13.07.2015 Views

IEEE Paper Template in A4 (V1) - International Journal of Computer ...

IEEE Paper Template in A4 (V1) - International Journal of Computer ...

IEEE Paper Template in A4 (V1) - International Journal of Computer ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>International</strong> <strong>Journal</strong> <strong>of</strong> <strong>Computer</strong> Applications <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g Sciences[VOL III, ISSUE I, MARCH 2013] [ISSN: 2231-4946]Medical Image Watermark<strong>in</strong>g us<strong>in</strong>g MultiRidgelet and Fast ICAA. Umaamaheshvari 1 , K.Thanushkodi 21 Department <strong>of</strong> ECE, SSEC, Anna University <strong>of</strong> TechnologyCoimbatore, India2 ACET, Tamilnadu, India1 ums612@gmail.comAbstract— The medical field along with computer fieldgrows <strong>in</strong> a rapid manner. In telemedic<strong>in</strong>e and telediagnosisauthentication <strong>of</strong> medical images are veryimportant to the patient ,doctor and Insurance company.The youngsters are also keen <strong>in</strong> know<strong>in</strong>g about thetreatment methods and procedures. But no one likes to tellabout the disease <strong>in</strong> open hall. So there is always an urgefor watermark<strong>in</strong>g <strong>of</strong> medical images. So <strong>in</strong> this work weuse the concept <strong>of</strong> multi ridge let and fast <strong>in</strong>dependentcomponent analysis. S<strong>in</strong>ce multi ridge let is a good way toenhance edges and reduce the noise. In this method wehave calculated the structural similarity <strong>in</strong>dex measure(SSIM), mean square error(MSE) and peak signal to noiseratio(PSNR) .The experimental results are compared withthe exist<strong>in</strong>g methods and found to be very effective.Keywords— fast ICA, mean square error(MSE) , multiridgelet , peak signal to noise ratio(PSNR) structuralsimilarity <strong>in</strong>dex measure (SSIM),telemedic<strong>in</strong>e , telediagnosisI. INTRODUCTIONMultimedia and communication technologyprovided new ways to store, access and distributemedical data <strong>in</strong> a digital format. Watermark<strong>in</strong>g usuallyconsists <strong>of</strong> the use <strong>of</strong> perceptually <strong>in</strong>visibleauthentication techniques. That is a predef<strong>in</strong>ed―controlled‖ distortion is <strong>in</strong>troduced <strong>in</strong> the multimediadata. The goals are i) verification <strong>of</strong> the owner and ii)the detection <strong>of</strong> forgeries <strong>of</strong> an orig<strong>in</strong>al image. MedicalImagery is a field where the protection <strong>of</strong> the<strong>in</strong>tegrity and confidentiality <strong>of</strong> content is a critical issuedue to the special characteristics derived from strictethics, legislative and diagnostic implications [1].Medical images should be kept <strong>in</strong>tact <strong>in</strong> anycircumstance and before any operation they must bechecked for [2].Many classifications are available for digital imagewatermark<strong>in</strong>g. The common taxonomy is embedd<strong>in</strong>g <strong>in</strong>spatial and frequency doma<strong>in</strong>. Spatial doma<strong>in</strong> methodsare not robust aga<strong>in</strong>st various attacks and are lesscomplex [3,4].In spatial doma<strong>in</strong> the <strong>in</strong>tensities <strong>of</strong> pixelare modified and embedded. In transform doma<strong>in</strong> whenimage is <strong>in</strong>verse transformed watermark is distributedirregularly and this makes the attacker confused.Generally transform doma<strong>in</strong> methods are superior tospatial doma<strong>in</strong> methods. Some <strong>of</strong> the transform doma<strong>in</strong>methods are Fourier transform [5], Discrete cos<strong>in</strong>etransform, fast Fourier transform, wavelet transform[6].The transform doma<strong>in</strong> coefficients are altered to embed