<strong>on</strong>g>g very small<br />

bacteria found <strong>on</strong> Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is still<br />

c<strong>on</strong>siderable debate as to <str<strong>on</strong>g>the</str<strong>on</strong>g> nature and orig<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

of structures of this type <str<strong>on</strong>g>in</str<strong>on</strong>g> this martian<br />

meteorite. (McKay et al., 1996)<br />

99


SP-1231<br />

100<br />

potential levels of c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (Wright et al., 1989). Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, it is not yet so<br />

clear that <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> E79 is martian. E79 appears to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> some modern 14 C,<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrially produced carb<strong>on</strong>ate. Wherever large deposits of carb<strong>on</strong>ate<br />

exist <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a suggesti<strong>on</strong> that 14 C correlates with 13 C abundance and, if so, that a high<br />

δ 13 C identifies <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate as <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous (Wright et al., 1997a). A study of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong>ate-rich samples, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g some extracted from completely glass-sealed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s, shows <str<strong>on</strong>g>the</str<strong>on</strong>g>y are high <str<strong>on</strong>g>in</str<strong>on</strong>g> organics. If most of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate is <str<strong>on</strong>g>in</str<strong>on</strong>g>deed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>digenous, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it can be argued that <str<strong>on</strong>g>the</str<strong>on</strong>g> organic matter came to Earth with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> amounts of organic residues encountered are a factor of five<br />

greater than <str<strong>on</strong>g>for</str<strong>on</strong>g> any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r martian meteorite, some of which are known to be heavily<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated. Carb<strong>on</strong>ate-poor fracti<strong>on</strong>s of E79 are also am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> least c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

that have been studied. Thus critics of <str<strong>on</strong>g>the</str<strong>on</strong>g> work <strong>on</strong> E79 have developed models <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

selective c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. For example, flush<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite with large amounts of<br />

Antarctic melt water c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g low levels of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids and PAHs (Becker et al.,<br />

1997). <str<strong>on</strong>g>The</str<strong>on</strong>g>re are detailed arguments that can be presented but <str<strong>on</strong>g>the</str<strong>on</strong>g> most obvious<br />

observati<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st such a mechanism is <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> sample does not show any<br />

evidence of <str<strong>on</strong>g>in</str<strong>on</strong>g>undati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> huge quantities of Antarctic melt water required.<br />

Wright et al. (1997a) c<strong>on</strong>clude <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary that whatever process added <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong>ates to E79 also deposited <str<strong>on</strong>g>the</str<strong>on</strong>g> large quantities of organic compounds measured.<br />

Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> event occurred at low temperatures and it <str<strong>on</strong>g>in</str<strong>on</strong>g>volved aqueous fluids.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> organic compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> E79 are Martian, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> significance of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir carb<strong>on</strong><br />

isotopic compositi<strong>on</strong> (δ 13 C~-25‰), as compared to a 13 C-enriched atmosphere,<br />

estimated from trapped gases and carb<strong>on</strong>ate measurements, cannot be overstated. On<br />

Earth, biological activity has been remarkably c<strong>on</strong>sistent <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of its isotopic<br />

effects over a period of some 3.5 Gyr. Schidlowski has exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> isotopic<br />

compositi<strong>on</strong> of more than 1600 samples of fossil kerogenous organic matter of all<br />

ages and recorded an average δ 13 C of -25±7‰, attribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensive <str<strong>on</strong>g>in</str<strong>on</strong>g>volvement of <str<strong>on</strong>g>the</str<strong>on</strong>g> RUBP carboxylase biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway (Schidlowski,<br />

1987). <str<strong>on</strong>g>The</str<strong>on</strong>g> spread of results is not dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishable from recent mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments even<br />

though more modern photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathways now c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary<br />

biomass. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> complete geologic record, mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e carb<strong>on</strong>ates vary by no more than<br />

±2-3‰ around a mean value. Schidlowski has argued successfully (see Secti<strong>on</strong> I.3)<br />

that a fracti<strong>on</strong>ati<strong>on</strong> of ~20-35‰ <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong> isotopes between dissolved and fixed<br />

carb<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e a diagnostic signature of life <strong>on</strong> Earth right back to <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest<br />

Precambrian times. This hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is so well accepted that even when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fracti<strong>on</strong>ati<strong>on</strong> is less or greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> required value, e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g> Isua metasediments or<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Fortescue group, respectively, special plead<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are allowed and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unviolated.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> possibility of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g isotopic fracti<strong>on</strong>ati<strong>on</strong> as an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of life <strong>on</strong> <strong>Mars</strong> has<br />

previously been c<strong>on</strong>sidered (Rothschild & DesMarais, 1989) without reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>ite c<strong>on</strong>clusi<strong>on</strong> or evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g data from a martian<br />

meteorite. Schidlowski (1992), however, has po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that his pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple could<br />

apply to meteorites from <str<strong>on</strong>g>the</str<strong>on</strong>g> planet, cit<str<strong>on</strong>g>in</str<strong>on</strong>g>g Wright et al. (1989) as a source of data, but<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> caveat that various undef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties mitigate aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g a direct<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>kage to life processes. At <str<strong>on</strong>g>the</str<strong>on</strong>g> time, this cauti<strong>on</strong> was rightly related to <str<strong>on</strong>g>the</str<strong>on</strong>g> undef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

provenance of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate, <str<strong>on</strong>g>the</str<strong>on</strong>g> organic matter or both. It is now more likely that<br />

both are <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous, <str<strong>on</strong>g>in</str<strong>on</strong>g> which case it is a reas<strong>on</strong>able assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong><br />

isotopic difference of ~40‰ between <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents could be <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of a<br />

biologically c<strong>on</strong>trolled process. Of course, it is un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunate that δ 13 C of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic<br />

matter <str<strong>on</strong>g>in</str<strong>on</strong>g> E79 is measured at about -25‰, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range of terrestrial c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ants.<br />

Even more c<strong>on</strong>fidence might have been placed <strong>on</strong> a potential biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g> if some<br />

extreme values had been determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, ak<str<strong>on</strong>g>in</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> values found <str<strong>on</strong>g>in</str<strong>on</strong>g> some Precambrian<br />

samples which have δ 13 C


<str<strong>on</strong>g>in</str<strong>on</strong>g>dicated by carb<strong>on</strong>ates and <str<strong>on</strong>g>the</str<strong>on</strong>g> organics <str<strong>on</strong>g>in</str<strong>on</strong>g> E79 are <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of life, just as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nanofossils might be <str<strong>on</strong>g>for</str<strong>on</strong>g> A84, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> that has to be drawn is of major<br />

importance. We do not know <str<strong>on</strong>g>the</str<strong>on</strong>g> actual age of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate but because it is<br />

sec<strong>on</strong>dary, younger than <str<strong>on</strong>g>the</str<strong>on</strong>g> rock of age 180 milli<strong>on</strong> years, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>e has to accept that<br />

life processes are comparatively recent and could be as recent as 0.6 milli<strong>on</strong> years,<br />

when 79001 was blasted off <strong>Mars</strong>. It is of great importance to measure emplacement<br />

dates <str<strong>on</strong>g>for</str<strong>on</strong>g> E79 carb<strong>on</strong>ates (and <str<strong>on</strong>g>in</str<strong>on</strong>g>deed all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sec<strong>on</strong>dary features <str<strong>on</strong>g>in</str<strong>on</strong>g> martian<br />

meteorites, especially A84) to restrict <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant time <str<strong>on</strong>g>in</str<strong>on</strong>g>terval. Until this has been<br />

d<strong>on</strong>e, it can <strong>on</strong>ly be speculated that dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> span of <str<strong>on</strong>g>the</str<strong>on</strong>g> Cenozoic and Mesozoic<br />

eras <strong>on</strong> Earth, a time when d<str<strong>on</strong>g>in</str<strong>on</strong>g>osaurs lives and died, <str<strong>on</strong>g>the</str<strong>on</strong>g> first flower<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants evolved,<br />

and even perhaps when <str<strong>on</strong>g>the</str<strong>on</strong>g> first hom<str<strong>on</strong>g>in</str<strong>on</strong>g>ids appeared, our sister planet may have had<br />

primitive life <str<strong>on</strong>g>for</str<strong>on</strong>g>ms.<br />

It may be that some of <str<strong>on</strong>g>the</str<strong>on</strong>g> publicity attached to recent f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g martian<br />

meteorites will be proved to be misplaced. However, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Occam’s Razor (‘<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simplest explanati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> most likely’), <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorite<br />

results <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis that biology was somehow <str<strong>on</strong>g>in</str<strong>on</strong>g>volved may well stand.<br />

Almost all meteorites c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>for</str<strong>on</strong>g>m, but it is mostly <str<strong>on</strong>g>in</str<strong>on</strong>g>organic. Of<br />

special <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study of exobiology are <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroups of <str<strong>on</strong>g>the</str<strong>on</strong>g> ch<strong>on</strong>drite class,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> CI and CM carb<strong>on</strong>aceous ch<strong>on</strong>drites and <str<strong>on</strong>g>the</str<strong>on</strong>g> unequilibrated type 3.0 to 3.1<br />

ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary ch<strong>on</strong>drites. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se groups are ‘primitive’: <str<strong>on</strong>g>the</str<strong>on</strong>g>y show evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

passage or coexistence of water <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir parent bodies. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r groups of carb<strong>on</strong>aceous<br />

ch<strong>on</strong>drites might be even more primitive, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y seem to have little extractable<br />

organic matter. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir carb<strong>on</strong> is elemental or <str<strong>on</strong>g>in</str<strong>on</strong>g>organic and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are anhydrous. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

are a small number of unique or rare samples, many of which have relatively high<br />

amounts of carb<strong>on</strong>, but little or no work has been d<strong>on</strong>e to characterise it. CI and CM<br />

samples, typified by <str<strong>on</strong>g>the</str<strong>on</strong>g> Argal and Murchis<strong>on</strong> meteorites, have been <str<strong>on</strong>g>the</str<strong>on</strong>g> subject of<br />

many studies to characterise <str<strong>on</strong>g>the</str<strong>on</strong>g>ir extractable organic compounds: hydrocarb<strong>on</strong>s.<br />

Alipathic, alicyclic, isoprenoid and aromatic structures have all been found. Many<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r compound classes, normally c<strong>on</strong>sidered to be related to biological activity when<br />

encountered <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial sedimentary record, have also been recognised. In this<br />

category come acids (carboxylic and am<str<strong>on</strong>g>in</str<strong>on</strong>g>o), nitrogen heterocycles, am<str<strong>on</strong>g>in</str<strong>on</strong>g>es, amides,<br />

alcohols etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> early work has been reviewed by Nagy (1975) and more recent work<br />

summarised by Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> et al. (1988). Close to 500 <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual compounds have been<br />

identified.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study of extractable organic molecules <str<strong>on</strong>g>in</str<strong>on</strong>g> samples collected from lowtemperature<br />

envir<strong>on</strong>ments and stored <str<strong>on</strong>g>in</str<strong>on</strong>g> museum collecti<strong>on</strong>s is fraught with problems<br />

related to c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>the</str<strong>on</strong>g> samples have been <strong>on</strong> Earth. This is<br />

particularly true <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Argal meteorite, which fell <str<strong>on</strong>g>in</str<strong>on</strong>g> 1864. While <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong><br />

meteorite was recovered <str<strong>on</strong>g>in</str<strong>on</strong>g> more enlightened times, not all samples have been<br />

collected, stored and preserved with equal care. Surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, samples from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

somewhat cleaner envir<strong>on</strong>ment of Antarctica have been less well c<strong>on</strong>sidered, part of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> problem be<str<strong>on</strong>g>in</str<strong>on</strong>g>g that a suitable CI meteorite has not yet been located <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ice cap.<br />

Indeed, n<strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples from polar locati<strong>on</strong>s is available <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively large<br />

amounts needed <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study of extractable organics. Specimens found <str<strong>on</strong>g>in</str<strong>on</strong>g> ‘sterile’ hot<br />

deserts tend to be larger but appear to have been leached of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir organic c<strong>on</strong>tent (Ash<br />

& Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, 1995).<br />

Early work (e.g. by Nagy et al., 1961) suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of biogenic<br />

molecules was severely questi<strong>on</strong>ed. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>ly very specific problems have been<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail. <str<strong>on</strong>g>The</str<strong>on</strong>g> best-studied case c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids. <str<strong>on</strong>g>The</str<strong>on</strong>g> discovery<br />

(Kvenvolden et al., 1970) that <str<strong>on</strong>g>the</str<strong>on</strong>g>se existed as racemic mixtures <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong><br />

samples precluded an orig<str<strong>on</strong>g>in</str<strong>on</strong>g> from c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (all terrestrial biological am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids<br />

are of <str<strong>on</strong>g>the</str<strong>on</strong>g> L-type). <str<strong>on</strong>g>The</str<strong>on</strong>g> idea that <str<strong>on</strong>g>the</str<strong>on</strong>g>se am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids were <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous to <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite<br />

was c<strong>on</strong>firmed when several n<strong>on</strong>-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> species (Kvenvolden et al., 1971) were<br />

found am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> extracts, and recently <str<strong>on</strong>g>the</str<strong>on</strong>g>y have been shown to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> more 13 C and<br />

15 N than <str<strong>on</strong>g>the</str<strong>on</strong>g>ir terrestrial counterparts (Engel et al., 1990). <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>di-<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites/II.3<br />

II.3.5 Carb<strong>on</strong> Compounds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Meteorites<br />

(Carb<strong>on</strong>aceous Ch<strong>on</strong>drites)<br />

101


SP-1231<br />

102<br />

vidual compounds is such that <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of structure are most abundant.<br />

This implies an abiogenic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, i.e. built up from s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle carb<strong>on</strong> atoms. <str<strong>on</strong>g>The</str<strong>on</strong>g> same<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of effects are also seen <str<strong>on</strong>g>in</str<strong>on</strong>g> short-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> aliphatic hydrocarb<strong>on</strong>s, m<strong>on</strong>o and<br />

dicarboxylic acids (Yuen & Kvenvolden, 1973) and polyaromatic hydrocarb<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

above <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> is c<strong>on</strong>firmed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic compositi<strong>on</strong> of<br />

homologous series (Yuen et al., 1984; Gilmour & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, 1994), where isotope<br />

fracti<strong>on</strong>ati<strong>on</strong> effects are <str<strong>on</strong>g>in</str<strong>on</strong>g> keep<str<strong>on</strong>g>in</str<strong>on</strong>g>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> greater strength of 12 C- 13 C b<strong>on</strong>ds as might<br />

be expected if <str<strong>on</strong>g>the</str<strong>on</strong>g> compound were c<strong>on</strong>structed from simple precursors by a cha<str<strong>on</strong>g>in</str<strong>on</strong>g>build<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

process. Biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, while produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g isotopic differences between<br />

oxidised and reduced carb<strong>on</strong>, does not seem to show regular fracti<strong>on</strong>ati<strong>on</strong> between<br />

small and large homologues.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al breakthrough <str<strong>on</strong>g>in</str<strong>on</strong>g> recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous compounds <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Murchis<strong>on</strong> came from <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery of racemic mixtures of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

recent activities <str<strong>on</strong>g>in</str<strong>on</strong>g> this area have <str<strong>on</strong>g>in</str<strong>on</strong>g>volved show<str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>in</str<strong>on</strong>g> some <str<strong>on</strong>g>in</str<strong>on</strong>g>stances <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

slight excesses (5-10%) of L enantiomers <str<strong>on</strong>g>in</str<strong>on</strong>g> some compounds (Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> & Pizzarello,<br />

1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> great pa<str<strong>on</strong>g>in</str<strong>on</strong>g>s taken with extracti<strong>on</strong> procedures suggest that this is a real<br />

effect ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a result of c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. One proposed explanati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

is that UV synchrotr<strong>on</strong> circularly polarised light, emitted by neutr<strong>on</strong> stars, might<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>troduce an antiomeric bias. If this explanati<strong>on</strong> turns out to be valid, <str<strong>on</strong>g>the</str<strong>on</strong>g>n while it<br />

could account <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of optical activity, it possibly calls <str<strong>on</strong>g>in</str<strong>on</strong>g> to questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole philosophy of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g chirality as a means of detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g exobiology <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

extraterrestrial envir<strong>on</strong>ments <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> organic compounds, which are solvent-extractable from carb<strong>on</strong>aceous<br />

ch<strong>on</strong>drites, are treated somewhat warily because of c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> issues, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

macromolecular material that comprises <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> is usually c<strong>on</strong>sidered<br />

as <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no plausible way that such a large accumulati<strong>on</strong>, up to 5wt‰,<br />

could have accrued from c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. In any case, even <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early 19th century,<br />

bulk carb<strong>on</strong> c<strong>on</strong>tents were measured so<strong>on</strong> after <str<strong>on</strong>g>the</str<strong>on</strong>g> fall of specimens such as <str<strong>on</strong>g>the</str<strong>on</strong>g> CI<br />

ch<strong>on</strong>drite Alais, and high carb<strong>on</strong> c<strong>on</strong>tents were recorded at that time. <str<strong>on</strong>g>The</str<strong>on</strong>g> carb<strong>on</strong><br />

isotopic compositi<strong>on</strong> of this material is remarkably c<strong>on</strong>stant (Smith & Kaplan, 1970;<br />

Kerridge, 1985) and relatively high <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> anyway. Nitrogen<br />

isotopic compositi<strong>on</strong> is well outside of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial range (Kerridge, 1985). It should<br />

be noted that when compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same samples, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a<br />

relatively large fracti<strong>on</strong>ati<strong>on</strong>, 50-80‰, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same sense as used by Schidlowski as<br />

an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of biogenicity (Schidlowski, 1987). Like kerogen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s<br />

sedimentary rocks, meteorite macromolecules are very <str<strong>on</strong>g>in</str<strong>on</strong>g>tractable, yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong>ly about <str<strong>on</strong>g>the</str<strong>on</strong>g>ir general structure when broken down by various pyrolytic<br />

or oxidative techniques; <str<strong>on</strong>g>the</str<strong>on</strong>g> build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks appear to be substantially aromatic.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is a str<strong>on</strong>g likelihood that <str<strong>on</strong>g>the</str<strong>on</strong>g> material c<strong>on</strong>stitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

carb<strong>on</strong>aceous ch<strong>on</strong>drites and unequilibrated ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary ch<strong>on</strong>drites orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> dark<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar clouds. <str<strong>on</strong>g>The</str<strong>on</strong>g> key results <str<strong>on</strong>g>in</str<strong>on</strong>g> this respect are <str<strong>on</strong>g>the</str<strong>on</strong>g> recogniti<strong>on</strong> of substantial<br />

deuterium enrichments (Kerridge, 1993; McNaught<strong>on</strong> et al., 1981). Deuterium to<br />

hydrogen ratios approach<str<strong>on</strong>g>in</str<strong>on</strong>g>g unity are encountered <str<strong>on</strong>g>in</str<strong>on</strong>g> small <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar molecules<br />

because of i<strong>on</strong>-molecule reacti<strong>on</strong>s, which encourage H to D exchange (Geiss &<br />

Reeves, 1981).<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> organic chemistry discussed above, <str<strong>on</strong>g>the</str<strong>on</strong>g>re have been <str<strong>on</strong>g>in</str<strong>on</strong>g>stances<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of microfossils were suggested <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>aceous ch<strong>on</strong>drites (Nagy<br />

et al., 1972), but such reports have been str<strong>on</strong>gly criticised, sometimes justifiably, but<br />

perhaps not always. It should not be c<strong>on</strong>sidered unscientific to <str<strong>on</strong>g>in</str<strong>on</strong>g>dulge <str<strong>on</strong>g>in</str<strong>on</strong>g> detailed<br />

characterisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>aceous ch<strong>on</strong>drites from <str<strong>on</strong>g>the</str<strong>on</strong>g> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of<br />

view of exobiology (Nagy et al., 1961) but as already stated this is almost a taboo<br />

area. As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid studies above, <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s are almost<br />

always motivated by abiogenic <str<strong>on</strong>g>in</str<strong>on</strong>g>terests, with large quantities of <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> ignored<br />

because c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is perhaps too readily <str<strong>on</strong>g>in</str<strong>on</strong>g>voked. Methods to recognise<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> should be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> example isotopic order, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

than discard<str<strong>on</strong>g>in</str<strong>on</strong>g>g unc<strong>on</strong>sidered large quantities of possibly useful data. Huge amounts<br />

of carb<strong>on</strong>aceous matter from carb<strong>on</strong>aceous ch<strong>on</strong>drites have been destroyed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>


quest <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Although important <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own right, <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies might<br />

be better designed <str<strong>on</strong>g>in</str<strong>on</strong>g> future to preserve material <str<strong>on</strong>g>for</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies. It may be ir<strong>on</strong>ic that<br />

martian meteorite studies could reawaken an <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

organic material <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>aceous ch<strong>on</strong>drites. Even more so, if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> could<br />

be made because of <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> martian sediments <strong>on</strong> Earth.<br />

Although it is highly speculative, a possible associati<strong>on</strong> between martian meteorites<br />

and type CI ch<strong>on</strong>drites has been suggested (Brandenburg, 1996). Brandenburg’s<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, that <strong>Mars</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> parent body of <str<strong>on</strong>g>the</str<strong>on</strong>g> CI ch<strong>on</strong>drites, is based <strong>on</strong> several l<str<strong>on</strong>g>in</str<strong>on</strong>g>es of<br />

thought and both isotopic and geochemical arguments. Top of <str<strong>on</strong>g>the</str<strong>on</strong>g> list is <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆ 17 O displacements <str<strong>on</strong>g>for</str<strong>on</strong>g> martian samples and <str<strong>on</strong>g>the</str<strong>on</strong>g> CI ch<strong>on</strong>drites relative to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

terrestrial fracti<strong>on</strong>ati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r favourable comparis<strong>on</strong>s made by Brandenburg<br />

c<strong>on</strong>cern <str<strong>on</strong>g>the</str<strong>on</strong>g> δD, δ 13 C, δ 15 N and noble gas isotopic compositi<strong>on</strong>s of martian samples,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals with<str<strong>on</strong>g>in</str<strong>on</strong>g> this such as carb<strong>on</strong>ates and various equivalent comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>aceous ch<strong>on</strong>drites. He also po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts out that chemical analyses of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong><br />

regolith by Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g call <str<strong>on</strong>g>for</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>put of CI material and makes <str<strong>on</strong>g>the</str<strong>on</strong>g> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t that Urey<br />

(1968) suggested that CI meteorites might have come from an ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct planetary<br />

seabed, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>. Martian meteorites (Burgess et al., 1989) like CIs (Burgess<br />

et al., 1991) also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> both sulphide and sulphate m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. <str<strong>on</strong>g>The</str<strong>on</strong>g> list of similarities<br />

is <str<strong>on</strong>g>for</str<strong>on</strong>g>midable and <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>ger it gets <strong>on</strong>e assumes <str<strong>on</strong>g>the</str<strong>on</strong>g> less chance that serendipity is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volved. <str<strong>on</strong>g>The</str<strong>on</strong>g> Brandenburg idea appeared just be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> revelati<strong>on</strong>s regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

putative martian fossils (McKay et al., 1996) so <str<strong>on</strong>g>the</str<strong>on</strong>g> most obvious comparis<strong>on</strong>, with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> work of Nagy and co-workers <strong>on</strong> Orgeuil (Nagy et al., 1972), was not menti<strong>on</strong>ed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most crucial test of a relati<strong>on</strong>ship between CI ch<strong>on</strong>drites and martian meteorites<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆ 17 O value, which Brandenburg suggests as ‘similar’. From prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary<br />

reappraisal of <strong>on</strong>ly three bulk CI samples, to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> results of <str<strong>on</strong>g>the</str<strong>on</strong>g> highest precisi<strong>on</strong>, a<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>k looks tenuous: <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆ 17 O <str<strong>on</strong>g>for</str<strong>on</strong>g> Argal, Ivuna and Alais has been found to be 0.64±0.03<br />

(Franchi et al., 1997b), i.e. outside <str<strong>on</strong>g>the</str<strong>on</strong>g> error limits <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian oxygen l<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

0.320±0.013 (Franchi et al., 1997a). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> case will not be fully closed until<br />

more def<str<strong>on</strong>g>in</str<strong>on</strong>g>itive measurements with separated and identified fracti<strong>on</strong>s have been<br />

made.<br />

Recent dust collecti<strong>on</strong>, both above <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial atmosphere (Love & Brownlee,<br />

1993) and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Greenland and Antarctica ice sheet (Hammer & Maurette, 1996),<br />

show that <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth captures <str<strong>on</strong>g>in</str<strong>on</strong>g>terplanetary dust as micrometeorites at a rate of about<br />

50-100 t per day. About 99% of this mass is carried by ‘large’ micrometeorites <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

50-500 mm size range. This value is about 2000 times higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> most reliable<br />

estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite flux (about 0.03 t per day) recently estimated by Bland et al.<br />

(1996). This amaz<str<strong>on</strong>g>in</str<strong>on</strong>g>g dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance of micrometeorites already suggests <str<strong>on</strong>g>the</str<strong>on</strong>g>ir possible<br />

role <str<strong>on</strong>g>in</str<strong>on</strong>g> deliver<str<strong>on</strong>g>in</str<strong>on</strong>g>g complex organics to <str<strong>on</strong>g>the</str<strong>on</strong>g> early Earth 4.2-3.9 Gyr ago (see Secti<strong>on</strong><br />

I.2.1.2.) when <str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorite flux was enhanced by a factor of 1000 (Anders,<br />

1989).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> large micrometeorites, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir comparis<strong>on</strong> with meteorites and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

basic features of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir carb<strong>on</strong> chemistry have been recently <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. <str<strong>on</strong>g>The</str<strong>on</strong>g> t<str<strong>on</strong>g>in</str<strong>on</strong>g>y<br />

micrometeorites collected <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stratosphere, Interplanetary Dust Particles (IDPs),<br />

represent less than 1% of <str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorites and will not be discussed here.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical and chemical studies (Kurat et al., 1994) were first aimed at<br />

compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g micrometeorites to meteorites. <str<strong>on</strong>g>The</str<strong>on</strong>g>y af<str<strong>on</strong>g>for</str<strong>on</strong>g>ded two unexpected features:<br />

• micrometeorites are related to <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively rare group of <str<strong>on</strong>g>the</str<strong>on</strong>g> most primitive<br />

meteorites (carb<strong>on</strong>aceous ch<strong>on</strong>drites) and predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ently to <str<strong>on</strong>g>the</str<strong>on</strong>g> CM ch<strong>on</strong>drites,<br />

which represent <strong>on</strong>ly 2% of <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite falls. So <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> of large<br />

micrometeorites that c<strong>on</strong>stitute <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant extraterrestrial matter accreted<br />

today by <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth is under-represented <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant meteorites, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary ch<strong>on</strong>drites and <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiated meteorites. This reflects major differences<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parent bodies generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorites and <str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorites;<br />

• although close to CM ch<strong>on</strong>drites, micrometeorites show marked differences: i)<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites/II.3<br />

II.3.6 Carb<strong>on</strong> Compounds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Micrometeorites<br />

103


SP-1231<br />

104<br />

much higher (about three times) C/O ratios reflect<str<strong>on</strong>g>in</str<strong>on</strong>g>g higher carb<strong>on</strong> c<strong>on</strong>tents; ii) a<br />

very str<strong>on</strong>g depleti<strong>on</strong>, by at least a factor of 20, of ch<strong>on</strong>drules that c<strong>on</strong>stitute 20%<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> mass of CM ch<strong>on</strong>drites; iii) a pyroxene/oliv<str<strong>on</strong>g>in</str<strong>on</strong>g>e ratio about 10 times higher.<br />

Thus, large micrometeorites seem to represent a populati<strong>on</strong> of <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g><br />

objects probably related to comets and not yet represented <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meteorite<br />

collecti<strong>on</strong>s.<br />

Important clues about <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> chemistry of micrometeorites were recently<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed:<br />

• a detailed analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> c<strong>on</strong>tent of <str<strong>on</strong>g>the</str<strong>on</strong>g> various groups of micrometeorites<br />

(Engrand, 1995) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> flux of total carb<strong>on</strong> delivered to <str<strong>on</strong>g>the</str<strong>on</strong>g> whole Earth<br />

can be estimated to be 500 t per year. This value is 50 000 times higher than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g value estimated <str<strong>on</strong>g>for</str<strong>on</strong>g> meteorites;<br />

• Clemett et al. (1998) have used <str<strong>on</strong>g>the</str<strong>on</strong>g> technique of Microscope Double Laser Mass<br />

Spectrometry to study <str<strong>on</strong>g>the</str<strong>on</strong>g> polycyclic aromatic hydrocarb<strong>on</strong>s (PAHs) <str<strong>on</strong>g>in</str<strong>on</strong>g> both<br />

micrometeorites and major groups of carb<strong>on</strong>aceous ch<strong>on</strong>drites. <str<strong>on</strong>g>The</str<strong>on</strong>g> PAH c<strong>on</strong>tent<br />

of micrometeorites is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r similar to that of CM ch<strong>on</strong>drites. This suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount of PAHs delivered to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth by <str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorite flux is about 50 000<br />

times higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g figure <str<strong>on</strong>g>for</str<strong>on</strong>g> meteorites. Micrometeorites also<br />

show a much larger variety of PAHs, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g reactive v<str<strong>on</strong>g>in</str<strong>on</strong>g>yl-PAHs not yet found<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites;<br />

• Br<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong> et al. (1998) detected am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, a-am<str<strong>on</strong>g>in</str<strong>on</strong>g>o isobutyric acid and isoval<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> micrometeorites by high-per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance liquid chromatography. In CM ch<strong>on</strong>drites,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se two am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids are found <str<strong>on</strong>g>in</str<strong>on</strong>g> similar abundances and may have,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, been <str<strong>on</strong>g>for</str<strong>on</strong>g>med via a Strecker-type syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. In micrometeorites, a-am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

isobutyric acid is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid. Its average c<strong>on</strong>tent is about 10<br />

times higher than <str<strong>on</strong>g>in</str<strong>on</strong>g> CM ch<strong>on</strong>drites. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> delivery of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth<br />

would be 500 000 times higher than that expected from meteorites. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

a-am<str<strong>on</strong>g>in</str<strong>on</strong>g>o isobutyric/isoval<str<strong>on</strong>g>in</str<strong>on</strong>g>e ratio is 20, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is derived<br />

from HCN, a compound known to be present <str<strong>on</strong>g>in</str<strong>on</strong>g> comets.<br />

Micrometeorites <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e appear to be <str<strong>on</strong>g>the</str<strong>on</strong>g> major source of <str<strong>on</strong>g>the</str<strong>on</strong>g> extraterrestrial<br />

organic molecules delivered to <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive Earth which may have c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

appearance of life. Studies of micrometeorites by analytical electr<strong>on</strong> microscopy<br />

br<str<strong>on</strong>g>in</str<strong>on</strong>g>g additi<strong>on</strong>al support to this scenario. About 80% of <str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorites appear as<br />

complex aggregates. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle 100 mm micrometeorite is composed of<br />

milli<strong>on</strong>s of t<str<strong>on</strong>g>in</str<strong>on</strong>g>y m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s imbedded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> abundant organic compound<br />

amount<str<strong>on</strong>g>in</str<strong>on</strong>g>g to 7% of carb<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a high proporti<strong>on</strong> of metallic<br />

sulphides, oxides and clay m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g to various classes of catalysts. In<br />

additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>aceous matter, <str<strong>on</strong>g>the</str<strong>on</strong>g> micrometeorites may <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e also have<br />

delivered a rich variety of catalysts, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g perhaps acquired specific crystallographic<br />

properties dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microgravity envir<strong>on</strong>ment of <str<strong>on</strong>g>the</str<strong>on</strong>g> early solar<br />

nebula. Electr<strong>on</strong> microscope observati<strong>on</strong>s also shows that micrometeorites are tightly<br />

encapsuled <str<strong>on</strong>g>in</str<strong>on</strong>g> a th<str<strong>on</strong>g>in</str<strong>on</strong>g> crust of magnetite, probably ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g atmospheric entry.<br />

In summary, micrometeorites were delivered at an average rate of about 50 000/m 2<br />

per year all over <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, between 4.2-3.9 Gyr years ago. <str<strong>on</strong>g>The</str<strong>on</strong>g>y may have functi<strong>on</strong>ed<br />

as <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual t<str<strong>on</strong>g>in</str<strong>on</strong>g>y chemical reactors when reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g terrestrial liquid water. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

probably c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed all <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients required <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> catalyzed process<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

complex carb<strong>on</strong>aceous matter by liquid water. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir magnetic crusts would have<br />

drastically <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mechanical stability and c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> reactants with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. In additi<strong>on</strong>, it probably reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> access of water molecules <str<strong>on</strong>g>in</str<strong>on</strong>g>side <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s.


Anders, E. (1989). Prebiotic organic matter from comets and asteroids. Nature 342,<br />

255-256.<br />

Ash, R.D. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1995). Carb<strong>on</strong>, nitrogen and hydrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> Sahara ch<strong>on</strong>drites:<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> importance of wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Meteoritics 30, 85-92.<br />

Ashworth, J.R. & Hutchis<strong>on</strong>, R. (1975). Water <str<strong>on</strong>g>in</str<strong>on</strong>g> n<strong>on</strong>-carb<strong>on</strong>aceous st<strong>on</strong>y meteorites.<br />

Nature 256, 714-715.<br />

Becker, R.H., Glav<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.P. & Bada, J.L. (1997). Polycyclic aromatic hydrocarb<strong>on</strong>s<br />

(PAHs) <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctic Martian meteorites, carb<strong>on</strong>aceous ch<strong>on</strong>drites and polar ice.<br />

Geochim. Cosmochim. Acta 61, 475-481.<br />

Becker, R.H. & Pep<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.O. (1984). <str<strong>on</strong>g>The</str<strong>on</strong>g> case <str<strong>on</strong>g>for</str<strong>on</strong>g> a Martian orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of <str<strong>on</strong>g>the</str<strong>on</strong>g> shergottites:<br />

Nitrogen and noble gases <str<strong>on</strong>g>in</str<strong>on</strong>g> EETA 79001. Earth and Planetary Sci. Letts. 69, 225-<br />

242.<br />

Bland, P.A., Smith, T.B., Jull, A.J., Berry, F.J., Bevan, A.W., Cloudt, S. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger,<br />

C.T. (1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> flux of meteorites to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth over <str<strong>on</strong>g>the</str<strong>on</strong>g> last 50 000 years. M<strong>on</strong>.<br />

Nat. R. Astr<strong>on</strong>. Soc. 233, 551-565.<br />

Bogard, D.D. & Johns<strong>on</strong>, P. (1983). Martian gases <str<strong>on</strong>g>in</str<strong>on</strong>g> an Antarctic meteorite? Science<br />

221, 651-654.<br />

Brandenburg, J. (1996). Geophys. and Res. Letts. 23, 961-964.<br />

Br<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>, K., Bada, G., Maurette, M. & Engrand, C. (1998). A search <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>aceous Antarctica micrometeorite. Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> of<br />

Evol. Biosphere 28, 413-424.<br />

Burgess, R., Wright, I.P. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1989). <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong> of sulphides and<br />

oxidised sulphur comp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> SNC meteorites. Earth & Planetary Sci. Letts. 93,<br />

314-320.<br />

Burgess, R., Wright, I.P. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1991). Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of sulphur bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

comp<strong>on</strong>ents and C1 and C2 carb<strong>on</strong>aceous ch<strong>on</strong>drites. Meteoritics 26, 59-64.<br />

Carr, R.H., Grady, M.M., Wright, I.P. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1985). Martian atmospheric<br />

carb<strong>on</strong> dioxide and wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g products <str<strong>on</strong>g>in</str<strong>on</strong>g> SNC meteorites. Nature 314, 245-250.<br />

Clayt<strong>on</strong>, R.N. & Mayeda, T.K. (1983). Oxygen isotopes <str<strong>on</strong>g>in</str<strong>on</strong>g> eucrites, shergottites,<br />

nakhlites and chassignites. Earth and Planetary Sci. Letts. 62, 1-6.<br />

Clemett, S.J., Chillier, X.D., Gillette, S., Zare, R.N., Maurette, M., Engrand, C. &<br />

Kurat, G. (1998). Observati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>dig<str<strong>on</strong>g>in</str<strong>on</strong>g>ous polycyclic aromatic hydrocarb<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

“giant” carbanoceous micrometerorites from Antarctica Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>Life</str<strong>on</strong>g> Evol.<br />

Biosphere 28, 425-448.<br />

Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>, J.R. & Pizzarello, S. (1996). Enantiomeric analyses of chiral compounds<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite. Met. and Planetary Science 31, 432.<br />

Cr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>, J.R., Pizzarello, S. & Cruikshank, J.R. (1988). Organic Matter <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>aceous<br />

ch<strong>on</strong>drites, planetary satellites, asteroids and comets. In Meteorites and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Early <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> (Eds. J.F. Kerridge & M.S. Mat<str<strong>on</strong>g>the</str<strong>on</strong>g>ws), Univ. of Ariz<strong>on</strong>a Press,<br />

Tucs<strong>on</strong>, Ariz<strong>on</strong>a, USA, pp819-857.<br />

Engel, M.H., Macko, S.A. & Silfer, J.A. (1990). Carb<strong>on</strong> isotope compositi<strong>on</strong> of<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite. Nature 348, 47-50.<br />

Engrand, C. (1995). Micrométéorites antyartiques: vers l’exobiologie et la missi<strong>on</strong><br />

cométaire Rosetta, PhD <str<strong>on</strong>g>The</str<strong>on</strong>g>sis, Université Paris-Sud, pp1-174.<br />

Franchi, I.A., Sext<strong>on</strong>, A.S., Wright, I.P. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1997a). A ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ement of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxygen isotopic compositi<strong>on</strong> of <strong>Mars</strong>. Lunar and Planetary Science XXVIII, 379-<br />

380.<br />

Franchi, I.A., Wright, I.P. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1997b). A <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Martian sediments.<br />

Lunar and Planetary Science XXVIII, 381-382.<br />

Gale, N., Arden, J.W. & Hutchis<strong>on</strong>, R. (1975). <str<strong>on</strong>g>The</str<strong>on</strong>g> chr<strong>on</strong>ology of <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakhla<br />

ach<strong>on</strong>dritic meteorite. Earth and Planetary Sci. Letts. 26, 195-206.<br />

Geiss, J. & Reeves, H. (1981). Deuterium <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early solar system. Astr<strong>on</strong>. Astrophys.<br />

93, 189-199.<br />

Gilmour, I. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1994). Isotopic compositi<strong>on</strong>s of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual polycyclic<br />

hydrocarb<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite. MNRAS 269, 235-240.<br />

Grady, M.M., Wright, I.P., Douglas, C. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1994). Carb<strong>on</strong> and nitrogen<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> ALH84001. Meteoritics 29, 469.<br />

References<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites/II.3<br />

105


SP-1231<br />

106<br />

Hammer, C. & Maurette, M. (1996). Micrometeorite flux <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt z<strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> West<br />

Greenland ice sheet. Meteorites Planet. Sci. 31, A56.<br />

Harvey, R.P. & McSween, H.Y. (1996). A possible high temperature orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorite ALH84001. Nature 382, 49-51.<br />

Jagoutz, E. & Wänke, H. (1986). Sr and Nd isotope systematics of Shergotty<br />

meteorites. Geochim. Cosmochim. Acta 50, 939-953.<br />

Kerridge, J.F. (1983). Isotopic compositi<strong>on</strong> of carb<strong>on</strong>acous ch<strong>on</strong>drite kerogen:<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites. Earth and Planetary<br />

Sci. Letts. 64, 186-200.<br />

Kerridge, J.F. (1985). Carb<strong>on</strong>, hydrogen, nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> carb<strong>on</strong>acous ch<strong>on</strong>drites. Abundances<br />

and isotopic compositi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk samples. Geochim. Cosmochim. Acta 49,<br />

1707-1714.<br />

Kurat, G., Koeberl, Ch., Presper, Th., Brandsratter, F. & Maurette, M. (1994).<br />

Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim.<br />

Acta 58, 3879-3904.<br />

Kvenvolden, K.A., Lawless, J.G. & P<strong>on</strong>namperuma, C. (1971). N<strong>on</strong>-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

acids <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> Meteorite. Proc. Nati<strong>on</strong>al Acad. Science 68, 486-490.<br />

Kvenvolden, K.A., Lawless, J.G., Per<str<strong>on</strong>g>in</str<strong>on</strong>g>g, K., Peters<strong>on</strong>, E., Flores, J., P<strong>on</strong>namperuma,<br />

C., Kaplan, I.R. & Moore, C. (1970). Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids and<br />

hydrocarb<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Murchis<strong>on</strong> meteorite. Nature 228, 923-926.<br />

Love, S.G. & Brownlee, D.E. (1993). A direct measurement of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial mass<br />

accreti<strong>on</strong> rate of cosmic dust. Science 262, 550-553.<br />

L<str<strong>on</strong>g>in</str<strong>on</strong>g>dstrom, M.M., Mittlefehldt, D.W., Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>ez, R.R., Lipshutz, M.E. & Wang, M.S.<br />

(1989). Geochemistry of Yamato 82192, 86032 and 793274. Proc. NIPR Symp.<br />

Antarctic Meteorites 4, 12-32.<br />

McElroy, M.B., Yung, Y.L. & Nier, A.O. (1976). Isotopic compositi<strong>on</strong> of nitrogen –<br />

implicati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> past history of <strong>Mars</strong>’ atmosphere. Science 194, 70-72.<br />

McKay, D.S., Gibs<strong>on</strong>, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett,<br />

S.J., Chellier, X.D.F., Maechl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, C.R. & Zare, R.N. (1996). <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> past life <strong>on</strong><br />

<strong>Mars</strong>: possible relic biogenic activity <str<strong>on</strong>g>in</str<strong>on</strong>g> martian meteorite ALH84001. Science<br />

273, 924-930.<br />

McNaught<strong>on</strong>, N.J., Borthwick, J., Fallick, A.E. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1981). Deuterium<br />

Hydrogen ratios <str<strong>on</strong>g>in</str<strong>on</strong>g> unequilibrated ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary ch<strong>on</strong>drites. Nature 294, 639-641.<br />

Mittelfehldt, D.W. (1994). ALH84001, a cumulate orthopyroxenite member of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian clan. Meteoritics 29, 214-221.<br />

Nagy, B. (1975). Carb<strong>on</strong>aceous ch<strong>on</strong>drites, Elsevier, Amsterdam, <str<strong>on</strong>g>The</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

Nagy, B., Claus, G. & Hennessy, D.J. (1972). Organic particles embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Argal and Ivuna carb<strong>on</strong>aceous ch<strong>on</strong>drites. Nature 193, 1129-1133.<br />

Nagy, B., Me<str<strong>on</strong>g>in</str<strong>on</strong>g>sche<str<strong>on</strong>g>in</str<strong>on</strong>g>, W.G. & Hennessy, D.J. (1961). Mass Spectroscopic analysis of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Argal meteorite: evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> biogenic hydrocarb<strong>on</strong>s. Anol. N.Y. Acad. Sci. 93,<br />

25-35.<br />

Romanek, C.S., Grady, M.M., Wright, I.P., Mittelfehldt, P.W., Socki, R.A., Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger,<br />

C.T. & Gibs<strong>on</strong>, E.K. (1994). Record of fluid-rock <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> <strong>on</strong> <strong>Mars</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

meteorite ALH84001. Nature 372, 655-657.<br />

Rothschild, L.J. & DesMarais, D. (1989). Stable carb<strong>on</strong> isotope fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> early <strong>Mars</strong>. Adv. Space Res. 9, 159-165.<br />

Scott, E.R.D., Yamaguchi, A. & Krot, A.N. (1997). Petrological Evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> shock<br />

melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carb<strong>on</strong>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian meteorite ALH84001. Nature 387, 377-<br />

379.<br />

Schidlowski, M. (1987). Applicati<strong>on</strong> of stable carb<strong>on</strong> isotopes to early biochemical<br />

evoluti<strong>on</strong> <strong>on</strong> Earth. Ann. Rev. Earth & Planetary Sci. 15, 47-72.<br />

Schidlowski, M. (1992). Stable carb<strong>on</strong> isotopes: possible clues to early life <strong>on</strong> <strong>Mars</strong>.<br />

Adv. Space Res. 12, 101-110.<br />

Schmitt, R.A. & Smith, R.H. (1963). Implicati<strong>on</strong>s of similarity <str<strong>on</strong>g>in</str<strong>on</strong>g> rare-earth fracti<strong>on</strong>ati<strong>on</strong><br />

of nakhlite meteorites and terrestrial basalts. Nature 199, 550-551.<br />

Smith, J.W. & Kaplan, I.R. (1970). Endogenous carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorites. Science 167,<br />

1367-1370.


