03.12.2012 Views

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

Exobiology in the Solar System & The Search for Life on Mars - ESA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SP-1231<br />

Fig. I.5.2.2/2. Modelled Titan surface spectrum<br />

(Coustenis et al., 1999, <str<strong>on</strong>g>in</str<strong>on</strong>g> preparati<strong>on</strong>).<br />

70<br />

surface morphology, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than atmospheric cloud structures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Titan surface spectrum, as modelled from <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s (Fig. I.5.2.2/2), is<br />

remarkably c<strong>on</strong>sistent with a mostly solid surface dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by water ice and it<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e resembles that of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r satellites, such as Hyperi<strong>on</strong> or Callisto (Coustenis et<br />

al., 1995).<br />

Spatially-resolved images of Titan, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> European Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Observatory<br />

(ESO) 3.6 m. telescope and ADONIS optics, were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> October 1993,<br />

September 1994, October 1995 and November 1996 (Coustenis et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

images were recorded through a set of narrowband filters (K1, H1, J1), def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to maximise <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> light reflected by Titan’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

signal recorded at <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.0, 1.6 and 1.28 µm transparency w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows of<br />

Titans atmosphere. At those three wavelengths, Titan’s atmosphere is transparent<br />

because of very low molecular methane absorpti<strong>on</strong>. In order to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> subtracti<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> stratospheric c<strong>on</strong>tributi<strong>on</strong> and hence improve <str<strong>on</strong>g>the</str<strong>on</strong>g> visibility of ground features,<br />

images were recorded <str<strong>on</strong>g>in</str<strong>on</strong>g> adjacent narrowband filters (K2, H2, J2) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

str<strong>on</strong>g methane bands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> 2.2 µm ADONIS images show <str<strong>on</strong>g>the</str<strong>on</strong>g> expected north-south asymmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stratosphere, <str<strong>on</strong>g>the</str<strong>on</strong>g> South Pole brighter than <str<strong>on</strong>g>the</str<strong>on</strong>g> North Pole, reversed with respect to<br />

Voyager and due to seas<strong>on</strong>al effects. After dec<strong>on</strong>voluti<strong>on</strong>, correcti<strong>on</strong> of centre-limb<br />

effects and subtracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric comp<strong>on</strong>ent, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.0 µm surface images<br />

show a bright well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed equatorial spot at around 120º LCM (lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere)<br />

extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g over 60º <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>gitude and 30 º <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude, and some smaller and less<br />

c<strong>on</strong>trasted features near <str<strong>on</strong>g>the</str<strong>on</strong>g> poles, all rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g over six c<strong>on</strong>secutive nights at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

expected rotati<strong>on</strong> rate of Titan’s solid body. <str<strong>on</strong>g>The</str<strong>on</strong>g> area attributed to ground features is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with HST images (Smith et al., 1996) taken near 1 µm, both as to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> spatial resoluti<strong>on</strong> is at <str<strong>on</strong>g>the</str<strong>on</strong>g> limit of diffracti<strong>on</strong> (0.13 arcsec<br />

at 2.0 µm), very similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> HST images. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> ADONIS images of Titan’s<br />

trail<str<strong>on</strong>g>in</str<strong>on</strong>g>g hemisphere show high-latitude bright z<strong>on</strong>es with a north-south asymmetry;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn latitudes appear brighter by about a factor two with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> south<br />

(Fig. I.5.2.2/3). <str<strong>on</strong>g>The</str<strong>on</strong>g>se bright z<strong>on</strong>es might exist over Titan’s entire disc.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entire surface of Titan appears quite dark <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water ice bands, <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement<br />

with spectroscopic measurements by Coustenis et al., 1997. <str<strong>on</strong>g>The</str<strong>on</strong>g> model of a global<br />

ocean cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface must be ruled out. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred that large cloud structures

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!