thewatermark and f<strong>in</strong>ally <strong>in</strong>verse transform is applied to obta<strong>in</strong>the watermarked digital data.Schyndel et al. [3] have proposed two methodsus<strong>in</strong>g bit plane manipulation <strong>of</strong> the LSB and the othermethod based on the l<strong>in</strong>ear addition <strong>of</strong> the watermark tothe image data, which is more difficult to decode,<strong>of</strong>fer<strong>in</strong>g <strong>in</strong>herent security. The watermark<strong>in</strong>g schemeemployed <strong>in</strong> spatial doma<strong>in</strong> us<strong>in</strong>g hash functions and <strong>in</strong>some works are presented <strong>in</strong> the most popularwatermark<strong>in</strong>g schemes based on the Spread Spectrum.The first k highest magnitude DFT/DCT coefficients <strong>of</strong>the image is used for watermark<strong>in</strong>g and extraction isdone by compar<strong>in</strong>g the DFT/DCT coefficients <strong>of</strong> thewatermarked and the orig<strong>in</strong>al image. Sh<strong>in</strong>feng et al.[6]proposed a robust DCT technique watermark isembedded <strong>in</strong> low frequency. Barni et al. [7] haveproposed a watermark<strong>in</strong>g algorithm, which operates <strong>in</strong>the frequency doma<strong>in</strong>, embeds a pseudo-randomsequence <strong>of</strong> real numbers <strong>in</strong> a selected set <strong>of</strong> DCTcoefficients. The fractional Fourier transform basedwatermark<strong>in</strong>g scheme for the multimedia copyrightprotection is also done .After decompos<strong>in</strong>g the imagevia FRFT, transformation coefficients are reorder<strong>in</strong>g <strong>in</strong>non <strong>in</strong>creas<strong>in</strong>g sequence and the watermark is embedded<strong>in</strong> the middle coefficients. Feng et al. [8] have proposeda bl<strong>in</strong>d watermark<strong>in</strong>g algorithm <strong>in</strong> which multiple chirpsare used as watermark and embedded <strong>in</strong> the spatialdoma<strong>in</strong> directly but detected <strong>in</strong> the FRFT doma<strong>in</strong>. Yu etal. [9] have used the same logic proposed by Feng et al.[8], the only difference is that the embedd<strong>in</strong>g is done <strong>in</strong>FRFT doma<strong>in</strong> where watermarkPosition and the transform order are used as theencryption keys. Xia et al. [10] have added apseudorandom sequence to the largest coefficients <strong>of</strong> thedetail bands where perceptual considerations are taken<strong>in</strong>to account by sett<strong>in</strong>g the amount <strong>of</strong> modificationproportional to the strength <strong>of</strong> the coefficient itself.Watermark detection is achieved through comparison9 | P a g e


Umaamaheshvari et. al.with the orig<strong>in</strong>al un-watermarked image. Barni et al.[11] proposed a method based on the characteristics <strong>of</strong>the human visual system operat<strong>in</strong>g <strong>in</strong> wavelet doma<strong>in</strong>.Based on the texture and the lum<strong>in</strong>ance content <strong>of</strong> allimage sub-bands, a mask is accomplished pixel by pixel.Kundur et al. [12] proposed the use <strong>of</strong> gray scale logo aswatermark. They addressed a multi resolution fusionbased watermark<strong>in</strong>g method for embedd<strong>in</strong>g gray scalelogos <strong>in</strong>to wavelet transformed images via saliencefactor. Wang et al. [13] and Zhang et al. [14] proposed anew watermark<strong>in</strong>g algorithm based on wavelet treequantization. The detailed survey on wavelet basedwatermark<strong>in</strong>g techniques can be found <strong>in</strong> [15].A multi ridge let transform along with fast ICA isproposed <strong>in</strong> this paper. The experimental results <strong>of</strong> theproposed method are compared with the alreadyavailable watermark<strong>in</strong>g paper.In the organization <strong>of</strong> the