Urey, H.C. (1968). Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of some meteorites from <str<strong>on</strong>g>the</str<strong>on</strong>g> Mo<strong>on</strong>. Naturwissenschaften<br />

55, 177-181.<br />

Wass<strong>on</strong>, J.T. & We<str<strong>on</strong>g>the</str<strong>on</strong>g>rill, G.W. (1979). Dynamical chemical and isotopic evidence<br />

regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> locati<strong>on</strong>s of asteroids and meteorites <str<strong>on</strong>g>in</str<strong>on</strong>g> asteroids, Univ. of<br />

Ariz<strong>on</strong>a Press, Tucs<strong>on</strong>, Ariz<strong>on</strong>a, USA, pp926-974.<br />

Wright, I.P., Grady, M.M. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1989). Organic materials <str<strong>on</strong>g>in</str<strong>on</strong>g> a Martian<br />

meteorite. Nature 340, 220-222.<br />

Wright, I.P., Grady, M.M. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1997a). Evidence relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> life <strong>on</strong><br />

<strong>Mars</strong> debate (1) 14 C results. Lunar and Planetary Sci. 28, 1585-1586.<br />

Wright, I.P., Grady, M.M. & Pill<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.T. (1997b). Isotopically light carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ALH<br />

84001: Martian metabolism or Tefl<strong>on</strong> c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>? Lunar and Planetary Sci. 28,<br />

1591-1592.<br />

Yuen, G., Blair, N., DesMarais, D.J. & Chang, S. (1984). Carb<strong>on</strong> isotope compositi<strong>on</strong><br />

of low molecular weight hydrocarb<strong>on</strong>s and m<strong>on</strong>ocarboxylic acids from Murchis<strong>on</strong><br />

meteorite. Nature 307, 252-254.<br />

Yuen, G.U. & Kvenvolden, K.A. (1973). M<strong>on</strong>ocarboxylic acids <str<strong>on</strong>g>in</str<strong>on</strong>g> Murray and Murchis<strong>on</strong><br />

carb<strong>on</strong>aceous meteorites. Nature 246, 301-302.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites/II.3<br />

107


II.4 Team I: <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Surface<br />

Envir<strong>on</strong>ment<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> task of Team I was to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment of <strong>Mars</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and shallow<br />

depth, with a view to detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g possible signatures of past life. ‘Signature’ denotes a<br />

large spectrum of evidence from microscopic (bacterial to nanobacterial size) to<br />

macroscopic fossils, geochemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of biological activity, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicators such as superparamagnetic gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> evidence of past life might be<br />

present at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface but it will more likely occur below <str<strong>on</strong>g>the</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>red (oxidised)<br />

upper layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> depth of this upper ‘barren’ layer can be <strong>on</strong>ly guessed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

way to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e its thickness or to c<strong>on</strong>struct a reliable model <str<strong>on</strong>g>for</str<strong>on</strong>g> it is to dig <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian surface and collect geochemical and petrophysical data.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> approach adopted by Team I is based <strong>on</strong> requirements c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g two k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds<br />

of evidence of past life: chemical signatures and bacterial fossils. However, a large<br />

part of <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> is also valid <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search of extant life.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> past few years it has become clear that <strong>Mars</strong> is an extremely diverse planet<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> geological terms. <str<strong>on</strong>g>The</str<strong>on</strong>g> first data from <strong>Mars</strong> Global Surveyor (MGS) support <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence of an extensive diversificati<strong>on</strong> of geological units, features and<br />

crustal structures. This geological diversity is of paramount importance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exobiological explorati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. This new approach is matched by <str<strong>on</strong>g>the</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

of <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life <str<strong>on</strong>g>in</str<strong>on</strong>g> a huge variety of geological sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, envir<strong>on</strong>ments and ecosystems<br />

<strong>on</strong> Earth. It has been well known <str<strong>on</strong>g>for</str<strong>on</strong>g> several decades that bacterial <str<strong>on</strong>g>for</str<strong>on</strong>g>ms live <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth’s crust at depths of several kilometres. Many <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life live near <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deep oceans and, recently, large liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g communities have<br />

been discovered <str<strong>on</strong>g>in</str<strong>on</strong>g> deep-sea z<strong>on</strong>es around <str<strong>on</strong>g>the</str<strong>on</strong>g> bodies of dead whales. It is now clear<br />

that life is a str<strong>on</strong>gly col<strong>on</strong>is<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor which, matched with <str<strong>on</strong>g>the</str<strong>on</strong>g> martian geological<br />

diversity, suggests that <strong>Mars</strong> is actually a place where life was probably present and,<br />

just possibly, might still exist <str<strong>on</strong>g>in</str<strong>on</strong>g> some specialised niche.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basic requirement <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and survival of life is <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water<br />

and energy (nutrients). This need not be true <str<strong>on</strong>g>for</str<strong>on</strong>g> an exotic <str<strong>on</strong>g>for</str<strong>on</strong>g>m of life, but <str<strong>on</strong>g>in</str<strong>on</strong>g> order to<br />

establish <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life <strong>on</strong> <strong>Mars</strong> it is better to<br />

adopt a c<strong>on</strong>servative approach. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> best candidates are those envir<strong>on</strong>ments<br />

where water has been present <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>siderable time. From this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geological envir<strong>on</strong>ments should be regarded as any geological sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g, regardless of<br />

dimensi<strong>on</strong> and positi<strong>on</strong>, with def<str<strong>on</strong>g>in</str<strong>on</strong>g>ite boundary c<strong>on</strong>diti<strong>on</strong>s. Thus, geological<br />

envir<strong>on</strong>ments would be obvious features such as lakes and rivers, but we must also<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude pores, fractures, surface roughness, <str<strong>on</strong>g>for</str<strong>on</strong>g> example.<br />

II.4.1.1 Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Envir<strong>on</strong>ments<br />

Lakes are ubiquitous <strong>on</strong> Earth and display a tremendous variety of sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, c<strong>on</strong>diti<strong>on</strong>s,<br />

shapes, etc. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have also been recognised as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g existed <strong>on</strong> <strong>Mars</strong>. Martian lakes<br />

can be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as localised areas where water was present as stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g bodies. Probably,<br />

lakes were scattered <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> several geological sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

easily recognisable when <str<strong>on</strong>g>the</str<strong>on</strong>g>y occur as water-filled impact craters. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are several<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stances where channels enter large craters and, as frequently, exit <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se crater floors probably c<strong>on</strong>sist of sediments <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> p<strong>on</strong>ded water. In some cases,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are terraces l<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> crater <str<strong>on</strong>g>in</str<strong>on</strong>g>terior walls and <str<strong>on</strong>g>the</str<strong>on</strong>g>se may be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as erosi<strong>on</strong>al<br />

shorel<str<strong>on</strong>g>in</str<strong>on</strong>g>es. Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits of this k<str<strong>on</strong>g>in</str<strong>on</strong>g>d may be expected to c<strong>on</strong>sist of bedded coarsegra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

sand, gravel or cobbles near <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom, grad<str<strong>on</strong>g>in</str<strong>on</strong>g>g downstream and upward to<br />

more f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed material as <str<strong>on</strong>g>the</str<strong>on</strong>g> flow slowed and particles came out of suspensi<strong>on</strong>.<br />

II.4.1 Envir<strong>on</strong>ments and<br />

Rocks with <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g><br />

Potential<br />

109


SP-1231<br />

Fig. II.4.1.1/1. A Gilbert-type delta at <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth of a short-headed<br />

stream. <str<strong>on</strong>g>The</str<strong>on</strong>g> Gilbert-type delta bodies suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bodies of water. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g image, NASA.)<br />

Fig. II.4.1.1/2. Terraces; Left: <str<strong>on</strong>g>in</str<strong>on</strong>g> an emabyment<br />

of Hydroates Chaos (MGS-MOC image,<br />

NASA/MSSS). Right: around <str<strong>on</strong>g>the</str<strong>on</strong>g> rim of an<br />

impact crater with an <str<strong>on</strong>g>in</str<strong>on</strong>g>flow channel (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

image, NASA.)<br />

110<br />

Crater lakes can be isolated, without channels enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> bas<str<strong>on</strong>g>in</str<strong>on</strong>g>. In this case, <strong>on</strong>ly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> terraces <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> craters’ <str<strong>on</strong>g>in</str<strong>on</strong>g>ner rims are found. However, most <str<strong>on</strong>g>in</str<strong>on</strong>g>stances show <str<strong>on</strong>g>in</str<strong>on</strong>g>put<br />

channels with delta-like structures (Fig. II.4.1.1/1). <str<strong>on</strong>g>The</str<strong>on</strong>g> morphology of <str<strong>on</strong>g>the</str<strong>on</strong>g>se deltas<br />

resembles terrestrial Gilbert-type deltas. <str<strong>on</strong>g>The</str<strong>on</strong>g>se <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g bodies of water:<br />

when a stream flows <str<strong>on</strong>g>in</str<strong>on</strong>g>to a water-filled bas<str<strong>on</strong>g>in</str<strong>on</strong>g> with steep marg<str<strong>on</strong>g>in</str<strong>on</strong>g>s, it <str<strong>on</strong>g>for</str<strong>on</strong>g>ms a delta<br />

(Gilbert-type) composed of a flat upper surface (topset) corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> water<br />

level and a steep delta fr<strong>on</strong>t. This type of delta and wave-dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated terraces<br />

(Fig. II.4.1.1/2) are <str<strong>on</strong>g>the</str<strong>on</strong>g> best evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> bodies of stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g water.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sedimentati<strong>on</strong> pattern could be quite simple, with <str<strong>on</strong>g>the</str<strong>on</strong>g> coarser deposits near <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crater rims and mostly c<strong>on</strong>centrated at <str<strong>on</strong>g>the</str<strong>on</strong>g> channel mouths (<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deltaic area). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments (very f<str<strong>on</strong>g>in</str<strong>on</strong>g>e silt or clay m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals) probably rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> central area.<br />

Evaporitic deposits, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly carb<strong>on</strong>ate, can be present <str<strong>on</strong>g>in</str<strong>on</strong>g> this z<strong>on</strong>e.<br />

II.4.1.2 Sebkha Envir<strong>on</strong>ments<br />

‘Sebkha’ is <str<strong>on</strong>g>the</str<strong>on</strong>g> Arabic word <str<strong>on</strong>g>for</str<strong>on</strong>g> dry lake. Sebkha <strong>on</strong> Earth are lakes <strong>on</strong>ly occasi<strong>on</strong>ally


flooded by water and, <str<strong>on</strong>g>for</str<strong>on</strong>g> most of <str<strong>on</strong>g>the</str<strong>on</strong>g> time, are dry and exposed to subaerial erosi<strong>on</strong><br />

and wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> deposits found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are evaporitic: mostly calcium carb<strong>on</strong>ate<br />

and gypsum or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r exotic lithotypes. <str<strong>on</strong>g>The</str<strong>on</strong>g> sebkha are usually dry and evaporati<strong>on</strong><br />

(with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequent c<strong>on</strong>centrati<strong>on</strong> of evaporitic m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals) occurs with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

Fig. II.4.1.2/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> high-albedo area with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Wegener crater suggests <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of<br />

evaporitic deposits. <str<strong>on</strong>g>The</str<strong>on</strong>g> possible sedimentary<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of this area is supported by: i) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence of ridges at <str<strong>on</strong>g>the</str<strong>on</strong>g> marg<str<strong>on</strong>g>in</str<strong>on</strong>g> that could be<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as shorel<str<strong>on</strong>g>in</str<strong>on</strong>g>e features; ii) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence of some hills stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g far above <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

high-albedo material. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g image, NASA.)<br />

Fig. II.4.1.2/2. White rocks: this is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most acclaimed putative evaporitic deposits.<br />

However, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical data are not available<br />

and MGS-MOC images show a ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r rough<br />

morphology unsuitable <str<strong>on</strong>g>for</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

image, NASA.)<br />

111


SP-1231<br />

Fig. II.4.1.3/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> source area of Dao Vallis<br />

(near Hellas Bas<str<strong>on</strong>g>in</str<strong>on</strong>g>) is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> most quoted<br />

examples of putative hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents.<br />

112


pores, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstitial water. <str<strong>on</strong>g>The</str<strong>on</strong>g> evaporati<strong>on</strong> decreases pore pressure which<br />

thus draws water from below. This ‘evaporitic pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g’ can produce massive and<br />

thick c<strong>on</strong>centrati<strong>on</strong>s of gypsum or limest<strong>on</strong>e, embedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g silicoclastic or argilliferous<br />

material. Water can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> shallow p<strong>on</strong>ds even at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and direct<br />

depositi<strong>on</strong> of salts can occur <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se cases.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sebkha usually exhibit a flat surface with a small supply of w<str<strong>on</strong>g>in</str<strong>on</strong>g>d-blown<br />

detritus. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have not been recognised <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface, but some putative<br />

deposits have been identified (Figs. II.4.1.2/1 and II.4.1.2/2). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> from orbiters needs to be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> order to establish <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of<br />

sebkha-like envir<strong>on</strong>ments <strong>on</strong> <strong>Mars</strong>.<br />

On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g>se extreme areas are rich <str<strong>on</strong>g>in</str<strong>on</strong>g> bacterial life – dispersed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water or<br />

c<strong>on</strong>centrated <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial mats. <str<strong>on</strong>g>The</str<strong>on</strong>g> fossilisati<strong>on</strong> potential of <str<strong>on</strong>g>the</str<strong>on</strong>g>se structures, as well<br />

as biomolecules, could be quite high if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is not pervasive recrystallisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

deposits or solubilisati<strong>on</strong>. Microbial fossils would be also preserved by replacement<br />

with more stable m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as silica.<br />

II.4.1.3 <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal-Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g Deposits<br />

On Earth, subaerial <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits are localised areas where heated gasbear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

water reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> surface or <str<strong>on</strong>g>the</str<strong>on</strong>g> near-surface z<strong>on</strong>e. <str<strong>on</strong>g>The</str<strong>on</strong>g>se areas are strictly<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked with volcanic edifices or activity. Several putative <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs have been<br />

identified <strong>on</strong> <strong>Mars</strong> (Fig. II.4.1.3/1), but n<strong>on</strong>e has been c<strong>on</strong>firmed by a detailed<br />

geomorphologic and geochemical study. Usually, areas near volcanic edifices, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> of channels, are thought to be hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal sites.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se terrestrial envir<strong>on</strong>ments are rich <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial material and, if at all present<br />

<strong>on</strong> <strong>Mars</strong>, could be <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> best targets <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiological explorati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> large<br />

quantity of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral depositi<strong>on</strong> associated with fast and effective molecule-bymolecule<br />

recrystallisati<strong>on</strong> allow <str<strong>on</strong>g>the</str<strong>on</strong>g> preservati<strong>on</strong> of microbial material. Rocks derived<br />

from spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits may be rich <str<strong>on</strong>g>in</str<strong>on</strong>g> fluid <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al liquid and<br />

gas as well as microorganism and biomolecules.<br />

II.4.1.4 Duricrusts<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of surface water, sediments <str<strong>on</strong>g>in</str<strong>on</strong>g> arid lands tend to <str<strong>on</strong>g>for</str<strong>on</strong>g>m particular soils,<br />

generically called duricrusts. <str<strong>on</strong>g>The</str<strong>on</strong>g>se deposits occur when <str<strong>on</strong>g>the</str<strong>on</strong>g> surface water <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrates<br />

down and br<str<strong>on</strong>g>in</str<strong>on</strong>g>gs up soluble compounds such as calcium carb<strong>on</strong>ates, silica, gypsum and<br />

sesquioxides (particularly ir<strong>on</strong>). <str<strong>on</strong>g>The</str<strong>on</strong>g> water can also move upwards <str<strong>on</strong>g>in</str<strong>on</strong>g> a manner similar<br />

to evaporitic pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g of sebkha and, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, duricrusts are soil types sometimes<br />

associated with sebkha deposits. <str<strong>on</strong>g>The</str<strong>on</strong>g> evaporati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstitial water leads to a large<br />

c<strong>on</strong>centrati<strong>on</strong> of cement <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of laterally extensive layers. On Earth, duricrusts<br />

are extremely hard and can be several metres thick. Bacterial activity is known to be<br />

associated with this type of deposit, which has a str<strong>on</strong>g preservati<strong>on</strong> potential.<br />

On <strong>Mars</strong>, duricrusts have been not observed directly. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir presence can<br />

be <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred because <str<strong>on</strong>g>the</str<strong>on</strong>g>re is evidence of superficial humidity that can percolate<br />

downwards. <str<strong>on</strong>g>The</str<strong>on</strong>g> extreme dryness and gravity of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet can enhance evaporati<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terstitial water, with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequent <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of duricrusts. Ir<strong>on</strong> is largely<br />

present at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and can assist <str<strong>on</strong>g>in</str<strong>on</strong>g> duricrust <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.<br />

II.4.1.5 Glacial Deposits<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is a wide variety of associated land<str<strong>on</strong>g>for</str<strong>on</strong>g>ms <strong>on</strong> <strong>Mars</strong> with characteristics resembl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

glacial features produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> Pleistocene ice age <strong>on</strong> Earth. <str<strong>on</strong>g>The</str<strong>on</strong>g>se features are<br />

generally restricted to high latitudes, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>for</str<strong>on</strong>g>m ordered sequences almost identical<br />

to those observed <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial glacial land<str<strong>on</strong>g>for</str<strong>on</strong>g>ms. <str<strong>on</strong>g>The</str<strong>on</strong>g>y resemble eskers, mora<str<strong>on</strong>g>in</str<strong>on</strong>g>es,<br />

kettles, glacial gouges, kames, druml<str<strong>on</strong>g>in</str<strong>on</strong>g>s, tunnel channels, outwash pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s and glaciolacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Of <str<strong>on</strong>g>the</str<strong>on</strong>g>se features, <strong>on</strong>ly eskers, mora<str<strong>on</strong>g>in</str<strong>on</strong>g>es, outwash pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s and glaciolacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s represent sedimentary deposits. <str<strong>on</strong>g>The</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are glacial erosi<strong>on</strong> features<br />

that occur mostly <str<strong>on</strong>g>in</str<strong>on</strong>g> glacial deposits. <str<strong>on</strong>g>The</str<strong>on</strong>g>se features will be described <str<strong>on</strong>g>in</str<strong>on</strong>g> some detail<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not widely known. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir existence is <str<strong>on</strong>g>the</str<strong>on</strong>g> subject of debate, mostly<br />

because of <str<strong>on</strong>g>the</str<strong>on</strong>g> important implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> paleoclimatic rec<strong>on</strong>structi<strong>on</strong>s (see below).<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

113


SP-1231<br />

114<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>uous ridges resembl<str<strong>on</strong>g>in</str<strong>on</strong>g>g eskers are found at various locati<strong>on</strong>s <strong>on</strong> <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are<br />

seen best developed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> floor of <str<strong>on</strong>g>the</str<strong>on</strong>g> Argyre bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> south polar regi<strong>on</strong> and at<br />

several locati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Like terrestrial eskers, martian s<str<strong>on</strong>g>in</str<strong>on</strong>g>uous ridges<br />

cross topographic divides, have very low and high tributary juncti<strong>on</strong> angles and<br />

rectil<str<strong>on</strong>g>in</str<strong>on</strong>g>ear patterns, and show c<strong>on</strong>spicuous l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uities and variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

width and height, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a segmented or beaded appearance. Also like terrestrial<br />

eskers, <str<strong>on</strong>g>the</str<strong>on</strong>g>y sometimes pass l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>ally <str<strong>on</strong>g>in</str<strong>on</strong>g>to, or reside with<str<strong>on</strong>g>in</str<strong>on</strong>g> eroded valleys that are<br />

probably glacial tunnel channels. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>y also show esker-like subhoriz<strong>on</strong>tal<br />

layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g and ridge crests that are sharply crested, rounded, flat-topped or doublecrested.<br />

Individual ridges range from 10 km to 200 km l<strong>on</strong>g, 0.3-3 km wide and 20-<br />

160 m high. This is near <str<strong>on</strong>g>the</str<strong>on</strong>g> upper range <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial eskers, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y could not be seen<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g images. If <str<strong>on</strong>g>the</str<strong>on</strong>g> martian s<str<strong>on</strong>g>in</str<strong>on</strong>g>uous ridges are eskers, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

should c<strong>on</strong>sist of f<str<strong>on</strong>g>in</str<strong>on</strong>g>e- to course-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed bedded material with occasi<strong>on</strong>al boulders.<br />

Smooth pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hellas and Argyre bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s might be proglacial lake deposits.<br />

In Hellas, <str<strong>on</strong>g>the</str<strong>on</strong>g>y occur at <str<strong>on</strong>g>the</str<strong>on</strong>g> term<str<strong>on</strong>g>in</str<strong>on</strong>g>us of <str<strong>on</strong>g>the</str<strong>on</strong>g> mora<str<strong>on</strong>g>in</str<strong>on</strong>g>es and are associated with fluvial<br />

channels and a possible shorel<str<strong>on</strong>g>in</str<strong>on</strong>g>e. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are numerous o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g crater<br />

floors, that could also be lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits. Glacio-lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits may have<br />

bedded well-sorted f<str<strong>on</strong>g>in</str<strong>on</strong>g>e- to course-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed material, with possible scattered boulders<br />

deposited by <str<strong>on</strong>g>the</str<strong>on</strong>g> glacier near <str<strong>on</strong>g>the</str<strong>on</strong>g> lake’s edge.<br />

In several areas, particularly near <str<strong>on</strong>g>the</str<strong>on</strong>g> Argyre bas<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are relatively small-scale<br />

braided delta-like fluvial erosi<strong>on</strong>al and/or depositi<strong>on</strong>al complexes. In <strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, a<br />

braided delta-like regi<strong>on</strong> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s at a breached crater about 50 km <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

crater is <str<strong>on</strong>g>the</str<strong>on</strong>g> obvious source of <str<strong>on</strong>g>the</str<strong>on</strong>g> braided complex and may have been <str<strong>on</strong>g>the</str<strong>on</strong>g> site of a<br />

glacier from which meltwater flowed to produce outwash-like pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Similar braided<br />

complexes occur to <str<strong>on</strong>g>the</str<strong>on</strong>g> west and north. If <str<strong>on</strong>g>the</str<strong>on</strong>g>se features represent fluvial deposits<br />

from a melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g glacier, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>y should c<strong>on</strong>sist of f<str<strong>on</strong>g>in</str<strong>on</strong>g>e- to course-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed bedded<br />

material.<br />

Glacial deposits are usually associated with large quantities of water, both liquid<br />

and solid, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> first requisite <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of life. If life was present<br />

<strong>on</strong> <strong>Mars</strong> and glaciati<strong>on</strong> also occurred, it is quite probable that microbial life flourished<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> glaciated z<strong>on</strong>es (Sharp et al., 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> preservati<strong>on</strong> is, however,<br />

quite low.<br />

II.4.1.6 Polar Deposits<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are two types of polar deposits of probable aeolian orig<str<strong>on</strong>g>in</str<strong>on</strong>g>: layered and massive.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> layered deposits overlie <str<strong>on</strong>g>the</str<strong>on</strong>g> more massive deposits and are <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e younger. As<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se deposits have <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest impact crater density of any terra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> youngest deposits <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. Both deposits are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g eroded by aeolian acti<strong>on</strong>.<br />

In some cases, older impact craters are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g exhumed as <str<strong>on</strong>g>the</str<strong>on</strong>g> overly<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits are<br />

stripped away. If <str<strong>on</strong>g>the</str<strong>on</strong>g>se deposits are aeolian <str<strong>on</strong>g>in</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are surely f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed,<br />

well-sorted sediments. <str<strong>on</strong>g>The</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of <str<strong>on</strong>g>the</str<strong>on</strong>g> layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> youngest deposits is not well<br />

understood, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y could be <str<strong>on</strong>g>for</str<strong>on</strong>g>med by climate cycles. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is some evidence <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

angular n<strong>on</strong>-c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mities between subjacent bed sets. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no obvious exobiological<br />

potential <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se polar layered terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir high-frequency<br />

cyclicity might be a good record of global changes and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir study can improve, by<br />

analogy with terrestrial global-change studies, our knowledge <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> geosphereatmosphere-biosphere<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s.<br />

II.4.1.7 Ground Ice-Permafrost<br />

On Earth, permafrost is found widely <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polar areas, with associated extensive<br />

bacterial activity. Permafrost is thought to be present extensively <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian<br />

subsurface. If life was present at sometime <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, it is quite probable that it<br />

is now segregated <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground ice. <str<strong>on</strong>g>The</str<strong>on</strong>g> locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> permafrost layer is, however,<br />

quite deep and probably out of reach of any direct <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near future.<br />

Direct evidence of bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> permafrost could be ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red by <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery of<br />

methane released from <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Bacterial activity produces large<br />

quantities of methane and this could be released to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. It is possible that <str<strong>on</strong>g>the</str<strong>on</strong>g>


large chaotic areas (that produced <str<strong>on</strong>g>the</str<strong>on</strong>g> large outflow channels) are created by this type<br />

of mechanism.<br />

Ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> depth of <str<strong>on</strong>g>the</str<strong>on</strong>g> permafrost, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of this potentially lifebear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

envir<strong>on</strong>ment will probably be postp<strong>on</strong>ed until <str<strong>on</strong>g>the</str<strong>on</strong>g> human explorati<strong>on</strong> of <strong>Mars</strong>.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are areas at high latitudes where <str<strong>on</strong>g>the</str<strong>on</strong>g> permafrost is thought to exist at<br />

very shallow depths. Moreover, steep and high cliffs occur <str<strong>on</strong>g>in</str<strong>on</strong>g> several areas of <strong>Mars</strong>,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>y might expose a porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> permafrost.<br />

Current c<strong>on</strong>cepts <str<strong>on</strong>g>for</str<strong>on</strong>g> search<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> microbial fossils <strong>on</strong> <strong>Mars</strong> are str<strong>on</strong>gly focused <strong>on</strong><br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer surface-bound microbial activity <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments and hot<br />

spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ments. While it has become accepted that subsurface life is presently<br />

active <strong>on</strong> Earth to a depth of several km at some places (e.g. Stevens & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley,<br />

1995; Stevens 1997), barely any fossil evidence of this has been reported so far, with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> notable excepti<strong>on</strong> of a paper by Kretzschmar (1982), although <str<strong>on</strong>g>the</str<strong>on</strong>g>re have been<br />

scattered reports <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> literature s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce 1782. Recent work has shown that subsurface<br />

microbialites similar to those reported by Kretzschmar (1982) are comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terrestrial samples from numerous subsurface envir<strong>on</strong>ments (Hofmann & Farmer,<br />

1997). This work is <str<strong>on</strong>g>in</str<strong>on</strong>g> progress and approximately 100 sites have so far been<br />

identified. Geological envir<strong>on</strong>ments c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g such suspected fossil rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>clude<br />

• sites of low-T hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal alterati<strong>on</strong> of volcanic rocks (dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant);<br />

• oxidati<strong>on</strong> of sulphide ore deposits (quite comm<strong>on</strong>);<br />

• hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal ve<str<strong>on</strong>g>in</str<strong>on</strong>g>-type ore deposits (rare);<br />

• silica deposits associated with serpent<str<strong>on</strong>g>in</str<strong>on</strong>g>isati<strong>on</strong> of ultra-basic rocks (rare).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> depth of emplacement of filamentous microstructures of probable microbial<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g> is unknown <str<strong>on</strong>g>in</str<strong>on</strong>g> most cases, but reaches 400-800 m <str<strong>on</strong>g>in</str<strong>on</strong>g> at least three of <str<strong>on</strong>g>the</str<strong>on</strong>g> betterstudied<br />

sites. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g body of evidence that subsurface microbial activity<br />

comm<strong>on</strong>ly results <str<strong>on</strong>g>in</str<strong>on</strong>g> macroscopic structures similar to surface microbialites<br />

(stromatolites). Many of <str<strong>on</strong>g>the</str<strong>on</strong>g> hi<str<strong>on</strong>g>the</str<strong>on</strong>g>rto recognised possibly microbial structures <str<strong>on</strong>g>in</str<strong>on</strong>g> such<br />

envir<strong>on</strong>ments are enclosed <str<strong>on</strong>g>in</str<strong>on</strong>g> microcrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e silica varieties (chalced<strong>on</strong>y, agate).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> recent identificati<strong>on</strong> of agates as products of post-impact hydrous alterati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> an<br />

impact melt of a F<str<strong>on</strong>g>in</str<strong>on</strong>g>nish crater (K<str<strong>on</strong>g>in</str<strong>on</strong>g>nunen & L<str<strong>on</strong>g>in</str<strong>on</strong>g>dqvist, 1998) makes it likely that<br />

similar silica varieties do exist <strong>on</strong> <strong>Mars</strong>, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g impact melts <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<str<strong>on</strong>g>in</str<strong>on</strong>g>g with<br />

groundwater must have been comm<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> likelihood of subsurface microbial fossils<br />

<strong>on</strong> <strong>Mars</strong> is significant and a subsurface biosphere can be expected to be relatively<br />

more important <strong>on</strong> <strong>Mars</strong> than <strong>on</strong> Earth because of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>hospitality of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian<br />

surface.<br />

By c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> surface-bound but also <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface microbial fossils<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process of evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites, target selecti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g etc<br />

enlarges <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> of available possible <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites and materials. A fractured<br />

or vesicular basalt, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, would be c<strong>on</strong>sidered of low <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

strategies focused <strong>on</strong> sediments and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits, but may never<str<strong>on</strong>g>the</str<strong>on</strong>g>less<br />

harbour rich subsurface fossil rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Rec<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> climatic and envir<strong>on</strong>mental changes of <strong>Mars</strong> should be d<strong>on</strong>e<br />

through a detailed rec<strong>on</strong>structi<strong>on</strong> of its geological history. Water is <str<strong>on</strong>g>the</str<strong>on</strong>g> most important<br />

factor am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> variables that shaped <str<strong>on</strong>g>the</str<strong>on</strong>g> planet, and knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrological<br />

cycle and l<strong>on</strong>g-term variati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment are based <strong>on</strong> geological analysis.<br />

Of course, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are serious disagreements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> geologic<br />

history but, basically, two models are proposed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first model proposes that <str<strong>on</strong>g>the</str<strong>on</strong>g> climate be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 3.5 Gyr ago was warmer and<br />

wetter. A thicker atmosphere was able to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> a complex climatic and hydrological<br />

cycle. In this scenario, ra<str<strong>on</strong>g>in</str<strong>on</strong>g>fall played an important role. Precipitati<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, were<br />

able to degrade a large part of <str<strong>on</strong>g>the</str<strong>on</strong>g> geological features (mostly impact craters).<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

II.4.2 General Remarks<br />

<strong>on</strong> Subsurface Microbial<br />

Fossils<br />

II.4.3 Climatic and<br />

Envir<strong>on</strong>mental Models<br />

115


SP-1231<br />

Fig. II.4.3/1. Ages of several geological units and<br />

features. Several events <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g large<br />

amounts of water are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r young.<br />

116<br />

Complex fluvial patterns supplied by large-scale underground water circulati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

turn supplied by atmospheric water, <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g>tricate fluvial systems (channel<br />

network). <str<strong>on</strong>g>The</str<strong>on</strong>g> subsurface circulati<strong>on</strong> of water supplied hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal systems. Water<br />

was present later <str<strong>on</strong>g>in</str<strong>on</strong>g> martian history, but <strong>on</strong>ly sporadically and <str<strong>on</strong>g>for</str<strong>on</strong>g> very short periods.<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g>, accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to this model, developed and was ext<str<strong>on</strong>g>in</str<strong>on</strong>g>guished with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first warmer<br />

and wetter epoch.<br />

This warm, wet model at an early epoch is based <strong>on</strong> two geological observati<strong>on</strong>s:<br />

1) <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> craters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> older surfaces ceased abruptly about 3.5 Gyr<br />

ago; 2) <str<strong>on</strong>g>the</str<strong>on</strong>g> valley networks occur <strong>on</strong> old (older than 3.5 Gyr) surfaces. This model has<br />

several shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> crater degradati<strong>on</strong> is quite complex and somewhat<br />

tautological because crater morphologies are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g dated by crater count<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> age<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> valley network cannot be achieved by def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> age of <str<strong>on</strong>g>the</str<strong>on</strong>g> unit where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

channels occur. <str<strong>on</strong>g>The</str<strong>on</strong>g> surfaces can be much older, as happens <strong>on</strong> Earth, where today’s<br />

rivers cut <str<strong>on</strong>g>in</str<strong>on</strong>g>to even Precambrian geological units.<br />

However, it is quite probable that erosi<strong>on</strong> by flow<str<strong>on</strong>g>in</str<strong>on</strong>g>g water played a major role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Noachian craters and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r features (Carr, 1983) and this<br />

extensive degradati<strong>on</strong> could be <str<strong>on</strong>g>the</str<strong>on</strong>g> product of climatic c<strong>on</strong>diti<strong>on</strong>s that could susta<str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

thick and warm atmosphere.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d model suggests that several episodes of wetter and warmer climate<br />

occurred dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g martian history. Several features <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of liquid water are<br />

scattered over <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Outflow channels are a remarkable example, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y can<br />

be due to <str<strong>on</strong>g>the</str<strong>on</strong>g> dramatic and episodic releases of water at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir lives are<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r short, although <str<strong>on</strong>g>in</str<strong>on</strong>g>tense. <str<strong>on</strong>g>The</str<strong>on</strong>g> important questi<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> fate of <str<strong>on</strong>g>the</str<strong>on</strong>g> water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

outflow channels. An old hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> water rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s briefly at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface be<str<strong>on</strong>g>for</str<strong>on</strong>g>e sublimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere or percolat<str<strong>on</strong>g>in</str<strong>on</strong>g>g below ground. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is evidence of extensive coastl<str<strong>on</strong>g>in</str<strong>on</strong>g>es at <str<strong>on</strong>g>the</str<strong>on</strong>g> border of <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn lowlands where<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Valles flow (Parker et al., 1989). This supports <str<strong>on</strong>g>the</str<strong>on</strong>g> idea of a large ocean <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere (Baker et al., 1991). This nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn ocean could have been active


Table II.4.3/1. Envir<strong>on</strong>mental C<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>Mars</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g Different Climatic<br />

Sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

Icehouse periods Greenhouse<br />

Durati<strong>on</strong> l<strong>on</strong>g short<br />

Atmosphere th<str<strong>on</strong>g>in</str<strong>on</strong>g> thick<br />

Water <str<strong>on</strong>g>in</str<strong>on</strong>g> subsurface at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

Biota bacterial activity <str<strong>on</strong>g>in</str<strong>on</strong>g> microbiota and algae<br />

ground ice at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g several episodes throughout martian history; possibly it was present <str<strong>on</strong>g>in</str<strong>on</strong>g> epochs<br />

as young as <str<strong>on</strong>g>the</str<strong>on</strong>g> Middle Amaz<strong>on</strong>ian. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, a large number of features<br />

suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>termittent presence of water (both liquid and solid) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

Outflow channels have been active <str<strong>on</strong>g>in</str<strong>on</strong>g> Late Hesperian time (Maja and Ares Valles), <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Early Amaz<strong>on</strong>ian ( Kasei and Mangala Valles) and probably <str<strong>on</strong>g>in</str<strong>on</strong>g> Middle Amaz<strong>on</strong>ian<br />

(channels of Elysim). Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits show <str<strong>on</strong>g>the</str<strong>on</strong>g> same age ranges.<br />

It is quite probable that water, released episodically from <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface, <str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

large aqueous envir<strong>on</strong>ments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> durati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>se events is hard to<br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Judg<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>the</str<strong>on</strong>g> extensive feature described above, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface liquid water<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed active <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>siderable geological time, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of welldef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

morphologies. In order to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> such a complex hydrological system, an<br />

atmosphere entirely different from today’s must be envisaged.<br />

If life developed <strong>on</strong> <strong>Mars</strong>, it is possible it happened be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 3.5 Gyr, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

warmer and wetter phase (Carr, 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> atmospheric c<strong>on</strong>diti<strong>on</strong>s at that time were<br />

suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> liquid water <strong>on</strong> <strong>Mars</strong> and life could have developed, as occurred <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong><br />

Earth (Hanss<strong>on</strong>, 1997). After 3.5 Gyr, <str<strong>on</strong>g>the</str<strong>on</strong>g> climatic c<strong>on</strong>diti<strong>on</strong>s were unsuitable <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

surface liquid water and c<strong>on</strong>sequently <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> development and evoluti<strong>on</strong> of life.<br />

Water has been reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface as permafrost. However, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g particular<br />

events, which may be triggered by an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of <str<strong>on</strong>g>the</str<strong>on</strong>g> heat flux <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet <str<strong>on</strong>g>in</str<strong>on</strong>g>terior,<br />

permafrost melted and water was released at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> evidence of water at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>for</str<strong>on</strong>g> remarkable time spans suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> climatic c<strong>on</strong>diti<strong>on</strong>s changed,<br />

allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of large water bodies. <str<strong>on</strong>g>The</str<strong>on</strong>g>se phases can be described as<br />

greenhouse periods with a thick atmosphere ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> water liquid. <str<strong>on</strong>g>The</str<strong>on</strong>g>se wet<br />

periods c<strong>on</strong>trast with <str<strong>on</strong>g>the</str<strong>on</strong>g> dry c<strong>on</strong>diti<strong>on</strong>s when <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere was th<str<strong>on</strong>g>in</str<strong>on</strong>g> (icehouse<br />

epochs). A sort of cyclicity may be envisaged (Baker et al., 1991), with l<strong>on</strong>g-last<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

periods of a dry <strong>Mars</strong> with a th<str<strong>on</strong>g>in</str<strong>on</strong>g> atmosphere and water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface, followed<br />

by a short-term cycle of wet <strong>Mars</strong>, with a thick atmosphere and large stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g bodies<br />

of water. See Table II.4.3/1.<br />

If life was present dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s early history (be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 3.5 Gyr), <str<strong>on</strong>g>the</str<strong>on</strong>g> dramatic<br />

change <str<strong>on</strong>g>in</str<strong>on</strong>g> climatic and atmospheric c<strong>on</strong>diti<strong>on</strong>s that dried <str<strong>on</strong>g>the</str<strong>on</strong>g> planet must have affected<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> life. That probably <str<strong>on</strong>g>the</str<strong>on</strong>g>n followed <str<strong>on</strong>g>the</str<strong>on</strong>g> fate of <str<strong>on</strong>g>the</str<strong>on</strong>g> water by enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> icehouse period <str<strong>on</strong>g>the</str<strong>on</strong>g> biota (if present) were restricted to <str<strong>on</strong>g>the</str<strong>on</strong>g> water<br />

and ice layer underground. On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> permafrost (<str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface ice) is a place<br />

where bacterial activity flourishes, and possibly this could be used as an analogue <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian permafrost. <str<strong>on</strong>g>The</str<strong>on</strong>g> release of water at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface will br<str<strong>on</strong>g>in</str<strong>on</strong>g>g large quantities<br />

of bacteria and associated life<str<strong>on</strong>g>for</str<strong>on</strong>g>ms back to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and, more importantly, it br<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

large quantities of methane (produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> bacteria) <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> geophysical, geochemical and, eventually, <str<strong>on</strong>g>the</str<strong>on</strong>g> biological<br />

processes of an <str<strong>on</strong>g>in</str<strong>on</strong>g>ner planet is predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly of solar orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, except <str<strong>on</strong>g>for</str<strong>on</strong>g> a m<str<strong>on</strong>g>in</str<strong>on</strong>g>or<br />

porti<strong>on</strong> com<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s <str<strong>on</strong>g>in</str<strong>on</strong>g>terior. Depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> its distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun, its<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

II.4.4 <str<strong>on</strong>g>The</str<strong>on</strong>g> Radiati<strong>on</strong><br />

Envir<strong>on</strong>ment<br />

117


SP-1231<br />

118<br />

orbital characteristics and atmospheric properties, such a planet may have a surface<br />

radiati<strong>on</strong> envir<strong>on</strong>ment substantially different from <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun’s spectral compositi<strong>on</strong> and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity. In additi<strong>on</strong>, every celestial body is embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> a space radiati<strong>on</strong><br />

envir<strong>on</strong>ment composed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of energetic particles of galactic and solar orig<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se particles are modulated by <str<strong>on</strong>g>in</str<strong>on</strong>g>terstellar magnetic fields, <str<strong>on</strong>g>the</str<strong>on</strong>g> solar magnetic field<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s own magnetic field (if <str<strong>on</strong>g>the</str<strong>on</strong>g> latter exists and is str<strong>on</strong>g enough to deflect<br />

charged particles), and <str<strong>on</strong>g>in</str<strong>on</strong>g>teract with <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules and atoms of <str<strong>on</strong>g>the</str<strong>on</strong>g> planetary<br />

atmosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> astr<strong>on</strong>omical and physical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> celestial<br />

bodies that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>the</str<strong>on</strong>g>ir radiati<strong>on</strong> climates will be c<strong>on</strong>sidered first. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce this study<br />

is targeted towards <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> signs of life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> with particular<br />

reference to <strong>Mars</strong>, this will deal <strong>on</strong>ly with <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> climate of those planets with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a ‘green belt’ – a habitable orbital z<strong>on</strong>e between 0.7 AU and 2.0 AU where, as<br />

discussed above, liquid water is likely to have existed at least part of <str<strong>on</strong>g>the</str<strong>on</strong>g> time dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 4.6 Gyr history of our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>. Venus, Earth and <strong>Mars</strong> are situated <str<strong>on</strong>g>in</str<strong>on</strong>g> this<br />

habitable z<strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir radiati<strong>on</strong> climate and its implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> life are discussed<br />

below.<br />

On <strong>Mars</strong>, CO 2 comprises about 95% of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and is <str<strong>on</strong>g>the</str<strong>on</strong>g> major absorber<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> short-wavelength UV radiati<strong>on</strong>. Almost no radiati<strong>on</strong> below 200 nm wavelength<br />

reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> amount of 0 3 <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere varies significantly with<br />

seas<strong>on</strong> and latitude. Whereas <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorial regi<strong>on</strong>s no oz<strong>on</strong>e has been measured<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g any seas<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> higher latitudes <str<strong>on</strong>g>the</str<strong>on</strong>g> 0 3 column density <str<strong>on</strong>g>in</str<strong>on</strong>g>creases from<br />

summer through autumn to w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter, whereafter it decreases through to spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In highlatitude<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum observed 0 3 amounts to 6 Dobs<strong>on</strong> Units<br />

(DU), which is <strong>on</strong>ly 2% of <str<strong>on</strong>g>the</str<strong>on</strong>g> mean terrestrial column thickness. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

seas<strong>on</strong>al variati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> 0 3 c<strong>on</strong>centrati<strong>on</strong>, at high-latitude w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> solar<br />

spectrum at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong> shows a profound m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range of 250 nm<br />

(as a c<strong>on</strong>sequence of absorpti<strong>on</strong> by O 2), whereas at high-latitude spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s<br />

nearly all short- wavelength UV radiati<strong>on</strong> above 200 nm penetrates <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

Hence, although <str<strong>on</strong>g>the</str<strong>on</strong>g> solar c<strong>on</strong>stant <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> is <strong>on</strong>ly 43% of that <str<strong>on</strong>g>for</str<strong>on</strong>g> Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fracti<strong>on</strong> of UV radiati<strong>on</strong> reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface is very much greater than that<br />

reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s surface.<br />

II.4.4.1 <str<strong>on</strong>g>The</str<strong>on</strong>g> Current Atmospheric Radiati<strong>on</strong> Budget<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effective radiati<strong>on</strong> temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of a planet is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

solar irradiance imp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper layers of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and <str<strong>on</strong>g>the</str<strong>on</strong>g> albedo of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet. It <str<strong>on</strong>g>in</str<strong>on</strong>g>creases from <strong>Mars</strong> (-56ºC) through Venus (-44ºC) to Earth (-19ºC), <str<strong>on</strong>g>in</str<strong>on</strong>g> all<br />

three cases well below <str<strong>on</strong>g>the</str<strong>on</strong>g> freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of water. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> actual average<br />

surface temperature is much higher <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cases of Venus (464ºC) and Earth (15ºC),<br />

and slightly higher <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> (-53ºC). This warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called greenhouse effect,<br />

is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that optically active gases <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere allow UV and visible<br />

solar radiati<strong>on</strong> to pass through, but absorb l<strong>on</strong>g-wave IR emitted by <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and<br />

lower atmosphere. Such greenhouse gases are ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly H 2O, which is a str<strong>on</strong>g absorber<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 8-12 µm range, and CO 2 with its ma<str<strong>on</strong>g>in</str<strong>on</strong>g> absorpti<strong>on</strong> band at 15 µm.<br />

On <strong>Mars</strong>, although <str<strong>on</strong>g>the</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> atmosphere is rich <str<strong>on</strong>g>in</str<strong>on</strong>g> CO 2, its H 2O c<strong>on</strong>tent is too low<br />

to cause a greenhouse warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, nearly all IR radiati<strong>on</strong>, emitted from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface, is radiated back to space.<br />

Orbital eccentricity and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong> axis to <str<strong>on</strong>g>the</str<strong>on</strong>g> orbital plane<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al variati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of a planet. <strong>Mars</strong> and Earth have<br />

similar <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit plane. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <strong>on</strong> both planets <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al<br />

variati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> solar radiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cident <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surfaces follow a similar overall<br />

pattern with spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, summer, autumn and w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> martian orbit is more<br />

eccentric than Earth’s. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere summer, <strong>Mars</strong> is closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> Sun<br />

than dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere summer, so <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface is<br />

about half greater. Compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cident at mid-latitudes <strong>on</strong> both planets,<br />

<strong>Mars</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere summer and w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter and sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter<br />

receives about 55% as much radiati<strong>on</strong> as Earth dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g comparable seas<strong>on</strong>s, but up to<br />

84% dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere summer.


