03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of 15 N/ 14 N can provide very important <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong><br />

possible biological activities <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysed samples. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is true <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 34 S/ 32 S<br />

isotopic compositi<strong>on</strong> change between sulphides and sulphates.<br />

II.5.3.2 Sulphur<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> element sulphur represents an important c<strong>on</strong>stituent of <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial biosphere.<br />

Its presence and even more so <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic isotope signatures of sulphur <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

various oxidati<strong>on</strong> states give testim<strong>on</strong>y to biologically-c<strong>on</strong>trolled processes, mostly <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

low-temperature sedimentary envir<strong>on</strong>ments.<br />

Sedimentary pyrites often display negative to str<strong>on</strong>gly negative δ 34 S values (e.g.<br />

Chambers, 1982; Habicht & Canfield, 1997; Kaplan & Rittenberg, 1964; Strauss,<br />

1997), and <str<strong>on</strong>g>the</str<strong>on</strong>g>se are correctly <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from bacterial sulphate<br />

reducti<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> geological record provides sufficient evidence <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

sedimentary (biogenic) pyrites with positive or even str<strong>on</strong>gly positive δ 34 S data that<br />

are equally a result of bacterial sulphate reducti<strong>on</strong> (e.g. Lambert & D<strong>on</strong>nelly, 1990;<br />

Ohmoto, 1992; Ohmoto et al., 1990, 1993; Schidlowski et al., 1983; Strauss, 1993).<br />

In additi<strong>on</strong>, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r biologically-c<strong>on</strong>trolled processes with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphur cycle (e.g.<br />

sulphide oxidati<strong>on</strong>) are associated with <strong>on</strong>ly m<str<strong>on</strong>g>in</str<strong>on</strong>g>or displacements <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic<br />

compositi<strong>on</strong>.<br />

C<strong>on</strong>sequently, a full understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>the</str<strong>on</strong>g> martian sulphur cycle and, thus, possibly<br />

evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> biological participati<strong>on</strong>, can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong>ly through a thorough study<br />

of abundances and isotopic compositi<strong>on</strong>s of both oxidised and reduced sulphur<br />

species.<br />

II.5.4.1 Inorganics<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quantitative analysis of water <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil will allow derivati<strong>on</strong> of a water c<strong>on</strong>centrati<strong>on</strong><br />

profile and could give access by extrapolati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> water c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

deeper layers.<br />

This is a key po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>for</str<strong>on</strong>g> study<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of extant life <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present martian<br />

subsurface, water be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> essential <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <str<strong>on</strong>g>for</str<strong>on</strong>g> life. <str<strong>on</strong>g>The</str<strong>on</strong>g> analysis of water<br />

is also important <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogical compositi<strong>on</strong> (hydrate<br />

c<strong>on</strong>tent). Similarly, it is important to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil abundances of CO 2<br />

(carb<strong>on</strong>ate c<strong>on</strong>tent), NO 2/NO 3/N xO y (nitrate c<strong>on</strong>tent), SO 2/SO 3 (sulphates) and<br />

phosphates.<br />

It is essential to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances of oxidants <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil, and determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

c<strong>on</strong>centrati<strong>on</strong> gradients with depth (Fig. II.5.4/1). If our models of <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of<br />

organics <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near-subsurface are correct, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidant c<strong>on</strong>centrati<strong>on</strong><br />

should be anti-correlated with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of organics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

oxidants are ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly: O 2, O 3 and pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipally H 2O 2 (with eventually organic peroxides).<br />

Fe 3+ , Mn x+ , carb<strong>on</strong>ates, nitrates and sulphates should also be menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>text.<br />

II.5.4.2 Organics<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> discovery of organics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> martian soil would be of prime importance <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

exobiology. In <str<strong>on</strong>g>the</str<strong>on</strong>g> very oxidised martian envir<strong>on</strong>ment, <str<strong>on</strong>g>the</str<strong>on</strong>g> abiotic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of<br />

organics through atmospheric chemical processes is unlikely. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly likely major<br />

abiotic source of organics <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> near-surface is extra-martian<br />

importati<strong>on</strong>, from <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of carb<strong>on</strong>aceous meteorites. However, by differentiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

a meteoritic abiotic orig<str<strong>on</strong>g>in</str<strong>on</strong>g> from a bio-orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> of organic carb<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

martian soil could provide <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence of <str<strong>on</strong>g>for</str<strong>on</strong>g>mer life processes.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> death of organisms <strong>on</strong> Earth, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir primary biopolymers (such as prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

and polysaccharides) undergo a complex process of degradati<strong>on</strong> and c<strong>on</strong>densati<strong>on</strong><br />

(humificati<strong>on</strong>) to give complex and chemically stable macromolecular materials<br />

(kerogens). In additi<strong>on</strong>, stable lipid-rich biopolymers survive this process to<br />

c<strong>on</strong>tribute directly to kerogens, which are amorphous c<strong>on</strong>densed aggregates made up<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of aliphatic and aromatic moieties (de Leeuw & Largeau, 1993). Kerogens<br />

typically comprise by far <str<strong>on</strong>g>the</str<strong>on</strong>g> majority (>90%) of sedimentary organic matter and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

team II: <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>for</str<strong>on</strong>g> chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators of life/II.5<br />

II.5.4 Molecular Analysis<br />

Fig. II.5.4/1. A pyrite crystal that oxidised<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>wards from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> surface c<strong>on</strong>sists<br />

of ir<strong>on</strong> oxides/hydroxides – very different from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>side. It dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> necessity of<br />

sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teriors of m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals and rocks.<br />

(Courtesy G. Kurat)<br />

133

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!