03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

morphological and biochemical signatures of extraterrestrial life: utility of terrestrial analogues/I.4<br />

Fig. I.4.3.2.2/1. Isotope age functi<strong>on</strong>s of organic carb<strong>on</strong> (C org) and<br />

carb<strong>on</strong>ate carb<strong>on</strong> (C carb) compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic compositi<strong>on</strong>s<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir progenitor substances <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present envir<strong>on</strong>ment (mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

bicarb<strong>on</strong>ate and biogenic matter of various parentage, cf. right box).<br />

Isotopic compositi<strong>on</strong>s are given as δ 13 C values <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a<br />

relative <str<strong>on</strong>g>in</str<strong>on</strong>g>crease (+) or decrease (-) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 13 C/ 12 C ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

respective subtance (<str<strong>on</strong>g>in</str<strong>on</strong>g> ‰ difference) compared with that of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PDB (Peedee belemnite) standard, which def<str<strong>on</strong>g>in</str<strong>on</strong>g>es 0‰ <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> δ-scale.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> δ 13 C org spread of <str<strong>on</strong>g>the</str<strong>on</strong>g> extant biomass is basically<br />

transcribed <str<strong>on</strong>g>in</str<strong>on</strong>g>to recent mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent record<br />

back to 3.8 Gyr, with <str<strong>on</strong>g>the</str<strong>on</strong>g> Isua values moderately reset by<br />

amphibolite-grade metamorphism [associated bars show values <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

carb<strong>on</strong>aceous <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> apatite gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from a 3.85 Gyr-old Isua<br />

banded ir<strong>on</strong>-<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (A1) and from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Isua ir<strong>on</strong>-<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s<br />

carb<strong>on</strong> fixati<strong>on</strong>. This is primarily <str<strong>on</strong>g>the</str<strong>on</strong>g> assimilati<strong>on</strong> of CO 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> bicarb<strong>on</strong>ate i<strong>on</strong><br />

(HCO 3 - ) by plants and microorganisms that proceeds by a limited number of pathways<br />

which <str<strong>on</strong>g>in</str<strong>on</strong>g>variably discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy carb<strong>on</strong> isotope ( 13 C), mostly as a<br />

result of a k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic isotope effect <str<strong>on</strong>g>in</str<strong>on</strong>g>herent <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first irreversible enzymatic CO 2-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

carboxylati<strong>on</strong> reacti<strong>on</strong> (cf. O’Leary, 1981; Schidlowski et al., 1983). This latter<br />

reacti<strong>on</strong> promotes <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> of CO 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>the</str<strong>on</strong>g> carboxyl (COOH) group of an<br />

organic acid which, <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, lends itself to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> subsequent metabolic<br />

pathways. As biochemical carb<strong>on</strong>-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong>s are largely enzyme-c<strong>on</strong>trolled, and<br />

liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems c<strong>on</strong>stitute dynamic states undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapid cycles of anabolism and<br />

catabolism, it is generally accepted that most biological isotope fracti<strong>on</strong>ati<strong>on</strong>s are due<br />

to k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than equilibrium effects.<br />

Because of <str<strong>on</strong>g>the</str<strong>on</strong>g> discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st ‘heavy’ carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> carb<strong>on</strong>-fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

pathways, we observe a marked enrichment of 12 C <str<strong>on</strong>g>in</str<strong>on</strong>g> all <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of biogenic (reduced)<br />

carb<strong>on</strong> as compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic feeder pool of oxidised carb<strong>on</strong> c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of atmospheric CO 2 and dissolved mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e bicarb<strong>on</strong>ate i<strong>on</strong> (HCO 3 - ). In terms<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al notati<strong>on</strong>, δ 13 C values of average biomass usually turn out to be 20-<br />

30‰ more negative than those of mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e bicarb<strong>on</strong>ate, <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

carb<strong>on</strong> species <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

(A2), accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Mojzsis et al. (1996)]. <str<strong>on</strong>g>The</str<strong>on</strong>g> envelope <str<strong>on</strong>g>for</str<strong>on</strong>g> fossil<br />

organic carb<strong>on</strong> is an update of <str<strong>on</strong>g>the</str<strong>on</strong>g> database presented by<br />

Schidlowski et al. (1983), compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> means of some 150<br />

Precambrian kerogen prov<str<strong>on</strong>g>in</str<strong>on</strong>g>ces as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> currently available<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Phanerozoic record. <str<strong>on</strong>g>The</str<strong>on</strong>g> negative spikes at<br />

2.7 Gyr and 2.1 Gyr <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate a large-scale <str<strong>on</strong>g>in</str<strong>on</strong>g>volvement of methane<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> respective kerogen precursors. C<strong>on</strong>tributors<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>temporary biomass are (1) C3 plants, (2) C4 plants; (3)<br />

CAM plants; (4) eukayotic algae; (5 a,b) natural and cultures<br />

cyanobacteria; (6) groups of photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic bacteria o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<br />

cyanobacteria; (7) methanogenic bacteria; (8) methanotrophic<br />

bacteria. <str<strong>on</strong>g>The</str<strong>on</strong>g> δ 13 C org range <str<strong>on</strong>g>in</str<strong>on</strong>g> recent mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e sediments is from<br />

De<str<strong>on</strong>g>in</str<strong>on</strong>g>es (1980) and based <strong>on</strong> some 1600 data po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (black <str<strong>on</strong>g>in</str<strong>on</strong>g>sert<br />

covers >90% of <str<strong>on</strong>g>the</str<strong>on</strong>g> database).<br />

55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!