<str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> rate of a planet obviously determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>the</str<strong>on</strong>g> length of its days, with Earth<br />

and <strong>Mars</strong> hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g days of similar lengths: about 24 h. On <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> diurnal variati<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface temperature can be very high, up to 100K: actual ground temperatures<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> equator range from 160-180K at night to peak values of about 260-280K at<br />

no<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> surface temperature measured at <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site of Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g-2 (47.97ºN,<br />

225.67ºW) averaged over 11 sols agrees quite well with <str<strong>on</strong>g>the</str<strong>on</strong>g> model calculati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

diurnal temperature profiles measured dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der missi<strong>on</strong> showed a<br />

good reproducibility from day to day. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature is lowest be<str<strong>on</strong>g>for</str<strong>on</strong>g>e dawn, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

rises rapidly until no<strong>on</strong> and decreases more slowly dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g night. In high-latitude<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature is stable at 148K, <str<strong>on</strong>g>the</str<strong>on</strong>g> frost po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of CO 2. This low temperature<br />

is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued c<strong>on</strong>densati<strong>on</strong> of CO 2 dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter at <str<strong>on</strong>g>the</str<strong>on</strong>g>se high<br />

latitudes. In spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, CO 2 beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s to evaporate. Temperatures rise rapidly after all of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

CO 2 has evaporated. At <str<strong>on</strong>g>the</str<strong>on</strong>g> north pole dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g summer, a residual water-ice cap<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s after <str<strong>on</strong>g>the</str<strong>on</strong>g> evaporati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2. As water sublimes <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g> water-ice cap is kept close to 200K. Global dust storms are an<br />

important factor, reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> direct transmissi<strong>on</strong> of solar radiati<strong>on</strong> by up to 95%.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y were recorded twice a year dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g missi<strong>on</strong> with roughly a 3-day<br />

cycle. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a rapid rotati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> clouds around <str<strong>on</strong>g>the</str<strong>on</strong>g> planet, with velocities up to<br />

100 m/s.<br />

II.4.4.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Current Particle and Radiati<strong>on</strong> Envir<strong>on</strong>ment<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of a planet, <str<strong>on</strong>g>the</str<strong>on</strong>g> flux of cosmic ray nuclei is modulated by <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s<br />

magnetic field, if it exists. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial planets, <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly planet<br />

with a str<strong>on</strong>g magnetosphere. This causes, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand, deflecti<strong>on</strong> of low-energy<br />

comic ray particles (<str<strong>on</strong>g>the</str<strong>on</strong>g> cut-off effect), but <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand capture of light solar<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>d particles, <str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> belts. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r terrestrial<br />

planetary body has radiati<strong>on</strong> belts. Recent data from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Global Surveyor<br />

missi<strong>on</strong> show a str<strong>on</strong>g remnant magnetisati<strong>on</strong> of parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian crust but no<br />

dynamo field. <str<strong>on</strong>g>The</str<strong>on</strong>g>se localised magnetisati<strong>on</strong>s are not capable of deflect<str<strong>on</strong>g>in</str<strong>on</strong>g>g charged<br />

particles and produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g essential radiati<strong>on</strong> belts.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> stochastic solar flares are efficiently absorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheres of Venus<br />

and Earth, and even <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> little reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> total annual dose, as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sum of <str<strong>on</strong>g>the</str<strong>on</strong>g> annual galactic cosmic ray dose and <str<strong>on</strong>g>the</str<strong>on</strong>g> dose from <strong>on</strong>e large solar flare,<br />

has been estimated to be 0.21-0.24 Sv/a. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface doses <strong>on</strong> <strong>Mars</strong> are about<br />

10-20 times higher than those of <str<strong>on</strong>g>the</str<strong>on</strong>g> worst case at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth. Below <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface, <str<strong>on</strong>g>the</str<strong>on</strong>g> martian regolith provides some protecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st comic rays and solar<br />

flares <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong> to that already provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 atmosphere.<br />

An additi<strong>on</strong>al radiati<strong>on</strong> envir<strong>on</strong>ment is created by emissi<strong>on</strong>s from with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planetary surfaces. On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> primordial radio nuclides are 40 K, 87 Rb, <str<strong>on</strong>g>the</str<strong>on</strong>g> 233 U series<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> 32 Th series. <str<strong>on</strong>g>The</str<strong>on</strong>g>y c<strong>on</strong>tribute a total of 2.0 Sv/a to <str<strong>on</strong>g>the</str<strong>on</strong>g> annual effective dose<br />

equivalent from natural sources <strong>on</strong> Earth. <str<strong>on</strong>g>The</str<strong>on</strong>g>se radioactive elements are enriched <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s crust compared to deeper regi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> abundance of radi<strong>on</strong>uclides <strong>on</strong><br />

<strong>Mars</strong> has been assessed from that found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian meteorites <str<strong>on</strong>g>The</str<strong>on</strong>g>ir abundance<br />

does not significantly deviate from that of <str<strong>on</strong>g>the</str<strong>on</strong>g> radio nuclides <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s oceanic<br />

crust. It is assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> dose equivalent ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to emissi<strong>on</strong>s from natural radio<br />

nuclides <strong>on</strong> <strong>Mars</strong> is less that 1% of that result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from cosmic rays.<br />

II.4.4.3 <str<strong>on</strong>g>The</str<strong>on</strong>g> Radiati<strong>on</strong> Envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Past<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> geological record of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial planets and observati<strong>on</strong>s of young, Sunlike<br />

stars, it is <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred that, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>’s 4.6 Gyr history, <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong><br />

climate of Venus, Earth and <strong>Mars</strong> has underg<strong>on</strong>e dramatic changes. <str<strong>on</strong>g>The</str<strong>on</strong>g> lum<str<strong>on</strong>g>in</str<strong>on</strong>g>osity of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> early Sun dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> first 0.1 Gyr is predicted to have been <strong>on</strong>ly 0.7 of <str<strong>on</strong>g>the</str<strong>on</strong>g> current<br />

level, and <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.7 Gyr it <str<strong>on</strong>g>in</str<strong>on</strong>g>creased slowly to 0.75.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral irradiance at higher energies was much higher <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> young<br />

Sun. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> first 0.5 Gyr, <str<strong>on</strong>g>the</str<strong>on</strong>g> soft X-ray flux is suggested to have been 10-100<br />

times than today, and <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum UV (30-150 nm) irradiance was 3-20 times.<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

119


SP-1231<br />

120<br />

II.4.5 <str<strong>on</strong>g>The</str<strong>on</strong>g> Rati<strong>on</strong>ale <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Selecti<strong>on</strong><br />

Several attempts have been made to model <str<strong>on</strong>g>the</str<strong>on</strong>g> early planetary climates tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower solar lum<str<strong>on</strong>g>in</str<strong>on</strong>g>osity and putative early atmospheric c<strong>on</strong>diti<strong>on</strong>s.<br />

On <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> valley networks and erosi<strong>on</strong> rates provide c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence of liquid<br />

water <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> early surface. This implies elevated surface temperatures, to allow liquid<br />

water to flow across <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>for</str<strong>on</strong>g> enough time to cut <str<strong>on</strong>g>the</str<strong>on</strong>g> valley networks. Most<br />

models focus <strong>on</strong> atmospheres composed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of CO 2 and H 2O, which are efficient<br />

greenhouse gases. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r gases, such as NH 3, CH 4, and SO 2 are too sensitive to photodissociati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>duced by solar UV radiati<strong>on</strong> to be relevant <str<strong>on</strong>g>for</str<strong>on</strong>g> greenhouse warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

However, so far, no satisfactory model has been developed to expla<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rise of<br />

surface temperature to above freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g by greenhouse warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This is especially<br />

complicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> lower solar c<strong>on</strong>stant predicted from stellar models.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> selecti<strong>on</strong> of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites is a ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r complex procedure and it must take <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

account several variables. What k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of evidence are we seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g: present life, past<br />

life, microbial fossils, geochemical signatures? Where are we look<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of<br />

life: at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface? Which k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds of <str<strong>on</strong>g>in</str<strong>on</strong>g>struments are we go<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

use? At present, we are c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g a lander deploy<str<strong>on</strong>g>in</str<strong>on</strong>g>g a rover with drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

equipment. Instrumentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes cameras and geochemical analytical tools to<br />

look <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of past (present) life.<br />

Two different k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites can be envisaged. <str<strong>on</strong>g>The</str<strong>on</strong>g> first is a particular<br />

envir<strong>on</strong>ment where life could have been present. Several were summarised above.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d is an area where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a large number of lithotypes represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

random collecti<strong>on</strong> of rocks. <str<strong>on</strong>g>The</str<strong>on</strong>g> first type is based <strong>on</strong> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>istic thoughts, whereas<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d is based <strong>on</strong> more stochastic c<strong>on</strong>siderati<strong>on</strong>s. Sites of <str<strong>on</strong>g>the</str<strong>on</strong>g> first type are<br />

required <str<strong>on</strong>g>for</str<strong>on</strong>g> geochemical <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> and drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g (as well as fossil imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

sec<strong>on</strong>d type is good <str<strong>on</strong>g>for</str<strong>on</strong>g> a random and extensive search <str<strong>on</strong>g>for</str<strong>on</strong>g> imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial fossils,<br />

but not <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life. This type of site, similar to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der <strong>on</strong>e, is valid <str<strong>on</strong>g>for</str<strong>on</strong>g> petrological and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical studies.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first type of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites was discussed above, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a clear picture<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> exobiological potential. Of course, with <str<strong>on</strong>g>the</str<strong>on</strong>g> current state of our knowledge of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> martian envir<strong>on</strong>ments, <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> of a site of this k<str<strong>on</strong>g>in</str<strong>on</strong>g>d will be based mostly<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical work and educated guesses. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Catalogue<br />

(Greeley & Thomas, 1994) lists 150 possible land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites, <strong>on</strong>ly a fracti<strong>on</strong> of which<br />

are related to exobiology, however. Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites with exobiology <str<strong>on</strong>g>in</str<strong>on</strong>g>terest were<br />

selected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of: <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred presence of sediments, often <str<strong>on</strong>g>in</str<strong>on</strong>g> craters; partial<br />

excavati<strong>on</strong> of sediments by younger impacts to allow access to suspected buried<br />

sediments; stratified cany<strong>on</strong> walls (possible sediments); chaotic terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water and possibly of hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity; high-albedo features <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

craters (<str<strong>on</strong>g>in</str<strong>on</strong>g>ferred evaporites); ground ice (cratered); polyg<strong>on</strong>al features (sediments/ice?);<br />

terrac<str<strong>on</strong>g>in</str<strong>on</strong>g>g (water flow). Similar criteria can be applied dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

selecti<strong>on</strong> of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>ESA</strong> landers. However, all of <str<strong>on</strong>g>the</str<strong>on</strong>g> above criteria are<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> expectati<strong>on</strong> that evidence of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer surface-bound life is most likely<br />

to be found.<br />

Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer surface-bound life <strong>on</strong> <strong>Mars</strong>, land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site<br />

selecti<strong>on</strong> should also give c<strong>on</strong>siderati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of fossils of microbes that<br />

lived <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface. <str<strong>on</strong>g>The</str<strong>on</strong>g> geological structures where such fossils might be<br />

expected are fundamentally different from those possibly c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g surface-bound<br />

microbial rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Such envir<strong>on</strong>ments have, so far, not been c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> published<br />

land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site catalogues, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y should be <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overall evaluati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

likely presence of a variety of geological materials at many sites makes it possible that<br />

both surface and subsurface fossils might occur at a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site.<br />

Subsurface envir<strong>on</strong>ments possibly c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct microbial life <strong>on</strong> <strong>Mars</strong> are:<br />

• highly porous or diagenetically cemented sedimentary rocks (e.g. c<strong>on</strong>glomerate<br />

with low amounts of f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed material);<br />

• voids <str<strong>on</strong>g>in</str<strong>on</strong>g> impact breccias and impact melts;


• voids <str<strong>on</strong>g>in</str<strong>on</strong>g> volcanic rocks (vesicles);<br />

• fractured rocks of any type.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chances will be best <str<strong>on</strong>g>in</str<strong>on</strong>g> rocks that were buried to a c<strong>on</strong>siderable depth (several<br />

hundred metres or more) and have resurfaced ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to impact ejecti<strong>on</strong>, <strong>on</strong> cany<strong>on</strong><br />

walls etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d type and appear most<br />

promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> subsurface fossil microbes:<br />

Chaotic terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s: material broken up at a large scale provides <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

subsurface geology of <str<strong>on</strong>g>for</str<strong>on</strong>g>merly water-rich envir<strong>on</strong>ments. Imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of nearby<br />

steep mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> slopes would allow <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to geological c<strong>on</strong>text.<br />

Steep cany<strong>on</strong> walls: excellent <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to geological c<strong>on</strong>text but virtually<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>accessible. Distal debris apr<strong>on</strong>s may be good sites <str<strong>on</strong>g>for</str<strong>on</strong>g> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Channel floors (outflow from chaotic terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s): possible fragments from microbebear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

subsurface envir<strong>on</strong>ments, but with limited geological c<strong>on</strong>text.<br />

Impact crater ejecta: can provide access to material hidden <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface.<br />

Limited geological c<strong>on</strong>text.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> selecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site should be <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility of a restricted missi<strong>on</strong><br />

team, but <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific community should be closely <str<strong>on</strong>g>in</str<strong>on</strong>g>volved through meet<str<strong>on</strong>g>in</str<strong>on</strong>g>gs and<br />

discussi<strong>on</strong>s. Of course, <str<strong>on</strong>g>the</str<strong>on</strong>g> safety of <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site is of paramount importance.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r task is to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> types of <str<strong>on</strong>g>in</str<strong>on</strong>g>struments <str<strong>on</strong>g>in</str<strong>on</strong>g>volved, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir operati<strong>on</strong><br />

capabilities and, most important, <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific background. <str<strong>on</strong>g>The</str<strong>on</strong>g> missi<strong>on</strong> c<strong>on</strong>cept will<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>the</str<strong>on</strong>g> type of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites. <str<strong>on</strong>g>The</str<strong>on</strong>g> most challeng<str<strong>on</strong>g>in</str<strong>on</strong>g>g – and promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g – sites are<br />

those with envir<strong>on</strong>ments such as sebkha, lakes and hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents capable of<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g life <str<strong>on</strong>g>for</str<strong>on</strong>g>ms. <str<strong>on</strong>g>The</str<strong>on</strong>g>se k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of sites are identified at present <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

sedimentological and geomorphologic features. Some knowledge about <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface will be extremely useful <str<strong>on</strong>g>in</str<strong>on</strong>g> ref<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se type of data are lack<str<strong>on</strong>g>in</str<strong>on</strong>g>g and it is difficult to <str<strong>on</strong>g>for</str<strong>on</strong>g>esee <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

full availability be<str<strong>on</strong>g>for</str<strong>on</strong>g>e 2004, even with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal Emissi<strong>on</strong> Spectrometer return<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

data from <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>Mars</strong> Global Surveyor missi<strong>on</strong>.<br />

Several basic requirements <str<strong>on</strong>g>for</str<strong>on</strong>g> a proper land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site can be summarised as:<br />

Age: accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to c<strong>on</strong>venti<strong>on</strong>al wisdom, which sees <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Noachian as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

geological epoch with climatic c<strong>on</strong>diti<strong>on</strong>s suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> development of life, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

best targets are geological units of that age. This hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is, however, not fully<br />

supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> geological evidence (see above). A large number of lakes,<br />

channels and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r envir<strong>on</strong>ments suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> life are as young as middle<br />

Amaz<strong>on</strong>ian. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> range of ages of rock units with biological potential<br />

actually span a large part of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s history;<br />

C<strong>on</strong>centrati<strong>on</strong>: it is quite important that <str<strong>on</strong>g>the</str<strong>on</strong>g> material <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> past presence of<br />

biota, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r microbial fossils or biomolecules, is c<strong>on</strong>centrated <str<strong>on</strong>g>in</str<strong>on</strong>g> appreciable<br />

amounts. This c<strong>on</strong>centrati<strong>on</strong> occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> several envir<strong>on</strong>ments (see above) and depends,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> geological terms, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability of <str<strong>on</strong>g>the</str<strong>on</strong>g> lithological substratum to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> biota;<br />

Preservati<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> preservati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence of past biota is of paramount<br />

importance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> explorati<strong>on</strong>. Microbial material should fossilise rapidly.<br />

Envir<strong>on</strong>ments with crystallisati<strong>on</strong> potential, such has hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs or<br />

sebkha, are quite efficient. Organic molecules and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemical evidence may<br />

require rapid burial to avoid alterati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface;<br />

Th<str<strong>on</strong>g>in</str<strong>on</strong>g> aeolian cover: <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Global Surveyor images have c<strong>on</strong>firmed that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian surface is extensively affected by aeolian depositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d-blown<br />

detritus can cover large parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> planetary surface and <str<strong>on</strong>g>the</str<strong>on</strong>g> selected land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site<br />

should show <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of th<str<strong>on</strong>g>in</str<strong>on</strong>g> aeolian coverage (that is, high <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia and<br />

low albedo);<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

121


SP-1231<br />

122<br />

II.4.6 Rovers and Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Operati<strong>on</strong>s<br />

II.4.7 Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites<br />

Area of <str<strong>on</strong>g>the</str<strong>on</strong>g> target: <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> explorati<strong>on</strong> (a sebkha floor, a hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g) must be really extensive <str<strong>on</strong>g>in</str<strong>on</strong>g> order to be with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g area<br />

uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties. Moreover, it should be with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range of <str<strong>on</strong>g>the</str<strong>on</strong>g> rover capability.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> past life can be driven by <str<strong>on</strong>g>the</str<strong>on</strong>g> experience ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial<br />

geological work. This experience suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term preservati<strong>on</strong> of<br />

biological <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> past biota occurs under a fairly narrow range of geological<br />

c<strong>on</strong>diti<strong>on</strong>s. Detrital systems can preserve fossils or biomolecules by rapid burial,<br />

whereas chemical deposits will preserve <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence of life by coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g impermeable<br />

material around fossils or recrystallisati<strong>on</strong>. Stable m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals are better, ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

l<strong>on</strong>g residence time – silica and phosphate are particularly suitable. Evaporite<br />

materials are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r unstable and <strong>on</strong>ly rapid burial allows <str<strong>on</strong>g>the</str<strong>on</strong>g> preservati<strong>on</strong> of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> biota.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> operati<strong>on</strong> of rovers and drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g equipment <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface should take <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

account <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific requirements. <str<strong>on</strong>g>The</str<strong>on</strong>g> envir<strong>on</strong>ments suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology<br />

explorati<strong>on</strong> c<strong>on</strong>sist of rocks and sediments with characteristics that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

technical procedures. Our current experience of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface is biased by <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

and Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der sites. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are located <str<strong>on</strong>g>in</str<strong>on</strong>g> pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by <str<strong>on</strong>g>for</str<strong>on</strong>g>mer fluvial-related<br />

sedimentati<strong>on</strong> and slight aeolian rework<str<strong>on</strong>g>in</str<strong>on</strong>g>g and sedimentati<strong>on</strong>. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s were limited to explor<str<strong>on</strong>g>in</str<strong>on</strong>g>g just a few centimetres below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. It<br />

is quite possible that land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites with exobiology potential will <str<strong>on</strong>g>in</str<strong>on</strong>g>clude ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r hard<br />

lithologies. Duricrusts, limest<strong>on</strong>es and even some sebkha deposits can be<br />

c<strong>on</strong>siderably hard lithotypes and can provide a technological challenge to <str<strong>on</strong>g>the</str<strong>on</strong>g> drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>struments.<br />

Inasmuch as drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g is of paramount importance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life and past life<br />

<strong>on</strong> <strong>Mars</strong>, a careful analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental targets and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir geological<br />

characteristics should be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med. Duricrusts can be expected <str<strong>on</strong>g>in</str<strong>on</strong>g> any k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of<br />

envir<strong>on</strong>ments. <str<strong>on</strong>g>The</str<strong>on</strong>g>y can be very hard and could occur a few tens of centimetres below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Even <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites could hide hard layers at shallow depths. In<br />

fact, even <str<strong>on</strong>g>in</str<strong>on</strong>g> this envir<strong>on</strong>ment oxidisati<strong>on</strong> processes al<strong>on</strong>g with element mobilisati<strong>on</strong><br />

can <str<strong>on</strong>g>in</str<strong>on</strong>g>duce <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of crust below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Duricrust made up of silica or<br />

sesquioxides can be extremely difficult to drill, whereas limest<strong>on</strong>e and gypsumduricrusts<br />

are softer.<br />

Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits can be composed of a number of different lithologies.<br />

Limest<strong>on</strong>e beds are as hard as calcium carb<strong>on</strong>ate duricrusts, whereas detrital<br />

silicoclastic material is probably very soft. However, clays can resist drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g because<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cohesi<strong>on</strong> capability.<br />

Several envir<strong>on</strong>ments and geological sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs with exobiological potential and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previous presence of water have been identified. Climatic models suggest that water<br />

was present <strong>on</strong> <strong>Mars</strong> throughout its early history, extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> capability <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g life up to early (middle) Amaz<strong>on</strong>ian.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> geological envir<strong>on</strong>ments <strong>on</strong> <strong>Mars</strong> must be pursued us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

old Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g data as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Global Surveyor images and altimetry data. A<br />

detailed analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> lithologies where rover and drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g equipment would<br />

probably operate effectively is fundamental <str<strong>on</strong>g>in</str<strong>on</strong>g> order to provide a background to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>struments design.<br />

Four land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites have been identified as likely to be suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiological<br />

explorati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g used as examples to aid <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> <strong>on</strong> site selecti<strong>on</strong>.<br />

In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no detailed analysis <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> safety requirements typical of a<br />

lander missi<strong>on</strong>. <strong>Mars</strong> has plenty of possible land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites with a large variability <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terms of geological sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g, exobiology potential, elevati<strong>on</strong>, positi<strong>on</strong>, etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> four<br />

represent some of <str<strong>on</strong>g>the</str<strong>on</strong>g> possible sites and are <str<strong>on</strong>g>the</str<strong>on</strong>g> compromise am<strong>on</strong>g several c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y are near <str<strong>on</strong>g>the</str<strong>on</strong>g> equator and at elevati<strong>on</strong>s almost below <str<strong>on</strong>g>the</str<strong>on</strong>g> datum plane.


team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

Site 1: Marca Crater and adjacent putative crater lakes (Memn<strong>on</strong>ia)<br />

Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e and Deltaic Deposits<br />

10.4ºS/158.2ºW<br />

Crater diameter: 84 km<br />

Elevati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> substratum: 2 km<br />

Elevati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> crater floor: about 1 km or less<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se craters are located <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn area of Memn<strong>on</strong>ia <str<strong>on</strong>g>in</str<strong>on</strong>g> a Noachian geological unit. It is quite probable that Marca<br />

Crater <str<strong>on</strong>g>for</str<strong>on</strong>g>med dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Late Heavy Bombardment. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g> crater has been filled with water <str<strong>on</strong>g>in</str<strong>on</strong>g> more<br />

recent times. <str<strong>on</strong>g>The</str<strong>on</strong>g> floor shows a crater populati<strong>on</strong> largely below 1 km <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, and <str<strong>on</strong>g>the</str<strong>on</strong>g> possible age <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> floor unit<br />

lies <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Amaz<strong>on</strong>ian. <str<strong>on</strong>g>The</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water is <str<strong>on</strong>g>the</str<strong>on</strong>g> Gilbert-type delta at <str<strong>on</strong>g>the</str<strong>on</strong>g> rim. This evidence,<br />

coupled with <str<strong>on</strong>g>the</str<strong>on</strong>g> flat young floor and <str<strong>on</strong>g>the</str<strong>on</strong>g> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> eroded and flooded central peak, suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> crater acted<br />

as a lake <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e or more episodes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crater floor probably c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s ridges of young w<str<strong>on</strong>g>in</str<strong>on</strong>g>d-blown sand. However, this loose detritus is probably <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

patches, as suggested by <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> albedo that str<strong>on</strong>gly supports <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of <str<strong>on</strong>g>the</str<strong>on</strong>g> lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e beds be<str<strong>on</strong>g>in</str<strong>on</strong>g>g exposed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits cannot be identified; <str<strong>on</strong>g>the</str<strong>on</strong>g>re is probably clastic detritus (sand and pebbles) from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> erosi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> crater rims matched by an <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal dra<str<strong>on</strong>g>in</str<strong>on</strong>g>age pattern. <str<strong>on</strong>g>The</str<strong>on</strong>g>re could also be limest<strong>on</strong>e and clay. <str<strong>on</strong>g>The</str<strong>on</strong>g> site<br />

would allow old Noachian rocks and younger lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits to be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several craters that have been lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Late Hesperian and Amaz<strong>on</strong>ian eras<br />

(Farmer & Landheim, 1994), <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Gusev Crater (Gr<str<strong>on</strong>g>in</str<strong>on</strong>g> & Cabrol, 1997). All of <str<strong>on</strong>g>the</str<strong>on</strong>g>m are alternative land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g> sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are basically similar to Marca Crater. Gusev Crater is actually <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly crater of this type that<br />

received a large amount of sediment by a large-scale fluvial channel.<br />

Fig. II.4.7/1. Site 1: Marca<br />

Crater is <strong>on</strong>e of several impact<br />

structures <str<strong>on</strong>g>in</str<strong>on</strong>g> Memn<strong>on</strong>ia show<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

evidence of stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g bodies of<br />

water. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g image, NASA.)<br />

123


SP-1231<br />

124<br />

Site 2: Apol<str<strong>on</strong>g>in</str<strong>on</strong>g>aris Patera<br />

Volcano and Volcanogenic Units<br />

8.6ºS/187.5ºW<br />

Elevati<strong>on</strong>: 0-1 km<br />

Apol<str<strong>on</strong>g>in</str<strong>on</strong>g>aris Patera is a volcanic complex <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorial area of <strong>Mars</strong> at a relatively low elevati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> age<br />

is probably Hesperian (Scott et al., 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> patera itself is not of great exobiology <str<strong>on</strong>g>in</str<strong>on</strong>g>terest, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a<br />

lot of evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water (Gulick, 1998): chaotic z<strong>on</strong>es, lobate ejecta and channels. Ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> volcanic activity, coupled with <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water, <str<strong>on</strong>g>the</str<strong>on</strong>g> most probable processes are hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal systems probably existed well <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> Amaz<strong>on</strong>ian era (Gulick, 1998), witnessed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e crater associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> volcanic edifice. Fluids were likely ejected from <str<strong>on</strong>g>the</str<strong>on</strong>g> volcano <strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g a ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r large hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal site. Evidence of (hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal) sapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g occur <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn area.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> several possible land<str<strong>on</strong>g>in</str<strong>on</strong>g>g areas, <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> patera probably has <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest<br />

potential <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a large fan-shaped channel complex <str<strong>on</strong>g>in</str<strong>on</strong>g> this area. Erosi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> volcano’s<br />

flanks has probably exhumed large quantities of old volcanic units, and hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

probable. A land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site at around 12ºS/185.5ºW (Gulick, 1998) would be suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiological<br />

explorati<strong>on</strong>.<br />

Fig. II.4.7/2. Site 2: Apol<str<strong>on</strong>g>in</str<strong>on</strong>g>aris Patera is a volcano with extensive features suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water and, c<strong>on</strong>sequently,<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g image, NASA.)


Site 3: SE Elysium Bas<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Channel and Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Deposits<br />

3ºN/185ºW<br />

Elevati<strong>on</strong>: -1 km to -2 km<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> south-east porti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Elysium bas<str<strong>on</strong>g>in</str<strong>on</strong>g> is a flat area of <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn lowlands near <str<strong>on</strong>g>the</str<strong>on</strong>g> planetary<br />

dichotomy (Dohm et al., 1998). <str<strong>on</strong>g>The</str<strong>on</strong>g> bas<str<strong>on</strong>g>in</str<strong>on</strong>g> was a catchment area <str<strong>on</strong>g>for</str<strong>on</strong>g> a large part of <str<strong>on</strong>g>the</str<strong>on</strong>g> Amaz<strong>on</strong>ian area, with<br />

a number of outflow channels <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> bas<str<strong>on</strong>g>in</str<strong>on</strong>g>. It is quite probable that volcanic and sedimentary rocks coexist,<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g a complex bas<str<strong>on</strong>g>in</str<strong>on</strong>g> with a wide variety of geological units.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> presence of channels is firmly recognised, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> lakes is scarcer. However, it is<br />

quite probable that <str<strong>on</strong>g>the</str<strong>on</strong>g> area c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed bodies of water <str<strong>on</strong>g>in</str<strong>on</strong>g>termittently <str<strong>on</strong>g>in</str<strong>on</strong>g> epochs as young as Amaz<strong>on</strong>ian (Scott<br />

et al., 1995).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> coexist<str<strong>on</strong>g>in</str<strong>on</strong>g>g lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposit, outflow channels and volcanic (also pyroclastic) deposits make this<br />

land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site quite attractive. <str<strong>on</strong>g>The</str<strong>on</strong>g> possibility of large lava flow covers cannot, however, be ruled out entirely.<br />

Fig. II.4.7/3. Site 3: <str<strong>on</strong>g>the</str<strong>on</strong>g> flat morphology of this part of <str<strong>on</strong>g>the</str<strong>on</strong>g> Elysium Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> has been suggested to be <str<strong>on</strong>g>the</str<strong>on</strong>g> result of a stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g body<br />

of water. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g image, NASA.)<br />

125


SP-1231<br />

126<br />

Site 4: Chasma area, east of Valles Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris<br />

Large Range of Sedimentary Envir<strong>on</strong>ments<br />

8ºS/35ºW<br />

Elevati<strong>on</strong>: below -3 km<br />

This area is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> deepest chaotic z<strong>on</strong>es <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorial belt of <strong>Mars</strong>. It is quite complex and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes some attractive z<strong>on</strong>es such as Capri Chasma and Gangis Chasma. Moreover, it is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> channel Chaos Complex that c<strong>on</strong>nects Valles Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris to Hydroates Chaos. <str<strong>on</strong>g>The</str<strong>on</strong>g> area c<strong>on</strong>sists of<br />

typical chaotic features suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of mass-wast<str<strong>on</strong>g>in</str<strong>on</strong>g>g material that is supposed to represent<br />

rocks from a large time span judg<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g cliffs. <str<strong>on</strong>g>The</str<strong>on</strong>g> outflow channel<br />

would provide debris from remote areas as far as Valles Mar<str<strong>on</strong>g>in</str<strong>on</strong>g>eris. From this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view, <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

site is remarkable <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g rock samples from different geological units. Moreover,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bas<str<strong>on</strong>g>in</str<strong>on</strong>g>’s depth and <str<strong>on</strong>g>the</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>k with <str<strong>on</strong>g>the</str<strong>on</strong>g> possible lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits of <str<strong>on</strong>g>the</str<strong>on</strong>g> Hydroates Chaos (Mosang<str<strong>on</strong>g>in</str<strong>on</strong>g>i &<br />

Ori, 1996) suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that <str<strong>on</strong>g>the</str<strong>on</strong>g> area has been affected by stand<str<strong>on</strong>g>in</str<strong>on</strong>g>g bodies of water.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> exobiology potential is not as high as <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites but <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of collect<str<strong>on</strong>g>in</str<strong>on</strong>g>g a variety<br />

of lithologies, plus <str<strong>on</strong>g>the</str<strong>on</strong>g> possible presence of lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits, make this an <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g site.<br />

Fig. II.4.7/4. Site 4: <str<strong>on</strong>g>the</str<strong>on</strong>g> floor of <str<strong>on</strong>g>the</str<strong>on</strong>g> chasma area east of Valles Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>eris is rich <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary features rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from putative<br />

lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits to aeolian sand sheets. Fluvial activity has left a large number of structures. (Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g image, NASA.)


Some do not offer tremendous exobiology potential, but <str<strong>on</strong>g>for</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r reas<strong>on</strong>s could be<br />

suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> a land<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

One of <str<strong>on</strong>g>the</str<strong>on</strong>g> most promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ment types has been not <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> selected<br />

sites: <str<strong>on</strong>g>the</str<strong>on</strong>g> sebkha dry lake. <str<strong>on</strong>g>The</str<strong>on</strong>g>se lakes probably existed <strong>on</strong> <strong>Mars</strong> but <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence is<br />

still poor – some white patches are observed at visible wavelengths (Figs. II.4.1.2).<br />

Examples of <str<strong>on</strong>g>the</str<strong>on</strong>g>se features are relatively comm<strong>on</strong> (Secti<strong>on</strong> II.4.1.2; O’C<strong>on</strong>nor &<br />

Geissler, 1996), but without direct m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical (and/or elemental) analysis <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>se deposits is still dubious.<br />

Baker, V.C., Strom, R.G., Gulick, V.R., Kargel, J.S., Komatsu, G. & Kale, V.S. (1991).<br />

Ancient ocean, ice sheets and hydrological cycle <strong>on</strong> <strong>Mars</strong>. Nature 352, 589-594.<br />

Carr, M.H. (1983). Stability of streams and lakes <strong>on</strong> <strong>Mars</strong>. Icarus 56, 476-495.<br />

Carr, M.H. (1994). Site 074 – Capri Chasma. In <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Catalogue, (Eds.<br />

R. Greely & P.E. Thomas), NASA RP-1238, pp206-207.<br />

Carr, M.H. (1995). Water <strong>on</strong> <strong>Mars</strong>, Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d University Press, UK, 229pp.<br />

Dohm, J.M., Tanaka, K.L. & Lias, J.H. (1998). <str<strong>on</strong>g>The</str<strong>on</strong>g> S.E. Elysium Bas<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> <strong>Mars</strong>: a<br />

<strong>Mars</strong> 2001 candidate site of local geological and exobiological <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>, <strong>Mars</strong><br />

Surveyor 2001 Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Workshop, Abstract Vol., NASA Ames Research<br />

Center, 26-27 January 1998. Abstract http://cmex.arc.nasa.gov/<strong>Mars</strong>_2001/<br />

LSSchedule_f<str<strong>on</strong>g>in</str<strong>on</strong>g>al.html<br />

Greely, R. & Thomas, P.E. (Eds.) (1994). <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Catalogue, NASA RP-<br />

1238.<br />

Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>, E.A. & Cabrol, N.A. (1997). Limnological analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> Gusev paleolake,<br />

<strong>Mars</strong>. Icarus 130, 80-94.<br />

Gulick, V.C. (1998). Potential <strong>Mars</strong> Surveyor 2001 land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site near Apol<str<strong>on</strong>g>in</str<strong>on</strong>g>aris<br />

Patera. <strong>Mars</strong> Surveyor 2001 land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Site Workshop, Abstract Vol., NASA Ames<br />

Research Center, 26-27 January 1998. Abstract http://cmex.arc.nasa.gov/<br />

<strong>Mars</strong>_2001/LSSchedule_f<str<strong>on</strong>g>in</str<strong>on</strong>g>al.html<br />

Farmer, J.D. & Landheim, R. (1994). Site 137 – Mangala Valles. In <strong>Mars</strong> Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Site Catalogue, (Eds. R. Greely & P.E. Thomas), NASA RP-1238, pp338 - 339.<br />

Hanss<strong>on</strong>, A. (1997). <strong>Mars</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> development of life, Wiley, UK, 198pp.<br />

Hofman, B.A. & Farmer, J.D. (1997). Microbial fossils from terrestrial subsurface<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal envir<strong>on</strong>ments: Examples and implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>. In C<strong>on</strong>ference<br />

<strong>on</strong> Early <strong>Mars</strong>: Geologic and Hydrologic Evoluti<strong>on</strong>, Physical and Chemical<br />

Envir<strong>on</strong>ments, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g> (Eds. S.M. Clif<str<strong>on</strong>g>for</str<strong>on</strong>g>d, A.H. Treiman,<br />

H.E. Newsom & J.D. Farmer), LPI C<strong>on</strong>tr. No. 916, Lunar & Planetary Inst.,<br />

Houst<strong>on</strong>, Texas, USA, pp40-41.<br />

K<str<strong>on</strong>g>in</str<strong>on</strong>g>nunen, K.A. & L<str<strong>on</strong>g>in</str<strong>on</strong>g>dqvist, K. (1998). Agate as an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of impact structures:<br />

an example from Saaksjarvi, F<str<strong>on</strong>g>in</str<strong>on</strong>g>land. Meteoritics & Planetary Science 33, 7-12.<br />

Kretzschmar, M. (1982). Fossile Pilze <str<strong>on</strong>g>in</str<strong>on</strong>g> Eisen – Stromatoliten v<strong>on</strong> Warste<str<strong>on</strong>g>in</str<strong>on</strong>g> (Rhe<str<strong>on</strong>g>in</str<strong>on</strong>g>isches<br />

Schiefergebirge). Facies 7, 237-260.<br />

Mosang<str<strong>on</strong>g>in</str<strong>on</strong>g>i, C. & Ori, G.G. (1996). Sedimentary evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Hydroates Chaos,<br />

<strong>Mars</strong>, Lunar and Planetary Sci. 27, 911-912.<br />

O’C<strong>on</strong>nor, B.W. & Geissler, P.E. (1996). Martian evaporite deposits? A comparis<strong>on</strong><br />

of Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3-po<str<strong>on</strong>g>in</str<strong>on</strong>g>t spectra. Lunar and Planetary Sci. 27, 979-980.<br />

Ori, G.G. & Mosang<str<strong>on</strong>g>in</str<strong>on</strong>g>i, C. (1998). Complex depositi<strong>on</strong>al systems <str<strong>on</strong>g>in</str<strong>on</strong>g> Hydroates<br />

Chaos, <strong>Mars</strong>: an example of sedimentary process <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian<br />

hydrological cycle. J. Geophys. Res. 103, 22713-22721.<br />

Parker, T.J., Saunders, R.S. & Scheenberger, D.M. (1989). Transiti<strong>on</strong>al morphology<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> west Deuter<strong>on</strong>ilus Mensae regi<strong>on</strong> of <strong>Mars</strong>: Implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> modificati<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lowland/upland boundary. Icarus 82, 111-145.<br />

Scott, H.D., Dohm, J.M. & Applebee, D.J. (1993). Geological map of science study<br />

area 8, Apol<str<strong>on</strong>g>in</str<strong>on</strong>g>aris Patera regi<strong>on</strong> of <strong>Mars</strong>. U.S. Geol. Surv. Misc. Inv. Ser., Map I-<br />

2351.<br />

Scott, H.D., Dohm, J.M. & Rice, J.M. (1995). Map of <strong>Mars</strong> show<str<strong>on</strong>g>in</str<strong>on</strong>g>g channels and<br />

possible paleolake bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s. U.S. Geol. Surv. Misc. Inv. Ser., Map I-2361.<br />

team I: exobiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> mars surface envir<strong>on</strong>ment/II.4<br />

References<br />

127


SP-1231<br />

128<br />

Sharp, M., Parkes, J., Cragg, B., Fairchild, I.J., Lamb, H. & Tranter, M. (1999).<br />

Widespread bacterial populati<strong>on</strong>s at glacier beds and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relati<strong>on</strong>ships to rock<br />

wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g and carb<strong>on</strong> cycl<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Geology 27, 107-110.<br />

Stevens, T.O. (1997). Subsurface lithoautotrophic microbial ecosystems <str<strong>on</strong>g>in</str<strong>on</strong>g> igneous<br />

rocks – prospects <str<strong>on</strong>g>for</str<strong>on</strong>g> detecti<strong>on</strong>. Proc. SPIE 3111, 358-365.<br />

Stevens, T.O. & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, J.P. (1995). Geochemically-produced hydrogen supports<br />

microbial ecosystems <str<strong>on</strong>g>in</str<strong>on</strong>g> deep basalt aquifers. Science 270, 450-454.


II.5 Team II: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> Chemical Indicators<br />

of <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

SCIENTIFIC OBJECTIVES<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> scientific objectives of Team II’s task is to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e a full and detailed, but<br />

realistic, <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> package to search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of past and/or<br />

present life. This <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes a sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g subsystem to drill and sample <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface<br />

martian soil. It should also <str<strong>on</strong>g>in</str<strong>on</strong>g>clude several dedicated subsystems to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m:<br />

• elemental analyses;<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>;<br />

• isotopic and molecular analyses of <str<strong>on</strong>g>in</str<strong>on</strong>g>organics and organics <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> with<br />

structures and life processes.<br />

It is essential to have access not <strong>on</strong>ly to surface but also to subsurface samples, to a<br />

depth where :<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> possible effect of UV radiati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life is negligible;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents such as H 2O 2, a potential source of<br />

degradati<strong>on</strong> of organics, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g bio-organics, is negligible.<br />

So far, <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> UV radiati<strong>on</strong> climate <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong> has<br />

been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong>ly from radiative transfer models. Ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> of<br />

shorter wavelengths by <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 atmosphere, almost no radiati<strong>on</strong> below 200 nm<br />

reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> amount of UVC (190 nm < l < 280 nm) reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric c<strong>on</strong>centrati<strong>on</strong> of O 3, which varies significantly with<br />

seas<strong>on</strong> and latitude. Whereas <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorial regi<strong>on</strong>s no oz<strong>on</strong>e has been measured<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g any seas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> O 3 column density <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> higher latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g>creases from<br />

summer through autumn to w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter, whereafter it decreases aga<str<strong>on</strong>g>in</str<strong>on</strong>g> through spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum O 3 amounts to 6 DU, which is <strong>on</strong>ly 2% of <str<strong>on</strong>g>the</str<strong>on</strong>g> mean<br />

terrestrial O 3 column thickness. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> O 3<br />

c<strong>on</strong>centrati<strong>on</strong>, at high-latitude w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> solar spectrum at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of<br />

<strong>Mars</strong> shows a profound m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum at around 250 nm (as a c<strong>on</strong>sequence of absorpti<strong>on</strong><br />

by O 3), whereas at high-latitude spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s and <str<strong>on</strong>g>in</str<strong>on</strong>g> equatorial regi<strong>on</strong>s almost<br />

all short-wavelength UV radiati<strong>on</strong> above 200 nm penetrates <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Hence,<br />

although <str<strong>on</strong>g>the</str<strong>on</strong>g> solar c<strong>on</strong>stant <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> is <strong>on</strong>ly 43% of that <str<strong>on</strong>g>for</str<strong>on</strong>g> Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> of UV<br />

radiati<strong>on</strong> reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <strong>Mars</strong> is very much greater. UV radiati<strong>on</strong> is easily<br />

absorbed by martian dust and soil, so it will not penetrate to depths greater than a<br />

few mm, provided <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no cracks <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper layers. <str<strong>on</strong>g>The</str<strong>on</strong>g> case is different <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

CO 2 and water ice, where <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral UV attenuati<strong>on</strong> str<strong>on</strong>gly depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> degree<br />

of polluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ice. More <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> UV penetrati<strong>on</strong> will be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from<br />

models be<str<strong>on</strong>g>in</str<strong>on</strong>g>g developed and from laboratory measurements under simulated martian<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

A model of <str<strong>on</strong>g>the</str<strong>on</strong>g> H 20 2 c<strong>on</strong>centrati<strong>on</strong> as a functi<strong>on</strong> of depth <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near-surface<br />

martian soil is an absolute prerequisite <str<strong>on</strong>g>for</str<strong>on</strong>g> estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum depth to which<br />

such c<strong>on</strong>diti<strong>on</strong>s are likely to be present.<br />

To be able to correlate such a model with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s, it is also essential that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sample acquisiti<strong>on</strong> subsystem should be able to provide a stratigraphic c<strong>on</strong>centrati<strong>on</strong><br />

measurement of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and organics, especially of <str<strong>on</strong>g>the</str<strong>on</strong>g> biologically<br />

significant compounds.<br />

II.5.1 Sample Acquisiti<strong>on</strong><br />

and Distributi<strong>on</strong><br />

Subsystem<br />

129


SP-1231<br />

Fig. II.5.1/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> polished surface of ALH 84001<br />

at low magnificati<strong>on</strong>. Easily visible are a large<br />

chromite gra<str<strong>on</strong>g>in</str<strong>on</strong>g> (light grey) surrounded by<br />

feldspar-like matter (dark grey) <str<strong>on</strong>g>in</str<strong>on</strong>g> a rock<br />

c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of orthopyroxen (ma<str<strong>on</strong>g>in</str<strong>on</strong>g> mass grey).<br />

Such a surface offers <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of <str<strong>on</strong>g>in</str<strong>on</strong>g> situ<br />

analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> different m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>gs and analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> fill<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cracks, which could carry life or life<br />

remnants and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral precipitates of an<br />

organic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. Elemental and isotopic analyses<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and life remnants allows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rock’s <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and its history to be<br />

estimated. (Courtesy Gero Kurat)<br />

130<br />

II.5.2 M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy,<br />

Petrology and<br />

Geochemistry<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sample acquisiti<strong>on</strong> subsystem should also be able to penetrate <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rocks. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> rock-atmosphere <str<strong>on</strong>g>in</str<strong>on</strong>g>terface is a prime reacti<strong>on</strong> z<strong>on</strong>e, its<br />

chemical and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical compositi<strong>on</strong> and physical state are likely to be very<br />

different from those of <str<strong>on</strong>g>the</str<strong>on</strong>g> shielded rock underneath. Samples <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various analyses<br />

outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed below will have to be taken from both of <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g process has to take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account <str<strong>on</strong>g>the</str<strong>on</strong>g> need <str<strong>on</strong>g>for</str<strong>on</strong>g> flat surfaces <str<strong>on</strong>g>for</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

techniques to be applied, i.e. rocks or chips <str<strong>on</strong>g>the</str<strong>on</strong>g>reof will have to be ground flat (<str<strong>on</strong>g>for</str<strong>on</strong>g><br />

APX, microscopy, Raman spectroscopy, IR spectroscopy). Loose, f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed matter<br />

will have to be placed <strong>on</strong> to flat sample supports be<str<strong>on</strong>g>for</str<strong>on</strong>g>e analysis by <str<strong>on</strong>g>the</str<strong>on</strong>g> above methods<br />

can be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med properly.<br />

II.5.2.1 M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and Petrology<br />

II.5.2.1.1 Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

Surface and subsurface m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical, petrological and geochemical analysis<br />

provides <str<strong>on</strong>g>in</str<strong>on</strong>g>dispensable basic <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> general planetological sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a<br />

site, <str<strong>on</strong>g>the</str<strong>on</strong>g> local envir<strong>on</strong>ment and traces of biological activity. A m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogicalpetrological<br />

analysis can help to evaluate a site <str<strong>on</strong>g>for</str<strong>on</strong>g> its potential to host life or life<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> can leave its impr<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> rock surfaces as etch pits, reacti<strong>on</strong> product deposits<br />

and organic matter deposits (bio-crusts), and it can leave <str<strong>on</strong>g>the</str<strong>on</strong>g>m below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Any<br />

place, from fracti<strong>on</strong>s of a millimetre up to many metres below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, is possible<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> biological activity and thus <str<strong>on</strong>g>for</str<strong>on</strong>g> biodeposits. Any space from micropores to macrocracks<br />

can be used by liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms.<br />

In loose sediments, macrobiomarkers could be present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tergranular space at a<br />

depth where liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s are protected from degradati<strong>on</strong>. Such<br />

markers could comprise fossilised hard parts, such as skelet<strong>on</strong>s, shells and sp<str<strong>on</strong>g>in</str<strong>on</strong>g>es, or<br />

organic matter (kerogen-like material).<br />

A search <str<strong>on</strong>g>for</str<strong>on</strong>g> such biomarkers has to be accompanied by a proper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical and<br />

petrological characterisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipally, <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g situati<strong>on</strong>s<br />

and derivatives can be envisaged:<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> primary hard rock (basalt, andesite, etc) envir<strong>on</strong>ment;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary (sand, mud, chalk, c<strong>on</strong>glomerate, etc) envir<strong>on</strong>ment and <str<strong>on</strong>g>the</str<strong>on</strong>g> large<br />

free space (large vugs, caves, fissures, etc) <str<strong>on</strong>g>in</str<strong>on</strong>g> both rock type envir<strong>on</strong>ments.


