03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I.3 Limits of <str<strong>on</strong>g>Life</str<strong>on</strong>g> Under Extreme C<strong>on</strong>diti<strong>on</strong>s<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> view po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of exobiology, <str<strong>on</strong>g>the</str<strong>on</strong>g> problems raised by life under ‘extreme<br />

c<strong>on</strong>diti<strong>on</strong>s’ (extreme from our human po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view) can be c<strong>on</strong>sidered from two<br />

perspectives: what are <str<strong>on</strong>g>the</str<strong>on</strong>g> most extreme c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> life to proliferate, and what<br />

can life survive (and <str<strong>on</strong>g>for</str<strong>on</strong>g> how l<strong>on</strong>g)? In both cases, we should c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

extreme terrestrial organisms, and if <str<strong>on</strong>g>the</str<strong>on</strong>g>re might be similar organisms elsewhere <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Universe. <str<strong>on</strong>g>The</str<strong>on</strong>g>se two aspects are often c<strong>on</strong>fused, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not necessarily<br />

related. <str<strong>on</strong>g>The</str<strong>on</strong>g> first c<strong>on</strong>cerns terrestrial organisms liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g optimally under extreme<br />

c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘extremophiles’. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> problem of survival, which<br />

is of utmost importance <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> fossilised life <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r planets or <str<strong>on</strong>g>for</str<strong>on</strong>g> test<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of panspermia.<br />

<str<strong>on</strong>g>Life</str<strong>on</strong>g> <strong>on</strong> Earth is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry of carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> water. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature limits<br />

compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of life are thus imposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic properties of<br />

chemical b<strong>on</strong>ds <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> this type of chemistry at different temperatures. Two<br />

requirements are mandatory. Firstly, <str<strong>on</strong>g>the</str<strong>on</strong>g> covalent b<strong>on</strong>ds between carb<strong>on</strong> and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

atoms <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of biological molecules should be sufficiently stable<br />

to permit <str<strong>on</strong>g>the</str<strong>on</strong>g> assembly of large macromolecules with catalytic, <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>al properties<br />

or both. Sec<strong>on</strong>dly, n<strong>on</strong>-covalent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks (hydrogen and i<strong>on</strong>ic b<strong>on</strong>ds, Van der Waals<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s) should be labile. This is a very important po<str<strong>on</strong>g>in</str<strong>on</strong>g>t s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <strong>on</strong>ly weak b<strong>on</strong>ds<br />

can allow fast, specific and reversible <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s of biological molecules and<br />

macromolecules. <str<strong>on</strong>g>The</str<strong>on</strong>g>se chemical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts will ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly def<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> upper and lower<br />

temperatures <str<strong>on</strong>g>for</str<strong>on</strong>g> life, respectively. As we will see, it is known that terrestrial<br />

organisms can live <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature range from -12ºC to 113ºC (Fig. I.3.2/1).<br />

I.3.2.1 High Temperatures<br />

Presently, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum temperature limit known <str<strong>on</strong>g>for</str<strong>on</strong>g> terrestrial organisms is around<br />

113ºC. For a l<strong>on</strong>g time, <str<strong>on</strong>g>the</str<strong>on</strong>g> record was 110ºC, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery <str<strong>on</strong>g>in</str<strong>on</strong>g> 1982 of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

0 60 110 oC<br />

EUCARYOTES<br />

PROCARYOTES<br />

0 10 2 10 4 10 6 10 8 10 10<br />

T OK<br />

I.3.1 Introducti<strong>on</strong><br />

I.3.2 Extreme Temperature<br />

Regimes<br />

Fig. I.3.2/1. Liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g organisms thrive with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>ly<br />

a small w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow of temperatures found <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Universe. Eucaryotes, organisms with a<br />

nucleus, thrive from around 0ºC up to 60ºC,<br />

while some procaryotes (archaea or bacteria),<br />

organisms without a nucleus, can grow at<br />

temperatures up to 113ºC.<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!