03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

abundances at various locati<strong>on</strong>s over Titan’s disc (Coustenis & Bézard, 1995).<br />

Seas<strong>on</strong>al effects caused an enhancement of some of <str<strong>on</strong>g>the</str<strong>on</strong>g> less abundant m<str<strong>on</strong>g>in</str<strong>on</strong>g>or comp<strong>on</strong>ents<br />

over Titan’s North Pole at <str<strong>on</strong>g>the</str<strong>on</strong>g> time of <str<strong>on</strong>g>the</str<strong>on</strong>g> Voyager encounter (Fig. I.5.2.1/1).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> exact degree of complexity of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic chemistry active <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s<br />

atmosphere is not well known. More complex organic compounds are still be<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

discovered <str<strong>on</strong>g>in</str<strong>on</strong>g> gaseous or solid <str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

Titan is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly o<str<strong>on</strong>g>the</str<strong>on</strong>g>r object <str<strong>on</strong>g>in</str<strong>on</strong>g> our <str<strong>on</strong>g>Solar</str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> to bear a str<strong>on</strong>g resemblance to<br />

our own planet <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of atmospheric compositi<strong>on</strong> and temperature structure. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

latter shows an <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> tropopause and <str<strong>on</strong>g>in</str<strong>on</strong>g>creases towards <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

(T=94K) ow<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a small greenhouse effect. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature profile <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stratosphere<br />

also varies as a functi<strong>on</strong> of latitude (Fig. I.5.2.1/2).<br />

Measurements by <strong>ESA</strong>’s Infrared Space Observatory (ISO) <str<strong>on</strong>g>in</str<strong>on</strong>g> January 1997 have<br />

c<strong>on</strong>firmed models based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Voyager data (Coustenis et al., 1993), and are still<br />

under analysis. <str<strong>on</strong>g>The</str<strong>on</strong>g>y provide more accurate abundance measurements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

mode (although <strong>on</strong> a disc-averaged basis) and even provide vertical distributi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

some of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>or comp<strong>on</strong>ents by use of <str<strong>on</strong>g>the</str<strong>on</strong>g> Fabry-Perot mode.<br />

Water vapour was discovered <str<strong>on</strong>g>in</str<strong>on</strong>g> Titan’s atmosphere by ISO/SWS (Coustenis et al.,<br />

1998).<br />

I.5.2.2 <str<strong>on</strong>g>The</str<strong>on</strong>g> Titan Surface<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> surface of Titan has never been viewed directly because of <str<strong>on</strong>g>the</str<strong>on</strong>g> thick cloud deck<br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> satellite. Models have predicted <str<strong>on</strong>g>the</str<strong>on</strong>g> existence of oceans or large lakes<br />

of hydrocarb<strong>on</strong> material <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground. <str<strong>on</strong>g>The</str<strong>on</strong>g>se models have recently been disputed by<br />

ground-based and Hubble Space Telescope (HST) spectroscopic observati<strong>on</strong>s.<br />

Observati<strong>on</strong>s of Titan have been per<str<strong>on</strong>g>for</str<strong>on</strong>g>med with <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

Spectrometer at <str<strong>on</strong>g>the</str<strong>on</strong>g> CFH Telescope <str<strong>on</strong>g>in</str<strong>on</strong>g> Hawaii. <str<strong>on</strong>g>The</str<strong>on</strong>g> spectra were recorded over a<br />

period of 5 years (1991-1996) and cover most of Titan’s orbit (16 days) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1-<br />

2.5 µm regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong>s show that, with<str<strong>on</strong>g>in</str<strong>on</strong>g> an orbit, Titan’s geometric albedo<br />

exhibits significant variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of a brighter lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere (fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Earth) and a darker trail<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e (Fig. I.5.2.2/1). <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum albedo appears near<br />

120±20º LCM (L<strong>on</strong>gitude of Central Meridian) and <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum near 230±20º<br />

LCM. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong>s (25-35%) have been observed <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently by various groups<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce 1989 and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are recurrent. <str<strong>on</strong>g>The</str<strong>on</strong>g>y must <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e be correlated with Titan’s<br />

potential n<strong>on</strong>-martian sites <str<strong>on</strong>g>for</str<strong>on</strong>g> extraterrestrial life/I.5<br />

Fig. I.5.2.2/1 Titan’s geometric albedo, 1991-<br />

1995 (Coustenis, private communicati<strong>on</strong>).<br />

69

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!