<str<strong>on</strong>g>The</str<strong>on</strong>g> different types, naturally, require different analytical approaches. All envir<strong>on</strong>ments<br />

need, however, to be characterised <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>in</str<strong>on</strong>g> order to provide a proper basis<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> local history of biological activity. Such characterisati<strong>on</strong> has to<br />

comprise:<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, texture and bulk chemistry of primary rocks;<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and sedimentology of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil-, w<str<strong>on</strong>g>in</str<strong>on</strong>g>d- and water-deposited sediments,<br />

regolith, etc (gra<str<strong>on</strong>g>in</str<strong>on</strong>g> sizes, gra<str<strong>on</strong>g>in</str<strong>on</strong>g> shapes, sec<strong>on</strong>dary m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as clays,<br />

carb<strong>on</strong>ates, zeolites, hydrates, chlorites);<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy of mobile phases and hard ground cements: halogenides, sulphates,<br />

nitrates, silica, carb<strong>on</strong>ates, Fe oxyhydrites, etc;<br />

• search <str<strong>on</strong>g>for</str<strong>on</strong>g> biomarkers: framboidal sulphides or oxides, biophosphates, oxalates,<br />

silica, biogenic magnetite, barite, fossils.<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

Fig. II.5.2/1. Sediments are <str<strong>on</strong>g>for</str<strong>on</strong>g>med via different<br />

processes. Volcanic tuff at M<strong>on</strong>te Leste, Sal<br />

Island, Cabo Verde. Tuff has been cemented<br />

and hardened at different degrees depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong><br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and porosity of tuff layers.<br />

White crust: late <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of calcium sulphate.<br />

(Courtesy G. Kurat)<br />

Fig. II.5.2/2. Sediments governed by fluid<br />

circulati<strong>on</strong>. Tuff, M<strong>on</strong>te Grande, Sal Island,<br />

Cabo Verde. Harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g and cementati<strong>on</strong> of tuff<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (here opened <str<strong>on</strong>g>in</str<strong>on</strong>g> a pit) is<br />

governed by fluid circulati<strong>on</strong>s (down and up). It<br />

will not be detectable at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface but will<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g. (Courtesy G. Kurat)<br />

131


SP-1231<br />

132<br />

II.5.3 Isotopic Analysis<br />

II.5.2.1.2 Extant <str<strong>on</strong>g>Life</str<strong>on</strong>g><br />

In a search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant life bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, microorganisms are <str<strong>on</strong>g>the</str<strong>on</strong>g> most likely<br />

candidates <str<strong>on</strong>g>for</str<strong>on</strong>g> a biota <str<strong>on</strong>g>in</str<strong>on</strong>g> an extraterrestrial habitat. Microbial communities leave<br />

discrete vestiges of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir existence <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>organic habitat. Biom<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong><br />

and biodegradati<strong>on</strong> of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals are examples of life’s <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lithosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, a search <str<strong>on</strong>g>for</str<strong>on</strong>g> biogenic m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals would provide valuable<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g or past activities of life. <str<strong>on</strong>g>The</str<strong>on</strong>g> biogenic nature is impr<str<strong>on</strong>g>in</str<strong>on</strong>g>ted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive crystallographies, morphologies and/or isotopic ratios that make<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishable from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir abiotically-produced counterparts of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same chemical compositi<strong>on</strong>. Those m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from genetically-c<strong>on</strong>trolled<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> processes and <str<strong>on</strong>g>for</str<strong>on</strong>g>med with<str<strong>on</strong>g>in</str<strong>on</strong>g> a pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med organic framework would<br />

have n<strong>on</strong>-<str<strong>on</strong>g>in</str<strong>on</strong>g>terchangeable characteristics, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> orientati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallographic<br />

axes and <str<strong>on</strong>g>the</str<strong>on</strong>g> microarchitecture. Terrestrial examples are <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>tium<br />

sulphate skelet<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> unicellular mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e Acantharia, <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous silicate shells<br />

of diatoms and <str<strong>on</strong>g>the</str<strong>on</strong>g> biogenic magnetite <str<strong>on</strong>g>for</str<strong>on</strong>g>med by bacteria. It is important to note that<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals produced under biologically-c<strong>on</strong>trolled processes are not necessarily <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

equilibrium with <str<strong>on</strong>g>the</str<strong>on</strong>g> extracellular envir<strong>on</strong>ment. By c<strong>on</strong>trast, those m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals <str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

extracellularly by biologically-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> processes can be less easily<br />

dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir abiotically-<str<strong>on</strong>g>for</str<strong>on</strong>g>med counterparts. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>in</str<strong>on</strong>g> an open<br />

envir<strong>on</strong>ment and are <str<strong>on</strong>g>in</str<strong>on</strong>g> equilibrium with this envir<strong>on</strong>ment.<br />

II.5.2.2 Geochemistry (Elemental Compositi<strong>on</strong> Analysis)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quantitative analysis of as many chemical elements as possible will provide<br />

essential <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> elemental bulk compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks and soil. Major,<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>or and trace element abundances will allow depicti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>’s geological<br />

history and <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> state of certa<str<strong>on</strong>g>in</str<strong>on</strong>g> elements (e.g. Fe, Mn, S, N)<br />

will provide <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> such as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio FeIII/FeII <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> redox c<strong>on</strong>diti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

historical development. Knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g> relative abundances of <str<strong>on</strong>g>the</str<strong>on</strong>g> biologically<br />

significant elements C, H, N, O, S and P, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong> between organic and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic matter is particularly important.<br />

Also of great <str<strong>on</strong>g>in</str<strong>on</strong>g>terest is <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of:<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to carb<strong>on</strong>ates (<str<strong>on</strong>g>the</str<strong>on</strong>g> importance of which is<br />

drastically <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SNC meteorites);<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance of nitrogen and its oxidati<strong>on</strong> state <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil, to understand<br />

what happened to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial atmospheric nitrogen.<br />

In all cases, determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> abundance with depth is crucial <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

extrapolat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> data and estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil’s deeper layers.<br />

Isotopic ratios are a very valuable set of chemical biomarkers (Schidlowski et al.<br />

1983; Watanabe et al., 1997).<br />

II.5.3.1 Carb<strong>on</strong> and Hydrogen<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> 13 C depleti<strong>on</strong> produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> Calv<str<strong>on</strong>g>in</str<strong>on</strong>g> cycle of photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is a clear signature<br />

of biological activity. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r carb<strong>on</strong>-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g pathways <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, such<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> C4 (Hatch Slack) pathway, also fracti<strong>on</strong>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of 12 C, but to a lesser<br />

extent. <str<strong>on</strong>g>The</str<strong>on</strong>g> δ 13 C values of average biomass are about 20-30‰ more negative than<br />

those of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic carb<strong>on</strong>. As discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Part I, such negative values have been<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed over <str<strong>on</strong>g>the</str<strong>on</strong>g> whole history of life <strong>on</strong> Earth.<br />

Methanogenic microorganisms generate substantial fracti<strong>on</strong>ati<strong>on</strong>s that prefer<br />

hydrogen to deuterium by sometimes as much as 30% relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> agneous<br />

substrate. Carb<strong>on</strong> is isotopically lighter than that fixed by photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>in</str<strong>on</strong>g> such<br />

systems. Methylotrophic organisms thus produce matter that is isotopically light <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

both carb<strong>on</strong> and hydrogen; kerogens of this k<str<strong>on</strong>g>in</str<strong>on</strong>g>d have been encountered <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Precambrian <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s.


Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of 15 N/ 14 N can provide very important <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong><br />

possible biological activities <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysed samples. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is true <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 34 S/ 32 S<br />

isotopic compositi<strong>on</strong> change between sulphides and sulphates.<br />

II.5.3.2 Sulphur<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> element sulphur represents an important c<strong>on</strong>stituent of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial biosphere.<br />

Its presence and even more so <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic isotope signatures of sulphur <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

various oxidati<strong>on</strong> states give testim<strong>on</strong>y to biologically-c<strong>on</strong>trolled processes, mostly <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

low-temperature sedimentary envir<strong>on</strong>ments.<br />

Sedimentary pyrites often display negative to str<strong>on</strong>gly negative δ 34 S values (e.g.<br />

Chambers, 1982; Habicht & Canfield, 1997; Kaplan & Rittenberg, 1964; Strauss,<br />

1997), and <str<strong>on</strong>g>the</str<strong>on</strong>g>se are correctly <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from bacterial sulphate<br />

reducti<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> geological record provides sufficient evidence <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

sedimentary (biogenic) pyrites with positive or even str<strong>on</strong>gly positive δ 34 S data that<br />

are equally a result of bacterial sulphate reducti<strong>on</strong> (e.g. Lambert & D<strong>on</strong>nelly, 1990;<br />

Ohmoto, 1992; Ohmoto et al., 1990, 1993; Schidlowski et al., 1983; Strauss, 1993).<br />

In additi<strong>on</strong>, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r biologically-c<strong>on</strong>trolled processes with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphur cycle (e.g.<br />

sulphide oxidati<strong>on</strong>) are associated with <strong>on</strong>ly m<str<strong>on</strong>g>in</str<strong>on</strong>g>or displacements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic<br />

compositi<strong>on</strong>.<br />

C<strong>on</strong>sequently, a full understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian sulphur cycle and, thus, possibly<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> biological participati<strong>on</strong>, can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong>ly through a thorough study<br />

of abundances and isotopic compositi<strong>on</strong>s of both oxidised and reduced sulphur<br />

species.<br />

II.5.4.1 Inorganics<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quantitative analysis of water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil will allow derivati<strong>on</strong> of a water c<strong>on</strong>centrati<strong>on</strong><br />

profile and could give access by extrapolati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> water c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

deeper layers.<br />

This is a key po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>for</str<strong>on</strong>g> study<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of extant life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present martian<br />

subsurface, water be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> essential <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <str<strong>on</strong>g>for</str<strong>on</strong>g> life. <str<strong>on</strong>g>The</str<strong>on</strong>g> analysis of water<br />

is also important <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical compositi<strong>on</strong> (hydrate<br />

c<strong>on</strong>tent). Similarly, it is important to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil abundances of CO 2<br />

(carb<strong>on</strong>ate c<strong>on</strong>tent), NO 2/NO 3/N xO y (nitrate c<strong>on</strong>tent), SO 2/SO 3 (sulphates) and<br />

phosphates.<br />

It is essential to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances of oxidants <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil, and determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

c<strong>on</strong>centrati<strong>on</strong> gradients with depth (Fig. II.5.4/1). If our models of <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of<br />

organics <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near-subsurface are correct, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidant c<strong>on</strong>centrati<strong>on</strong><br />

should be anti-correlated with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of organics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

oxidants are ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly: O 2, O 3 and pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipally H 2O 2 (with eventually organic peroxides).<br />

Fe 3+ , Mn x+ , carb<strong>on</strong>ates, nitrates and sulphates should also be menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>text.<br />

II.5.4.2 Organics<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> discovery of organics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil would be of prime importance <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

exobiology. In <str<strong>on</strong>g>the</str<strong>on</strong>g> very oxidised martian envir<strong>on</strong>ment, <str<strong>on</strong>g>the</str<strong>on</strong>g> abiotic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of<br />

organics through atmospheric chemical processes is unlikely. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly likely major<br />

abiotic source of organics <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near-surface is extra-martian<br />

importati<strong>on</strong>, from <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of carb<strong>on</strong>aceous meteorites. However, by differentiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a meteoritic abiotic orig<str<strong>on</strong>g>in</str<strong>on</strong>g> from a bio-orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> of organic carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian soil could provide <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer life processes.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> death of organisms <strong>on</strong> Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir primary biopolymers (such as prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

and polysaccharides) undergo a complex process of degradati<strong>on</strong> and c<strong>on</strong>densati<strong>on</strong><br />

(humificati<strong>on</strong>) to give complex and chemically stable macromolecular materials<br />

(kerogens). In additi<strong>on</strong>, stable lipid-rich biopolymers survive this process to<br />

c<strong>on</strong>tribute directly to kerogens, which are amorphous c<strong>on</strong>densed aggregates made up<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of aliphatic and aromatic moieties (de Leeuw & Largeau, 1993). Kerogens<br />

typically comprise by far <str<strong>on</strong>g>the</str<strong>on</strong>g> majority (>90%) of sedimentary organic matter and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

II.5.4 Molecular Analysis<br />

Fig. II.5.4/1. A pyrite crystal that oxidised<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>wards from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> surface c<strong>on</strong>sists<br />

of ir<strong>on</strong> oxides/hydroxides – very different from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>side. It dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> necessity of<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teriors of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and rocks.<br />

(Courtesy G. Kurat)<br />

133


SP-1231<br />

134<br />

chemical compositi<strong>on</strong> depends, <str<strong>on</strong>g>in</str<strong>on</strong>g>ter alia, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal history <str<strong>on</strong>g>the</str<strong>on</strong>g>y have<br />

experienced. Naturally-occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal breakdown gives rise to lower molecular<br />

weight comp<strong>on</strong>ents (gas and oil), and this process can be mimicked us<str<strong>on</strong>g>in</str<strong>on</strong>g>g pyrolysis<br />

techniques.<br />

Sediments also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> stable organic compounds, especially lipids and metalloporphyr<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

pigments which survive <str<strong>on</strong>g>in</str<strong>on</strong>g> whole or <str<strong>on</strong>g>in</str<strong>on</strong>g> part <str<strong>on</strong>g>the</str<strong>on</strong>g> processes of alterati<strong>on</strong>, or<br />

which are produced by kerogen <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal breakdown. Many of <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents can<br />

be classified as biomarkers <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical structures and/or carb<strong>on</strong><br />

isotopic compositi<strong>on</strong>s. Hydrocarb<strong>on</strong> biomarkers and kerogens of recognisable<br />

biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g> have been found <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments as far back as Precambrian <str<strong>on</strong>g>in</str<strong>on</strong>g> age<br />

(>0.5 Gyr; Imbus & McKirdy, 1993).<br />

Based <strong>on</strong> terrestrial experience of organics of microbial orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, realistic criteria <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

assign<str<strong>on</strong>g>in</str<strong>on</strong>g>g a biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g> to organic matter are <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of:<br />

• compounds occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g as such or derived from pyrolysis, with structures characteristic<br />

of an orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway (e.g. acyclic isoprenoids, terpenoids,<br />

steroids);<br />

• a 13 C depleti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic compositi<strong>on</strong> of bulk organic matter, fracti<strong>on</strong>s<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refrom or compounds present as such or released by pyrolysis (see Secti<strong>on</strong> 5.3);<br />

• chiral comp<strong>on</strong>ents with a biological c<strong>on</strong>figurati<strong>on</strong>, present as such or released by<br />

pyrolysis (e.g. steroids and terpenoids);<br />

• homologous series of comp<strong>on</strong>ents, present as such or released by pyrolysis, with a<br />

n<strong>on</strong>-random carb<strong>on</strong> number distributi<strong>on</strong> (e.g. straight-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> hydrocarb<strong>on</strong>s or<br />

alkanoic acids with a pr<strong>on</strong>ounced carb<strong>on</strong> number maximum, restricted carb<strong>on</strong><br />

number range, even/odd or odd/even carb<strong>on</strong> number predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

acetate C2 units <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> acylpolymal<strong>on</strong>ate biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> volatile low molecular weight organics, such as alkanes (particularly<br />

CH 4) is also of importance. <str<strong>on</strong>g>The</str<strong>on</strong>g> discovery of simple organics such as CH 4 <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

near-surface samples, despite <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ment of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, could be a<br />

sign of current biological activity. <str<strong>on</strong>g>The</str<strong>on</strong>g> same could be true <str<strong>on</strong>g>for</str<strong>on</strong>g> H 2S.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> selecti<strong>on</strong> of target organics related to biological structures or/and activity has<br />

also to take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account <str<strong>on</strong>g>the</str<strong>on</strong>g> relative chemical stability of <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> a highly<br />

oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ment. In particular, am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks of biomacromolecules,<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids are relatively stable, nucleotides and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sugars (ribose or<br />

deoxyribose) are not, and pur<str<strong>on</strong>g>in</str<strong>on</strong>g>es are more stable than pyrimid<str<strong>on</strong>g>in</str<strong>on</strong>g>es.<br />

Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se criteria <str<strong>on</strong>g>in</str<strong>on</strong>g>to c<strong>on</strong>siderati<strong>on</strong>, a priority order of organics to be sought is:<br />

i. Volatile low molecular weight compounds:<br />

– hydrocarb<strong>on</strong>s, especially CH 4;<br />

– alkanoic acids (RCO 2H);<br />

– eventually peroxy acids (RCO 3H) which could be present <str<strong>on</strong>g>in</str<strong>on</strong>g> an oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

envir<strong>on</strong>ment.<br />

ii. Medium molecular weight compounds:<br />

– hydrocarb<strong>on</strong>s (e.g. straight- and branched-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>, isoprenoids, terpenoids,<br />

steroids, aromatics);<br />

– alkanoic acids and alcohols;<br />

– am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids;<br />

– pur<str<strong>on</strong>g>in</str<strong>on</strong>g>es.<br />

iii.Macromolecular comp<strong>on</strong>ents:<br />

– kerogen-like material;<br />

– oligo and polypeptides.


Homochirality can also be a crucial signature of life, extant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct. Biological<br />

systems use <strong>on</strong>ly <strong>on</strong>e mirror image <str<strong>on</strong>g>for</str<strong>on</strong>g>m (R or S enantiomer, also named <str<strong>on</strong>g>in</str<strong>on</strong>g> some<br />

cases D or L) of a chiral molecule (e.g. prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s are made of <strong>on</strong>ly L am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, not<br />

D), <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to n<strong>on</strong>-liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems which are normally racemic (c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> equal<br />

numbers of L and D molecules). <str<strong>on</strong>g>The</str<strong>on</strong>g> enemy of f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g homochirality as a signature<br />

of past life is <str<strong>on</strong>g>the</str<strong>on</strong>g> process of racemisati<strong>on</strong>, i.e. D/L <str<strong>on</strong>g>in</str<strong>on</strong>g>terc<strong>on</strong>versi<strong>on</strong>. Although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

racemisati<strong>on</strong> half-life of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids is typically 10 6 years <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wet c<strong>on</strong>diti<strong>on</strong>s<br />

prevalent <strong>on</strong> Earth, this rises to 10 13 years or even more <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dry, frozen c<strong>on</strong>diti<strong>on</strong>s<br />

of <strong>Mars</strong> – so homochirality may be preserved even if <str<strong>on</strong>g>the</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> occurred 3-4 Gyr<br />

ago.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence of an enantiomeric excess could be established simply by detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

optical activity <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk martian soil, but a separati<strong>on</strong> technique such as chromatography<br />

would be necessary to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> actual D/L ratio <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual organics.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g optical rotati<strong>on</strong> and life-like isotope ratios toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r would be a particularly<br />

powerful <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of life that would be difficult to mimic abiotically.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> discovery of pure enantiomeric <str<strong>on</strong>g>for</str<strong>on</strong>g>ms <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil would be a clue <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presence of very recently active liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems. <str<strong>on</strong>g>The</str<strong>on</strong>g> discovery of an important<br />

enantiomeric excess would be a clue to <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of an ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life.<br />

A direct measurement of optical activity of organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil is less<br />

likely to provide very useful <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. To obta<str<strong>on</strong>g>in</str<strong>on</strong>g> chirality <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>,<br />

measurement of <str<strong>on</strong>g>the</str<strong>on</strong>g> R/S ratio <str<strong>on</strong>g>in</str<strong>on</strong>g> enantiomers or diastereoisomers of certa<str<strong>on</strong>g>in</str<strong>on</strong>g> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

organics listed <str<strong>on</strong>g>in</str<strong>on</strong>g> II.5.4.2, which are able to exist as such, would be required.<br />

INSTRUMENTATION TO SATISFY THE SCIENTIFIC OBJECTIVES<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> technology exists <str<strong>on</strong>g>in</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, but does not fulfil all of <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific requirements:<br />

depth – sample acquisiti<strong>on</strong> – sample preparati<strong>on</strong> – micro analysis – transfer.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crust must also be removed from rocks and <str<strong>on</strong>g>the</str<strong>on</strong>g> subcrustal surface <str<strong>on</strong>g>in</str<strong>on</strong>g>spected. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

requirements are:<br />

• a sample acquisiti<strong>on</strong> able to provide m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral and organic stratigraphy;<br />

• a drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g system able to reach down to 1.5 m (depth to be c<strong>on</strong>firmed);<br />

• a sample and <str<strong>on</strong>g>in</str<strong>on</strong>g> situ rock-preparati<strong>on</strong> system able to expose rock <str<strong>on</strong>g>in</str<strong>on</strong>g>teriors to<br />

provide a surface suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> optical <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> and micro-analysis.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> MOLE c<strong>on</strong>cept seems to be able to drill down to 1.5 m, but not through rock,<br />

and it must be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated if drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med vertically. Incorporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g system <strong>on</strong> a martian rover will be demand<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of mass, dimensi<strong>on</strong>s<br />

and power requirements.<br />

II.5.7.1 General C<strong>on</strong>siderati<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical studies (and <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossils) require a good<br />

sample documentati<strong>on</strong> and preparati<strong>on</strong> (smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g or polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <str<strong>on</strong>g>for</str<strong>on</strong>g> optical microscopy<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> and selecti<strong>on</strong> of gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> microchemical analysis. In pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple,<br />

two fundamentally different samples will be encountered: hard rocks (primary and<br />

lithified sec<strong>on</strong>dary) and soil (unc<strong>on</strong>solidated regolith and sediment). <str<strong>on</strong>g>The</str<strong>on</strong>g> nearby<br />

geological envir<strong>on</strong>ment will be represented by hard rock boulders, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> soil<br />

will tend to represent almost planet-wide coverage. Naturally, both samples are of<br />

great <str<strong>on</strong>g>in</str<strong>on</strong>g>terest and a thorough study of a planetary surface from samples of <strong>on</strong>e land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

site has to be based <strong>on</strong> a detailed knowledge of both sample types. Although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unc<strong>on</strong>solidated soil carries <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> close and very distant locati<strong>on</strong>s this is also<br />

true <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>solidated sediments that are possibly widespread at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of<br />

<strong>Mars</strong>, as documented by <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der. However, <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s of hard rocks or<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

II.5.5 <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Homochirality<br />

II.5.6 Sample Acquisiti<strong>on</strong><br />

and Distributi<strong>on</strong><br />

Subsystem<br />

II.5.7 M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy,<br />

Petrology and<br />

Geochemistry<br />

135


SP-1231<br />

Fig. II.5.7.1/1. <str<strong>on</strong>g>The</str<strong>on</strong>g> Mezoe-Madaras meteorite,<br />

about 30 cm across. <str<strong>on</strong>g>The</str<strong>on</strong>g> visible surface does not<br />

allow <str<strong>on</strong>g>the</str<strong>on</strong>g> rock to be identified, but <str<strong>on</strong>g>the</str<strong>on</strong>g> chipped<br />

surface at lower right provides some <str<strong>on</strong>g>in</str<strong>on</strong>g>sight.<br />

However, <strong>on</strong>ly cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g and (semi) polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

allows <str<strong>on</strong>g>the</str<strong>on</strong>g> full beauty to be seen. This provides<br />

full <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock texture and a wide<br />

range of analyses can be made <strong>on</strong> carefully<br />

pre-selected spots. (Courtesy G. Kurat)<br />

136<br />

unc<strong>on</strong>solidated soil need different sample preparati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are briefly outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

below.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> surface of hard rocks is likely to be covered by dust and a wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g crust<br />

(desert varnish and/or radiati<strong>on</strong>-damaged r<str<strong>on</strong>g>in</str<strong>on</strong>g>d and/or hydrated/carb<strong>on</strong>ated crust<br />

and/or biogenic encrustati<strong>on</strong>, etc). For a proper m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical-petrological <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong><br />

of such rocks, <str<strong>on</strong>g>the</str<strong>on</strong>g> dust and <str<strong>on</strong>g>the</str<strong>on</strong>g> crust must be removed (Fig. II.5.7.1/1). This<br />

could be achieved by ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g or core drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> first method could produce<br />

ground samples of <str<strong>on</strong>g>the</str<strong>on</strong>g> crust and of successively deeper rock layers <str<strong>on</strong>g>for</str<strong>on</strong>g> analysis.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d could provide cross-secti<strong>on</strong> samples perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface,<br />

allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a detailed analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> rock, its c<strong>on</strong>stituents and <str<strong>on</strong>g>the</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> properties<br />

with depth. This would be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal sample <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> situ analysis of hard rocks.<br />

• Soil samples need particle size-sort<str<strong>on</strong>g>in</str<strong>on</strong>g>g be<str<strong>on</strong>g>for</str<strong>on</strong>g>e process<str<strong>on</strong>g>in</str<strong>on</strong>g>g (comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with gra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

size analysis). <str<strong>on</strong>g>The</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed part (f<str<strong>on</strong>g>in</str<strong>on</strong>g>e sand 60-200 mm, silt 2-60 mm and clay<br />


– a sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g device to allow samples to be taken from flat ground or polished<br />

surfaces (small core drill, chipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g, etc.);<br />

– a sample transfer system (manipulator) to transfer prepared samples and selected<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen analytical <str<strong>on</strong>g>in</str<strong>on</strong>g>strument.<br />

As <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sample, a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods would be<br />

ideally suited:<br />

Optical microscopy: with several magnificati<strong>on</strong>s to see <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

samples, select <str<strong>on</strong>g>the</str<strong>on</strong>g>m and look at details.<br />

Electr<strong>on</strong> scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g microscopy: surfaces, shapes, etch<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, coat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, textures, microfossils,<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral abundances (average Z analysis – BSE), micro analysis of major<br />

and m<str<strong>on</strong>g>in</str<strong>on</strong>g>or m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, cathodolum<str<strong>on</strong>g>in</str<strong>on</strong>g>escence, etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> method is applicable to small<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-gra<str<strong>on</strong>g>in</str<strong>on</strong>g> mounts <strong>on</strong> metal and <str<strong>on</strong>g>for</str<strong>on</strong>g> polished surfaces (<str<strong>on</strong>g>for</str<strong>on</strong>g> imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly if not<br />

coated with c<strong>on</strong>ductive light element, e.g. Be or C). If equipped with a Si (Li)<br />

detector or equivalent CCD major element analysis of gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s mounted <strong>on</strong> metal foil<br />

could be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med.<br />

I<strong>on</strong> probe analysis: surface analysis (coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, hydrogenated or carb<strong>on</strong>ated surfaces or<br />

rock-<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals), major and trace elements of rock-<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals,<br />

sec<strong>on</strong>dary m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, hard and soft biogenic matter, isotope analysis of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and<br />

organic matter (H/D, Li, B, C, N, O, S, etc.), impact glasses, ice?, salts and<br />

cements, major and trace elements, isotopes, elemental imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g, isotopic imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

If laser ablati<strong>on</strong> and <str<strong>on</strong>g>in</str<strong>on</strong>g>ductive coupled plasma (ICP) techniques are used <str<strong>on</strong>g>for</str<strong>on</strong>g> i<strong>on</strong><br />

producti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> method can be applied to s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-gra<str<strong>on</strong>g>in</str<strong>on</strong>g> mounts and polished<br />

surfaces and will give good and quick results <str<strong>on</strong>g>for</str<strong>on</strong>g> major, m<str<strong>on</strong>g>in</str<strong>on</strong>g>or and trace element<br />

abundances. However, isotope analysis will be difficult with <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>in</str<strong>on</strong>g>strument.<br />

X-ray analysis: identificati<strong>on</strong> of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals by X-ray diffracti<strong>on</strong>. Ground-up m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s or mixtures will be needed or <str<strong>on</strong>g>the</str<strong>on</strong>g> method will be applied <strong>on</strong>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>egra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

part of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil.<br />

Differential <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal Analysis (DTA): identificati<strong>on</strong> and analysis of H 2O-, OH-, CO 2etc<br />

bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals (volatiles released could be analysed by a mass spectrometer).<br />

APX spectroscopy: bulk major and m<str<strong>on</strong>g>in</str<strong>on</strong>g>or element (above He) c<strong>on</strong>tents of rock and<br />

soil samples. A reas<strong>on</strong>ably flat surface is required.<br />

Raman spectroscopy: m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral identificati<strong>on</strong> <strong>on</strong> selected gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from loose or solid<br />

samples, surface coat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, cements, etc. This method is applicable to s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-gra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

mounts and polished surfaces.<br />

IR spectroscopy: reflected or emitted IR: identificati<strong>on</strong> of pyroxenes, oliv<str<strong>on</strong>g>in</str<strong>on</strong>g>e, amphibole,<br />

carb<strong>on</strong>ates, hydrous m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> spectrometer could be attached to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

Fig. II.5.7.1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g> cut and polished surface of a<br />

piece of <str<strong>on</strong>g>the</str<strong>on</strong>g> Allende ch<strong>on</strong>drite, dem<strong>on</strong>strat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> richness of objects and <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of spots to<br />

be analysed. About 9 cm l<strong>on</strong>g. (Courtesy<br />

G. Kurat)<br />

Fig. II.5.7.1/3. Ideally, rocks should be<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong>s and transmitted<br />

light, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> texture clearly visible. In this<br />

photograph, crossed polarisers allow <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual<br />

crystals to be seen. However, views like this are<br />

not essential, because texture and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy<br />

can also be depicted <strong>on</strong> polished surfaces,<br />

although <str<strong>on</strong>g>in</str<strong>on</strong>g> a more cumbersome way. This is a<br />

polished th<str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> of an amphiboleorthopyroxene<br />

rock from Zabargad Island <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Red Sea; gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size is about 0.5 mm.<br />

(Courtesy G. Kurat)<br />

137


SP-1231<br />

138<br />

optical microscope. Both s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s and gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a polished secti<strong>on</strong> could be<br />

analysed.<br />

UV spectroscopy: reflecti<strong>on</strong> spectroscopy, fluorescence of s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s and gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

polished mounts.<br />

Mössbauer spectroscopy: determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Fe 2+ /Fe 3+ ratio <str<strong>on</strong>g>in</str<strong>on</strong>g> Fe-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral type.<br />

Atomic Force Microscope (AFM): high-magnificati<strong>on</strong> surface imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of selected<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, identificati<strong>on</strong> of c<strong>on</strong>densates, <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of radiati<strong>on</strong> damage, etc.<br />

II.5.7.2 Optical Microscopy<br />

Low magnificati<strong>on</strong> (20-80×): bulk documentati<strong>on</strong>, colour analysis, texture, fossils,<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size analysis, gra<str<strong>on</strong>g>in</str<strong>on</strong>g> shape analysis, selecti<strong>on</strong> of samples and/or sites <str<strong>on</strong>g>for</str<strong>on</strong>g> X-ray<br />

and microchemical analysis. A smooth surface <strong>on</strong> hard rocks is necessary.<br />

High magnificati<strong>on</strong> (100-500×): details of major m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, m<str<strong>on</strong>g>in</str<strong>on</strong>g>or phases, accessories,<br />

surface of gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, tw<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <str<strong>on</strong>g>in</str<strong>on</strong>g>tergrowths, exsoluti<strong>on</strong> and micro reacti<strong>on</strong><br />

textures, microfossils. Ideally, hard rocks should have a polished surface.<br />

At least two, preferably more, magnificati<strong>on</strong>s should be available <strong>on</strong> a well-centred<br />

revolver or sledge, or <strong>on</strong> two or more <str<strong>on</strong>g>in</str<strong>on</strong>g>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>e microscopes. <str<strong>on</strong>g>The</str<strong>on</strong>g>y could be equipped<br />

with colour diodes, a laser (Raman), IR source and UV light source.<br />

Space <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> optical microscopy already exists. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Close-Up Imager from DLR <str<strong>on</strong>g>in</str<strong>on</strong>g> Berl<str<strong>on</strong>g>in</str<strong>on</strong>g> (Dr. Michaelis, Prof. Neukum), which is part<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> Instrument Deployment Device (IDD) (MPI Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>z, Dr. Rieder, Prof. Wänke)<br />

that was planned <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>ESA</strong>’s Inter<strong>Mars</strong>Net missi<strong>on</strong>, will have a spatial sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of<br />

about 50 µm/pixel with 3-colour images. <str<strong>on</strong>g>The</str<strong>on</strong>g> mass, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g all electr<strong>on</strong>ics, will be<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of 100 g, and <str<strong>on</strong>g>the</str<strong>on</strong>g> power c<strong>on</strong>sumpti<strong>on</strong> about 1 W.<br />

II.5.7.3 Alpha Prot<strong>on</strong> X-ray Spectrometer (APXS)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> APXS can determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e all elements except H and He with good accuracy. Hence,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of an ill-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed geometry, relative elemental abundances can easily be<br />

c<strong>on</strong>verted to absolute abundances. In particular, it seems to be able to analyse carb<strong>on</strong><br />

down to about 0.1wt%. It can thus provide an important <str<strong>on</strong>g>in</str<strong>on</strong>g>put <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> puzzl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

questi<strong>on</strong>: where did <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric CO 2 go to?<br />

Inclusi<strong>on</strong> of such an <str<strong>on</strong>g>in</str<strong>on</strong>g>strument with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed package would allow <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

measurements to be extended to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface samples. In fact, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

APXS can determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute c<strong>on</strong>centrati<strong>on</strong> of oxygen, it will also be able to shed<br />

light <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute oxidati<strong>on</strong> state of <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface material as a functi<strong>on</strong> of depth.<br />

Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g>se specific tasks, <str<strong>on</strong>g>the</str<strong>on</strong>g> general versatility of <str<strong>on</strong>g>the</str<strong>on</strong>g> APXS makes it a natural<br />

candidate <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this package.<br />

A particular practical advantage of <str<strong>on</strong>g>the</str<strong>on</strong>g> APXS is that it does not require important<br />

sample surface preparati<strong>on</strong>, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> need to ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g> sample surface regi<strong>on</strong><br />

is not c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated (although it must be cleaned of dust). Hence, it should be readily<br />

accommodated above <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> sample presentati<strong>on</strong> positi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> sample carousel.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> APXS <str<strong>on</strong>g>in</str<strong>on</strong>g> backscatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g mode can determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e all elements except H and He with<br />

good accuracy. <str<strong>on</strong>g>The</str<strong>on</strong>g> alpha mode is most sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> light elements, such as C, O and<br />

N, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray mode is more sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> higher z-value elements.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> alpha mode. Elastic collisi<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> alpha particles and nuclei of <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

sample result <str<strong>on</strong>g>in</str<strong>on</strong>g> Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>for</str<strong>on</strong>g>d scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g. For a scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g angle close to 180º<br />

(backscatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g), <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattered alpha particles is<br />

characteristic <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g element. <str<strong>on</strong>g>The</str<strong>on</strong>g> Alpha Mode is best suited <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> light<br />

elements C, N and O, <str<strong>on</strong>g>for</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum energies of <str<strong>on</strong>g>the</str<strong>on</strong>g> backscattered alpha<br />

particles differ most. For elements with higher masses, <strong>on</strong>ly groups of elements<br />

can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> prot<strong>on</strong> mode. After elastic collisi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> alpha particles give rise to nuclear<br />

reacti<strong>on</strong>s of which <str<strong>on</strong>g>the</str<strong>on</strong>g> (a, p) reacti<strong>on</strong>s are of analytical importance as <str<strong>on</strong>g>the</str<strong>on</strong>g>y yield


team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

Fig. II.5.7.3/1. Alpha backscatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g spectrum<br />

of soil sample A-2, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

missi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> of atmospheric<br />

carb<strong>on</strong> and oxygen are not yet corrected, so<br />

most of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> comes from atmospheric<br />

carb<strong>on</strong>. (Courtesy G. Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer)<br />

Fig. II.5.7.3/2. X-ray spectrum of <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘Barnacle<br />

Bill’ rock obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

missi<strong>on</strong>, show<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> elemental compositi<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rock’s near-surface material. (Courtesy G.<br />

Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer)<br />

139


SP-1231<br />

140<br />

prot<strong>on</strong>s of discrete energies. <str<strong>on</strong>g>The</str<strong>on</strong>g> prot<strong>on</strong> spectra can be measured <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> alpha spectra because of <str<strong>on</strong>g>the</str<strong>on</strong>g> different ranges of alphas and prot<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> prot<strong>on</strong><br />

mode is of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of Na, Mg, Al, Si and S.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> X-ray mode. <str<strong>on</strong>g>The</str<strong>on</strong>g> alpha particles from <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> sources are also used as a very<br />

efficient excitati<strong>on</strong> source <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of characteristic X-rays. Charged<br />

particle excitati<strong>on</strong>s are, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, highly superior to any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of X-ray<br />

excitati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g>y give by far <str<strong>on</strong>g>the</str<strong>on</strong>g> best signal-to-noise ratio.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of all three modes allows determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of all elements heavier<br />

than helium present <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> levels greater than 1%. In order to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

highest accuracy and sensitivity, a measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g time per sample of up to 10 h is<br />

required. That will tend to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> rate of sample presentati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

systems. While <str<strong>on</strong>g>the</str<strong>on</strong>g> alpha mode has a good resoluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> light elements C, N and<br />

O, <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> decreases <str<strong>on</strong>g>for</str<strong>on</strong>g> heavier elements. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray mode <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>for</str<strong>on</strong>g> heavier elements.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument is well developed, has flown <strong>on</strong> several missi<strong>on</strong>s and is accepted <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

future <strong>Mars</strong> missi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>re was an APXS <strong>on</strong>board Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der rover<br />

Sojourner (Rieder et al., 1997) and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian <strong>Mars</strong>-96 missi<strong>on</strong>. Sojourner’s<br />

versi<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed n<str<strong>on</strong>g>in</str<strong>on</strong>g>e 224 Cm sources with a total activity of about 50 mCi (1.85×10 9<br />

decays/s). <str<strong>on</strong>g>The</str<strong>on</strong>g>re will be a similar <str<strong>on</strong>g>in</str<strong>on</strong>g>strument <strong>on</strong> NASA’s <strong>Mars</strong> Surveyor 2001 missi<strong>on</strong><br />

as part of <str<strong>on</strong>g>the</str<strong>on</strong>g> ATHENA payload, and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r APXS <strong>on</strong> <strong>ESA</strong>’s Rosetta comet lander <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

launch <str<strong>on</strong>g>in</str<strong>on</strong>g> 2003. This dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> good heritage of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total APXS mass, cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor head and electr<strong>on</strong>ics box, is 570 g.<br />

Power c<strong>on</strong>sumpti<strong>on</strong> is 340 mW and data output is 16 Kbytes per sample analysis.<br />

However, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <strong>Mars</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a potential problem c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quantitative analysis of C and N. <str<strong>on</strong>g>The</str<strong>on</strong>g> atmospheric CO 2 and N 2 signals can <str<strong>on</strong>g>in</str<strong>on</strong>g>terfere<br />

with those from <str<strong>on</strong>g>the</str<strong>on</strong>g> soil and rocks. To m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric signals, <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>in</str<strong>on</strong>g>strument design has been modified us<str<strong>on</strong>g>in</str<strong>on</strong>g>g additi<strong>on</strong>al collimators <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alpha particles. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument needs to be calibrated under real<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s to account <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g atmospheric carb<strong>on</strong> and<br />

nitrogen c<strong>on</strong>tributi<strong>on</strong>. Such a modified APXS, which will be part of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong><br />

Surveyor 2001 missi<strong>on</strong>, is able to analyse carb<strong>on</strong> down to <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.1wt% level. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

sensitivity <str<strong>on</strong>g>for</str<strong>on</strong>g> nitrogen is less because of <str<strong>on</strong>g>the</str<strong>on</strong>g> proximity of <str<strong>on</strong>g>the</str<strong>on</strong>g> nitrogen and oxygen<br />

signals (similar mass numbers).<br />

II.5.7.4 Mössbauer Spectrometer<br />

Mössbauer spectroscopy (Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer et al., 1996) is a powerful tool <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Fe-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and ir<strong>on</strong> compounds. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> state of <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> Fe 2+ /Fe 3+ ratio <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil and rocks will be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed directly. With<br />

Mössbauer spectroscopy, <str<strong>on</strong>g>the</str<strong>on</strong>g> Fe 2+ /Fe 3+ ratio can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>for</str<strong>on</strong>g> samples taken at<br />

different depths <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil, which provides complementary <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> H 2O 2 oxidant depth profile determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>.<br />

Biogenic magnetite very often (<str<strong>on</strong>g>in</str<strong>on</strong>g> most cases) shows up <str<strong>on</strong>g>in</str<strong>on</strong>g> Mössbauer spectra as a<br />

superparamagnetic comp<strong>on</strong>ent hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g str<strong>on</strong>gly temperature-dependent Mössbauer<br />

parameters. F<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g such signatures <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mössbauer spectra will be an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of<br />

previous biological activity. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <str<strong>on</strong>g>in</str<strong>on</strong>g>organic processes that also produce<br />

such nanophase magnetic particles. So, we must be careful <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> general scientific objectives of <str<strong>on</strong>g>in</str<strong>on</strong>g> situ Mössbauer spectroscopy are:<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> state of ir<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals;<br />

– identificati<strong>on</strong> of Fe carb<strong>on</strong>ates, sulphates, nitrates, etc that would provide<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> early martian envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s;<br />

– identificati<strong>on</strong> of ir<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g phases with low detecti<strong>on</strong> limits;<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> oxides and <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic phase <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil;<br />

– detecti<strong>on</strong> of nanophase and amorphous hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Fe m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals that could<br />

preserve biological materials.


