03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SP-1231<br />

Fig. I.3.2.1/1 Parental relati<strong>on</strong>ships between<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g be<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, based <strong>on</strong> sequence comparis<strong>on</strong> of<br />

ribosomal RNA. Extreme halophiles are <str<strong>on</strong>g>in</str<strong>on</strong>g> red<br />

and hyperhermophiles are <str<strong>on</strong>g>in</str<strong>on</strong>g> black. <str<strong>on</strong>g>The</str<strong>on</strong>g> short<br />

branches of hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that<br />

sequences of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir rRNA evolve more slowly<br />

than similar sequences from organisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at<br />

lower temperatures (mesophiles). This universal<br />

tree is usually <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as argu<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> favour<br />

of a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic last universal comm<strong>on</strong><br />

ancestor. However, this tree should be regarded<br />

with cauti<strong>on</strong>. For example, it has been shown<br />

recently that microsporidia (represented by<br />

Vairimorpha and Encephalitozo<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> figure)<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g> fact fungi (yeast). <str<strong>on</strong>g>The</str<strong>on</strong>g> difference <str<strong>on</strong>g>in</str<strong>on</strong>g> rate<br />

of evoluti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> various l<str<strong>on</strong>g>in</str<strong>on</strong>g>eages can<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>deed produce artifacts.<br />

28<br />

BACTERIA<br />

Euryotes<br />

ARCHAEA<br />

Plants<br />

Animals fungi<br />

Microsporidia<br />

Crenotes<br />

EUCARYA<br />

Protistes<br />

Halophiles extremes<br />

Hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles<br />

microbe Pyrodictium occultum <str<strong>on</strong>g>in</str<strong>on</strong>g> shallow water near a beach of Vulcano Island <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Italy (Stetter, 1982). This record held <str<strong>on</strong>g>for</str<strong>on</strong>g> 15 years and was <strong>on</strong>ly recently surpassed,<br />

although by <strong>on</strong>ly 3ºC. <str<strong>on</strong>g>The</str<strong>on</strong>g> new record holder, Pyrolobus fumarii, is a deep-sea<br />

microbe, aga<str<strong>on</strong>g>in</str<strong>on</strong>g> described by Stetter’s group (Blöchl et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> claim <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

organisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 250ºC under a pressure of 350 atm was an artifact, as<br />

dem<strong>on</strong>strated by Trent (1984). It should be stressed that <str<strong>on</strong>g>the</str<strong>on</strong>g> actual upper limit is, of<br />

course, unknown, but <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier at 110-113ºC has so far survived <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive search<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> deep-sea vents <str<strong>on</strong>g>for</str<strong>on</strong>g> organisms grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g at higher temperatures.<br />

Many microbes liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at temperatures close to or above <str<strong>on</strong>g>the</str<strong>on</strong>g> boil<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of water,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophiles, have been found <str<strong>on</strong>g>in</str<strong>on</strong>g> all places with volcanic activity, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

terrestrial or mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Stetter, 1996). In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are also large microbial<br />

populati<strong>on</strong>s at depth with<str<strong>on</strong>g>in</str<strong>on</strong>g> hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal vents, at ocean floor spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g centres,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g>y exploit <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced chemicals <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hot vent fluid <str<strong>on</strong>g>for</str<strong>on</strong>g> energy and growth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y are all procaryotes, i.e. small unicellular microorganisms without a nuclear<br />

membrane (chromosomal DNA be<str<strong>on</strong>g>in</str<strong>on</strong>g>g directly <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> cell cytoplasm).<br />

Procaryotes are divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to two phylogenetically dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s (or empires):<br />

Bacteria and Archaea (Fig. I.3.2.1/1.). Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, <str<strong>on</strong>g>the</str<strong>on</strong>g> most hyper<str<strong>on</strong>g>the</str<strong>on</strong>g>rmophilic<br />

organisms at present all bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> Archaea, <str<strong>on</strong>g>the</str<strong>on</strong>g> upper temperature limit <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Bacteria be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly (!) 95ºC (Stetter, 1996).<br />

It should be noted that Archaea liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 110-113ºC actually have optimal growth

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!