03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> depleti<strong>on</strong> of chalcophile elements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle has been used to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer<br />

a homogeneous accreti<strong>on</strong> scenario <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>Mars</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as discussed above <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

sulphur, homogeneous accreti<strong>on</strong> had <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequence that water added to <str<strong>on</strong>g>the</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

planet by comp<strong>on</strong>ent B reacted with <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic Fe of comp<strong>on</strong>ent A, oxidis<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to<br />

FeO, while <str<strong>on</strong>g>the</str<strong>on</strong>g> generated hydrogen escaped. Hence, we should expect a very dry<br />

Martian mantle, because water, although added <str<strong>on</strong>g>in</str<strong>on</strong>g> large quantities to <str<strong>on</strong>g>the</str<strong>on</strong>g> planet dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

accreti<strong>on</strong>, was reduced to H 2 except <str<strong>on</strong>g>for</str<strong>on</strong>g> trace amounts.<br />

Two of <str<strong>on</strong>g>the</str<strong>on</strong>g> seven known shergottites, Shergotty and Zagami, have compositi<strong>on</strong>s very<br />

similar to that of <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil (Table II.2.4/1). <str<strong>on</strong>g>The</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r SNC meteorites differ<br />

c<strong>on</strong>siderably <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical compositi<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> large c<strong>on</strong>centrati<strong>on</strong>s of sulphur (3.5%) and chlor<str<strong>on</strong>g>in</str<strong>on</strong>g>e (0.8%) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil<br />

do not seem to be noticeably accompanied by respective cati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> most likely<br />

cati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphates, Mg and Ca, have even higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Shergotty<br />

and Zagami than <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Vik<str<strong>on</strong>g>in</str<strong>on</strong>g>g soil. This suggests direct <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of SO 2 or H 2S<br />

and probably also HCl to <str<strong>on</strong>g>the</str<strong>on</strong>g> martian regolith via gas-solid reacti<strong>on</strong>s.<br />

With respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tradictory evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> a dry martian mantle, supported by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> low water c<strong>on</strong>tent of SNC meteorites but opposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> martian erosi<strong>on</strong>al surface<br />

features (which seem to require large amounts of water), <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxygen isotopes (Karlss<strong>on</strong> et al., 1991) and <str<strong>on</strong>g>the</str<strong>on</strong>g> H/D ratio (Wats<strong>on</strong> et al., 1991) of<br />

water extracted from SNC meteorites is of great <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. It was observed that, <str<strong>on</strong>g>for</str<strong>on</strong>g> all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> SNC meteorites analysed and apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of terrestrial c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>,<br />

a large fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> water is not derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> martian mantle, but obviously<br />

represents martian surface water: <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen isotope compositi<strong>on</strong> is up to three times<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away from <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial isotope fracti<strong>on</strong>ati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e than <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

silicates of SNC meteorites. At <str<strong>on</strong>g>the</str<strong>on</strong>g> high temperatures of magma generati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian mantle, isotopic equilibrati<strong>on</strong> between oxygen of <str<strong>on</strong>g>the</str<strong>on</strong>g> silicates and of water<br />

would certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly have been established. Hence, <strong>on</strong>ly a fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> water found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

SNC meteorites can be mantle-derived and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-terrestrial part must come<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> martian surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> oxygen isotopes of <str<strong>on</strong>g>the</str<strong>on</strong>g> surface comp<strong>on</strong>ent might have<br />

been created by n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear isotope fracti<strong>on</strong>ati<strong>on</strong> by n<strong>on</strong>-<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal escape of oxygen to<br />

space (see Secti<strong>on</strong> II.3).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradictory evidence of a dry martian mantle (Table II.2.3/1) and <str<strong>on</strong>g>the</str<strong>on</strong>g> geo-<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planet mars/II.2<br />

II.2.4 <str<strong>on</strong>g>The</str<strong>on</strong>g> Geochemistry<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> Martian Surface<br />

Layers<br />

Fig. II.2.4/1. A 70 km-wide view of layered<br />

deposites <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> north polar cap regi<strong>on</strong>. Below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ice cap <str<strong>on</strong>g>the</str<strong>on</strong>g>re are successive layers of dust<br />

and ice, each about 50 m thick. <str<strong>on</strong>g>The</str<strong>on</strong>g> layer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

may be due to period variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit of<br />

<strong>Mars</strong> caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g climatic changes. Erosi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

500 m-high cliffs, possibly by w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds, produced<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dark ripple-textured areas at <str<strong>on</strong>g>the</str<strong>on</strong>g> base.<br />

Table II.2.4/1. Comparis<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

% Compositi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> Shergotty<br />

Meteorite (Dreibus et al., 1982) and<br />

Martian Soil (Clark et al., 1976).<br />

Shergotty <strong>Mars</strong> Soil<br />

SiO 2 51.4 43.0<br />

FeO 19.4 16.2<br />

CaO 10.0 5.8<br />

MgO 9.28 6.0<br />

Al 2O 37.06 7.2<br />

TiO 2 0.87 0.6<br />

Na 2O 1.29 n.d.<br />

P 2O 5 0.80 n.d.<br />

S 0.13 3.5<br />

Cl 0.01

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!