Measurements with <str<strong>on</strong>g>the</str<strong>on</strong>g> Mössbauer <str<strong>on</strong>g>in</str<strong>on</strong>g>strument will be d<strong>on</strong>e by plac<str<strong>on</strong>g>in</str<strong>on</strong>g>g it aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sample. Physical c<strong>on</strong>tact is required <str<strong>on</strong>g>in</str<strong>on</strong>g> order to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise possible microph<strong>on</strong>ic<br />

noise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity-modulated energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> emitted gamma-rays. <str<strong>on</strong>g>The</str<strong>on</strong>g> field of view<br />

is circular (diameter about 1.5-2 cm). <str<strong>on</strong>g>The</str<strong>on</strong>g> average <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> depth <str<strong>on</strong>g>for</str<strong>on</strong>g> Mössbauer<br />

data is of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of 100-200 mm, assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g basaltic rock compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> thickness<br />

of dust layers as found <strong>on</strong> rocks dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g and Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der missi<strong>on</strong>s may<br />

exceed this. To get at least some <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> from a possible wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g r<str<strong>on</strong>g>in</str<strong>on</strong>g>d and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

host rock, <str<strong>on</strong>g>the</str<strong>on</strong>g> dust needs to be removed by appropriate devices. Measurements be<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

and after dust removal should be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Mössbauer parameters are temperature-dependent. Especially <str<strong>on</strong>g>for</str<strong>on</strong>g> small<br />

particles exhibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g superparamagnetic behaviour (e.g. nanophase Fe-oxides, which<br />

may be of biogenic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>), <str<strong>on</strong>g>the</str<strong>on</strong>g> Mössbauer spectrum may change drastically with<br />

temperature. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> of such changes will help <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g phases. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, Mössbauer measurements at different temper-<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

Fig. II.5.7.4/1. Backscatter Mössbauer spectra<br />

of martian analogues obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with MIMOS II.<br />

From top to bottom: HWMK600, palag<strong>on</strong>itic<br />

tephra sample from Mauna Kea; HWMK24,<br />

jarositic tephra sample from Mauna Kea;<br />

BCS-301, chemical standard derived from an<br />

ir<strong>on</strong> ore deposit; AKB-1, amygdaloidal basalt<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> Keweenawan pen<str<strong>on</strong>g>in</str<strong>on</strong>g>sula;<br />

MAN-74-342A, impact melt rock from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Manicouagan crater <str<strong>on</strong>g>in</str<strong>on</strong>g> Canada. (Morris et al.,<br />

1998) (Courtesy G. Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer)<br />

141


SP-1231<br />

142<br />

atures should be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med: at least <strong>on</strong>e dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest temperature period (night)<br />

and <strong>on</strong>e dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> highest temperature period (day).<br />

To acquire <strong>on</strong>e spectrum will take approximately 8-12 h depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> phases<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> total ir<strong>on</strong> c<strong>on</strong>tent. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature variati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>on</strong>e spectrum should be not<br />

larger than about 10ºC. In case of larger variati<strong>on</strong>s, spectra <str<strong>on</strong>g>for</str<strong>on</strong>g> different temperature<br />

ranges will be stored separately, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>creased total measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g time<br />

(depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number of temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals required).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> MIMOS II <str<strong>on</strong>g>in</str<strong>on</strong>g>strument developed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Technische Universität Darmstadt,<br />

Germany, was scheduled to fly <strong>on</strong> Russia’s <strong>Mars</strong>-98 rover missi<strong>on</strong>. This <str<strong>on</strong>g>in</str<strong>on</strong>g>strument<br />

has been developed and a prototype built and partially qualified <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian-<br />

German Nanokhod <str<strong>on</strong>g>in</str<strong>on</strong>g>strument deployment device (IDD; Max-Planck Institute <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Cosmochemistry, Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>z, Germany), which was scheduled to fly <strong>on</strong> Europe’s Inter-<br />

<strong>Mars</strong>Net missi<strong>on</strong>. A MIMOS II prototype was successfully tested <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rocky-7<br />

prototype rover dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> May 1997 field tests <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> US Mojave Desert, tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g data<br />

under semi-real c<strong>on</strong>diti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Mössbauer spectrometer is a simple <str<strong>on</strong>g>in</str<strong>on</strong>g>strument. <str<strong>on</strong>g>The</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> parts are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radiati<strong>on</strong> source, <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity transducer (drive), <str<strong>on</strong>g>the</str<strong>on</strong>g> Silic<strong>on</strong> PIN (positive-<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sicnegative)<br />

radiati<strong>on</strong> detectors and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir pre- and ma<str<strong>on</strong>g>in</str<strong>on</strong>g>-amplifiers, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument<br />

c<strong>on</strong>trol and data acquisiti<strong>on</strong> system.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> standard 57 Co radiati<strong>on</strong> source is used, embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> a solid rhodium matrix,<br />

which is mounted <str<strong>on</strong>g>in</str<strong>on</strong>g> a titanium holder. This design is <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sically simple, rugged and<br />

is made very safe through <str<strong>on</strong>g>the</str<strong>on</strong>g> shield<str<strong>on</strong>g>in</str<strong>on</strong>g>g design. <str<strong>on</strong>g>The</str<strong>on</strong>g> drive is a unique m<str<strong>on</strong>g>in</str<strong>on</strong>g>iature<br />

double-voice coil electromechanical drive, developed at TU Darmstadt. <str<strong>on</strong>g>The</str<strong>on</strong>g> drive<br />

system has already underg<strong>on</strong>e envir<strong>on</strong>mental test<str<strong>on</strong>g>in</str<strong>on</strong>g>g at +20ºC to -80ºC, as well as<br />

vibrati<strong>on</strong> and shock tests <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency range specified <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian <strong>Mars</strong>-98<br />

lander missi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> Si-PIN-diodes toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> pre- and ma<str<strong>on</strong>g>in</str<strong>on</strong>g>-amplifiers and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bias supply have been tested <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same way (shock, frequency, temperature).<br />

Prototype versi<strong>on</strong>s operated successfully at even unfavourably high temperatures<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Rocky-7 field tests. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument c<strong>on</strong>trol unit and data acquisiti<strong>on</strong><br />

system, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> software, successfully operated <str<strong>on</strong>g>in</str<strong>on</strong>g> a number of laboratory<br />

measurements as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> Rocky-7 field tests <str<strong>on</strong>g>in</str<strong>on</strong>g> May 1997. For <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Surveyor<br />

2001 A<str<strong>on</strong>g>the</str<strong>on</strong>g>na missi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> MIMOS II <str<strong>on</strong>g>in</str<strong>on</strong>g>strument will be split <str<strong>on</strong>g>in</str<strong>on</strong>g>to two parts: a detector<br />

head mounted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> arm, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument c<strong>on</strong>trol and data acquisiti<strong>on</strong> unit located<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rover’s warm electr<strong>on</strong>ics box.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total weight is about 500 g, with <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor head itself about 400 g. <str<strong>on</strong>g>The</str<strong>on</strong>g> power<br />

c<strong>on</strong>sumpti<strong>on</strong> is of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of 1.5 W. <str<strong>on</strong>g>The</str<strong>on</strong>g> radioactive Mössbauer source will have an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of about 300 mCi at launch.<br />

II.5.7.5 I<strong>on</strong>/Electr<strong>on</strong> Probes, X-ray Spectroscopy<br />

For chemical compositi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong> probe is heavy and an alternative could be electr<strong>on</strong><br />

probe analysis. In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> crystal structure could be provided by X-ray<br />

spectroscopy, if m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised <str<strong>on</strong>g>for</str<strong>on</strong>g> applicati<strong>on</strong> to planetary explorati<strong>on</strong> missi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

are two US teams from <str<strong>on</strong>g>the</str<strong>on</strong>g> NASA Ames Research Center and Los Alamos Nati<strong>on</strong>al<br />

Laboratory work<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturisati<strong>on</strong> of X-ray diffracti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>struments (XRDs).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are no prototypes available yet. <str<strong>on</strong>g>The</str<strong>on</strong>g> development of flight <str<strong>on</strong>g>in</str<strong>on</strong>g>struments will<br />

require at least 2 years, if successful at all.<br />

II.5.7.6 IR Spectroscopy<br />

II.5.7.6.1 Molecular Spectroscopy<br />

IR spectroscopy at 0.8-4.0 µm can determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances of many types of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g clays, hydrates, and carb<strong>on</strong>ates. Carb<strong>on</strong>ate materials such as magnesite,<br />

calcite and siderite can easily be dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished from <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. All have near-<br />

-<br />

IR features <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.7-2.5 µm range attributable to <str<strong>on</strong>g>the</str<strong>on</strong>g> CO3 ani<strong>on</strong>. Sulphates such as<br />

gypsum and anhydrite have absorpti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.0-1.5 µm and 4.0-4.7 µm ranges.<br />

Ferrous absorpti<strong>on</strong>s of pyroxenes are also evident <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.0-2.0 µm regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> ratio<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 µm to 2 µm absorpti<strong>on</strong>s is diagnostic of <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>. Although oliv<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

has been found <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e martian meteorite, <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> broad absorpti<strong>on</strong>


feature is also a diagnostic of compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> absorpti<strong>on</strong>s of C-H and<br />

C-N bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g organics can be found throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.7-4.0 µm range. A spectral<br />

resoluti<strong>on</strong> of >100 (λ/∆λ) would be sufficient.<br />

Good spatial resoluti<strong>on</strong> is needed to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate variati<strong>on</strong>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> a sample and we<br />

estimate that a resoluti<strong>on</strong> of 200 µm should be atta<str<strong>on</strong>g>in</str<strong>on</strong>g>able.<br />

A sec<strong>on</strong>dary objective <str<strong>on</strong>g>for</str<strong>on</strong>g> IR spectroscopy is <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. CO 2,<br />

H 2O and CO all have characteristic absorpti<strong>on</strong> bands <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IR. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

gases and <str<strong>on</strong>g>the</str<strong>on</strong>g> dust cycle are str<strong>on</strong>gly coupled <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere and hence<br />

could provide significant additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> time variability of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

Local sources of <str<strong>on</strong>g>the</str<strong>on</strong>g>se gases may be present, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity.<br />

It should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> highest spectral resoluti<strong>on</strong> near-IR spectroscopic<br />

measurements of <strong>Mars</strong> have come from <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubble Space Telescope, with a spatial<br />

resoluti<strong>on</strong> of around 200 km per pixel. <str<strong>on</strong>g>The</str<strong>on</strong>g>se data show variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> ferric alterati<strong>on</strong><br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and primary ferrous silicates but are limited by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir coarse spatial<br />

resoluti<strong>on</strong>. It is not clear whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we will see low c<strong>on</strong>trast <str<strong>on</strong>g>in</str<strong>on</strong>g> high spatial resoluti<strong>on</strong><br />

data (as was seen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optical with <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der’s IMP imager) or whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r IR<br />

spectroscopy at <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 µm level will be extremely reveal<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

II.5.7.6.2 Instrument Requirements<br />

Low-mass IR spectrometer systems have been proposed <str<strong>on</strong>g>for</str<strong>on</strong>g> several missi<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> RoLand lander <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rosetta comet missi<strong>on</strong> and some systems are now<br />

commercially available. <str<strong>on</strong>g>The</str<strong>on</strong>g> system may require illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> devices such as lightemitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

diodes <str<strong>on</strong>g>in</str<strong>on</strong>g> order to compensate <str<strong>on</strong>g>for</str<strong>on</strong>g> absorpti<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface caused by dust <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g> system should, however, be<br />

comparable <str<strong>on</strong>g>in</str<strong>on</strong>g> mass and power c<strong>on</strong>sumpti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope.<br />

Because transmissi<strong>on</strong> IR spectroscopy may not be applicable (requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preparati<strong>on</strong> of th<str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong>s), <str<strong>on</strong>g>the</str<strong>on</strong>g> less diagnostic reflecti<strong>on</strong> mode may have to be<br />

selected. Even <str<strong>on</strong>g>in</str<strong>on</strong>g> this mode, however, identificati<strong>on</strong> of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral and organic<br />

compounds and detecti<strong>on</strong> of (H 2O) and (OH) <str<strong>on</strong>g>in</str<strong>on</strong>g> silicates should be relatively easy. On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, a Raman microspectrometer would probably provide most of that<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a more unambiguous way.<br />

II.5.7.6.3 <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal IR Spectroscopy<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal IR spectroscopy <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 6-9.5 µm regi<strong>on</strong> can be used to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate specific<br />

absorpti<strong>on</strong>s/emissi<strong>on</strong>s of carb<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g molecules. Str<strong>on</strong>g features are evident at<br />

6.18 µm from <str<strong>on</strong>g>the</str<strong>on</strong>g> C-C and C-O b<strong>on</strong>ds, 6.86 µm (-CH 2 -, -CH 2 - scissor), 7.26 µm (C-<br />

H bend) and 7.90 µm (O-H or C-H bend). This wavelength range could <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

provide a direct test <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of organics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal emissi<strong>on</strong> spectroscopy can also determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal or hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

activity is occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. F<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g warm surface regi<strong>on</strong>s would be extremely<br />

important <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct martian biota (Walter & DesMarais, 1993).<br />

Is <strong>Mars</strong> geologically dead or is <str<strong>on</strong>g>the</str<strong>on</strong>g>re sufficient heat produced to drive a subsurface<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal circulati<strong>on</strong> system? If this circulati<strong>on</strong> is <strong>on</strong> a small scale, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal emissi<strong>on</strong><br />

spectroscopy may be a requirement <str<strong>on</strong>g>in</str<strong>on</strong>g> order to look <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum place <str<strong>on</strong>g>for</str<strong>on</strong>g> life.<br />

II.5.7.6.4 Instrument Requirements<br />

We are at present unaware of any proposal <str<strong>on</strong>g>for</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>strument designed to exploit this<br />

possibility at high resoluti<strong>on</strong> <strong>on</strong> a rover. Some additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s need to be<br />

made. <str<strong>on</strong>g>The</str<strong>on</strong>g> potential difficulties, however, are substantial. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> detector<br />

and <str<strong>on</strong>g>in</str<strong>on</strong>g>strument may have to be cooled. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample itself will be <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong><br />

regi<strong>on</strong> between absorpti<strong>on</strong> and emissi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> this wavelength range and hence<br />

detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s need to optimise <str<strong>on</strong>g>the</str<strong>on</strong>g> wavelength regi<strong>on</strong> to be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated and<br />

to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature of <str<strong>on</strong>g>the</str<strong>on</strong>g> sample accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly. It does not appear to be a<br />

realistic opti<strong>on</strong> at present.<br />

Temperature anomalies might be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g IR spectroscopy but this would<br />

require extensi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> device out to a wavelength of 5 µm with reas<strong>on</strong>ably high<br />

signal to noise.<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

143


SP-1231<br />

Fig. II.5.7.7/1. Example of Fourier Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m-<br />

Raman spectra of Dir<str<strong>on</strong>g>in</str<strong>on</strong>g>ia massiliensis <str<strong>on</strong>g>for</str<strong>on</strong>g>ma<br />

sorediata encrustati<strong>on</strong>s from regi<strong>on</strong>s of (a)<br />

cortex, (b) medulla/oxalate <str<strong>on</strong>g>in</str<strong>on</strong>g>terface.<br />

FT-Raman spectra were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Nd 3+ /YAG laser excitati<strong>on</strong> at 1.06 µm with a<br />

Raman microscope attachment offer<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

spatial resoluti<strong>on</strong> of about 10 µm.<br />

Key to spectroscopic bands:<br />

1. n(CH) of lichen celluloses and organic<br />

metabolic by-products. 2. metabolic<br />

by-products of chemical biodeteriorati<strong>on</strong>.<br />

3. lichen pigmentati<strong>on</strong> (carotenoid). 4. calcium<br />

oxalate. 5. substratal <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> (calcite:<br />

1086 cm -1 , gypsum: 1007 cm -1 ). An <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

spectroscopic difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> cortex and<br />

medulla sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g regi<strong>on</strong>s (a) and (b) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different ratio of lichen carotenoid pigment (3)<br />

to oxalate (4). <str<strong>on</strong>g>The</str<strong>on</strong>g> latter regi<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s more<br />

calcium oxalate than <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mer <str<strong>on</strong>g>for</str<strong>on</strong>g> similar<br />

amounts of organic lichen material (1).<br />

(Courtsey H. Edwards)<br />

144<br />

Intensity<br />

3500 3250 3000 2750 2500 2250 2000 1750 1500 1250 1000 750 500 250 50<br />

Wavenumber/Cm -1<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> technology is already under development. <str<strong>on</strong>g>The</str<strong>on</strong>g> CIVA-M <str<strong>on</strong>g>in</str<strong>on</strong>g>strument <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Rosetta comet lander comb<str<strong>on</strong>g>in</str<strong>on</strong>g>es an ultra-compact and m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised visible microscope<br />

and coupled IR spectrometer. <str<strong>on</strong>g>The</str<strong>on</strong>g> spectrometer operates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range 1-4 µm at a<br />

resoluti<strong>on</strong> of 50 nm, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g grat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Its mass is 650 g, size 155×75×65 mm,<br />

average power of 3.4 W.<br />

II.5.7.7 Raman Spectroscopy<br />

IR and Raman spectroscopic techniques are complementary <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir specificity of<br />

molecular <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> provisi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> two techniques are very different:<br />

molecular transiti<strong>on</strong>s occur <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IR and give rise to a spectrum through direct<br />

absorpti<strong>on</strong> of electromagnetic radiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> submicr<strong>on</strong> regi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> IR, whereas<br />

Raman spectra arise from molecular scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes from high-<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity laser<br />

radiati<strong>on</strong>. IR spectra arise from dipole moment changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular vibrati<strong>on</strong>s,<br />

whereas Raman spectra arise from polarisability changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular vibrati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> result is that IR spectroscopy is an excellent technique <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> of<br />

polar molecular group<str<strong>on</strong>g>in</str<strong>on</strong>g>gs such as -O-H and -C-O, whereas Raman spectroscopy is<br />

better <str<strong>on</strong>g>for</str<strong>on</strong>g> n<strong>on</strong>polar group<str<strong>on</strong>g>in</str<strong>on</strong>g>gs such as -C-C- and -C-C-. This also means that IR<br />

spectra are str<strong>on</strong>gly dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of water, which can swamp weaker<br />

absorpti<strong>on</strong> signals, whereas Raman spectra are <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitive to water.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major difference <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> required <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two<br />

techniques is that IR spectroscopy is c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to <str<strong>on</strong>g>the</str<strong>on</strong>g> IR regi<strong>on</strong>, whereas Raman<br />

spectroscopy can be accomplished us<str<strong>on</strong>g>in</str<strong>on</strong>g>g UV, visible or near-IR excitati<strong>on</strong> sources.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce Raman scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (sensitivity) is dependent <strong>on</strong> n 4 , where n is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

frequency of <str<strong>on</strong>g>the</str<strong>on</strong>g> excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g radiati<strong>on</strong>, this means that <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same laser power <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

a 160-fold <str<strong>on</strong>g>in</str<strong>on</strong>g>crease expected <str<strong>on</strong>g>for</str<strong>on</strong>g> molecular scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UV at 300 nm compared<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> near-IR at 1064 nm. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re must always be a balance between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

excitati<strong>on</strong> wavelength chosen and <str<strong>on</strong>g>the</str<strong>on</strong>g> ability of <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen to withstand <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radiati<strong>on</strong> energy fall<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> it. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of some sensitive organic materials, a dose<br />

of UV-radiati<strong>on</strong> at 300 nm is sufficient to break <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical b<strong>on</strong>ds and ‘burn up’ <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample. Also, fluorescence processes are several orders of magnitude str<strong>on</strong>ger than<br />

Raman scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are much more prevalent <str<strong>on</strong>g>the</str<strong>on</strong>g> nearer <strong>on</strong>e approaches <str<strong>on</strong>g>the</str<strong>on</strong>g> blue,<br />

green ends of <str<strong>on</strong>g>the</str<strong>on</strong>g> visible spectrum and are comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UV. Fluorescence exci-


tati<strong>on</strong> at shorter wavelengths can swamp <str<strong>on</strong>g>the</str<strong>on</strong>g> weaker Raman scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g from organic<br />

molecules.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> Raman work carried out at <str<strong>on</strong>g>the</str<strong>on</strong>g> University of Brad<str<strong>on</strong>g>for</str<strong>on</strong>g>d, (Edwards et al.,<br />

1999), blue, green and red excitati<strong>on</strong> have been used and, most recently, 1064 nm<br />

excitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near-IR from a Nd 3+ /YAG laser has been used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with<br />

Fourier Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m techniques <str<strong>on</strong>g>for</str<strong>on</strong>g> data process<str<strong>on</strong>g>in</str<strong>on</strong>g>g and accumulati<strong>on</strong>.<br />

Sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> Raman spectroscopy is much easier than <str<strong>on</strong>g>for</str<strong>on</strong>g> IR absorpti<strong>on</strong> and this<br />

has enabled its rapid applicati<strong>on</strong> to geological problems. Raman spectroscopy is<br />

essentially a surface technique and sample spots from 100 mm diameter down to less<br />

than 1 mm are now be<str<strong>on</strong>g>in</str<strong>on</strong>g>g achieved us<str<strong>on</strong>g>in</str<strong>on</strong>g>g microscope systems and remote sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

probes with optical fibres of 1-50 m length.<br />

A big advantage of Raman over IR spectroscopy <str<strong>on</strong>g>for</str<strong>on</strong>g> geological studies is that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole spectrum from about 100-4000 cm -1 can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed simultaneously us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r FT-techniques or CCD detectors. <str<strong>on</strong>g>The</str<strong>on</strong>g> vibrati<strong>on</strong>s and characteristic signatures<br />

of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, crystals and <str<strong>on</strong>g>in</str<strong>on</strong>g>organic species are generally with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> 100-1200<br />

cm -1 , a regi<strong>on</strong> which is not fully covered by n<strong>on</strong>-specialist IR <str<strong>on</strong>g>in</str<strong>on</strong>g>struments.<br />

A vital factor <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment of <str<strong>on</strong>g>the</str<strong>on</strong>g> capability of Raman spectroscopy to provide<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about extraterrestrial molecules of life is eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g restricti<strong>on</strong>s <strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>strument size and weight. This is already be<str<strong>on</strong>g>in</str<strong>on</strong>g>g addressed <str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r quarters and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

are claims of ultra-small, micro-Raman spectrometers that could be employed <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

Lander payload. However, a critical test must be <str<strong>on</strong>g>the</str<strong>on</strong>g> use of <str<strong>on</strong>g>the</str<strong>on</strong>g>se systems <strong>on</strong> terrestrial<br />

problems <str<strong>on</strong>g>in</str<strong>on</strong>g> order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potential aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g>ir bigger, heavier research<br />

laboratory-grade <str<strong>on</strong>g>in</str<strong>on</strong>g>struments.<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised Raman spectrometers are under development <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> US, and <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Mars</strong> Surveyor 2001 rover a Raman spectrometer is expected to be <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

A<str<strong>on</strong>g>the</str<strong>on</strong>g>na payload. This <str<strong>on</strong>g>in</str<strong>on</strong>g>strument is currently under development at JPL and<br />

Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> University, St. Louis (Wang et al., 1997). It will operate at a wavelength<br />

of about 685 nm, where <str<strong>on</strong>g>the</str<strong>on</strong>g>re is high Raman scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect, excitati<strong>on</strong> of relatively<br />

little fluorescence and high CDD detecti<strong>on</strong> efficiency.<br />

It is an essential part of <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structural analysis that <str<strong>on</strong>g>the</str<strong>on</strong>g> development of a<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised Raman spectrometer is undertaken <str<strong>on</strong>g>for</str<strong>on</strong>g> both m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical and biological<br />

organic materials <str<strong>on</strong>g>in</str<strong>on</strong>g> situ analysis. This will be a novel piece of <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

European lander programme – it is not be<str<strong>on</strong>g>in</str<strong>on</strong>g>g envisaged fully elsewhere – <str<strong>on</strong>g>in</str<strong>on</strong>g> that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of material <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian subsurface is perceived as an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral part of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structural <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major problem c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g isotopic analysis <str<strong>on</strong>g>in</str<strong>on</strong>g> space is that of isobaric <str<strong>on</strong>g>in</str<strong>on</strong>g>terferences<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> mass-resoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument is not high enough. In <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest<br />

case, this is <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of prot<strong>on</strong>s attached to light isotopes be<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>fused with heavy<br />

<strong>on</strong>es. For example, 12 CH has <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>in</str<strong>on</strong>g>teger mass as 13 C. Thus, unless <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

species can be dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished, an <str<strong>on</strong>g>in</str<strong>on</strong>g>correct assessment is made. In practice, <strong>on</strong> Earth,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> of 12 CH and 13 C can be achieved by a high-resoluti<strong>on</strong> mass spectrometer.<br />

However, higher resoluti<strong>on</strong> almost always means a heavier <str<strong>on</strong>g>in</str<strong>on</strong>g>strument<br />

package. Ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts are underway to improve resoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> folded time-of-flight mass<br />

spectrometer, under development <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> COSAC <str<strong>on</strong>g>in</str<strong>on</strong>g>strument <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rosetta lander.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> alternative approach is to process chemically species of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest down to<br />

molecules that do not give isobaric problems with a low-resoluti<strong>on</strong> mass spectrometer.<br />

On Earth, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a complex organic macromolecule such as<br />

kerogen has to be combusted. Combusti<strong>on</strong> reacti<strong>on</strong>s are feasible under a chemical<br />

pre-treatment scheme called MODULUS (Methods Of Determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g and Understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Light elements from Unequivocal Stable isotope measurements). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple also applies to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r process<str<strong>on</strong>g>in</str<strong>on</strong>g>g activities needed <str<strong>on</strong>g>for</str<strong>on</strong>g> species related to<br />

organic analysis, e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of nitrogen <str<strong>on</strong>g>in</str<strong>on</strong>g> organics or oxygen and<br />

hydrogen compositi<strong>on</strong> of water.<br />

By us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> stepped combusti<strong>on</strong> method, <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> is yielded <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g samples, and detecti<strong>on</strong> is possible of organic matter <str<strong>on</strong>g>in</str<strong>on</strong>g> rocks and<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

II.5.8 Isotopic Analysis<br />

145


SP-1231<br />

146<br />

soils. In this approach, <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is exposed <str<strong>on</strong>g>in</str<strong>on</strong>g> an oven to aliquots of oxygen as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oven temperature is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased from ambient. All known <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of carb<strong>on</strong> are<br />

combustible, organic matter be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> most easily changed to carb<strong>on</strong> dioxide.<br />

Aliphatic-rich material burns at <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest temperatures and highly crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ked<br />

(aromatic) kerogens at someth<str<strong>on</strong>g>in</str<strong>on</strong>g>g approach<str<strong>on</strong>g>in</str<strong>on</strong>g>g 600ºC. <str<strong>on</strong>g>The</str<strong>on</strong>g> combusti<strong>on</strong> temperature<br />

level is a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum right up to where organic matter becomes amorphous carb<strong>on</strong><br />

(poorly crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e graphite), so it is possible to recognise natural kerogens from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

stability with oxygen. Although organic matter overlaps with <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> of<br />

carb<strong>on</strong>ates, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter are easily recognised because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are still degradable <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absence of oxygen. Stepped combusti<strong>on</strong> is thus a universal method <str<strong>on</strong>g>for</str<strong>on</strong>g> detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

organic rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s even when <str<strong>on</strong>g>the</str<strong>on</strong>g>y have begun to degrade through geological<br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. It provides valuable <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature and orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of carb<strong>on</strong><br />

compounds. This technique is also <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MODULUS experiment.<br />

Mass spectrometers can operate <str<strong>on</strong>g>in</str<strong>on</strong>g> a variety of ways to measure isotopes. All<br />

require <str<strong>on</strong>g>the</str<strong>on</strong>g> elements under study to be presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a gaseous <str<strong>on</strong>g>for</str<strong>on</strong>g>m. <str<strong>on</strong>g>The</str<strong>on</strong>g> procedure<br />

generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest accuracy is <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘dual-<str<strong>on</strong>g>in</str<strong>on</strong>g>let dynamic’ mode, where a sample and<br />

standard are repetitively compared by <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> from separate <str<strong>on</strong>g>in</str<strong>on</strong>g>let systems. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

highest sensitivity method is <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘static’ mode, where a standard is <str<strong>on</strong>g>in</str<strong>on</strong>g>serted <str<strong>on</strong>g>in</str<strong>on</strong>g>to a<br />

mass spectrometer closed off from its pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g system after a sample analysis has<br />

been completed and any residual specimen pumped away. A compromise situati<strong>on</strong> is<br />

af<str<strong>on</strong>g>for</str<strong>on</strong>g>ded by GC-IR-MS (gas chromatography-isotope ratio-mass spectrometry). All<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> specimens are burned <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>terface reactor as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are eluted from a gas<br />

chromatography column (see below) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fly. Standards are <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced as spikes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

appropriate regi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> gas chromatogram where no comp<strong>on</strong>ent is present. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

disadvantage of GC-IR-MS is that it can be applied <strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> carb<strong>on</strong> species that are<br />

sufficiently volatile to be chromatographed. It is, however, compatible with pyrolysisgas<br />

chromatography-mass spectrometry (PYR-GC-MS; see below).<br />

Methods of measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g isotopes us<str<strong>on</strong>g>in</str<strong>on</strong>g>g lasers tunable to <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> frequency of<br />

specific carb<strong>on</strong> b<strong>on</strong>ds, e.g. 12 C-O or 13 C-O, are under c<strong>on</strong>siderati<strong>on</strong> but <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

applicati<strong>on</strong> even <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial laboratory situati<strong>on</strong>s is still limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy of<br />

measurement. Although all k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds of mass spectrometers are able to detect and<br />

measure isotopes, <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy will always be greatest with magnetic-sector <str<strong>on</strong>g>in</str<strong>on</strong>g>struments<br />

because <strong>on</strong>ly this <str<strong>on</strong>g>for</str<strong>on</strong>g>mat is capable of simultaneous detecti<strong>on</strong> to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate<br />

fracti<strong>on</strong>ati<strong>on</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g i<strong>on</strong> source fluctuati<strong>on</strong>s. New developments of m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised<br />

magnetic mass spectrometers, based <strong>on</strong> Mattauch-Herzog geometry double-focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

is under study. A breadboard <str<strong>on</strong>g>in</str<strong>on</strong>g>strument, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g i<strong>on</strong> source, electric sensors and<br />

magnetic sector with an array detector is already available <str<strong>on</strong>g>in</str<strong>on</strong>g> Europe, with a total<br />

mass of <strong>on</strong>ly 1 kg. Its applicati<strong>on</strong> to an exobiological package <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian<br />

envir<strong>on</strong>ment still requires <str<strong>on</strong>g>the</str<strong>on</strong>g> development of a powerful pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g device.<br />

Laser ablati<strong>on</strong> (LA) <str<strong>on</strong>g>in</str<strong>on</strong>g>ductively coupled plasma (ICP) mass spectrometry (MS)<br />

could be a very attractive technique. It needs <strong>on</strong>ly m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum sample preparati<strong>on</strong> and<br />

could be d<strong>on</strong>e directly from <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope. If <str<strong>on</strong>g>the</str<strong>on</strong>g> mass spectrometer could be<br />

furnished with an LA-ICP-MS i<strong>on</strong> source, it could be utilised <str<strong>on</strong>g>for</str<strong>on</strong>g> isotopic analyses <strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic and organic matter such as:<br />

– <str<strong>on</strong>g>the</str<strong>on</strong>g> major rock-<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals;<br />

– sec<strong>on</strong>dary m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g primary m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and <str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g crack fill<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, etc;<br />

– organic fill<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of cracks, etc.<br />

Such <str<strong>on</strong>g>in</str<strong>on</strong>g> situ isotopic analysis of H, C, N and O will reveal c<strong>on</strong>diti<strong>on</strong>s of <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

of primary and sec<strong>on</strong>dary phases as well as organic matter.<br />

Acti<strong>on</strong> needed: a study of <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility of a low-mass high-per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance pump,<br />

such as a m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised turbo molecular pump, <str<strong>on</strong>g>for</str<strong>on</strong>g> space applicati<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> possible<br />

use of LA-ICP-MS.<br />

Previous <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g missi<strong>on</strong>s provided no evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> any<br />

reduced species, <str<strong>on</strong>g>in</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple because of <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gly oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong><br />

<strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of subsurface material represents an important advantage,


provided that a depth below <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s can be reached. This<br />

approach offers <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a depth gradient of redox-sensitive<br />

geochemical parameters. This is particularly true <str<strong>on</strong>g>for</str<strong>on</strong>g> sulphur. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<br />

of sulphur phases <str<strong>on</strong>g>in</str<strong>on</strong>g> different oxidati<strong>on</strong> states and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir subsequent isotopic analysis<br />

will yield <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mode of redox reacti<strong>on</strong>s, specifically a possible<br />

participati<strong>on</strong> of biologically-c<strong>on</strong>trolled processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> analytical approach could<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude previously applied techniques such as stepped combusti<strong>on</strong> and isotopic<br />

analyses of result<str<strong>on</strong>g>in</str<strong>on</strong>g>g SO 2 fracti<strong>on</strong>s and sulphur isotope measurements us<str<strong>on</strong>g>in</str<strong>on</strong>g>g an i<strong>on</strong><br />

microprobe. <str<strong>on</strong>g>The</str<strong>on</strong>g> full analytical spectrum, however, is still possible <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> Earthbased<br />

laboratories, requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g a sample-return missi<strong>on</strong>. Spacecraft analytical facilities<br />

might, however, obta<str<strong>on</strong>g>in</str<strong>on</strong>g> sufficient data through combusti<strong>on</strong> followed by isotope ratio<br />

mass spectrometry of sulphur-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g compounds (i.e. m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral phases). It should be<br />

possible to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m this type of analysis <strong>on</strong> surface and subsurface material. Sample<br />

material would have to be crushed (better: pulverised) be<str<strong>on</strong>g>for</str<strong>on</strong>g>e deliver<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> sample material will likely c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r oxidisable comp<strong>on</strong>ents, a<br />

chromatographic separati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> gas mixture (such as <str<strong>on</strong>g>in</str<strong>on</strong>g> elemental analysers with a<br />

c<strong>on</strong>flow-setup) is a prerequisite <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> reas<strong>on</strong>ably pure SO 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> mass<br />

spectrometric analyses. A temperature-based separati<strong>on</strong>, analogous to <str<strong>on</strong>g>the</str<strong>on</strong>g> stepped<br />

combusti<strong>on</strong> approach, might be used to study different m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral phases of different<br />

sulphur oxidati<strong>on</strong> states.<br />

In c<strong>on</strong>clusi<strong>on</strong>, a MODULUS-like <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong>, based <strong>on</strong> chemical trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g stepped combusti<strong>on</strong> and pyrolysis, coupled to gas chromatography<br />

-mass spectrometry techniques can fulfil most of <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific objectives described <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

II.5.3.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> analysis of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic and organic compounds can be efficiently carried out by gas<br />

chromatography coupled to pyrolysis and mass spectrometry (PYR-GC-MS).<br />

II.5.9.1 Gas Chromatography (GC)<br />

Gas chromatography is a powerful technique <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g complex mixtures of gases<br />

or volatilisable c<strong>on</strong>stituents, and it will be a crucial comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed<br />

exobiology <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> package. Schematically, a gas chromatograph <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes:<br />

(i) a carrier gas reservoir and pressure c<strong>on</strong>troller; (ii) an <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> subsystem, where a<br />

sample of <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture to be analysed is <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced and carried by <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier gas <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

(iii) <strong>on</strong>e or several (<str<strong>on</strong>g>in</str<strong>on</strong>g> series or <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel) GC columns – <str<strong>on</strong>g>the</str<strong>on</strong>g> heart of <str<strong>on</strong>g>the</str<strong>on</strong>g> GC system,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> occurs – and (iv) a detector, c<strong>on</strong>nected at <str<strong>on</strong>g>the</str<strong>on</strong>g> exit of <str<strong>on</strong>g>the</str<strong>on</strong>g> column,<br />

able to <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate systematically eluti<strong>on</strong> of compounds (o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier gas) from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> column(s).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> carrier gas is usually He, N 2, Ar or H 2. It flows c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

column, carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> different c<strong>on</strong>stituents at different rates, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

chemical structures and molecular weights. <str<strong>on</strong>g>The</str<strong>on</strong>g> column can be a tube of a few metres<br />

length and <strong>on</strong>e to a few mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal diameter, packed with an absorbent (GSC: Gas<br />

Solid Chromatography) or with an absorbent impregnated with a stati<strong>on</strong>ary phase, a<br />

liquid of very low vapour pressure (GLC: Gas Liquid Chromatography). It can also<br />

be a l<strong>on</strong>ger (10-100 m) and open tube (wall-coated open tubular), with smaller<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal diameter (0.5-0.1 mm), coated with a film of a solid absorbent (GSC) or of<br />

liquid phase (GLC). <str<strong>on</strong>g>The</str<strong>on</strong>g> chemical nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbent or <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid phase is<br />

directly related to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds to be analysed. <str<strong>on</strong>g>The</str<strong>on</strong>g> best<br />

universal detector is probably a mass spectrometer, able to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> mass signature<br />

of each eluted compound and hence allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a secure identificati<strong>on</strong> of each GC peak.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> GC-MS coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g requires that most of <str<strong>on</strong>g>the</str<strong>on</strong>g> carrier gas be removed from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample be<str<strong>on</strong>g>for</str<strong>on</strong>g>e it enters <str<strong>on</strong>g>the</str<strong>on</strong>g> mass spectrometer.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where multi-GC columns are used <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel, specific GC detectors<br />

must be used (<str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong> to MS coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, as planned <strong>on</strong> Rosetta’s COSAC<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>strument). Nano-<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity detectors (nano-TCDs) are commercially<br />

available <str<strong>on</strong>g>in</str<strong>on</strong>g> Europe, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y need to be space qualified. Detectors able to<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

II.5.9 Molecular Analysis<br />

147


SP-1231<br />

148<br />

discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate chiral compounds have recently been described (Bodenhoefer et al.,<br />

1997) (see Secti<strong>on</strong> II.5.10, below). <str<strong>on</strong>g>The</str<strong>on</strong>g>y also need to be studied.<br />

II.5.9.2 Mass Spectroscopy (MS)<br />

A variety of mass spectrometers (magnetic, quadrupole, time-of-flight, i<strong>on</strong> trap) are<br />

able to differentiate and analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g i<strong>on</strong>s, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mass-to-charge<br />

ratio. <str<strong>on</strong>g>The</str<strong>on</strong>g> i<strong>on</strong> trap spectrometer is best suited <str<strong>on</strong>g>for</str<strong>on</strong>g> use <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>juncti<strong>on</strong> with a gas<br />

chromatograph, because its optimum pressure c<strong>on</strong>diti<strong>on</strong>s are much higher (about<br />

10 -3 mbar) than those required with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r MS types (typically 10 -6 mbar or lower).<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r mass spectrometers could also be used if a powerful pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g device is<br />

available (see below).<br />

II.5.9.3 Pyrolysis (PYR)<br />

Pyrolysis is a powerful technique <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of n<strong>on</strong>-volatile compounds of low<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stability, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular organic compounds of high molecular weight, such as<br />

macromolecules or oligomers, when <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal pulse fractures <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>ds between<br />

separate entities to produce recognisable sub-units (Irw<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1982; Meuzelaar et al.,<br />

1982). <str<strong>on</strong>g>The</str<strong>on</strong>g>re are many pyrolysis variants, most of which readily lend <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves to<br />

space applicati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest <str<strong>on</strong>g>for</str<strong>on</strong>g> space applicati<strong>on</strong> is furnace pyrolysis, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

small oven.<br />

Combusti<strong>on</strong> can also c<strong>on</strong>vert n<strong>on</strong>-volatile material <str<strong>on</strong>g>in</str<strong>on</strong>g>to gaseous species. This<br />

method, when used <str<strong>on</strong>g>in</str<strong>on</strong>g> stepped fashi<strong>on</strong>, can dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish between different <str<strong>on</strong>g>for</str<strong>on</strong>g>ms, e.g.<br />

organics vs carb<strong>on</strong>ate, sulphides vs sulphates. Because it is quantitative, it gives<br />

absolute abundances of elements of biological significance (e.g. C, H, N, S) and<br />

allows bulk isotopic compositi<strong>on</strong>s to established.<br />

It should be po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that <str<strong>on</strong>g>the</str<strong>on</strong>g> use of pyrolysis techniques with small ovens could<br />

also allow differential <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal analysis measurements to be carried out. This is a<br />

powerful tool <str<strong>on</strong>g>for</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> source of volatiles (such as H 2O, SO 2,<br />

CO 2), which are released dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g stepped heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples, and thus to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer, <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structure of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic compounds.<br />

II.5.9.4 Available PYR-GC-MS Techniques<br />

Chemical sensors based <strong>on</strong> GC and MS <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> have already been used <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

atmospheric probes and surface landers <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g extraterrestrial envir<strong>on</strong>ments,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g Venus and <strong>Mars</strong> surface materials. Until recently, <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <strong>on</strong>ly<br />

chromatographic packed columns with ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly magnetic, <str<strong>on</strong>g>the</str<strong>on</strong>g>n quadrupole, MS.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Titan atmosphere Huygens Probe of <str<strong>on</strong>g>the</str<strong>on</strong>g> Cass<str<strong>on</strong>g>in</str<strong>on</strong>g>i/Huygens missi<strong>on</strong> launched <strong>on</strong><br />

15 October 1997 to reach <str<strong>on</strong>g>the</str<strong>on</strong>g> Saturnian system <str<strong>on</strong>g>in</str<strong>on</strong>g> 2004 <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes a GC-MS <str<strong>on</strong>g>in</str<strong>on</strong>g>strument<br />

(Niemann et al., 1997) coupled to an aerosol collector and pyrolyser (ACP) (Israel et<br />

al., 1997). It will determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> nature and abundance of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic and <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

compounds present <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s atmospheric gas phase and aerosols. This will be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d GC-MS <str<strong>on</strong>g>in</str<strong>on</strong>g>strument, and PYR-GC-MS <str<strong>on</strong>g>in</str<strong>on</strong>g>strument, ever flown <str<strong>on</strong>g>in</str<strong>on</strong>g> a planetary<br />

missi<strong>on</strong> (after Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g). <str<strong>on</strong>g>The</str<strong>on</strong>g> GC subsystem uses three GC columns <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel: two<br />

wall-coated open tubular (WCOT) columns and <strong>on</strong>e micro-packed capillary column<br />

based <strong>on</strong> up-to-date chromatographic technology. One WCOT capillary is 10 m-l<strong>on</strong>g<br />

(MXT type, Restek) of very narrow bore (0.15 mm), with special sta<str<strong>on</strong>g>in</str<strong>on</strong>g>less steel<br />

tub<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Silcosteel) (Afflalaye et al., 1996). It allows separati<strong>on</strong> of C3 and higher<br />

hydrocarb<strong>on</strong>s and nitriles. <str<strong>on</strong>g>The</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r (14 m × 0.18 mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal diameter) uses an<br />

adsorbent material newly developed <str<strong>on</strong>g>for</str<strong>on</strong>g> capillary GC applicati<strong>on</strong>s: glassy carb<strong>on</strong>. It<br />

allows <str<strong>on</strong>g>the</str<strong>on</strong>g> quantitative analysis of C1-C3 hydrocarb<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> third column (2m × 0.75<br />

mm i.d), packed with Carboxen, allows <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> of permanent gases, <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

particular CO and N 2 (Afflalaye et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> MS subsystem is a quadrupole mass<br />

spectrometer with five i<strong>on</strong> sources: three are dedicated to each of <str<strong>on</strong>g>the</str<strong>on</strong>g> GC columns,<br />

<strong>on</strong>e allows direct MS analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, and <str<strong>on</strong>g>the</str<strong>on</strong>g> fifth is dedicated to direct<br />

MS analysis of ACP samples. <str<strong>on</strong>g>The</str<strong>on</strong>g> ACP <str<strong>on</strong>g>in</str<strong>on</strong>g>strument <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes a collector, which will<br />

collect Titan’s atmospheric aerosols <strong>on</strong> a filter, an oven where <str<strong>on</strong>g>the</str<strong>on</strong>g> filter is <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced<br />

after <str<strong>on</strong>g>the</str<strong>on</strong>g> collect<str<strong>on</strong>g>in</str<strong>on</strong>g>g phase <str<strong>on</strong>g>for</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sample at different temperatures, and a


Table II.5.9.4/1. New PYR-GC-MS Developments <str<strong>on</strong>g>for</str<strong>on</strong>g> Space Applicati<strong>on</strong>s.<br />

Experiment MS type Mass Power Requirement<br />

MODULUS I<strong>on</strong> Trap 3.5 kg<br />

COSAC Time-of-Flight 4.5 kg 8-16 W<br />

carrier gas to transfer <str<strong>on</strong>g>the</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g gases to <str<strong>on</strong>g>the</str<strong>on</strong>g> GC-MS <str<strong>on</strong>g>for</str<strong>on</strong>g> analysis. Such a system<br />

has sensitivity and resoluti<strong>on</strong> capabilities of <strong>on</strong>e to several orders of magnitude higher<br />

than Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g’s PYR-GC-MS, with less mass and volume.<br />

New <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g PYR-GC-MS techniques and us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> heritage of<br />

Huygens is under development <str<strong>on</strong>g>for</str<strong>on</strong>g> space applicati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> situ analysis<br />

of cometary nuclei.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> COSAC and MODULUS <str<strong>on</strong>g>in</str<strong>on</strong>g>struments, <str<strong>on</strong>g>the</str<strong>on</strong>g> two GC-based experiments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Rosetta lander, use pyrolysis oven GC techniques with several columns and a<br />

coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g to mass spectrometry. COSAC uses a new c<strong>on</strong>cept of time-of-flight MS,<br />

based <strong>on</strong> a specific geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> MS. MODULUS uses a i<strong>on</strong>-trap MS; mass is 10-<br />

20 g (exclud<str<strong>on</strong>g>in</str<strong>on</strong>g>g power supplies).<br />

Pyrolysis ovens with load<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms will be available <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> COSAC and<br />

MODULUS experiments. Some ovens will have <str<strong>on</strong>g>the</str<strong>on</strong>g> facility <str<strong>on</strong>g>for</str<strong>on</strong>g> optically view<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g process starts. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r types, which have excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g potential<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> studies at predeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed temperatures, without us<str<strong>on</strong>g>in</str<strong>on</strong>g>g circuitry <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>trol, are hot<br />

wire and curie po<str<strong>on</strong>g>in</str<strong>on</strong>g>t pyrolysis units. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> material, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<br />

feedback loops, decide <str<strong>on</strong>g>the</str<strong>on</strong>g> temperatures to which <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is heated. Although not<br />

yet tested <str<strong>on</strong>g>in</str<strong>on</strong>g> space, such methods should be easily adaptable.<br />

PYR-GC-MS <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> exobiology package will be able to analyse:<br />

• <str<strong>on</strong>g>in</str<strong>on</strong>g>organics: HO, CO 2, NO 2, N xO y, SO 2, SO 3, H2S, ...<br />

– volatiles adsorbed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil and released by light heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

– or chemically bound <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and released by pyrolysis.<br />

Only <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of H 2O 2 may be a problem and specific analytical techniques<br />

have to be found <str<strong>on</strong>g>for</str<strong>on</strong>g> this compound.<br />

• organics:<br />

– low molecular weight organics (RH, RCO 2H, RCO 3H, ...) can be analysed<br />

by GC-MS and MS<br />

– higher molecular weight organics:<br />

hydrocarb<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g PAHs can be analysed by GC-MS and MS<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o-acids and pur<str<strong>on</strong>g>in</str<strong>on</strong>g>es by PYR-GC-MS/PYR-MS<br />

– macromolecular compounds:<br />

kerogens and oligopeptides can be analysed by PYR-GC-MS and PYR-MS.<br />

An <str<strong>on</strong>g>in</str<strong>on</strong>g>strument based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> COSAC and MODULUS c<strong>on</strong>cepts seems a good<br />

soluti<strong>on</strong>:<br />

• small furnace pyrolysis;<br />

• multi-GC columns system sets of 2-4 columns <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel;<br />

• i<strong>on</strong>-trap MS.<br />

By extrapolati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> Rosetta <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> expected mass is 4 kg.<br />

II.5.9.5 Laser Ablati<strong>on</strong>-Inductive Coupled Plasma-MS (LA-ICP-MS)<br />

Major and trace element determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of organic and <str<strong>on</strong>g>in</str<strong>on</strong>g>organic phases could be<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

149


SP-1231<br />

150<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual phases <str<strong>on</strong>g>in</str<strong>on</strong>g> situ by add<str<strong>on</strong>g>in</str<strong>on</strong>g>g an LA-ICP i<strong>on</strong> source to <str<strong>on</strong>g>the</str<strong>on</strong>g> MS.<br />

This method is very fast and, if a separate MS can be dedicated to that task, it will<br />

give by far <str<strong>on</strong>g>the</str<strong>on</strong>g> most data <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> phase equilibria and <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

of:<br />

• primary phase assemblages;<br />

• sec<strong>on</strong>dary phases;<br />

• atmosphere-related phases (coat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, efflorescences, etc);<br />

• organic matter.<br />

This <str<strong>on</strong>g>in</str<strong>on</strong>g>strument should also be capable of per<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g isotopic abundance measurements<br />

and thus could be very important <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life or life remnants.<br />

II.5.9.6 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Techniques<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r techniques can be envisaged <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g compounds of very low volatility or<br />

n<strong>on</strong>-volatile compounds (<str<strong>on</strong>g>in</str<strong>on</strong>g>organics, PAHs, am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, pur<str<strong>on</strong>g>in</str<strong>on</strong>g>es, macromolecular<br />

organics). <str<strong>on</strong>g>The</str<strong>on</strong>g>y <str<strong>on</strong>g>in</str<strong>on</strong>g>clude derivatisati<strong>on</strong> system-GC-MS, High-Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Liquid<br />

Chromatography (HPLC) and Supercritical Fluid Chromatography (SFC).<br />

Derivatisati<strong>on</strong> processes are often used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory to analyse n<strong>on</strong>-volatile<br />

organics by GC or GC-MS. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> case with am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids. A two-step chemical<br />

derivatisati<strong>on</strong> (esterificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> acidic group followed by trifluoroacetylati<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o group) trans<str<strong>on</strong>g>for</str<strong>on</strong>g>ms <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-volatile am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids to volatile N-TFA esters,<br />

which can be quantitatively analysed by GC or GC-MS. However, this has never been<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> space and an automatic derivatisati<strong>on</strong> system compatible with space<br />

c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts has yet to be developed.<br />

HPLC is also a powerful technique <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g complex mixtures of high<br />

molecular weight, low-volatility compounds. It uses liquid solvent (<str<strong>on</strong>g>in</str<strong>on</strong>g>stead of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

GC’s carrier gas), a requirement that might be very difficult to qualify <str<strong>on</strong>g>for</str<strong>on</strong>g> space<br />

activity. However, if developed <str<strong>on</strong>g>for</str<strong>on</strong>g> space applicati<strong>on</strong>, it would be an <str<strong>on</strong>g>in</str<strong>on</strong>g>strument of<br />

tremendous importance <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiological studies. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a clear need <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

research and development of space HPLC and HPLC-MS systems.<br />

A related method to HPLC is SFC. In this case, a very unreactive gas is compressed<br />

to a temperature at which it becomes supercritical. Under such circumstances,<br />

some species such as CO 2, can become an extremely powerful solvent, with<br />

properties that can be varied extensively by <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of small amounts of<br />

modify<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents. Compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> supercritical fluids can be separated<br />

chromatographically. An <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g possibility <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong> might be utilis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere itself as a supercritical reagent <str<strong>on</strong>g>for</str<strong>on</strong>g> carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out organic analysis. Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

spacecraft would <str<strong>on</strong>g>the</str<strong>on</strong>g>n not have to transport hazardous c<strong>on</strong>sumables <str<strong>on</strong>g>for</str<strong>on</strong>g> chromatographic<br />

separati<strong>on</strong>s, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> hardware and an appropriate pump. SFC has also not<br />

been used <str<strong>on</strong>g>in</str<strong>on</strong>g> space, but it might be somewhat easier to develop than HPLC.<br />

European laboratories are study<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility of <str<strong>on</strong>g>the</str<strong>on</strong>g>se different c<strong>on</strong>cepts.<br />

II.5.9.7 <str<strong>on</strong>g>The</str<strong>on</strong>g> Analysis of H 2O 2<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quantitative analysis of H 2O 2 will be difficult by GC, MS or GC-MS techniques<br />

and, ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to its scientific importance, it will require a specific <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong>.<br />

Hydrogen peroxide is usually analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> envir<strong>on</strong>mental sciences by complex<br />

techniques based <strong>on</strong> chemilum<str<strong>on</strong>g>in</str<strong>on</strong>g>escence or UV fluorescence. <str<strong>on</strong>g>The</str<strong>on</strong>g>se techniques<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volve, after air sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, chemical derivatisati<strong>on</strong>, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g liquid transfers, chemical<br />

reactors, <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> valves and enzyme storage. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>y require very<br />

accurate calibrati<strong>on</strong>. Thus, although <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sensitivity is very high (a few ppt – parts per<br />

trilli<strong>on</strong>, 10 12 !), <str<strong>on</strong>g>the</str<strong>on</strong>g>y do not seem adequate <str<strong>on</strong>g>for</str<strong>on</strong>g> space applicati<strong>on</strong>.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r type of <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> can also be used to analyse H 2O 2 quantitatively,<br />

although it is less sensitive (parts per milli<strong>on</strong> range). It <str<strong>on</strong>g>in</str<strong>on</strong>g>volves electrochemical<br />

measurements with:<br />

i. rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g electrode (amperometric titrati<strong>on</strong>),<br />

ii. specific H 2O 2 electrode (oxidati<strong>on</strong> or reducti<strong>on</strong> <strong>on</strong> a plat<str<strong>on</strong>g>in</str<strong>on</strong>g>um disc electrode),


iii. specific oxygen electrode (O 2 produced by H 2O 2 decompositi<strong>on</strong>).<br />

This last method uses <str<strong>on</strong>g>the</str<strong>on</strong>g> enzymatic reducti<strong>on</strong> of H 2O 2 with catalase:<br />

H 2O 2 → H 2O + 1/ 2 O 2<br />

followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> quantitative measurement of <str<strong>on</strong>g>the</str<strong>on</strong>g> produced oxygen by an O 2<br />

electrode (diffusi<strong>on</strong> of O 2 through <str<strong>on</strong>g>the</str<strong>on</strong>g> Tefl<strong>on</strong> membrane of <str<strong>on</strong>g>the</str<strong>on</strong>g> electrode and its<br />

reducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plat<str<strong>on</strong>g>in</str<strong>on</strong>g>um electrode).<br />

This last technique can easily be m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised (microcathode), has a high<br />

selectivity to H 2O 2 (enzyme) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n to O 2 (selective permeability of a Tefl<strong>on</strong><br />

membrane). Although its space qualificati<strong>on</strong> is probably not easy (liquid handl<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

temperature dependence, need <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal calibrati<strong>on</strong> with standard soluti<strong>on</strong>s,<br />

cathode passivati<strong>on</strong>, enzyme utilisati<strong>on</strong>), it seems to be a possible way <str<strong>on</strong>g>for</str<strong>on</strong>g> space<br />

applicati<strong>on</strong> and should be explored.<br />

New technological developments are under study at NASA’s Ames Research<br />

Center, based <strong>on</strong> specific detectors, to analyse different k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of oxidants, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

H 2O 2. It is recommended that <strong>ESA</strong> should make sure <str<strong>on</strong>g>the</str<strong>on</strong>g> technology is available from<br />

European sources.<br />

II.5.10.1 Bulk Chirality Measurements<br />

A measurement of bulk optical rotati<strong>on</strong> could be provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘SETH Cigar’, a<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised space polarimeter (MacDermott et al., 1996). Mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g parts are avoided<br />

by replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> normal rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g polarisers by multiple fixed polarisers at<br />

different angles, used with a diode array detector. Measurements at several different<br />

wavelengths, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g three or four different diode sources, could provide clues to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

Fig. II.5.10.1/1. Overall view chromatogram <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

some diols, <strong>on</strong>e alcohol and three derivatised<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>es by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of a G-TA Cyclodextr<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

phase, 10 m × 0.25 mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal diameter, (T =<br />

3 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at 85ºC, 15ºC/m<str<strong>on</strong>g>in</str<strong>on</strong>g> to 115ºC, 5 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at<br />

115ºC, p = 60 kPa). (Courtesy W. Thiemann and<br />

U. Meierhenrich)<br />

II.5.10 Chirality<br />

Measurements<br />

151


SP-1231<br />

Fig. II.5.10.2/2. Enantiomers of<br />

trifluoracetylated am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids (alan<str<strong>on</strong>g>in</str<strong>on</strong>g>e, leuc<str<strong>on</strong>g>in</str<strong>on</strong>g>e,<br />

aspartic acid and methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e) are basel<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

separated by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of a Chirasil-L-Val phase,<br />

25 m × 0.25 mm <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal diameter, Chrompack.<br />

(Courtesy W. Thiemann and U. Meierhenrich)<br />

152<br />

identity of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil c<strong>on</strong>stituent resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optical activity. Complex<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents<br />

could be used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> optical rotati<strong>on</strong> of important target<br />

molecules such as am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids.<br />

II.5.10.2 Enantiomeric Separati<strong>on</strong>s<br />

Enantiomers can be separated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g chiral GC columns, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> COSAC GC-MS<br />

system, which will use pairs of columns: <strong>on</strong>e has a homo chiral coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r has a racemic coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> same substance. If two peaks are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> homo chiral column but <strong>on</strong>ly <strong>on</strong>e through <str<strong>on</strong>g>the</str<strong>on</strong>g> racemic column, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are very likely<br />

enantiomers, and <str<strong>on</strong>g>the</str<strong>on</strong>g> D/L ratio can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from <str<strong>on</strong>g>the</str<strong>on</strong>g> peak areas. However,<br />

different columns are required to separate different enantiomers, and am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids<br />

require derivatisati<strong>on</strong>, which is difficult <str<strong>on</strong>g>in</str<strong>on</strong>g> space.<br />

A GC system cannot be directly coupled to a polarimetric detector because GC<br />

samples are too small. But <str<strong>on</strong>g>the</str<strong>on</strong>g> SETH Cigar polarimeter could be used separately to<br />

complement <str<strong>on</strong>g>the</str<strong>on</strong>g> chiral GC (e.g. to detect am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids). However, HPLC is ideal with<br />

polarimetric detecti<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> output from chiral HPLC columns could go directly <str<strong>on</strong>g>in</str<strong>on</strong>g>to a<br />

SETH Cigar-type polarimeter to give a more powerful system, able to separate a<br />

wider range of enantiomeric compounds, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids, without prior<br />

derivatisati<strong>on</strong>. Development of space HPLC <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> should become possible<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> com<str<strong>on</strong>g>in</str<strong>on</strong>g>g years with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturisati<strong>on</strong> and improved handl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of liquids.<br />

However, such a development is still very tentative. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>the</str<strong>on</strong>g> use of GC<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> space has been fully dem<strong>on</strong>strated. GC (chiral columns) coupled to optical rotati<strong>on</strong><br />

measurements or/and MS should provide <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> of enantiomers, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir quantitative<br />

analysis and <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> R/S isomers ratios.<br />

One or several chiral column(s) <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel <strong>on</strong> a PYR-GC-MS system can provide<br />

such a measurement. However, this technique (except if a chemical derivatisati<strong>on</strong><br />

system is used) is not compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid enantiomers. It<br />

should be noted, however, that diastereoisomeric separati<strong>on</strong> can be carried out <strong>on</strong> an


team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

RECOMMENDED PAYLOAD AND TECHNOLOGY RESEARCH PROGRAMME<br />

Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to account <str<strong>on</strong>g>the</str<strong>on</strong>g> mass, power and volume restricti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> appears to be essential <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> exobiological objectives of <str<strong>on</strong>g>the</str<strong>on</strong>g> package as described earlier <str<strong>on</strong>g>in</str<strong>on</strong>g> this document.<br />

FIRST PRIORITY<br />

Microscope: <str<strong>on</strong>g>for</str<strong>on</strong>g> general exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples<br />

– resoluti<strong>on</strong>: 3 µm<br />

– mass: 250 g (100 g, with <str<strong>on</strong>g>the</str<strong>on</strong>g> close-up imager but with 50 µm resoluti<strong>on</strong>)<br />

– heritage: Beagle-2<br />

Raman spectroscopy: molecular analysis of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and organics (with IR)<br />

– must <str<strong>on</strong>g>in</str<strong>on</strong>g>clude near IR excitati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> biological applicati<strong>on</strong>s, as well as geochemical<br />

– spectral range: 200-3500 cm -1<br />

– resoluti<strong>on</strong>: 8 cm -1<br />

– projected mass: 1 kg<br />

– heritage: <strong>Mars</strong> Surveyor 2001<br />

APX Spectrometer: elemental analysis, detecti<strong>on</strong> limit a few 0.1%<br />

– mass: 570 g<br />

– power: 340 mW<br />

– data output: 16 Kbytes per sample analysis<br />

– heritage: <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der, <strong>Mars</strong> Surveyor 2001, Rosetta<br />

Mössbauer Spectrometer: quantitative analysis of Fe<br />

– mass: 500 g<br />

– power: 1.5 W<br />

– radioactive source of about 300 mCi<br />

– heritage: <strong>Mars</strong> Surveyor 2001 A<str<strong>on</strong>g>the</str<strong>on</strong>g>na missi<strong>on</strong> (MIMOS II <str<strong>on</strong>g>in</str<strong>on</strong>g>strument)<br />

PYR-GC-MS system: isotopic, elemental, organic and <str<strong>on</strong>g>in</str<strong>on</strong>g>organic molecular compositi<strong>on</strong>, and chirality measurement<br />

– PYR: <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes several ovens (<str<strong>on</strong>g>for</str<strong>on</strong>g> pyrolysis, combusti<strong>on</strong> and chemical trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> samples)<br />

– GC: a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum of four columns, <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel, likely to be capillary open columns <str<strong>on</strong>g>for</str<strong>on</strong>g> separati<strong>on</strong>, respectively of:<br />

permanent gases and very low molecular weight organics<br />

volatile higher molecular weight organics of small polarity<br />

volatile higher molecular weight organics of high polarity<br />

column <str<strong>on</strong>g>for</str<strong>on</strong>g> enantiomer separati<strong>on</strong> (chiral or, if derivatisati<strong>on</strong> with chiral reactant, n<strong>on</strong>-chiral column)<br />

heritage: COSAC<br />

additi<strong>on</strong>al detectors (nano-TCDs, chiral detectors) <str<strong>on</strong>g>for</str<strong>on</strong>g> each GC column<br />

– MS: i<strong>on</strong> trap (heritage: MODULUS) or magnetic (Beagle-2) or Quadrupole (heritage: CHARGE). In all cases, a pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g device<br />

(such as a m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised turbo molecular pump) will have to be developed.<br />

total mass: 5.5 kg<br />

power: 10-20 W (to be c<strong>on</strong>firmed)<br />

H 2 O 2 and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r oxidant-dedicated sensors (still to be fully studied and developed):<br />

– expected mass: 100 g (to be c<strong>on</strong>firmed)<br />

SECOND PRIORITY<br />

Infrared spectroscopy: molecular analysis of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and organics (with Raman)<br />

– wavelength range: 0.8-10 µm<br />

– spectral resoluti<strong>on</strong>: >100 (λ/∆λ)<br />

– spatial resoluti<strong>on</strong>: 200 µm<br />

– expected mass:


SP-1231<br />

154<br />

References<br />

achiral column (i.e. <str<strong>on</strong>g>for</str<strong>on</strong>g> compounds with more than <strong>on</strong>e chiral centre).<br />

Let us also menti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> recent development of piezoelectric and optical gas sensors<br />

that ‘are capable of recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g different enantiomers and of qualitatively m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> enantiomeric compositi<strong>on</strong> of am<str<strong>on</strong>g>in</str<strong>on</strong>g>oacid derivatives and lactates <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas phase’<br />

(Bodenhoefer et al., 1997). Such a technique could be applied to a GC-MS system<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g a solid- or gas-state derivatisati<strong>on</strong> process <str<strong>on</strong>g>for</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids after<br />

derivatisati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to volatile compounds.<br />

Afflalaye, A., Sabah, A., Sternberg, R., Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F. & Vidal-Madjar, C. (1996). Gas<br />

chromatography of Titan’s atmosphere. VI: Analysis of low molecular weight<br />

hydrocarb<strong>on</strong>s and nitriles with cyanopropylphenyl: dimethylpolysiloxane. J.<br />

Chromatogr. 746, 63-69.<br />

Afflalaye, A., Sternberg, R., Coscia, D., Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F. & Vidal-Madjar, C. (1997). Gas<br />

chromatography of Titan’s atmosphere. VIII: Analysis of permanent gases with<br />

carb<strong>on</strong> molecular sieve packed capillary columns. J. Chromatogr. A76, 195-203.<br />

Bodenhöfer, K., Hierlemann, A., Seemann, J., Gauglitz, G., Koppenhoefer, B &<br />

Göpel, W. (1997). Chiral discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g piezoelectric and opticalgas sensors.<br />

Nature 387, 577-580.<br />

Chambers, L.A. (1982). Sulfur isotope study of a modern <str<strong>on</strong>g>in</str<strong>on</strong>g>tertidal envir<strong>on</strong>ment, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of ancient sulfides. Geochim. Cosmochim. Acta 46, 721-728.<br />

Edwards, H.G.M., Farwell, D.W., Grady, M.M., Wynn-Williams, D. & Wright, I.P.<br />

(1999). Comparative Raman microscopy of a martian meteorite and Antarctic<br />

lithic analogs. Planet Space Sci. 47, 353-362.<br />

Habicht, K.S. & Canfield, D.E. (1997). Sulfur isotope fracti<strong>on</strong>ati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacterial<br />

sulfate reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> organic-rich sediments. Geochim. Cosmochim. Acta 61, 5351-<br />

5361.<br />

Imbus, S.W. & McKirdy, D.M. (1993). Organic geochemistry of Precambrian sedimentary<br />

rocks. In Organic Geochemistry (Eds. M.H. Engel & S.A. Macko),<br />

Plenum, pp657-684.<br />

Irw<str<strong>on</strong>g>in</str<strong>on</strong>g>, W.J. (1982). Analytical pyrolysis – a comprehensive guide. Chromatographic<br />

Science Series, 22, Marcel Dekker, New York, USA.<br />

Israel, G., Niemann, H., Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F., Riedler, W., Atreya, S., Bauer, S., Cabane, M.,<br />

Chassefiere, E., Hauchecorene, A., Owen, T., Sable, C., Samuels<strong>on</strong>, R., Torre, J.P.,<br />

Vidal-Madjar, C., Brun, J.F., Coscia, D., Ly, R., T<str<strong>on</strong>g>in</str<strong>on</strong>g>tignac, M., Steller, M., Gelas,<br />

C., C<strong>on</strong>de, E. & Millan, P. (1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> Aerosol Collector Pyrolyser (ACP)<br />

experiment <str<strong>on</strong>g>for</str<strong>on</strong>g> Huygens. <strong>ESA</strong> SP-1177, 59-84.<br />

Kaplan, I.R. & Rittenberg, S.C. (1964). Microbiological fracti<strong>on</strong>ati<strong>on</strong> of sulfur<br />

isotopes. J. Gen. Microbiol. 34, 195-212.<br />

Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>gelhöfer, G., Fegley Jr., B., Morris, R.V., Kankeleit, E., Held, P., Evlanov, E. &<br />

Priloutski, O. (1996). M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical analysis of Martian soil and rock by a m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturised<br />

backscatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g Mössbauer spectrometer. Planet. Space Sci. 44, 1277-1288.<br />

Lambert, I.B. & D<strong>on</strong>nelly, T.H. (1990). <str<strong>on</strong>g>The</str<strong>on</strong>g> paleoenvir<strong>on</strong>mental significance of<br />

trends <str<strong>on</strong>g>in</str<strong>on</strong>g> sulphur isotope compositi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Precambrian: a critical review. In<br />

Stable Isotopes and Fluid Processes <str<strong>on</strong>g>in</str<strong>on</strong>g> M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> (Eds. H.K. Herbert & S.E.<br />

Ho), Univ. Western Austr. Spec. Publ. 23, 260-268.<br />

de Leeuw, J.W., & Largeau, C. (1993). A review of macromolecular organic compounds<br />

that comprise liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir role <str<strong>on</strong>g>in</str<strong>on</strong>g> kerogen, coal and petroleum<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. In Organic Geochemistry (Eds. M.H. Engel & S.A. Macko),<br />

Plenum, pp23-72.<br />

MacDermott, A.J. et al. (1996). Homochirality as <str<strong>on</strong>g>the</str<strong>on</strong>g> signature of life: <str<strong>on</strong>g>the</str<strong>on</strong>g> SETH<br />

Cigar. Planet. Space Sci. 44, 1441-1446.<br />

Meuzelaar, H.L.C., Haverkamp, J. & Hileman, F.D. (1982). Pyrolysis mass<br />

spectrometry of recent and fossil biomaterials – compendium and atlas. Techniques<br />

and Instrumentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Analytical Chemistry, 3, Elsevier, Amsterdam, <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.<br />

Morris, R.V., Squyres, S.W., Bell III, J.F., Christensen, P.H., Ec<strong>on</strong>omu, T., Kl<str<strong>on</strong>g>in</str<strong>on</strong>g>g-


elhöfer, G., Held, P., Hask<str<strong>on</strong>g>in</str<strong>on</strong>g>, L.A., Wang, A., Jolliff, B.L. & Rieder, R. (1998).<br />

Analysis of Martian Surface Materials dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Surveyor 2001 missi<strong>on</strong> by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ATHENA <str<strong>on</strong>g>in</str<strong>on</strong>g>strument payload. In Lunar and Planetary Science XXIX, Abstract<br />

#1326, Lunar and Planetary Institute, Houst<strong>on</strong>, USA (CD-ROM).<br />

Niemann, H., Atreya, S., Bauer, J., Biemann, K., Block, B., Carignan, G.R., D<strong>on</strong>ahue,<br />

T., Frost, L., Gautier, D., Harpold, D., Hunten, D., Israel, G., Lun<str<strong>on</strong>g>in</str<strong>on</strong>g>e, J.,<br />

Mauersberger, K., Owen, T., Raul<str<strong>on</strong>g>in</str<strong>on</strong>g>, F., Richards, J., & Way, S. (1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> gas<br />

chromatograph mass spectrometer aboard Huygens. <strong>ESA</strong> SP-1177, 85-107.<br />

Ohmoto, H. (1992). Biogeochemistry of sulfur and <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms of sulfide-sulfate<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Archean oceans. In Early Organic Evoluti<strong>on</strong> (Eds. M. Schidlowski,<br />

S. Golubic, M.M. Kimberley, D.M. McKirdy & P.A. Trud<str<strong>on</strong>g>in</str<strong>on</strong>g>ger), Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-<br />

Verlag, pp378-397.<br />

Ohmoto, H., Kaiser, C.J. & Geer, K.A. (1990). <str<strong>on</strong>g>System</str<strong>on</strong>g>atics of sulphur isotopes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

recent mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments and ancient sediment-hosted basemetal deposits. In Stable<br />

Isotopes and Fluid Processes <str<strong>on</strong>g>in</str<strong>on</strong>g> M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralisati<strong>on</strong> (Eds. H.K. Herbert & S.E. Ho),<br />

Univ. Western Austr. Spec. Publ. 23, 70-120.<br />

Ohmoto, H., Kakegawa, T. & Lowe, D.R. (1993). 3.4-billi<strong>on</strong>-year-old biogenic<br />

pyrites from Barbert<strong>on</strong>, South Africa: sulfur isotope evidence. Science 262, 555-<br />

557.<br />

Rieder, R., Ec<strong>on</strong>omou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus,<br />

G., McSween Jr., H.Y. (1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> Chemical Compositi<strong>on</strong> of Martian Soil and<br />

Rocks Returned by <str<strong>on</strong>g>the</str<strong>on</strong>g> Mobile Alpha Prot<strong>on</strong> X-ray Spectrometer: Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary<br />

Results from <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray Mode. Science 278, 1771-1774.<br />

Schidlowski, M., Hayes, J.M. & Kaplan, I.R. (1983). Isotopic <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences of ancient<br />

biochemistries: carb<strong>on</strong>, sulfur, hydrogen, and nitrogen. In Earth’s Earliest<br />

Biosphere: Its Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and Evoluti<strong>on</strong>, (Ed. J.W. Schopf), Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong> University<br />

Press, USA, pp149-186.<br />

Strauss, H. (1993). Geochemische und isotopengeochemische Untersuchungen zum<br />

Schwefelkreislauf <str<strong>on</strong>g>in</str<strong>on</strong>g> Prekambrischen Sedimenten [Geochemical and isotopic<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfur cycle <str<strong>on</strong>g>in</str<strong>on</strong>g> Precambrian sediments]. Habilitati<strong>on</strong>sschrift,<br />

Ruhr-Univ. Bochum, 230pp. (Unpublished, <str<strong>on</strong>g>in</str<strong>on</strong>g> German).<br />

Strauss, H. (1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> isotopic compositi<strong>on</strong> of sedimentary sulfur through time.<br />

Palaeogeogr. Palaeoclimat. Palaeoecol. 132, 97-118.<br />

Walter, M.R. & DesMarais, D.J. (1993). Preservati<strong>on</strong> of biological <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits: develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g a strategy <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil life <strong>on</strong> <strong>Mars</strong>.<br />

Icarus 101, 129-143.<br />

Wang, A., Cortez, E. & Hask<str<strong>on</strong>g>in</str<strong>on</strong>g>, L. (1997). A Raman Spectroscopic Sensor <str<strong>on</strong>g>for</str<strong>on</strong>g> On-<br />

Surface Planetary Remote Sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Lunar and Planetary Science XXVIII, 1489.<br />

Watanabe, Y., Naraoka, H., Wr<strong>on</strong>kiewicz, D.J., C<strong>on</strong>die, K.C. & Ohmoto, H. (1997).<br />

Carb<strong>on</strong>, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Kaapvaal Crat<strong>on</strong>, South Africa. Geochim. Cosmochim. Acta 61, 3441-3459.<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

155


II.6 Team III: <str<strong>on</strong>g>The</str<strong>on</strong>g> Inspecti<strong>on</strong> of Subsurface<br />

Aliquots and Surface Rocks<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basic objectives of this study were to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e methods and <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong>:<br />

• to search <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct microbial life at all scales down to 0.01 µm;<br />

• to document <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, petrography, sec<strong>on</strong>dary soil comp<strong>on</strong>ents and mobile<br />

phases, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir compositi<strong>on</strong>al changes and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir changes <str<strong>on</strong>g>in</str<strong>on</strong>g> abundances with depth;<br />

• to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> dust particle characteristics and any potential danger to human<br />

life.<br />

SCIENTIFIC JUSTIFICATION<br />

One of <str<strong>on</strong>g>the</str<strong>on</strong>g> major drawbacks of <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical data from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der missi<strong>on</strong><br />

was <str<strong>on</strong>g>the</str<strong>on</strong>g> uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> extent to which <str<strong>on</strong>g>the</str<strong>on</strong>g> Alpha-Prot<strong>on</strong>-X-ray<br />

Spectrometer (APXS) was affected by a possible silicate-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g r<str<strong>on</strong>g>in</str<strong>on</strong>g>d <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface of sampled rocks. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is now no evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g> APXS ever sampled<br />

unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red material. <str<strong>on</strong>g>The</str<strong>on</strong>g> surfaces of many rocks fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> north-east appeared<br />

less red <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial panorama. However, it has been recently shown that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remarkable brightness of <str<strong>on</strong>g>the</str<strong>on</strong>g> sky produced by airborne dust affects <str<strong>on</strong>g>the</str<strong>on</strong>g> illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> such a way that rocks appear redder when <str<strong>on</strong>g>in</str<strong>on</strong>g> shadow or oblique<br />

sunlight. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> less red faces of rocks as dust-scoured (and<br />

hence unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red) surfaces must <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e be questi<strong>on</strong>ed and cannot be justified<br />

without a more sophisticated treatment of <str<strong>on</strong>g>the</str<strong>on</strong>g> illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Future missi<strong>on</strong>s must<br />

resolve this problem by mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>certed ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t to remove any r<str<strong>on</strong>g>in</str<strong>on</strong>g>d and/or dust<br />

coverage <str<strong>on</strong>g>in</str<strong>on</strong>g> order to sample unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red rocky material. Argument about<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of sampled materials will always occur unless <str<strong>on</strong>g>the</str<strong>on</strong>g> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g device<br />

provides a method of expos<str<strong>on</strong>g>in</str<strong>on</strong>g>g unaltered, unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red material. Once <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red surface has been exposed, <str<strong>on</strong>g>the</str<strong>on</strong>g> full capabilities of <str<strong>on</strong>g>the</str<strong>on</strong>g> remote sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g and<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s can be used <strong>on</strong> it. Given that drills, saws and polishers can be<br />

implemented with<str<strong>on</strong>g>in</str<strong>on</strong>g> a relatively small mass budget, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

missi<strong>on</strong> is mandatory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> subsurface envir<strong>on</strong>ment <strong>on</strong> <strong>Mars</strong> may c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> records of ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life as well as<br />

possible extant life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of endolithic microorganisms. Given <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

development of <strong>Mars</strong>, it is unlikely that <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of life much higher than algae,<br />

fungi, mosses or lichen ever evolved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively short time span of c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous,<br />

life-support<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s that existed. Although c<strong>on</strong>diti<strong>on</strong>s c<strong>on</strong>ducive to life<br />

probably occurred (and may still occur) <str<strong>on</strong>g>in</str<strong>on</strong>g>termittently, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> II.4,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y were probably not of l<strong>on</strong>g enough durati<strong>on</strong> to permit fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r evoluti<strong>on</strong>. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y may have permitted simple reproducti<strong>on</strong> or overturn<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> extant<br />

populati<strong>on</strong>s, wherever <str<strong>on</strong>g>the</str<strong>on</strong>g>y survived.<br />

It should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a comm<strong>on</strong> misc<strong>on</strong>cepti<strong>on</strong> that if all <str<strong>on</strong>g>the</str<strong>on</strong>g> organics<br />

have been oxidised or elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by UV radiati<strong>on</strong> it will not be possible to substantiate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presence of erstwhile cells if <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no more organics. This is not <str<strong>on</strong>g>the</str<strong>on</strong>g> case,<br />

because most prokaryotes are preserved by m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral replacement, with <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent<br />

degradati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic matter. Experiments have dem<strong>on</strong>strated that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

morphology of prokaryotes may be faithfully recorded by <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

<strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces of cells, as well as with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m (Westall et al., 1995). Moreover, not<br />

<strong>on</strong>ly are <str<strong>on</strong>g>the</str<strong>on</strong>g> organisms preserved but also <str<strong>on</strong>g>the</str<strong>on</strong>g> exocellular organic substances <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

II.6.1 Investigati<strong>on</strong> of<br />

Unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red Rocky<br />

Material<br />

II.6.2 Imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of Fossilised<br />

Material <str<strong>on</strong>g>in</str<strong>on</strong>g> Sediments<br />

157


SP-1231<br />

Fig. II.6.2/1. Biofilm seen us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

microscope.<br />

158<br />

produce (Westall et al., 1995). Most microorganisms, such as bacteria, live attached<br />

to substrates and build up layers of slime c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g cells, authigenically precipitated<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals (e.g. carb<strong>on</strong>ates, pyrite) and trapped particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se layers are known as biofilms (Fig. II.6.2/1) and <str<strong>on</strong>g>the</str<strong>on</strong>g>y may often be preserved<br />

even when <str<strong>on</strong>g>the</str<strong>on</strong>g> microorganisms that produced <str<strong>on</strong>g>the</str<strong>on</strong>g>m are not preserved (Gerdes &<br />

Krumbe<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1987). Stromatolites are famous examples of such microbially-mediated,<br />

lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ar build-ups and examples are given <str<strong>on</strong>g>in</str<strong>on</strong>g> Part I. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of<br />

macroscopically biolam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated deposits is a valid <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of life,<br />

even though <str<strong>on</strong>g>the</str<strong>on</strong>g> microorganisms may not be visible (ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> limit of visibilty of <str<strong>on</strong>g>the</str<strong>on</strong>g> method employed or because <str<strong>on</strong>g>the</str<strong>on</strong>g>y were not fossilised).<br />

Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental simulati<strong>on</strong>s of microbial fossilisati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

numerous examples of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogically replaced fossils <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock record: <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest<br />

com<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 3.3-3.5 Gyr sediments from <str<strong>on</strong>g>the</str<strong>on</strong>g> Early Archean of South Africa and<br />

Australia (Westall, 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g>se early terrestrial fossils are, however, very small<br />

(typically 1 µm but sometmes up to 4 µm) and are close to <str<strong>on</strong>g>the</str<strong>on</strong>g> limit of optical<br />

resoluti<strong>on</strong>. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r examples of 1-2 µm-sized fossil bacteria are found <str<strong>on</strong>g>in</str<strong>on</strong>g> siderite<br />

(Wuttke, 1983), phosphate (Liebig et al., 1996), calcite (Barbieri et al., <str<strong>on</strong>g>in</str<strong>on</strong>g> press) and<br />

silica (M<strong>on</strong>ty et al., 1991).<br />

II.6.2.1 Macroscopic Scale<br />

On a macroscopic scale, two biogenically produced features can be observed:<br />

• biolam<str<strong>on</strong>g>in</str<strong>on</strong>g>ae (biofilm layers) of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of a few hundreds of micr<strong>on</strong>s to about<br />

1 mm <str<strong>on</strong>g>in</str<strong>on</strong>g> thickness but extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> tens of centimetres or more;<br />

• fossils >1 mm <str<strong>on</strong>g>in</str<strong>on</strong>g> width and tens of millimetres <str<strong>on</strong>g>in</str<strong>on</strong>g> length (cyanobacteria, algae,<br />

mosses, lichen etc).<br />

Biolam<str<strong>on</strong>g>in</str<strong>on</strong>g>ae<br />

– large biolam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated structures, such as stromatolitic mounds of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of > 0.5 m


<str<strong>on</strong>g>in</str<strong>on</strong>g> width and height will be visible at a distance of 3-5 m with a resoluti<strong>on</strong> of 10 cm<br />

per pixel;<br />

– smaller biolam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated structures with packets of 2-3 mm-thick, f<str<strong>on</strong>g>in</str<strong>on</strong>g>e layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g will be<br />

visible at 50 cm with a resoluti<strong>on</strong> of 1 mm per pixel (Fig. II.6.2.1/1).<br />

Fossils<br />

– smaller filamentous organisms can be macroscopically visible even though <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

width may be


SP-1231<br />

Fig. II.6.2.2/2. Fossil rod-shaped bacteria<br />

(sausage-shaped structures) embedded <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g>y biofilm. From <str<strong>on</strong>g>the</str<strong>on</strong>g> Hooggenoeg<br />

Formati<strong>on</strong>, Onverwacht Group, South Africa<br />

(age 3445-3472 Myr).<br />

160<br />

II.6.2.2 Microscopic Scale<br />

On a microscopic scale, biogenic structures that can be seen <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• undulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g biofilm lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ae of <str<strong>on</strong>g>the</str<strong>on</strong>g> order of 100 µm;<br />

• microfossils with a maximum dimensi<strong>on</strong>


<str<strong>on</strong>g>Search</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> signs of extant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> of direct evidence<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of preserved fossils, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralised or as organic rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s, as well as a<br />

more <str<strong>on</strong>g>in</str<strong>on</strong>g>direct approach utilis<str<strong>on</strong>g>in</str<strong>on</strong>g>g geochemical and/or isotopic proxies <str<strong>on</strong>g>for</str<strong>on</strong>g> past<br />

biologically-driven processes and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir metabolic products, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong><br />

II.5. As such, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of organic compounds and/or certa<str<strong>on</strong>g>in</str<strong>on</strong>g> chemical elements<br />

that represent important build<str<strong>on</strong>g>in</str<strong>on</strong>g>g blocks of life (i.e. C, H, N, S, P), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir specific<br />

isotopic compositi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir presence as m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matter of presumed biological<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g> might provide evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> (or aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st) <str<strong>on</strong>g>the</str<strong>on</strong>g> presence or past presence of life.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> exclusive search <str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of life, a thorough characterisati<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> present and past envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s should be a prerequisite. In<br />

comparis<strong>on</strong> to terrestrial sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, a wide variability <str<strong>on</strong>g>in</str<strong>on</strong>g> habitats do show flourish<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

life. However, certa<str<strong>on</strong>g>in</str<strong>on</strong>g> physical and chemical parameters provide boundary c<strong>on</strong>diti<strong>on</strong>s<br />

that limit its survival.<br />

Of particular <str<strong>on</strong>g>in</str<strong>on</strong>g>terest are m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals that presumably <str<strong>on</strong>g>for</str<strong>on</strong>g>med through biological<br />

processes, i.e. biom<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. Pyrite (FeS 2) is a ubiquitous m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial<br />

sediments and frequently of biogenic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. A key process <str<strong>on</strong>g>in</str<strong>on</strong>g> its <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bacterial reducti<strong>on</strong> of sulphate to H 2S and subsequent reacti<strong>on</strong> with ir<strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, to<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>m ir<strong>on</strong> sulphide. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of sedimentary pyrite, specifically of biological<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between pyrite morphology, orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and depositi<strong>on</strong>al<br />

envir<strong>on</strong>ment, has been studied <str<strong>on</strong>g>for</str<strong>on</strong>g> many decades (e.g. Berner, 1970; Goldhaber &<br />

Kaplan, 1974; Berner, 1984; Morse et al., 1987; Scho<strong>on</strong>en & Barnes, 1991;<br />

Sawlowicz, 1993; Wilk<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1996, Wilk<str<strong>on</strong>g>in</str<strong>on</strong>g> & Barnes, 1997). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, pyrite<br />

has been c<strong>on</strong>sidered as a potential orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life (e.g. Wächtershäuser, 1988; Russel et<br />

al., 1989; 1990).<br />

Of all <str<strong>on</strong>g>the</str<strong>on</strong>g> possible biogenic morphologies, framboidal pyrite c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute<br />

pyritic gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s resembl<str<strong>on</strong>g>in</str<strong>on</strong>g>g raspberries (Rust, 1935) has received most attenti<strong>on</strong>.<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> sizes of <str<strong>on</strong>g>the</str<strong>on</strong>g>se framboids range from 5 mm to 20 mm, but framboids as<br />

large as 250 mm have occasi<strong>on</strong>ally been observed. Alternatively, framboids as small<br />

as 1 mm were also seen. Agglomerati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual framboids might result <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> so<br />

called polyframboids with sizes rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 35 mm to 900 mm (average 50-<br />

200 mm). Thus, a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous spectrum of sizes, microframboids–framboids–<br />

polyframboids, exists (e.g. Sawlowicz, 1993). In terrestrial sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, framboidal pyrite<br />

is most comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> recent and ancient sedimentary envir<strong>on</strong>ments, but has also been<br />

reported from magmatic rocks or hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal occurrences (e.g. Sassano &<br />

Schrijver, 1989). <str<strong>on</strong>g>The</str<strong>on</strong>g> framboidal texture is usually associated with pyrite, but has also<br />

team III: <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of subsurface aliquots and surface rocks/II.6<br />

Fig. II.6.2.2/3. Fossil coccoid bacteria 1 µm <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

diameter show<str<strong>on</strong>g>in</str<strong>on</strong>g>g cellular divisi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

structures have a size typical <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial<br />

bacteria. High magnificati<strong>on</strong>s are needed to<br />

image <str<strong>on</strong>g>the</str<strong>on</strong>g>m (>100 times with resoluti<strong>on</strong>s of at<br />

least 0.25 µm per pixel).<br />

II.6.3 Investigati<strong>on</strong> of<br />

Biom<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

161


SP-1231<br />

Fig. II.6.4.1/1. Left: Filaments of probable microbiological orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, Faeroe Islands. Micr<strong>on</strong>-thick filaments, partly gravity-oriented, are encrusted with<br />

chalced<strong>on</strong>y to <str<strong>on</strong>g>for</str<strong>on</strong>g>m up to 1 mm-thick ‘rods’. From a cavity <str<strong>on</strong>g>in</str<strong>on</strong>g> Tertiary basalt. Typical example of macroscopically visible microbial fossil of subsurface<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. Sample width 40 mm. Right: an enlargement (field of view 5.6 mm). Probable microbiological filaments encrusted by chalced<strong>on</strong>y. Sample<br />

immersed <str<strong>on</strong>g>in</str<strong>on</strong>g> glycer<str<strong>on</strong>g>in</str<strong>on</strong>g>e, show<str<strong>on</strong>g>in</str<strong>on</strong>g>g extremely f<str<strong>on</strong>g>in</str<strong>on</strong>g>e filamentous cores of ‘chalced<strong>on</strong>y rods’.<br />

162<br />

been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, such as magnetite, haematite, lim<strong>on</strong>ite and<br />

magnesioferrite. Some of <str<strong>on</strong>g>the</str<strong>on</strong>g> latter might be oxidati<strong>on</strong> products (magnetite, lim<strong>on</strong>ite)<br />

or precursors (greigite) of pyrite.<br />

Based <strong>on</strong> terrestrial occurrences, pyrite <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> can be purely <str<strong>on</strong>g>in</str<strong>on</strong>g>organic as well<br />

as biologically catalysed. Prerequisites <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of pyrite framboids are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

availability of ir<strong>on</strong> and sulphur. While <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s might be available <str<strong>on</strong>g>in</str<strong>on</strong>g> a whole<br />

range of envir<strong>on</strong>mental sett<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequent presence of framboidal pyrite <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

organic-rich sediments suggests that organic matter plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> its<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Carb<strong>on</strong>aceous sediments appear to be an ideal host <str<strong>on</strong>g>for</str<strong>on</strong>g> pyrite <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> abundant reactive ir<strong>on</strong> (Canfield, 1989) and organic material that may<br />

serve as an energy source <str<strong>on</strong>g>for</str<strong>on</strong>g> sulphate-reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g H 2S. This<br />

biologically-produced H 2S, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, reacts with <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> to <str<strong>on</strong>g>for</str<strong>on</strong>g>m (framboidal) pyrite.<br />

While, from a stochiometrical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view, organic carb<strong>on</strong> is unnecessary,<br />

experimental data <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate <strong>on</strong>ly limited <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and stability of framboidal pyrite<br />

without <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of organic matter (<str<strong>on</strong>g>for</str<strong>on</strong>g> a review see Sawlowicz, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

relati<strong>on</strong>ship between framboidal pyrite and organic matter (and as such evidence <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

biological activity) is two-fold. Apart from serv<str<strong>on</strong>g>in</str<strong>on</strong>g>g as a substrate <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphate<br />

reducti<strong>on</strong>, framboidal pyrite frequently replaces fossil organic matter <strong>on</strong> a micro- or<br />

macroscale (Briggs et al., 1991; 1996).<br />

In summary, sedimentary pyrite and, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular, framboidal texture are<br />

frequently observed <str<strong>on</strong>g>in</str<strong>on</strong>g> recent and ancient sediments <strong>on</strong> Earth. Although examples<br />

exist <str<strong>on</strong>g>for</str<strong>on</strong>g> a purely <str<strong>on</strong>g>in</str<strong>on</strong>g>organic orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of pyrite framboids (e.g. laboratory experiments:<br />

Sweeney & Kaplan, 1973), its presence <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary systems is c<strong>on</strong>sidered overall<br />

as evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> a biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g>. Additi<strong>on</strong>al support <str<strong>on</strong>g>for</str<strong>on</strong>g> this c<strong>on</strong>jecture can best be<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphur isotopic compositi<strong>on</strong>, show<str<strong>on</strong>g>in</str<strong>on</strong>g>g a characteristic signature<br />

(<str<strong>on</strong>g>for</str<strong>on</strong>g> a review see Strauss, 1997). In that respect, close exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of martian surface<br />

and, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular, subsurface material <str<strong>on</strong>g>for</str<strong>on</strong>g> pyrite as a potential biogenic m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral might<br />

provide important <str<strong>on</strong>g>in</str<strong>on</strong>g>sight as part of <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> life. Microscopic exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

would have to provide a spatial resoluti<strong>on</strong> compatible with expected size ranges down<br />

to


m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals or oxidati<strong>on</strong> products should also be assessed. As po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out above,<br />

framboidal textures have also been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> n<strong>on</strong>-pyritic m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals.<br />

II.6.4.1 Ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct Microbes <str<strong>on</strong>g>in</str<strong>on</strong>g> Rock<br />

In exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>cepts, <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> microbial fossils <strong>on</strong> <strong>Mars</strong> is str<strong>on</strong>gly focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer surface-bound microbial activity <str<strong>on</strong>g>in</str<strong>on</strong>g> sediment sand and hot spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

envir<strong>on</strong>ments. While it has become accepted that subsurface life is active <strong>on</strong> Earth to a<br />

depth of several km <str<strong>on</strong>g>in</str<strong>on</strong>g> some places (e.g. Stevens & McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, 1996; Stevens, 1997),<br />

hardly any fossil evidence of this has been reported so far, with <str<strong>on</strong>g>the</str<strong>on</strong>g> notable excepti<strong>on</strong> of<br />

a paper by Kretzschmar (1982). Recent work has shown that subsurface microbialites<br />

similar to those reported by Kretzschmar (1982) are comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial samples from<br />

numerous subsurface envir<strong>on</strong>ments (Hofmann & Farmer, 1997). This work is <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

progress and about 100 sites have so far been identified.<br />

Geological envir<strong>on</strong>ments c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g such suspected fossil rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>clude:<br />

• sites of low-temperature hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal alterati<strong>on</strong> of volcanic rocks (dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant);<br />

• oxidati<strong>on</strong> of sulphide ore deposits (quite comm<strong>on</strong>);<br />

• hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal ve<str<strong>on</strong>g>in</str<strong>on</strong>g>-type ore deposits (rare);<br />

• silica deposits associated with serpent<str<strong>on</strong>g>in</str<strong>on</strong>g>isati<strong>on</strong> of ultrabasic rocks (rare).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> depth of emplacement of filamentous microstructures of probable microbial<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g> is unknown <str<strong>on</strong>g>in</str<strong>on</strong>g> most cases, but reaches 400-800 m <str<strong>on</strong>g>in</str<strong>on</strong>g> at least three of <str<strong>on</strong>g>the</str<strong>on</strong>g> betterstudied<br />

sites (Fig. II.6.4.1/3). <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g body of evidence that subsurface<br />

microbial activity comm<strong>on</strong>ly results <str<strong>on</strong>g>in</str<strong>on</strong>g> macroscopic structures similar to surface<br />

microbialites (stromatolites). Many of <str<strong>on</strong>g>the</str<strong>on</strong>g> hi<str<strong>on</strong>g>the</str<strong>on</strong>g>rto recognised possibly microbial<br />

structures <str<strong>on</strong>g>in</str<strong>on</strong>g> such envir<strong>on</strong>ments are enclosed <str<strong>on</strong>g>in</str<strong>on</strong>g> microcrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e silica (chalced<strong>on</strong>y,<br />

agate).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> recent identificati<strong>on</strong> of agates as products of post-impact hydrous alterati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

an impact melt of a F<str<strong>on</strong>g>in</str<strong>on</strong>g>nish crater (K<str<strong>on</strong>g>in</str<strong>on</strong>g>nunen & L<str<strong>on</strong>g>in</str<strong>on</strong>g>dqvist, 1998) makes it likely that<br />

similar silica varieties do exist <strong>on</strong> <strong>Mars</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g impact melts <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<str<strong>on</strong>g>in</str<strong>on</strong>g>g with<br />

groundwater must have been comm<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chances of subsurface microbial fossils exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>Mars</strong> might be higher<br />

because a subsurface biosphere can be expected to be relatively more important than<br />

<strong>on</strong> Earth because of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>hospitability of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g not <strong>on</strong>ly<br />

team III: <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of subsurface aliquots and surface rocks/II.6<br />

Fig. II.6.4.1/2. Goethite filaments from<br />

Hohenlimburg, Germany. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are probable<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralised microbial rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s, enclosed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

quartz crystal. Field of view 2.8 mm. Sample<br />

from soluti<strong>on</strong> cavities <str<strong>on</strong>g>in</str<strong>on</strong>g> Dev<strong>on</strong>ian limest<strong>on</strong>e.<br />

(Sample courtesy P. G. Penkert, Dorm<strong>on</strong>d)<br />

II.6.4 Investigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Rock Structure<br />

163


SP-1231<br />

Fig. II.6.4.1/3. Filamentous structure of<br />

probable microbiological orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, from <str<strong>on</strong>g>the</str<strong>on</strong>g> Cady<br />

Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g>s, Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia. M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralised filaments,<br />

up to 10 cm l<strong>on</strong>g, are from a goethitechalced<strong>on</strong>y<br />

ve<str<strong>on</strong>g>in</str<strong>on</strong>g> of clearly subsurface orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Tertiary volcanic rocks. Sample size 13×15 cm.<br />

Bottom: close-up view (field of view 0.9 mm),<br />

show<str<strong>on</strong>g>in</str<strong>on</strong>g>g filamentous structures of goethite <strong>on</strong><br />

chalced<strong>on</strong>y.<br />

164<br />

surface-bound but also subsurface microbial fossils <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites<br />

and target selecti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g enlarges <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> of potentially <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites<br />

and materials. A fractured or vesicular basalt, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, would be c<strong>on</strong>sidered of<br />

low <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g strategies focused <strong>on</strong> sediments and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits,<br />

but may never<str<strong>on</strong>g>the</str<strong>on</strong>g>less harbour rich subsurface fossil rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

II.6.4.2 Rock Formati<strong>on</strong> and Compositi<strong>on</strong><br />

Even if microbial fossils are not found, <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of rock structures will provide<br />

significant new <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> process. At <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

site, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> a bimodal distributi<strong>on</strong> of rock sizes. Rounded rocks,<br />

which may have been smoo<str<strong>on</strong>g>the</str<strong>on</strong>g>d dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> flood that produced Ares Vallis some<br />

3 Gyr ago, may preserve some evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiati<strong>on</strong> process that occurred <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>Mars</strong>’ early history.


A sec<strong>on</strong>d group of rocks, however, may have been a later additi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se rocks<br />

could be <str<strong>on</strong>g>the</str<strong>on</strong>g> ejecta produced by an impact and as such would be from <str<strong>on</strong>g>the</str<strong>on</strong>g> upper layers<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> present <strong>Mars</strong>. Some rocks may also have a volcanic orig<str<strong>on</strong>g>in</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a<br />

press<str<strong>on</strong>g>in</str<strong>on</strong>g>g need to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> range of magma chemistries that produced volcanic<br />

land<str<strong>on</strong>g>for</str<strong>on</strong>g>ms. It is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e important to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and physical structure<br />

of rocks at <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site.<br />

One <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> dust-like spectrum of rocks such as ‘Scooby Doo’ at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong><br />

Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are <str<strong>on</strong>g>in</str<strong>on</strong>g>durated soils produced by chemical processes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se rocks may differ substantially <str<strong>on</strong>g>in</str<strong>on</strong>g> compositi<strong>on</strong> and structure from <str<strong>on</strong>g>the</str<strong>on</strong>g> large rocks<br />

and boulders which appear to be have been transported to <str<strong>on</strong>g>the</str<strong>on</strong>g> site by flow or impact.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y may <str<strong>on</strong>g>in</str<strong>on</strong>g> many respects resemble sedimentary rock. This offers <str<strong>on</strong>g>the</str<strong>on</strong>g> prospect of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> large-scale structures near Ares Vallis appear to show<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> at least two directi<strong>on</strong>s of flow. It is not clear how so<strong>on</strong> after each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se flood events occurred or whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r deposits from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial event had time to settle<br />

be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d event. <str<strong>on</strong>g>The</str<strong>on</strong>g> study of subsurface layers could provide an answer.<br />

Penetrati<strong>on</strong> of a sedimentary deposit may uncover an older layer produced at a<br />

time when c<strong>on</strong>diti<strong>on</strong>s were more c<strong>on</strong>ducive to life. Hence, <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> and sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

of such a subsedimentary layer may be important. This will also allow us to <str<strong>on</strong>g>in</str<strong>on</strong>g>spect<br />

possible differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> exposed surface and <str<strong>on</strong>g>the</str<strong>on</strong>g> matter underneath and get<br />

an impressi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical behaviour of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil.<br />

Scooby Doo was also sufficiently robust that <str<strong>on</strong>g>the</str<strong>on</strong>g> Sojourner rover was unable to<br />

scratch <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Thus penetrati<strong>on</strong> of it may reveal unoxidised material at relatively<br />

shallow depths while at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time be<str<strong>on</strong>g>in</str<strong>on</strong>g>g easier to drill through than a basalt.<br />

How did <str<strong>on</strong>g>the</str<strong>on</strong>g> ubiquitous red soil <strong>on</strong> <strong>Mars</strong> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ate? Did <str<strong>on</strong>g>the</str<strong>on</strong>g> soil <str<strong>on</strong>g>for</str<strong>on</strong>g>m, <strong>on</strong>ce and <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

all, thousands of milli<strong>on</strong>s of ago when <str<strong>on</strong>g>the</str<strong>on</strong>g> planet was warm and wet? Or is <str<strong>on</strong>g>the</str<strong>on</strong>g> soil<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

process still go<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> today, through <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> of an oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

atmosphere with <str<strong>on</strong>g>the</str<strong>on</strong>g> surface rocks of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet, perhaps aided by acidic volatiles<br />

supplied by volcanic erupti<strong>on</strong>s?<br />

Stated differently: what has been <str<strong>on</strong>g>the</str<strong>on</strong>g> role of liquid water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

soil of <strong>Mars</strong>? If liquid water has been essential <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n liquid water may have played an even more decisive part <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> history of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terplay of liquid water, <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and <str<strong>on</strong>g>the</str<strong>on</strong>g> surface rocks of <strong>Mars</strong><br />

may have produced biology.<br />

Through <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s of ir<strong>on</strong> compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil, it may be<br />

possible to c<strong>on</strong>tribute significantly to <str<strong>on</strong>g>the</str<strong>on</strong>g> study of <str<strong>on</strong>g>the</str<strong>on</strong>g> history of <str<strong>on</strong>g>the</str<strong>on</strong>g> planet’s surface<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary processes related to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> of water, air and rocks.<br />

Why specifically ir<strong>on</strong> compounds? Ir<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> third most abundant element <strong>on</strong> <strong>Mars</strong>,<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g oxygen and silic<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> element ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts str<strong>on</strong>gly with liquid water,<br />

especially with water <str<strong>on</strong>g>in</str<strong>on</strong>g> which gases such as carb<strong>on</strong> dioxide and oxygen are dissolved.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ir<strong>on</strong> occurs often as Fe 2+ as well as Fe 3+ , thus reflect<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidative power of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> which a given ir<strong>on</strong>-compound <str<strong>on</strong>g>for</str<strong>on</strong>g>med. <str<strong>on</strong>g>The</str<strong>on</strong>g> identificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong><br />

compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil will thus elucidate many aspects of <str<strong>on</strong>g>the</str<strong>on</strong>g> processes that <str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reddish soil of <strong>Mars</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> history of liquid water <strong>on</strong> that planet. For example:<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base rocks of <strong>Mars</strong> is present ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly as Fe 2+ , while <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> soil is present as Fe 3+ . It is thus certa<str<strong>on</strong>g>in</str<strong>on</strong>g> that an oxidati<strong>on</strong> has taken place. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of ir<strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil will, to some degree,<br />

tell how and how fast <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> occurred. Thus we will learn about<br />

processes of importance <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of a possible<br />

martian biosphere.<br />

• Is some of <str<strong>on</strong>g>the</str<strong>on</strong>g> Fe 3+ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil present <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals comm<strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g>med via<br />

precipitati<strong>on</strong> (<str<strong>on</strong>g>for</str<strong>on</strong>g> example ir<strong>on</strong> sulphates)?<br />

team III: <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of subsurface aliquots and surface rocks/II.6<br />

II.6.5 Investigati<strong>on</strong> of<br />

Sedimentary Layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

II.6.6 Investigati<strong>on</strong> of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Soil<br />

165


SP-1231<br />

II.6.7 Investigati<strong>on</strong> of Dust<br />

Particles<br />

166<br />

• Which type of ir<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g clay m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, if any, dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates?<br />

• Does <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic phase present <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element titanium, i.e. is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic phase titanomagnetite (Fe 3-xTi xO 4)? If so, <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic phase has<br />

been <str<strong>on</strong>g>in</str<strong>on</strong>g>herited directly (<str<strong>on</strong>g>in</str<strong>on</strong>g>tact) from <str<strong>on</strong>g>the</str<strong>on</strong>g> underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g bedrock, and <str<strong>on</strong>g>the</str<strong>on</strong>g> role of<br />

liquid water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil-<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes has been limited. If <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic<br />

phase <str<strong>on</strong>g>for</str<strong>on</strong>g>ms via precipitati<strong>on</strong> of Fe 3+ compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> liquid water, <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral will not c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> titanium.<br />

Mössbauer spectroscopy is, without doubt, <str<strong>on</strong>g>the</str<strong>on</strong>g> best method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ir<strong>on</strong>c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

compounds. As discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> II.5.7.4, this technique yields<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals present, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir magnetic properties and, <str<strong>on</strong>g>in</str<strong>on</strong>g> case of superparamagnetism,<br />

particle-size distributi<strong>on</strong> and, f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> state of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ir<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> dust particles suspended <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian atmosphere play a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric<br />

energy budget. This, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> global circulati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> present<br />

climate. It is also suspected that <str<strong>on</strong>g>the</str<strong>on</strong>g> dust had a major <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface and <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> climate. <str<strong>on</strong>g>The</str<strong>on</strong>g> particle properties are <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred<br />

from measurements by ground-based observati<strong>on</strong>s and <str<strong>on</strong>g>in</str<strong>on</strong>g>struments <strong>on</strong> <strong>Mars</strong> orbiters<br />

and landers. For example, very good data were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sky brightness<br />

with <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der’s camera.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> deducti<strong>on</strong> of material properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric particles <str<strong>on</strong>g>in</str<strong>on</strong>g>volves solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a multi-parameter <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem of modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> observed, diffuse light,<br />

produced by multiple scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g by <str<strong>on</strong>g>the</str<strong>on</strong>g> particles. <str<strong>on</strong>g>The</str<strong>on</strong>g> parameters are at least <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere’s optical depth and <str<strong>on</strong>g>the</str<strong>on</strong>g> dust’s average s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties can, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of particle size<br />

distributi<strong>on</strong>, compositi<strong>on</strong> and shape. Size distributi<strong>on</strong> can be best c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed and it<br />

is known that martian aerosols have a mean radius of somewhat less than 2 µm. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

values of <str<strong>on</strong>g>the</str<strong>on</strong>g> imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary <str<strong>on</strong>g>in</str<strong>on</strong>g>dex of refracti<strong>on</strong> allows some c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

compositi<strong>on</strong>. Comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of data <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> visible and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal-IR, it<br />

can be said that <str<strong>on</strong>g>the</str<strong>on</strong>g> dust is composed of basalt and clay m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as<br />

m<strong>on</strong>tmorill<strong>on</strong>ite, with a small fracti<strong>on</strong> of ir<strong>on</strong> oxide that gives martian dust <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

characteristic reddish t<str<strong>on</strong>g>in</str<strong>on</strong>g>t.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> deducti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> particles – a very important parameter – is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most troublesome yet. Possible shapes <str<strong>on</strong>g>in</str<strong>on</strong>g>clude plate-like particles, round with<br />

smooth surface, more crystal-like with sharp edges or even agglomerates. Each<br />

category has different dynamical, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal and radiative properties, and hence a<br />

different impact <strong>on</strong> any of <str<strong>on</strong>g>the</str<strong>on</strong>g> processes <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g atmospheric dust. <str<strong>on</strong>g>The</str<strong>on</strong>g> difficulty<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> shape is two-fold. Firstly, to date, <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of<br />

calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g matrix <str<strong>on</strong>g>for</str<strong>on</strong>g> irregular particles ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r depend <strong>on</strong> a set of free<br />

parameters or are limited to relatively small particles. Sec<strong>on</strong>dly, it is not completely<br />

possible to separate out <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>the</str<strong>on</strong>g> various parameters have <str<strong>on</strong>g>in</str<strong>on</strong>g> obta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem menti<strong>on</strong>ed above. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> modelled sky<br />

brightness, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, are just as sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> particle shape as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dex of refracti<strong>on</strong> or optical depth. An estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> optical depth is often<br />

available <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently, help<str<strong>on</strong>g>in</str<strong>on</strong>g>g somewhat, but <str<strong>on</strong>g>the</str<strong>on</strong>g> rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g parameters are not<br />

easily separable.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> best soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> above problem is to image <str<strong>on</strong>g>the</str<strong>on</strong>g> particles <str<strong>on</strong>g>in</str<strong>on</strong>g> situ <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian surface. A great step <str<strong>on</strong>g>in</str<strong>on</strong>g> this directi<strong>on</strong> will be made dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g NASA’s <strong>Mars</strong> Polar<br />

Lander missi<strong>on</strong>, which carries a variable-focus camera with 1:1 resoluti<strong>on</strong> of about<br />

20 µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>Mars</strong>Envir<strong>on</strong>ment Compatibility (MECA) package <str<strong>on</strong>g>for</str<strong>on</strong>g> NASA’s <strong>Mars</strong><br />

Surveyor 2001 Lander missi<strong>on</strong> will f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally deliver images at a resoluti<strong>on</strong> of about<br />

1 µm. With<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>in</str<strong>on</strong>g>strument package will be an Atomic Force Microscope with<br />

a resoluti<strong>on</strong> of at least 10 nm. Comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of results from <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>in</str<strong>on</strong>g>struments should<br />

help greatly <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian aerosols.


SCIENTIFIC METHOD AND REQUIREMENTS<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> advent of new, lightweight, technology has made it possible to produce small<br />

highly <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated experiments which can be placed <str<strong>on</strong>g>in</str<strong>on</strong>g> many positi<strong>on</strong>s <strong>on</strong> landers and<br />

rovers. It is, however, essential that <str<strong>on</strong>g>the</str<strong>on</strong>g>se systems <str<strong>on</strong>g>for</str<strong>on</strong>g>m an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated package.<br />

Achievement of <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific objectives with<str<strong>on</strong>g>in</str<strong>on</strong>g> a low mass can <strong>on</strong>ly be achieved if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> objectives are focussed and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> means by which <str<strong>on</strong>g>the</str<strong>on</strong>g> objectives are<br />

to be achieved are clear and straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward. Here we discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific methods<br />

available and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir requirements.<br />

II.6.8.1 Objectives<br />

Initially, a panoramic survey of <str<strong>on</strong>g>the</str<strong>on</strong>g> site must be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. This survey must:<br />

– identify <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site;<br />

– provide an assessment of <str<strong>on</strong>g>the</str<strong>on</strong>g> rock density at <str<strong>on</strong>g>the</str<strong>on</strong>g> site;<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> rock distributi<strong>on</strong> and its heterogeneity;<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> rock-size distributi<strong>on</strong> and assess evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> bimodal distributi<strong>on</strong>s<br />

caused by different processes;<br />

– study <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> site (flood<str<strong>on</strong>g>in</str<strong>on</strong>g>g, impact, etc);<br />

– <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate aeolian effects (such as w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tails and ventifacts) and allow comparis<strong>on</strong>s<br />

with global circulati<strong>on</strong> models;<br />

– study <str<strong>on</strong>g>the</str<strong>on</strong>g> surface photometric functi<strong>on</strong>;<br />

– <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy of rocks and soils;<br />

– search <str<strong>on</strong>g>for</str<strong>on</strong>g> spectral <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneity of soils and compare this to <str<strong>on</strong>g>the</str<strong>on</strong>g> local<br />

morphology;<br />

– search <str<strong>on</strong>g>for</str<strong>on</strong>g> spectral <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneity of rocks and <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> sedimentati<strong>on</strong><br />

and <str<strong>on</strong>g>in</str<strong>on</strong>g>-flux of external material;<br />

– search <str<strong>on</strong>g>for</str<strong>on</strong>g> potential targets <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rover, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g identificati<strong>on</strong> of unusual<br />

morphology, differentiati<strong>on</strong> between wea<str<strong>on</strong>g>the</str<strong>on</strong>g>red and unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red rock, study of<br />

significant colour differences, identificati<strong>on</strong> of potential dangers to navigati<strong>on</strong>.<br />

Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g that some <str<strong>on</strong>g>for</str<strong>on</strong>g>m of mobile device (such as a rover) is deployed, <str<strong>on</strong>g>the</str<strong>on</strong>g> survey<br />

must also:<br />

– assess <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology of disturbed soil and determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e its c<strong>on</strong>sistency;<br />

– compare <str<strong>on</strong>g>the</str<strong>on</strong>g> colour of rover tracks with undisturbed soil and assess <str<strong>on</strong>g>the</str<strong>on</strong>g> compacti<strong>on</strong><br />

parameters needed to produce this colour change;<br />

– assess <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at which <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed soil re-equilibrates with <str<strong>on</strong>g>the</str<strong>on</strong>g> surround<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.<br />

In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> survey must make:<br />

– an assessment of <str<strong>on</strong>g>the</str<strong>on</strong>g> damage to <str<strong>on</strong>g>the</str<strong>on</strong>g> site caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g strategy employed);<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> orientati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g vehicle;<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> optical depth at <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>for</str<strong>on</strong>g> purposes of power management.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> system must also determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> diffuse illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> sky<br />

can be extremely bright and very red because of <str<strong>on</strong>g>the</str<strong>on</strong>g> high optical depths of atmospheric<br />

dust (Thomas et al., 1998). In order to provide a quantitative assessment of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

colour and albedo of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> airborne dust must be measured.<br />

It should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> spectra, derived from <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der imager measurements,<br />

showed little or no c<strong>on</strong>trast <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 800 nm - 1 µm range. This spectral regi<strong>on</strong><br />

was specifically targeted to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate absorpti<strong>on</strong> by Fe 2+ -bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly<br />

soil with any significant absorpti<strong>on</strong> (near <str<strong>on</strong>g>the</str<strong>on</strong>g> rock ‘Lamb’) showed a band of


SP-1231<br />

168<br />

II.6.9 High-Resoluti<strong>on</strong><br />

Studies<br />

Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der (IMP) provided an excellent balance between resoluti<strong>on</strong>, colour<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and data volume. We propose to follow a similar strategy. In order to<br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral reflectance curve, a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum of n<str<strong>on</strong>g>in</str<strong>on</strong>g>e filters is<br />

required (440, 530, 600, 700, 800, 900, 930, 960 & 1000 nm). This will allow us to<br />

search <str<strong>on</strong>g>for</str<strong>on</strong>g> potentially <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g targets with absorpti<strong>on</strong> bands <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 900-1000 nm<br />

regi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum. An additi<strong>on</strong>al set of three filters is required to provide<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> optical depth. Two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r filters need to be set aside to provide<br />

red/blue stereo coverage. We note that attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to acquire a stereo pair at different<br />

times may save a filter positi<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

acquired images would need to be carefully c<strong>on</strong>sidered and modelled. <str<strong>on</strong>g>The</str<strong>on</strong>g> uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this process are probably too large and hence dedicated stereo pairs are<br />

required. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> system needs a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum of 14 positi<strong>on</strong>s.<br />

In order to quantify both atmospheric phenomena and to provide a survey of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire scene, <str<strong>on</strong>g>the</str<strong>on</strong>g> system needs to be articulated <str<strong>on</strong>g>in</str<strong>on</strong>g> both azimuth and elevati<strong>on</strong>. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

current detector devices (1000×1000-pixel frame transfer CCDs) and a pixel scale of<br />

1 mrad px -1 (equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> IMP), a 40×40º field of view can be acquired <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e<br />

frame. An estimated daily telemetry requirement of 8 Mbit would be necessary. Highquality<br />

<strong>on</strong>ce-<strong>on</strong>ly products, such as surveys, require around 275 Mbit.<br />

It needs to be emphasised that present developments <str<strong>on</strong>g>in</str<strong>on</strong>g> micro-<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated camera<br />

systems have c<strong>on</strong>centrated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> CCD and accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g readout electr<strong>on</strong>ics. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

developments have driven <str<strong>on</strong>g>the</str<strong>on</strong>g> total mass of <str<strong>on</strong>g>the</str<strong>on</strong>g>se elements to around 50 g. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> panoramic survey camera requires a higher dynamic range, azimuth and elevati<strong>on</strong><br />

motors (cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g almost 4π steradians), a mast and a significant filter wheel<br />

assembly. Acousto-optical tunable filters might be used to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> mass of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

latter but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are currently not available <str<strong>on</strong>g>in</str<strong>on</strong>g> large enough dimensi<strong>on</strong>s to cover a<br />

1000×1000-pixel focal plane. We <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e c<strong>on</strong>servatively assume a mass of 2.5 kg<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> this system and a power requirement of 8 W.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> calibrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> panoramic camera requires additi<strong>on</strong>al hardware to be<br />

deployed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lander. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der camera used a series of black and white<br />

and colour calibrati<strong>on</strong> targets to provide good cross-calibrati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

frames acquired at different times and to validate <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-flight calibrati<strong>on</strong>. A similar<br />

approach should be adopted. Places <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lander, <str<strong>on</strong>g>in</str<strong>on</strong>g> view of <str<strong>on</strong>g>the</str<strong>on</strong>g> camera and see<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

as large a solid angle of <str<strong>on</strong>g>the</str<strong>on</strong>g> sky as possible, should be set aside <str<strong>on</strong>g>for</str<strong>on</strong>g> a calibrati<strong>on</strong> target.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> target should be large enough: 100 pixels across seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> camera.<br />

C<strong>on</strong>siderati<strong>on</strong> should be given to whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> rover can deploy a calibrati<strong>on</strong> target<br />

away from <str<strong>on</strong>g>the</str<strong>on</strong>g> lander <str<strong>on</strong>g>in</str<strong>on</strong>g> order to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise scattered light c<strong>on</strong>tributi<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lander’s body and to allow full sky illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> target.<br />

II.6.9.1 Objectives<br />

After specific areas of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest have been identified by <str<strong>on</strong>g>the</str<strong>on</strong>g> panoramic survey, a<br />

detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> needs to be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med. This should be by a rover (or some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

mobile device) mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g to an area of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest and obta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g higher resoluti<strong>on</strong> data from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> target’s proximity. A primary requirement of this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> is knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detailed optical appearance. This must determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> morphological structure of a<br />

target, its colour, <str<strong>on</strong>g>the</str<strong>on</strong>g> degree of wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>in</str<strong>on</strong>g>g and <str<strong>on</strong>g>the</str<strong>on</strong>g> dust coverage. This will determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

how much <str<strong>on</strong>g>the</str<strong>on</strong>g> material has been chemically or physically processed, allow a better<br />

assessment of its orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, and help to identify an even more detailed target <str<strong>on</strong>g>for</str<strong>on</strong>g> gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

and/or sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g and subsequent detailed <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>. This implies that a simplified<br />

camera system with colour capability needs to be <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mobile device.<br />

It is generally accepted that microscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of an unprepared surface<br />

provides little useful additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (see Part I). If a surface can be physically<br />

prepared (by gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g or polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g), however, a microscope with fr<strong>on</strong>t side illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

can <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate <str<strong>on</strong>g>the</str<strong>on</strong>g> material’s microstructure. This will allow an assessment of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock and place c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> processes that <str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>the</str<strong>on</strong>g> rock.<br />

Colour capability is important s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it will allow us to differentiate between <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. We note that polarisati<strong>on</strong> measurements are useful <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> transmissi<strong>on</strong>.


<str<strong>on</strong>g>The</str<strong>on</strong>g> sample materials should be subjected to microscopy with <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g aims,<br />

as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> II.5:<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy;<br />

– determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> texture of rock and soil fragments;<br />

– search <str<strong>on</strong>g>for</str<strong>on</strong>g> possible biogenic structures.<br />

Results will allow <str<strong>on</strong>g>the</str<strong>on</strong>g> def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> geological framework <str<strong>on</strong>g>for</str<strong>on</strong>g> any found biogenic<br />

structures or biochemical signatures. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of images will largely<br />

rely <strong>on</strong> experience ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g terrestrial materials with a system provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

identical image quality. Exchange of images with unknown c<strong>on</strong>tent should be<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>med between at least two groups well be<str<strong>on</strong>g>for</str<strong>on</strong>g>e land<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

possible biological structures will be supported by a collecti<strong>on</strong> of images of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralised<br />

terrestrial analogues that is currently be<str<strong>on</strong>g>in</str<strong>on</strong>g>g built up.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> nature of martian life is unknown, <str<strong>on</strong>g>the</str<strong>on</strong>g> search can <strong>on</strong>ly be based <strong>on</strong><br />

knowledge of Earth materials. With<str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary material, evidence might be sought<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, ve<str<strong>on</strong>g>in</str<strong>on</strong>g>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks, amugdules, botryoidal surfaces, mottl<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, geopetal features and filamentary or ropy structures. Studies of<br />

microfossils <strong>on</strong> Earth show that evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> past life can exist at all scales and,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e, by prob<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly smaller scales <str<strong>on</strong>g>the</str<strong>on</strong>g> chances of discovery <str<strong>on</strong>g>in</str<strong>on</strong>g>crease.<br />

Examples of microfossils found <strong>on</strong> Earth at relatively low resoluti<strong>on</strong> were given <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Figs. II.6.2/1, II.6.2.1/1 & II.6.2.1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> microbial remnants should be<br />

made with <str<strong>on</strong>g>the</str<strong>on</strong>g> highest spatial resoluti<strong>on</strong> that can be reas<strong>on</strong>ably achieved <strong>on</strong> a small<br />

rover. We estimate this to be better than


SP-1231<br />

170<br />

II.6.10 Subsurface<br />

Investigati<strong>on</strong>s<br />

II.6.11 Raman<br />

Spectroscopy<br />

II.6.12 Optical<br />

Spectroscopy<br />

missi<strong>on</strong> with a mass of


surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g. To achieve more than Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der, an optical spectrograph must have an<br />

extremely high signal-to-noise and even <str<strong>on</strong>g>in</str<strong>on</strong>g> this case it is arguable whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r an<br />

unambigious identificati<strong>on</strong> of a m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral could be made. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r techniques (such as<br />

Mössbauer spectroscopy) should be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated.<br />

Mössbauer spectroscopy can provide a clear <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> of ir<strong>on</strong><br />

compounds and FE-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. It is discussed fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Team II report<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> II.5.7.4.<br />

II.6.14.1 Objectives<br />

IR spectroscopy <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range 0.8-4.0 µm can be used to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances of<br />

many types of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g clays, hydrates and carb<strong>on</strong>ates. Carb<strong>on</strong>ate<br />

materials (such as magnesite, calcite and siderite) can easily be dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished from<br />

-<br />

<strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. All have near-IR features <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.7-2.5 µm range attributable to <str<strong>on</strong>g>the</str<strong>on</strong>g> CO3 ani<strong>on</strong>. Sulphates such as gypsum and anhydrite, have absorpti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.0-1.5 µm<br />

and 4.0-4.7 µm ranges. Ferrous absorpti<strong>on</strong>s of pyroxenes are also evident <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.0-<br />

2.0 µm regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 µm to 2 µm absorpti<strong>on</strong>s is diagnostic of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong>. Although oliv<str<strong>on</strong>g>in</str<strong>on</strong>g>e has <strong>on</strong>ly been found <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e martian meteorite, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> broad absorpti<strong>on</strong> feature is also a diagnostic of compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

absorpti<strong>on</strong>s of C-H and C-N bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g organics can be found throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.7-4.0 µm<br />

range. A spectral resoluti<strong>on</strong> of >100 (λ/∆λ) would be sufficient. Good spatial<br />

resoluti<strong>on</strong> is needed to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate variati<strong>on</strong>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> a sample and we estimate that a<br />

resoluti<strong>on</strong> of 200 µm should be atta<str<strong>on</strong>g>in</str<strong>on</strong>g>able.<br />

A sec<strong>on</strong>dary objective <str<strong>on</strong>g>for</str<strong>on</strong>g> IR spectroscopy would be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere. CO 2, H 2O and CO all have characteristic absorpti<strong>on</strong> bands <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IR. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

variati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g>se gases toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> dust cycle are str<strong>on</strong>gly coupled <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian atmosphere and hence this could provide significant additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> time variability of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Local sources of <str<strong>on</strong>g>the</str<strong>on</strong>g>se gases may be<br />

present, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity.<br />

It should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> highest resoluti<strong>on</strong> near-IR spectroscopic measurements of<br />

<strong>Mars</strong> come from <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubble Space Telescope, at around 200 km px -1 . <str<strong>on</strong>g>The</str<strong>on</strong>g>se data show<br />

variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> ferric alterati<strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and primary ferrous silicates but are limited by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir coarse spatial resoluti<strong>on</strong>. It is not clear whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we will see low c<strong>on</strong>trast <str<strong>on</strong>g>in</str<strong>on</strong>g> high<br />

spatial resoluti<strong>on</strong> data (as was seen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optical with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der imager) or<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r IR spectroscopy at <str<strong>on</strong>g>the</str<strong>on</strong>g> 200 µm level will be extremely reveal<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

II.6.14.2 Requirements<br />

Low-mass IR spectrometer systems have been proposed <str<strong>on</strong>g>for</str<strong>on</strong>g> several missi<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> RoLand lander <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rosetta missi<strong>on</strong>, and some systems are now<br />

commercially available. <str<strong>on</strong>g>The</str<strong>on</strong>g> system may require illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> devices (such as LEDs)<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> order to compensate <str<strong>on</strong>g>for</str<strong>on</strong>g> absorpti<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

caused by dust <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. <str<strong>on</strong>g>The</str<strong>on</strong>g> system should, however, be comparable <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

mass and power c<strong>on</strong>sumpti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope.<br />

Because transmissi<strong>on</strong> IR spectroscopy may not be applicable (requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

preparati<strong>on</strong> of th<str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong>s), <str<strong>on</strong>g>the</str<strong>on</strong>g> less diagnostic reflecti<strong>on</strong> mode may have to be<br />

selected. Even <str<strong>on</strong>g>in</str<strong>on</strong>g> this mode, however, identificati<strong>on</strong> of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral and organic<br />

compounds and detecti<strong>on</strong> of H 2O and (OH) <str<strong>on</strong>g>in</str<strong>on</strong>g> silicates should be relatively easy. On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, a Raman microspectrometer should probably provide most of that<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a more unambiguous way.<br />

II.6.15.1 Objectives<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal-IR spectroscopy <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 6-9.5 µm regi<strong>on</strong> can be used to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate specific<br />

absorpti<strong>on</strong>s/emissi<strong>on</strong>s of carb<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g molecules. Str<strong>on</strong>g features are evident at<br />

6.18 µm result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>the</str<strong>on</strong>g> C-C and C-O b<strong>on</strong>ds, 6.86 µm (-CH2-, -CH3 scissor),<br />

team III: <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of subsurface aliquots and surface rocks/II.6<br />

II.6.13 Mössbauer<br />

Spectroscopy<br />

II.6.14 IR Spectroscopy<br />

II.6.15 <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal-IR<br />

Spectroscopy<br />

171


SP-1231<br />

172<br />

II.6.16 Chemical<br />

Inspecti<strong>on</strong> of Subsurface<br />

Material<br />

7.26 µm (C-H bend), and 7.90 µm (O-H or C-H bend). This wavelength range could<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e provide a direct test <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of organics.<br />

Although carb<strong>on</strong>-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g molecules are most <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g from an exobiology<br />

viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t, a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal-IR system can also provide significant <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> salts,<br />

evaporites (e.g. phosphates, sulphates, sulphides, nitrites, chlorides) and <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

that might be <str<strong>on</strong>g>for</str<strong>on</strong>g>med at hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Carb<strong>on</strong>ates are easily detected <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal-IR spectra, and variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> ani<strong>on</strong> compositi<strong>on</strong> can also be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

Hydroxide-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals (e.g. clays) also have characteristic <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal-IR spectral<br />

features result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g modes of OH. <str<strong>on</strong>g>The</str<strong>on</strong>g> Al-O-H bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

mode near 11 µm <str<strong>on</strong>g>in</str<strong>on</strong>g> kaol<str<strong>on</strong>g>in</str<strong>on</strong>g>ite is a good example. Clays show clear spectral variati<strong>on</strong>s<br />

directly related to differences <str<strong>on</strong>g>in</str<strong>on</strong>g> degree of hydrati<strong>on</strong> and leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Oxides, which may<br />

be important <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary rocks, may be identified us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir broad absorpti<strong>on</strong><br />

features <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 7-8.5 µm range. Silicates can also be detected us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> broad<br />

absorpti<strong>on</strong> features around 10 µm and 20 µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> exact wavelengths of <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong><br />

depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matrix.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal emissi<strong>on</strong> spectroscopy can also be used to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

or hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity is occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> presence of warm regi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

would be extremely important <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> extant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct martian biota (Walter<br />

& DesMarais, 1993). Is <strong>Mars</strong> geologically dead or is <str<strong>on</strong>g>the</str<strong>on</strong>g>re sufficient heat produced to<br />

drive a subsurface hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal circulati<strong>on</strong> system? If this circulati<strong>on</strong> is <strong>on</strong> a small<br />

scale, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal emissi<strong>on</strong> spectroscopy may be a requirement <str<strong>on</strong>g>in</str<strong>on</strong>g> order to look <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

optimum place <str<strong>on</strong>g>for</str<strong>on</strong>g> life.<br />

II.6.15.2 Instrumentati<strong>on</strong><br />

A <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal emissi<strong>on</strong> spectrometer will fly with <str<strong>on</strong>g>the</str<strong>on</strong>g> A<str<strong>on</strong>g>the</str<strong>on</strong>g>na rover <strong>on</strong> <strong>Mars</strong> Surveyor<br />

2001. It is a m<str<strong>on</strong>g>in</str<strong>on</strong>g>iature versi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>strument now fly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Global<br />

Surveyor missi<strong>on</strong>. This device is mounted <strong>on</strong> a mast with <str<strong>on</strong>g>the</str<strong>on</strong>g> panchromatic camera to<br />

allow accurate boresight<str<strong>on</strong>g>in</str<strong>on</strong>g>g, and covers a wavelength range of 5-28 µm to look at<br />

water-deposited m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. <str<strong>on</strong>g>The</str<strong>on</strong>g> highest angular resoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> device is 7 mrad. In<br />

additi<strong>on</strong> to m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, <str<strong>on</strong>g>the</str<strong>on</strong>g> device can provide temperature profiles <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmospheric boundary layer, and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophysical properties of rocks and soils (see<br />

http://astrosun.tn.cornell.edu/a<str<strong>on</strong>g>the</str<strong>on</strong>g>na/m<str<strong>on</strong>g>in</str<strong>on</strong>g>ites.html).<br />

II.6.16.1 Objectives<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chemistry of carb<strong>on</strong> and sulphur-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g phases and particularly <str<strong>on</strong>g>the</str<strong>on</strong>g>ir isotopic<br />

compositi<strong>on</strong> provides redox-sensitive <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment as well as<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic- and biologically-c<strong>on</strong>trolled processes with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical<br />

cycle of sulphur. Str<strong>on</strong>gly oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s prevail <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> present surface. In order<br />

to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> redox-sensitive <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular reduced organic or m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral phases,<br />

it is important to study subsurface material, which might be shielded aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hostile surface c<strong>on</strong>diti<strong>on</strong>s. Depth-c<strong>on</strong>trolled analysis of drill-core material should<br />

reveal a redox-gradient. <str<strong>on</strong>g>The</str<strong>on</strong>g> presence of oxidised and reduced phases characterises<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and – as part of it – possible signs of extant or ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct<br />

biological activities.<br />

II.6.16.2 Requirements<br />

Carb<strong>on</strong> can be present as organic matter or as carb<strong>on</strong>ate m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals. Sulphur-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

phases are likely part of a m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral matrix, a soil or a rock. Liberati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> subsequent<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of chemical and isotopic properties can be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med via combusti<strong>on</strong><br />

at m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral-specific temperatures. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r details are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Team II report<br />

(Secti<strong>on</strong> II.5).<br />

Be<str<strong>on</strong>g>for</str<strong>on</strong>g>e any analytical detecti<strong>on</strong>, it seems necessary to break/crush/pulverise <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

matrix <str<strong>on</strong>g>in</str<strong>on</strong>g> order to easily liberate carb<strong>on</strong> and/or sulphur-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g compounds. Small<br />

rock chips or, better, rock powder would be suitable material to guarantee a complete<br />

liberati<strong>on</strong>/volatilisati<strong>on</strong>.


<str<strong>on</strong>g>The</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> experiments <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> ext<str<strong>on</strong>g>in</str<strong>on</strong>g>ct life are:<br />

Experiment Objective<br />

Panoramic camera Survey of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites and target selecti<strong>on</strong><br />

Optical microscope Detecti<strong>on</strong> of large (>3 µm) fossils<br />

Atomic Force Microscope Detecti<strong>on</strong> of small (>10 nm) fossils<br />

Raman/IR spectroscopy Detecti<strong>on</strong> of organic and sulphur-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

compounds<br />

Sec<strong>on</strong>dary objectives associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of martian geology and<br />

geochemistry are:<br />

Experiment Objective<br />

Panoramic camera Survey of land<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites and target selecti<strong>on</strong><br />

Optical microscope Intermediate-resoluti<strong>on</strong> imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of<br />

rock structure<br />

Atomic Force Microscope High-resoluti<strong>on</strong> imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of target structure<br />

Borehole imager Investigati<strong>on</strong> of layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g of sediments<br />

Mössbauer spectrometer Investigati<strong>on</strong> of chemical compositi<strong>on</strong><br />

of silicates<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal emissi<strong>on</strong>/IR spectroscopy Investigati<strong>on</strong> of atmospheric gases<br />

<str<strong>on</strong>g>Search</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mass power and volume estimates are:<br />

Instrument Mass (kg) Power (W) Volume (cm 3 ) Priority<br />

(1=high)<br />

Panoramic camera 2.5 8 1100 +mast/ 1<br />

e-box<br />

Optical microscope 0.2 4 150 2<br />

Colour camera 0.1 2.5 200 2<br />

AFM/SEM


SP-1231<br />

174<br />

II.6.19 Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g/<br />

Polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g/Immersi<strong>on</strong><br />

II.6.20 Drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g and<br />

Digg<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

II.6.21 Siev<str<strong>on</strong>g>in</str<strong>on</strong>g>g and<br />

Magnetic Separati<strong>on</strong><br />

II.6.22 Cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g and Saw<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

back to <str<strong>on</strong>g>the</str<strong>on</strong>g> lander. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mer is clearly preferable if we wish to study large rocks.<br />

Golombek et al. (1997) po<str<strong>on</strong>g>in</str<strong>on</strong>g>t out that <str<strong>on</strong>g>the</str<strong>on</strong>g> rock density at <str<strong>on</strong>g>the</str<strong>on</strong>g> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der site was<br />

similar to that predicted from Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal emissi<strong>on</strong> spectroscopy measurements<br />

and Earth-based radar reflectance. Thus, although <str<strong>on</strong>g>the</str<strong>on</strong>g> rock density is <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous<br />

at small (metre) scales, it is probably homogeneous at scales comparable to or greater<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> area visible to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der imager. Thus, we estimate that <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

system must have an effective mobile range of greater than 20 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site.<br />

A major problem that <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with higher optical magnificati<strong>on</strong>s is that detailed<br />

structures often are not recognisable <str<strong>on</strong>g>in</str<strong>on</strong>g> dirty, unprepared samples. Also, even with<br />

clean surfaces, roughness renders <str<strong>on</strong>g>the</str<strong>on</strong>g> microscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior of<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral aggregates almost impossible. This problem may be avoided by<br />

polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g or gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g surfaces or by immersi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to/cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g by a liquid (which must<br />

be n<strong>on</strong>-c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g, n<strong>on</strong>-freez<str<strong>on</strong>g>in</str<strong>on</strong>g>g, n<strong>on</strong>-evaporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g etc). A polish<str<strong>on</strong>g>in</str<strong>on</strong>g>g tool ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r like<br />

a c<strong>on</strong>venti<strong>on</strong>al sander is easy to envisage and should be capable of smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

surfaces rough at <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 mm level and smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>m to a roughness at <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.1 µm (to<br />

be c<strong>on</strong>firmed) level.<br />

Immersi<strong>on</strong> is obviously difficult to envisage. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re may be some<br />

possibilities us<str<strong>on</strong>g>in</str<strong>on</strong>g>g epoxy-like substances that should not be ruled out at this stage.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> penetrati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>durated or sedimentary soils (as ‘Scooby Doo’ at <str<strong>on</strong>g>the</str<strong>on</strong>g> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site is <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred to be) provides important <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Investigati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

borehole may provide evidence of layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, while <str<strong>on</strong>g>the</str<strong>on</strong>g> sub-sedimentary layer may give<br />

us access to knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g> preflood surface of <strong>Mars</strong>. It does, however, require<br />

more <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, particularly c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>the</str<strong>on</strong>g> borehole needs to be wide enough to<br />

accommodate <str<strong>on</strong>g>in</str<strong>on</strong>g>strumentati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of layers.<br />

Simple digg<str<strong>on</strong>g>in</str<strong>on</strong>g>g of trenches <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface layer will probably not provide a<br />

substantial leap <str<strong>on</strong>g>for</str<strong>on</strong>g>ward <str<strong>on</strong>g>in</str<strong>on</strong>g> our knowledge over that acquired by Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g, Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

and future US <strong>Mars</strong> landers.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> advantage of bor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to rock is that <str<strong>on</strong>g>the</str<strong>on</strong>g> depth required to reach unoxidised<br />

material is likely to be significantly less than <str<strong>on</strong>g>for</str<strong>on</strong>g> a loosely compacted regolith. Only<br />

centimetres may be required <str<strong>on</strong>g>in</str<strong>on</strong>g> order to fully expose <str<strong>on</strong>g>the</str<strong>on</strong>g> extent of atmosphere-rock<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s. A centimetre-sized core would <str<strong>on</strong>g>the</str<strong>on</strong>g>n provide us with samples of a range<br />

of different oxidati<strong>on</strong> states.<br />

Siev<str<strong>on</strong>g>in</str<strong>on</strong>g>g may be useful <str<strong>on</strong>g>for</str<strong>on</strong>g> reject<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e dust h<str<strong>on</strong>g>in</str<strong>on</strong>g>der<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of larger gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

This could provide a first clean<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> sample by remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g dust lightly adher<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sample. Magnetic separati<strong>on</strong> also provides an <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g alternative. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample<br />

could be passed over a series of str<strong>on</strong>g magnetics that remove magnetised dust (Hviid<br />

et al., 1997) from its surface.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> geological character of any land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site is difficult to predict with certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ty, a<br />

lander must be able to cope with <str<strong>on</strong>g>the</str<strong>on</strong>g> sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a range of materials such as dust,<br />

loose and hard soil, and various small and large rocks. Not know<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> depth of<br />

oxidati<strong>on</strong>, it would be risky to c<strong>on</strong>centrate fully <strong>on</strong> drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to soil without hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ability to sample <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terior of small or large rocks. A hard-rock drill or a hardrock<br />

saw are needed to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m this task. Ideally, it would be possible to saw smaller<br />

rocks picked up from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, as well as to drill <str<strong>on</strong>g>in</str<strong>on</strong>g>to large, unmovable rocks. Tools<br />

must be available to sample all possible materials. <str<strong>on</strong>g>The</str<strong>on</strong>g> penetrati<strong>on</strong> of hard rocks is<br />

essential <str<strong>on</strong>g>for</str<strong>on</strong>g> petrographic characterisati<strong>on</strong> (surfaces might be covered by ‘desert<br />

varnish’), unbiased chemical analysis (avoid<str<strong>on</strong>g>in</str<strong>on</strong>g>g a surface layer of possibly anomalous<br />

compositi<strong>on</strong>) and <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> microbial fossils (both surface and subsurface type<br />

microfossils may now be <str<strong>on</strong>g>in</str<strong>on</strong>g> hard rocks).


C<strong>on</strong>siderati<strong>on</strong> of a diam<strong>on</strong>d wire-saw or blade-saw should be <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample preparati<strong>on</strong> scheme. A diam<strong>on</strong>d wire-saw to cut rocks of about 1-5 cm<br />

diameter would basically c<strong>on</strong>sist of two wheels (5 cm and 1 cm diameters), a<br />

diam<strong>on</strong>d wire about 40 cm l<strong>on</strong>g and a sample holder. Total weight could be held to as<br />

low as 300 g. <str<strong>on</strong>g>The</str<strong>on</strong>g> benefit of such an <str<strong>on</strong>g>in</str<strong>on</strong>g>strument would be enormous. It would allow<br />

imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of fresh rock surfaces (essential <str<strong>on</strong>g>for</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> of possible<br />

biogenic structures). In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> depth of oxidati<strong>on</strong> could be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

relatively impermeable rock, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g extrapolati<strong>on</strong> to depth of oxidati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil.<br />

Analyses of completely unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red material with an alpha-prot<strong>on</strong>-X-ray<br />

spectrometer would also be possible. However, it will be necessary to take account of<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> effects <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by all sample preparati<strong>on</strong> techniques and to choose<br />

materials and techniques appropriate <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent observati<strong>on</strong>s and analyses.<br />

Thus, a diam<strong>on</strong>d saw would be totally unacceptable <str<strong>on</strong>g>for</str<strong>on</strong>g> prepar<str<strong>on</strong>g>in</str<strong>on</strong>g>g a gas<br />

chromatograph-mass spectrometer sample <str<strong>on</strong>g>in</str<strong>on</strong>g>tended <str<strong>on</strong>g>for</str<strong>on</strong>g> a ppm-level search <str<strong>on</strong>g>for</str<strong>on</strong>g> carb<strong>on</strong>.<br />

Alternatives such as bor<strong>on</strong> nitride would have to be substituted, although trace<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s would need to be c<strong>on</strong>sidered.<br />

A collecti<strong>on</strong> of microbial structures from Earth as a basis <str<strong>on</strong>g>for</str<strong>on</strong>g> comparis<strong>on</strong> should be<br />

available. Such a database would be a very helpful tool <str<strong>on</strong>g>in</str<strong>on</strong>g> recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g possible<br />

microbial structures <strong>on</strong> <strong>Mars</strong>. This database would not <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>clude images of fossil<br />

microbes, but of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong> of which was <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by microbial<br />

growth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> recogniti<strong>on</strong> and identificati<strong>on</strong> of rocks and m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same type<br />

and quality of data that can realistically be expected from a <strong>Mars</strong> missi<strong>on</strong> should be<br />

tested and exercised us<str<strong>on</strong>g>in</str<strong>on</strong>g>g data (ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly electr<strong>on</strong>ic images of c<strong>on</strong>tents unknown to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpreters) given to experienced geologists etc.<br />

Imaged materials should <str<strong>on</strong>g>in</str<strong>on</strong>g>clude all types of geological materials with a focus <strong>on</strong><br />

those most likely present <strong>on</strong> <strong>Mars</strong>. Samples should also <str<strong>on</strong>g>in</str<strong>on</strong>g>clude dirty, uncleaned field<br />

material. Based <strong>on</strong> such a study, <str<strong>on</strong>g>the</str<strong>on</strong>g> degree of c<strong>on</strong>fidence obta<str<strong>on</strong>g>in</str<strong>on</strong>g>able by Earth-based<br />

‘<strong>Mars</strong> field work’ and <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>s caused by different <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreters could be estimated.<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> must have mobility to a distance of at least 20 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

site;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> of surfaces and samples must guarantee access to unwea<str<strong>on</strong>g>the</str<strong>on</strong>g>red<br />

material;<br />

• c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of samples dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g preparati<strong>on</strong> must be carefully c<strong>on</strong>sidered;<br />

• optical microscopy (down to a resoluti<strong>on</strong> of around 1 µm) and ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r atomic <str<strong>on</strong>g>for</str<strong>on</strong>g>ce<br />

microscopy or scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g electr<strong>on</strong> microscopy (down to a resoluti<strong>on</strong> of 0.01 µm) of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same sample are required, although fossils may be evident at many scales;<br />

• successful microscopy will str<strong>on</strong>gly depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir preparati<strong>on</strong>;<br />

• methods of sample acquisiti<strong>on</strong> must be as versatile as possible, enabl<str<strong>on</strong>g>in</str<strong>on</strong>g>g deep-core<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of sediments, core sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of hard rocks and soil sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g;<br />

• penetrati<strong>on</strong> of hard rocks is essential <str<strong>on</strong>g>for</str<strong>on</strong>g> petrographic characterisati<strong>on</strong>, unbiased<br />

chemical analysis and search<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil microbes;<br />

• a database with terrestrial microbial structures must be available <str<strong>on</strong>g>for</str<strong>on</strong>g> comparis<strong>on</strong>;<br />

• petrographic and biological <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of images must be exercised under<br />

realistic c<strong>on</strong>diti<strong>on</strong>s;<br />

• IR spectroscopy and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal emissi<strong>on</strong> spectroscopy are <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g but, <str<strong>on</strong>g>for</str<strong>on</strong>g> goals<br />

focused <strong>on</strong> surface m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, Raman and Mössbauer spectroscopy may be more<br />

appropriate. Optical spectroscopy is unlikely to produce useful results.<br />

team III: <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of subsurface aliquots and surface rocks/II.6<br />

II.6.23 Data Analysis<br />

II.6.24 Summary of<br />

Major C<strong>on</strong>clusi<strong>on</strong>s<br />

175


SP-1231<br />

176<br />

References<br />

Barbieri, R., d’Onofrio, S., Melis, R. & Westall, F. Calcified bacteria <strong>on</strong> benthic<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>am<str<strong>on</strong>g>in</str<strong>on</strong>g>ifera <str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctic sediments. Palaeogeog. Palaeoclimatal., Palaeoecol., In<br />

Press.<br />

Berner, R.A. (1970). Sedimentary pyrite <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Amer. J. Sci. 268, 1-23.<br />

Berner, R.A. (1984). Sedimentary pyrite <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>: an update. Geochim. Cosmochim.<br />

Acta 48, 605-615.<br />

Briggs, D.E.G., Bottrell, S.H. & Raiswell, R. (1991). Pyritizati<strong>on</strong> of soft-bodied<br />

fossils: Beecher’s Trilobite Bed, upper Ordovician, New York State. Geology 19,<br />

1221-1224.<br />

Briggs, D.E.G., Raiswell, R., Bottrell, S.H., Hatfield, D. & Bartels, C. (1996).<br />

C<strong>on</strong>trols <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pyritizati<strong>on</strong> of excepti<strong>on</strong>ally preserved fossils: an analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lower Dev<strong>on</strong>ian Hunsrück Slate of Germany. Amer. J. Sci. 296, 633-663.<br />

Canfield, D.E. (1989). Reactive ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments. Geochim. Cosmochim.<br />

Acta 53, 619-632.<br />

Gerdes, G. & Krumbe<str<strong>on</strong>g>in</str<strong>on</strong>g>, W.E. (1987). Biolam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated deposits. In Lecture Notes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Earth Sciences (Eds. S. Battacharji et al.), Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>, Germany, 183pp.<br />

Goldhaber, M.B. & Kaplan, I.R. (1974). <str<strong>on</strong>g>The</str<strong>on</strong>g> Sulfur Cycle. In <str<strong>on</strong>g>The</str<strong>on</strong>g> Sea, 5 (Ed. E.<br />

Goldberg), Wiley, Chichester, UK, pp569-655.<br />

Golombek, M.P., Cook, R.A., Moore, H.J. & Parker, T.J. (1997). Selecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site. J. Geophys. Res. 102, 3967-3988.<br />

Hask<str<strong>on</strong>g>in</str<strong>on</strong>g>, L.A., Wang, A, Rockow, K.M., Jolliff, B.L., Korotev, R.L. & Viskupic, K.M.<br />

(1997). Raman spectroscopy <str<strong>on</strong>g>for</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral identificati<strong>on</strong> and quantificati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

situ planetary surface analysis: A po<str<strong>on</strong>g>in</str<strong>on</strong>g>t count method. J. Geophys. Res. 102, 19293-<br />

306.<br />

Hofmann, B.A. & Farmer, J.D. (1997). Microbial fossils from terrestrial subsurface<br />

hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal envir<strong>on</strong>ments: Examples and implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>. In C<strong>on</strong>ference<br />

<strong>on</strong> Early <strong>Mars</strong>: Geologic and Hydrologic Evoluti<strong>on</strong>, Physical and chemical<br />

envir<strong>on</strong>ments, and <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Life</str<strong>on</strong>g>. LPI C<strong>on</strong>tr. No 916 (Eds. S.M. Clif<str<strong>on</strong>g>for</str<strong>on</strong>g>d<br />

et al.), Lunar and Planetary Science Institute, Houst<strong>on</strong>, USA, pp40-41.<br />

Hviid, S.F. et al. (1997). Magnetic properties experiments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der<br />

lander. Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary results. Science 278, 1768.<br />

Kretzschmar, M. (1982). Fossile Pilze <str<strong>on</strong>g>in</str<strong>on</strong>g> Eisen-Stromatoli<str<strong>on</strong>g>the</str<strong>on</strong>g>n v<strong>on</strong> Warste<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

(Rhe<str<strong>on</strong>g>in</str<strong>on</strong>g>isches Schiefergebirge). Facies 7, 237-260.<br />

K<str<strong>on</strong>g>in</str<strong>on</strong>g>nunen, K.A. & L<str<strong>on</strong>g>in</str<strong>on</strong>g>dqvist, K. (1998). Agate as an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of impact structures:<br />

An example from Saaksjarvi, F<str<strong>on</strong>g>in</str<strong>on</strong>g>land. Meteoritics & Planetary Science 33, 7-12.<br />

Liebig, K., Westall, F. & Schmitz, M. (1996). A study of fossil microstructures from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> eocene messel <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g transmissi<strong>on</strong> electr<strong>on</strong> microscopy. N. Jahrbuch<br />

fuer Geologie und Palae<strong>on</strong>tologie M<strong>on</strong>. 4, 218-231.<br />

M<strong>on</strong>ty, C.L.V., Westall, F., & van der Gaast, S. (1991). Diagenesis of siliceous<br />

particles <str<strong>on</strong>g>in</str<strong>on</strong>g> sub-antarctic sediments, odp. Leg 114, hole 699a: possible microbial<br />

mediati<strong>on</strong>. In Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of <str<strong>on</strong>g>the</str<strong>on</strong>g> ODP Scientific Research, 114 (Eds. P.F.<br />

Ciesielski, et al.), ODP, College Stati<strong>on</strong>, Texas, USA, pp685-710.<br />

Morse, J.W., Millero, F.J., Cornwell, J.C. & Rickard, D. (1987). <str<strong>on</strong>g>The</str<strong>on</strong>g> chemistry of<br />

hydrogen sulfide and ir<strong>on</strong> sulfide systems <str<strong>on</strong>g>in</str<strong>on</strong>g> natural waters. Earth Sci. Rev. 24, 1-<br />

42.<br />

Russell, M.J., Hall, A.J. & Gize, A.P. (1990). Pyrite and <str<strong>on</strong>g>the</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of life. Nature 344,<br />

387.<br />

Russell, M.J., Hall, A.J. & Turner, D. (1989). In vitro growth of ir<strong>on</strong> sulphide<br />

chimneys: possible culture chambers <str<strong>on</strong>g>for</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>-of-life experiments. Terra Nova 1,<br />

238-241.<br />

Rust, G.W. (1935). Colloidal primary copper ores at Cornwall M<str<strong>on</strong>g>in</str<strong>on</strong>g>es, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>astern<br />

Missouri. J. Geol. 43, 398-426.<br />

Sassano, G.P. & Schrijver, K. (1989). Framboidal pyrite: early diagenetic, late<br />

diagenetic, and hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal occurrences from <str<strong>on</strong>g>the</str<strong>on</strong>g> Act<strong>on</strong> Vale quarry, Cambro-<br />

Ordovician, Quebec. American J. Science 289, 167-179.<br />

Sawlowicz, Z. (1993). Pyrite framboids and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir development: a new c<strong>on</strong>ceptual<br />

mechanism. Geol. Rdsch. 82, 148-156.


Scho<strong>on</strong>en, M.A. & Barnes, H.L. (1991). Reacti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>in</str<strong>on</strong>g>g pyrite and marcasite from<br />

soluti<strong>on</strong>: I. Nucleati<strong>on</strong> of FeS 2 below 100ºC. Geochim. Cosmochim. Acta 55, 1495-<br />

1504.<br />

Stevens, T.O and McK<str<strong>on</strong>g>in</str<strong>on</strong>g>ley, J.P. (1996). Lithoautotrophic microbial ecosystems <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

deep basalt aquifers. Science 270, 450-454.<br />

Stevens, T.O. (1997). Subsurface microbiology and <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosphere. In<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Microbiology of <str<strong>on</strong>g>the</str<strong>on</strong>g> Terrestrial deep subsurface (Eds. A. Penny & D.<br />

Haldeman), Lewis Publishers, Boca Rat<strong>on</strong>, New York, USA, pp205-223.<br />

Strauss, H. (1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> isotopic compositi<strong>on</strong> of sedimentary sulfur through time.<br />

Palaeogeogr. Palaeoclimat. Palaeoecol. 132, 97-118.<br />

Sweeney, R.E. & Kaplan, I.R. (1973). Pyrite framboid <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>: laboratory syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

and mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments. Ec<strong>on</strong>. Geol. 68, 618-634.<br />

Thomas, N., Markiewicz, W.J., Sablotny, R.M., Wuttke, M.W., Keller, H.U., Johns<strong>on</strong>,<br />

J.R., Reid, R.J. & Smith, P.H. (1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> color of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian sky and its <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface. J. Geophys. Res. Planets, <str<strong>on</strong>g>in</str<strong>on</strong>g> Press.<br />

Wächtershäuser, G. (1988). Be<str<strong>on</strong>g>for</str<strong>on</strong>g>e enzymes and templates: <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of surface<br />

metabolism. Microbiol. Rev. 52, 452-484.<br />

Walter, M.R. & DesMarais, D.J. (1993). Preservati<strong>on</strong> of biological <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g deposits: develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g a strategy <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil life <strong>on</strong> <strong>Mars</strong>.<br />

Icarus 101, 129-143.<br />

Westall, F. (1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> nature of fossil bacteria: implicati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

extraterrestrial life. J. Geophys. Res. Planets, <str<strong>on</strong>g>in</str<strong>on</strong>g> Press.<br />

Westall, F., B<strong>on</strong>i, L., & Guerz<strong>on</strong>i, M.E. (1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> experimental silicificati<strong>on</strong> of<br />

microorganisms. Palae<strong>on</strong>tol. 38, 495-528.<br />

Wilk<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.T. & Barnes, H.L. (1997). Formati<strong>on</strong> processes of framboidal pyrite.<br />

Geochim. Cosmochim. Acta 61, 323-339.<br />

Wilk<str<strong>on</strong>g>in</str<strong>on</strong>g>, R.T., Barnes, H.L. & Brantley, S.L. (1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> size distributi<strong>on</strong> of framboidal<br />

pyrite <str<strong>on</strong>g>in</str<strong>on</strong>g> modern sediments – an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of redox c<strong>on</strong>diti<strong>on</strong>s. Geochim.<br />

Cosmochim. Acta 60, 3897-3912.<br />

Wuttke, M. (1983). ‘Weichteileerhaltung’ durch litifizierte Mokroorganismen bei<br />

mittel-eozaenen Vertebraten aus dem Oelschiefern der ‘Grube Messel’ bei<br />

Darmstadt. Senckenbergiana lethaia 65, 509-527.<br />

team III: <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>specti<strong>on</strong> of subsurface aliquots and surface rocks/II.6<br />

177


II.7 C<strong>on</strong>clusi<strong>on</strong>s<br />

Three fundamental requirements were identified as need<str<strong>on</strong>g>in</str<strong>on</strong>g>g to be satisfied if a search<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> evidence of life <strong>on</strong> <strong>Mars</strong> is to be c<strong>on</strong>ducted satisfactorily. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are:<br />

i. <str<strong>on</strong>g>the</str<strong>on</strong>g> land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site must be selected as <strong>on</strong>e of high exobiology potential. That has<br />

not been <str<strong>on</strong>g>the</str<strong>on</strong>g> case so far. Sites associated with sedimentary deposits, <str<strong>on</strong>g>in</str<strong>on</strong>g> areas<br />

relatively free from aeolian sand, would be prime targets.<br />

ii. sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g that site must occur <str<strong>on</strong>g>in</str<strong>on</strong>g> several locati<strong>on</strong>s and should result <str<strong>on</strong>g>in</str<strong>on</strong>g> samples<br />

free from <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface oxidati<strong>on</strong> processes. Hence, mobility is<br />

needed, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems that can reach well <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> regolith and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface rocks.<br />

iii. an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated measurement set must be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <strong>on</strong> those samples such as to<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> ambiguity. Hence, observati<strong>on</strong>al, spectroscopic and<br />

analytical techniques should be used, which toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r can provide a coherent<br />

descripti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> petrology, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and geochemistry of that site.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> preferred sites are generally located <str<strong>on</strong>g>in</str<strong>on</strong>g> large sedimentary terra<str<strong>on</strong>g>in</str<strong>on</strong>g>s with low<br />

aeolian sand coverage. Hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal sites may provide an alternative. Higherresoluti<strong>on</strong><br />

imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g of potential targets is needed, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with c<strong>on</strong>firm<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical<br />

mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g. It was agreed that <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of sites would be narrowed down to<br />

five, selected us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> above criteria, am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. Those currently identified are<br />

listed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table II.7.1/1. However, as new <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> becomes available <str<strong>on</strong>g>the</str<strong>on</strong>g>se may<br />

change. <str<strong>on</strong>g>The</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al site selecti<strong>on</strong> process obviously also has to take account of technical<br />

and missi<strong>on</strong> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts.<br />

Table II.7.1/1. Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g>.<br />

Exobiological<br />

Name Locati<strong>on</strong> Potential General Remarks<br />

Marca Crater 10.4ºS / 158.2ºW Good: lake beds Several craters with<br />

lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposits<br />

Hydroates Chaos 0.02ºN / 33.94ºW Good: lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e Complex bas<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

deposits rock debris<br />

Apol<str<strong>on</strong>g>in</str<strong>on</strong>g>aris Patera 8.6ºS / 187.5ºW Good: hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Volcano + rock debris<br />

systems of various ages<br />

Gusev Crater 14ºS / 184.5ºW Good: lake beds Lacustr<str<strong>on</strong>g>in</str<strong>on</strong>g>e bas<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

+ large outflow channel<br />

Capri Chasma 15ºS / 47ºW Good: probable Chaotic terra<str<strong>on</strong>g>in</str<strong>on</strong>g>/<br />

water-laid deposits sediments<br />

II.7.1 Land<str<strong>on</strong>g>in</str<strong>on</strong>g>g Sites <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g><br />

179


SP-1231<br />

180<br />

II.7.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Sample<br />

Acquisiti<strong>on</strong>, Distributi<strong>on</strong><br />

and Preparati<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g><br />

Samples must be free from <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface oxidati<strong>on</strong> processes. That implies<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g from with<str<strong>on</strong>g>in</str<strong>on</strong>g> rocks and from well below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it cannot be<br />

precluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface regi<strong>on</strong> has been subjected to churn<str<strong>on</strong>g>in</str<strong>on</strong>g>g over geological<br />

time, sequential oxidati<strong>on</strong> analysis is needed.<br />

II.7.2.1 Subsurface Sample: Acquisiti<strong>on</strong> and Preparati<strong>on</strong><br />

It was c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> percussive, unguided ‘mole’ drill is unsuited to <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

requirements, primarily because it is <str<strong>on</strong>g>in</str<strong>on</strong>g>effective <str<strong>on</strong>g>in</str<strong>on</strong>g> rock materials which, it is hoped,<br />

will <str<strong>on</strong>g>for</str<strong>on</strong>g>m part of <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentary regolith at <str<strong>on</strong>g>the</str<strong>on</strong>g> site.<br />

Instead, subsurface sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g will be by percussive core drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a core<br />

diameter


Table II.7.3/1. Instrument Characteristics <str<strong>on</strong>g>for</str<strong>on</strong>g> an <str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Observati<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g>.<br />

II.7.2.3 Soil Samples<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se will require a scoop system and subsequent siev<str<strong>on</strong>g>in</str<strong>on</strong>g>g to provide samples <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

microscopy (<strong>on</strong> a metal tape) and chemical analysis.<br />

Observati<strong>on</strong>al methods selected <str<strong>on</strong>g>in</str<strong>on</strong>g>volve a macroscopic system, low- and highresoluti<strong>on</strong><br />

optical microscopes, and an Atomic Force Microscope to reach <str<strong>on</strong>g>the</str<strong>on</strong>g> nmresoluti<strong>on</strong><br />

level. On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest prokaryotic microbial ecosystems have left two<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g> categories of morphological fossil evidence.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> macroscopic level are <str<strong>on</strong>g>the</str<strong>on</strong>g> lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated biosedimentary structures (stromatolites).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se microbiolite structures have a record extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g back some 3.5 Gyr. If<br />

<strong>Mars</strong> had a comparable early period of abundant water, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is possible that<br />

macroscopic microbiolite structures may be associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian<br />

sedimentary structures. Hence, degraded macroscopic structures of similar orig<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

might be observed <str<strong>on</strong>g>in</str<strong>on</strong>g> sedimentary surface rocks and scarps by a panoramic camera<br />

with a resoluti<strong>on</strong> of about 1 mm. <str<strong>on</strong>g>The</str<strong>on</strong>g> camera will also be extensively used <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

geological and m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical c<strong>on</strong>text.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d ma<str<strong>on</strong>g>in</str<strong>on</strong>g> category of morphological fossil evidence left <strong>on</strong> Earth derives<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> cellular relics of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual microorganisms. <str<strong>on</strong>g>The</str<strong>on</strong>g>se microfossils, with a<br />

record also extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g back to about 3.5 Gyr, are to be found rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> size from<br />


SP-1231<br />

Fig. II.7.4/1. Look<str<strong>on</strong>g>in</str<strong>on</strong>g>g towards ‘Tw<str<strong>on</strong>g>in</str<strong>on</strong>g> Peaks’ at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> Pathf<str<strong>on</strong>g>in</str<strong>on</strong>g>der land<str<strong>on</strong>g>in</str<strong>on</strong>g>g site. (NASA)<br />

182<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical characterisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> site samples comprises <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g goals:<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy, texture and bulk chemistry of primary rocks;<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy and sedimentology of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil, and w<str<strong>on</strong>g>in</str<strong>on</strong>g>d/water-deposited sediments,<br />

regolith, etc (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size/shapes sec<strong>on</strong>dary m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as clays,<br />

carb<strong>on</strong>ates, zeolites, hydrates, chlorites, etc);<br />

• m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy of mobile phases and hard ground cements (halogenides, sulphates,<br />

nitrates, silica, carb<strong>on</strong>ates, ir<strong>on</strong> oxyhydrates, etc);<br />

• search <str<strong>on</strong>g>for</str<strong>on</strong>g> biomarkers (framboidal sulphides or oxides, bio-phosphates, oxalates,<br />

silica, biogenic magnetite, barite, and <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil structures, as discussed<br />

earlier).<br />

Geochemical analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g>se same samples will establish <str<strong>on</strong>g>the</str<strong>on</strong>g>ir elemental bulk<br />

compositi<strong>on</strong>. Major, m<str<strong>on</strong>g>in</str<strong>on</strong>g>or and trace element abundances will help to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geological history of <str<strong>on</strong>g>the</str<strong>on</strong>g> site and an analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> state of certa<str<strong>on</strong>g>in</str<strong>on</strong>g> elements<br />

(e.g. Fe, Mn, S, N) will provide <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> redox c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>re and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

historical development. A knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g> relative abundances of <str<strong>on</strong>g>the</str<strong>on</strong>g> biologically<br />

significant elements C, H, N, O, S and P and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong>s between organic and<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic matter is of particular <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. <str<strong>on</strong>g>The</str<strong>on</strong>g> abundance of nitrogen and its oxidati<strong>on</strong><br />

state <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil will be of significance <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g what happened to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itial atmospheric nitrogen.<br />

Isotope ratios provide a very valuable set of chemical biomarkers. Most notable is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> C depleti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of 12 C <str<strong>on</strong>g>in</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Similarly, substantial isotopic<br />

fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of hydrogen aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st deuterium is found to occur through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

activity of methanogenic microorganisms <strong>on</strong> Earth. In additi<strong>on</strong>, a determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of<br />

15 N/ 14 N can provide important <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> possible biological activity, as can <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

34 S/ 32 S isotopic compositi<strong>on</strong> change between sulphides and sulphates.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals such as phosphates, manganese oxides and certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

carb<strong>on</strong>ates that may result from biological processes are important analysis<br />

objectives, as is determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> nitrate and sulphate c<strong>on</strong>tent. So too is <str<strong>on</strong>g>the</str<strong>on</strong>g> quantitative


Table II.7.4/1. Recommended Instruments <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Search</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g> Organics <strong>on</strong> <strong>Mars</strong>.<br />

Mass Power Volume<br />

Instrument Analysis (kg) (W) (m 3 ) Data<br />

Alpha/Prot<strong>on</strong>/ Elemental analysis 0.5 0.4 300 16 kbit/<br />

X-ray Spectrometer <str<strong>on</strong>g>for</str<strong>on</strong>g> all except H and He (1.3 peak) sample<br />

Mössbauer Fe-bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals 0.5 1.6 600 1.2 Mbit/<br />

Spectrometer Fe-oxidati<strong>on</strong> state and ratios sample<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of water, particularly as a functi<strong>on</strong> of depth. <str<strong>on</strong>g>The</str<strong>on</strong>g> depth profile of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

abundance of oxidants <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regolith is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r obvious requirement.<br />

As yet, no organics have been found <strong>on</strong> <strong>Mars</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir discovery and analysis<br />

would be of prime importance <str<strong>on</strong>g>for</str<strong>on</strong>g> exobiology. It will be necessary, however, to<br />

differentiate carefully between organics of an abiotic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, especially those of<br />

meteoritic orig<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

On Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g> primary biopolymers undergo a complex process of degradati<strong>on</strong> and<br />

c<strong>on</strong>densati<strong>on</strong> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> death of <str<strong>on</strong>g>the</str<strong>on</strong>g> organism. <str<strong>on</strong>g>The</str<strong>on</strong>g> result is a complex and<br />

chemically stable macromolecular material (kerogen). In additi<strong>on</strong>, certa<str<strong>on</strong>g>in</str<strong>on</strong>g> stable<br />

lipid-rich biopolymers survive this degradati<strong>on</strong> process, to c<strong>on</strong>tribute directly to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>stituti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> kerogen. Sediments may also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r stable organic<br />

compounds that have survived, at least <str<strong>on</strong>g>in</str<strong>on</strong>g> part, <str<strong>on</strong>g>the</str<strong>on</strong>g> processes of alterati<strong>on</strong>. Many can<br />

be classified as biomarkers <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir structures and/or carb<strong>on</strong> isotopic<br />

compositi<strong>on</strong>s. Such biomarkers and kerogens of recognisable biological orig<str<strong>on</strong>g>in</str<strong>on</strong>g> have<br />

been found <str<strong>on</strong>g>in</str<strong>on</strong>g> sediments <strong>on</strong> Earth dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g back at least 0.5 Gyr. It is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

c<strong>on</strong>ceivable that such materials might be detected <strong>on</strong> <strong>Mars</strong>, given appropriate sites.<br />

Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to account factors such as survivability, especially <str<strong>on</strong>g>in</str<strong>on</strong>g> an oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

envir<strong>on</strong>ment, has led to <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g recommended priority order <str<strong>on</strong>g>in</str<strong>on</strong>g> search<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

organics:<br />

1. volatile low molecular weight compounds, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrocarb<strong>on</strong>s (especially<br />

methane), alkanoic acids and peroxy acids;<br />

2. medium molecular weight compounds, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrocarb<strong>on</strong>s (straight- and<br />

branched-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>, isoprenoids, terpenoids, steroids and aromatics);<br />

3. macromolecular comp<strong>on</strong>ents, which would be kerogen-like comp<strong>on</strong>ents, oligoand<br />

polypeptides.<br />

Table II.7.4/1 lists <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>in</str<strong>on</strong>g>struments that have been identified as suitable, <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

total, to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> range of determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s, elemental, isotopic, and molecular,<br />

outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed above.<br />

c<strong>on</strong>clusi<strong>on</strong>s/II.7<br />

Laser Raman Molecular analysis of organics 1.5 1.1 250 to be<br />

Spectrometer and m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals (2.5 peak) determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

200-3500 cm -1<br />

& 8 cm -1 resoluti<strong>on</strong><br />

Infrared Molecular analysis of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals 1.0 3.5 800 to be<br />

Spectrometer and organics determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

0.8-10 µm.<br />

Spectral resoluti<strong>on</strong> 100.<br />

Spatial resoluti<strong>on</strong> 200 µm<br />

Pyrolytic Gas Analyse <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic 4.0 8 2.5 Mbit max<br />

Chromatograph compounds; isotopic ratio (15 peak) 0.6 Mbit m<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

and Mass Spectrometer and chirality determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

183


SP-1231<br />

184<br />

II.7.5 A Possible<br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Experiment<br />

Package and Operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Arrangement<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> previously described equipment could be distributed between a large Lander and<br />

a Rover <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g basis:<br />

ROVER (opti<strong>on</strong> 1)<br />

– robotic positi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g arm 2.0 kg<br />

– a rock surface gr<str<strong>on</strong>g>in</str<strong>on</strong>g>der 0.4 kg<br />

– low-power microscope 0.2 kg<br />

– APX spectrometer 0.5 kg<br />

– a small rock-cor<str<strong>on</strong>g>in</str<strong>on</strong>g>g drill 3.5 kg<br />

– core sample c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ers 0.5 kg<br />

Total mass: 7.1 kg<br />

ROVER (opti<strong>on</strong> 2)<br />

– small robotic arm equipped to collect cm-sized surface rocks, place <str<strong>on</strong>g>in</str<strong>on</strong>g> transfer<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ers, and subsequently pass to <str<strong>on</strong>g>the</str<strong>on</strong>g> Lander. (2 kg);<br />

– close-up colour camera (0.1 kg);<br />

– sample c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ers <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> collected small rock samples (0.5 kg).<br />

LANDER<br />

– subsurface drill system 6.5 kg<br />

– sample handl<str<strong>on</strong>g>in</str<strong>on</strong>g>g/distributi<strong>on</strong> 4.0 kg<br />

– sample secti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.3 kg<br />

– sample gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.4 kg<br />

– low-resoluti<strong>on</strong> microscope 0.2 kg<br />

– optical microscope 0.3 kg<br />

– Atomic Force Microscope 1.5 kg<br />

– microscopy transfer stage 1.0 kg<br />

– Alpha/Prot<strong>on</strong>/X-ray Spectrometer 0.5 kg<br />

– Mössbauer Spectrometer 0.5 kg<br />

– Laser Raman Spectrometer 1.5 kg<br />

– IR Microspectrometer 1.0 kg<br />

– Pyrolytic, Gas Chromatograph, Mass Spectrometer 5.5 kg<br />

– Oxidant detector 0.4 kg<br />

– Laser Ablati<strong>on</strong> ICP mass spectrometer 2.5 kg<br />

Total mass: 26.1 kg<br />

In this c<strong>on</strong>figurati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> Lander is <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>for</str<strong>on</strong>g> subsurface sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g and <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

situ sample preparati<strong>on</strong> and analysis processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> Rover <str<strong>on</strong>g>the</str<strong>on</strong>g>n provides a selecti<strong>on</strong><br />

of rock samples from nearby locati<strong>on</strong>s ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as small core samples or as small (cmsize)<br />

rocks, <str<strong>on</strong>g>for</str<strong>on</strong>g> saw<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Lander. In <str<strong>on</strong>g>the</str<strong>on</strong>g> latter case, <str<strong>on</strong>g>the</str<strong>on</strong>g> Rover may be of small<br />

dimensi<strong>on</strong>s and be equipped with a camera and close-up imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g system.


Annex I<br />

Team IV:<br />

A Manned <strong>Mars</strong> Stati<strong>on</strong><br />

and<br />

<str<strong>on</strong>g>Exobiology</str<strong>on</strong>g> Research


Team IV was asked to exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> ways <str<strong>on</strong>g>in</str<strong>on</strong>g> which a manned stati<strong>on</strong> <strong>on</strong> <strong>Mars</strong>, operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g over an extended period, might assist <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g exobiology research <strong>on</strong> that planet a decade or so from now. It was also asked to c<strong>on</strong>sider whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r such a<br />

stati<strong>on</strong> would pose significant risks to that research.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Team did not c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> of whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits from manned<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terventi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> exobiology research <strong>on</strong> <strong>Mars</strong> c<strong>on</strong>stituted a reas<strong>on</strong> to argue <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

manned missi<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, it was assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> such a missi<strong>on</strong><br />

would be based up<strong>on</strong> a variety of c<strong>on</strong>siderati<strong>on</strong>s, most of which would not directly<br />

relate to exobiology. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong>s were narrowly focused up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong><br />

‘What could a manned presence do to aid exobiology research?’<br />

Until <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able manned presence <strong>on</strong> <strong>Mars</strong>, all exobiology research will<br />

have to be d<strong>on</strong>e by <str<strong>on</strong>g>in</str<strong>on</strong>g> situ measurements us<str<strong>on</strong>g>in</str<strong>on</strong>g>g robotic systems, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with sample<br />

return missi<strong>on</strong>s. C<strong>on</strong>sequently, human <str<strong>on</strong>g>in</str<strong>on</strong>g>terventi<strong>on</strong> is likely to be welcomed, just as<br />

it is <strong>on</strong> Earth <str<strong>on</strong>g>in</str<strong>on</strong>g> a research envir<strong>on</strong>ment, to do those th<str<strong>on</strong>g>in</str<strong>on</strong>g>gs that cannot readily be d<strong>on</strong>e<br />

by mach<str<strong>on</strong>g>in</str<strong>on</strong>g>es. <str<strong>on</strong>g>The</str<strong>on</strong>g>se primarily <str<strong>on</strong>g>in</str<strong>on</strong>g>volve <str<strong>on</strong>g>the</str<strong>on</strong>g> exercise of judgement, based up<strong>on</strong><br />

extensive professi<strong>on</strong>al and pers<strong>on</strong>al experience, coupled with flexibility and <str<strong>on</strong>g>in</str<strong>on</strong>g>genuity<br />

to adapt and to improvise.<br />

To benefit fully from exobiology research and its associated fields of m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogy<br />

and geochemistry, it is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e important that some of <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> crew have<br />

professi<strong>on</strong>al tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se fields. Without that background expertise, <str<strong>on</strong>g>the</str<strong>on</strong>g> value of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir presence will be substantially dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ished, just as it would be <str<strong>on</strong>g>in</str<strong>on</strong>g> a terrestrial<br />

laboratory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> extent of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir stay <strong>on</strong> <strong>Mars</strong> and, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>the</str<strong>on</strong>g>y will have <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

scientific activities, as dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct from life-support and base-systems ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance<br />

activities, are very important factors <str<strong>on</strong>g>in</str<strong>on</strong>g> judg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potential value to science. If<br />

humans are to play a useful scientific role <strong>on</strong> <strong>Mars</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is essential <str<strong>on</strong>g>the</str<strong>on</strong>g>y have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time, <str<strong>on</strong>g>the</str<strong>on</strong>g> means and <str<strong>on</strong>g>the</str<strong>on</strong>g> professi<strong>on</strong>al tra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g to do so. Science support should not<br />

come as some late afterthought.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Team c<strong>on</strong>sidered a number of ways <str<strong>on</strong>g>in</str<strong>on</strong>g> general where human <str<strong>on</strong>g>in</str<strong>on</strong>g>terventi<strong>on</strong> could<br />

be beneficial. More difficult was <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> of specific activities, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce exobiology<br />

research <strong>on</strong> <strong>Mars</strong> is <strong>on</strong>ly two missi<strong>on</strong>s old. Organics have yet to be discovered and<br />

fossils are a distant dream. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> Team could extrapolate <strong>on</strong>ly a short<br />

distance. N<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a c<strong>on</strong>sensus that tra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed professi<strong>on</strong>als could be of<br />

c<strong>on</strong>siderable value <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g types of activities <strong>on</strong> <strong>Mars</strong>:<br />

• site identificati<strong>on</strong> by local analysis of areas identified from orbital surveys. This<br />

may be achieved by l<strong>on</strong>g-range rovers under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol of <strong>Mars</strong>-located specialists<br />

or, <str<strong>on</strong>g>for</str<strong>on</strong>g> shorter journeys, actually driven by specialists;<br />

• sample acquisiti<strong>on</strong> at those sites would be aided by manned <str<strong>on</strong>g>in</str<strong>on</strong>g>terventi<strong>on</strong>. This<br />

would be especially valuable when deep (>1.5 m) subsurface drill<str<strong>on</strong>g>in</str<strong>on</strong>g>g and core<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g is undertaken;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> actual sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g process, <str<strong>on</strong>g>in</str<strong>on</strong>g> a geological field prospect<str<strong>on</strong>g>in</str<strong>on</strong>g>g scenario, is greatly<br />

improved if undertaken by a qualified pers<strong>on</strong>, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than by a remotely-c<strong>on</strong>trolled<br />

robot;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>in</str<strong>on</strong>g>evitably an element of serendipity <str<strong>on</strong>g>in</str<strong>on</strong>g> even <str<strong>on</strong>g>the</str<strong>on</strong>g> most carefully planned<br />

search <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g samples. If <str<strong>on</strong>g>the</str<strong>on</strong>g> search is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med by tra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed pers<strong>on</strong>nel, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

benefits can accrue ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> exercise of judgement and ‘<str<strong>on</strong>g>in</str<strong>on</strong>g>tuiti<strong>on</strong>’;<br />

• if a laboratory can be established <strong>on</strong> <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n manned supervisi<strong>on</strong> of prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary<br />

sample analyses becomes a valuable facility that can significantly speed up <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

(NASA/Pat Rawl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs)<br />

187


SP-1231<br />

188<br />

search rate. It is assumed that very detailed analyses, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g large <str<strong>on</strong>g>in</str<strong>on</strong>g>struments,<br />

would still be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <strong>on</strong> Earth, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g carefully pre-selected returned samples;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> water/ice will no doubt be a prime task <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment of a<br />

manned base <strong>on</strong> <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> results of such searches will be important also <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

exobiology research. <str<strong>on</strong>g>The</str<strong>on</strong>g> participati<strong>on</strong> of tra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed exobiologists/geologists <str<strong>on</strong>g>in</str<strong>on</strong>g> that<br />

activity will be beneficial;<br />

• if microbial life is discovered at sites <strong>on</strong> <strong>Mars</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n human supervisi<strong>on</strong> of a<br />

protected cultur<str<strong>on</strong>g>in</str<strong>on</strong>g>g and bio-analysis facility will be essential. <str<strong>on</strong>g>The</str<strong>on</strong>g> return of <strong>Mars</strong><br />

microbes to <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth should be rigorously avoided;<br />

• a manned base would be <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> process<str<strong>on</strong>g>in</str<strong>on</strong>g>g vary large quantities of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian<br />

atmosphere. In so do<str<strong>on</strong>g>in</str<strong>on</strong>g>g, it may be possible to carry out accurate l<strong>on</strong>g-term studies<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> trace comp<strong>on</strong>ents and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir variati<strong>on</strong>s. For gases such as methane, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

detecti<strong>on</strong> and m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g can have important implicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> exobiology studies.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Team po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that, <str<strong>on</strong>g>in</str<strong>on</strong>g> select<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of a human base <strong>on</strong> <strong>Mars</strong>,<br />

c<strong>on</strong>siderati<strong>on</strong> needs to be given to <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g exobiology sites and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

possible range of manned Rovers. Frequent access is likely to be needed to a diverse<br />

range of locati<strong>on</strong>s, so <str<strong>on</strong>g>the</str<strong>on</strong>g> base needs to be sited, if possible, near a regi<strong>on</strong> of exobiology<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> risks <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> a manned presence relate to <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to <str<strong>on</strong>g>the</str<strong>on</strong>g> crew from <strong>Mars</strong><br />

microbes (if any), <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to life <strong>on</strong> Earth via returned <strong>Mars</strong> microbes (accidentally<br />

or deliberately) and <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to <strong>Mars</strong> ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to imported microbes from Earth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Team c<strong>on</strong>centrated up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to <strong>Mars</strong> from imported microbes; <str<strong>on</strong>g>in</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

words, <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to exobiology research <strong>on</strong> <strong>Mars</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r issues were of much wider<br />

implicati<strong>on</strong> and are dealt with under agreed <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al protocols.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce humans c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> vast numbers of bacteria and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r microbes, it is <str<strong>on</strong>g>in</str<strong>on</strong>g>evitable<br />

that <strong>Mars</strong> will become c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated as so<strong>on</strong> as humans arrive <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

surface of <strong>Mars</strong> is, as far as we know, <str<strong>on</strong>g>in</str<strong>on</strong>g>hospitable to microbial life. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e much<br />

of what is imported and reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Mars</strong> surface envir<strong>on</strong>ment will die. But some may<br />

not. <str<strong>on</strong>g>The</str<strong>on</strong>g>se may f<str<strong>on</strong>g>in</str<strong>on</strong>g>d sheltered ecological niches that allow <str<strong>on</strong>g>the</str<strong>on</strong>g>m to survive, propagate<br />

and, eventually, mutate.<br />

Whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r dead or alive, <str<strong>on</strong>g>the</str<strong>on</strong>g> imported microbes will progressively c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Mars</strong> envir<strong>on</strong>ment, viewed from an exobiology viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> Team<br />

stressed <str<strong>on</strong>g>the</str<strong>on</strong>g> vital importance of preced<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> manned missi<strong>on</strong> to <strong>Mars</strong> by a<br />

substantial series of robotic missi<strong>on</strong>s to carry out <str<strong>on</strong>g>the</str<strong>on</strong>g> essential exploratory search <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

life by <str<strong>on</strong>g>in</str<strong>on</strong>g> situ measurements at sites selected by high-resoluti<strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical and<br />

spectroscopic orbital surveys.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!