paper the history <strong>of</strong>watermark<strong>in</strong>g methods is given <strong>in</strong> section I , a briefnote on ridge lets is given <strong>in</strong> section II, a brief overview<strong>of</strong> fast <strong>in</strong>dependent component analysis is given <strong>in</strong>section III, Watermark embedd<strong>in</strong>g and extraction isgiven <strong>in</strong> section IV. Results and conclusion are given <strong>in</strong>section V.II.RIDGELET TRANSFORMRidgelet transform deals with l<strong>in</strong>e or super-planes<strong>in</strong>gularities. The general overview is given below.Let Ψ be <strong>in</strong> L2(R) with sufficient decay andsatisfies the admissibility condition,KΨ := ∫ |Ψˆ(ξ)| 2 /|(ξ) 2 dξ ⊂ ∞ ……………..………..(1)That KΨ = 1.For a> 0,b ∈ R and Θ ∈[0,2π].In 2-D, po<strong>in</strong>ts and l<strong>in</strong>es are related via the Radontransform, thus the wavelet and ridgelet transforms arel<strong>in</strong>ked via the Radon transform. More precisely, denotethe Radon transform asRf( Θ ,t)=∫f ( x1,x2, ) δ( x1cos Θ +x2 s<strong>in</strong> Θ −t) dx 1 dx 2 …….(2)then the ridgelet transform is the application <strong>of</strong> a 1-Dwavelet transform to the slices (also referred to asprojections) <strong>of</strong> the Radon transform.CRTf (a, b, Θ)=∫Ψ a,b (t)R f (θ,t)dt………………………….(3)For f ∈ L1 (R2 ) is represented as a cont<strong>in</strong>uoussuperposition <strong>of</strong> Ridgelet coefficient and is given byRf(a,b, Θ)= ∫ f(x)Ψa,b,Θ(x)dx ……………………..(4)Any Function f ∈ L1(R2 ) ∩ L2(R)2 is represented as acont<strong>in</strong>uous superposition <strong>of</strong> Ridgelet functions.F(x) = ∫∫∫Rf(a,b,θ)Ψ a,b, θ(x)da…………………………(5)A. Discrete Ridgelet TransformA cont<strong>in</strong>uous ridgelet transform is calculated byapply<strong>in</strong>g 1D wavelet transform to the slices <strong>of</strong> radontransform R f (θ). In radon transform a famous projectionslicetheorem is used. This theorem says that the Radontransform can be obta<strong>in</strong>ed by apply<strong>in</strong>g the onedimensional<strong>in</strong>verse Fourier transform to the twodimensionalFourier transform <strong>of</strong> function restricted toradial l<strong>in</strong>es through the orig<strong>in</strong>. The relation among theFourier, radon and ridgetet doma<strong>in</strong> is depicted shown <strong>in</strong>Fig. 1.Fig .1 Relations between Doma<strong>in</strong>sTo complete the ridge let transform, apply a onedimensional wavelet transform along the radial variable<strong>in</strong> Radon space. The sum up <strong>of</strong> above procedure isshown <strong>in</strong> Fig. 2 <strong>in</strong> the form <strong>of</strong> flow chart. The DRT <strong>of</strong>an image <strong>of</strong> size n×n is an image <strong>of</strong> size2n×2n,<strong>in</strong>troduc<strong>in</strong>g a redundancy factor equal to 4[25,26].F(ωcosθ,ωs<strong>in</strong>θ) = ∫R f (θ,t)e -2πiωx dt ………………..(6)B. Multiscale Ridgelet TransformMultiscale ridgelets based on the ridgelet transformcomb<strong>in</strong>ed with a spatial bandpass filter<strong>in</strong>g operation toisolate different scales .Algorithm‣ Apply a trous algorithm with M scales‣ Apply Radon Transform on detail sub - bands <strong>of</strong> Mscales.‣ Calculate the ridgelet coefficients by apply<strong>in</strong>g‣ 1D wavelet transform on radon coefficients.‣ Get the multiscale ridgelet coefficient <strong>of</strong> M scales.III.Ridgeletdoma<strong>in</strong>Radon Doma<strong>in</strong>FAST INDEPENDENT COMPONENT ANALYSISIndependent component analysis is a method <strong>of</strong>signal process<strong>in</strong>g and used for data analysis. It is basedon bl<strong>in</strong>d source separation (BSS) method. Without thesource signals the coefficients are used for the recovery<strong>of</strong> the signal.ICA was <strong>in</strong>troduced by Comon, Pierre [16].Hyvar<strong>in</strong>en proposed famous Fast ICA based on negativeentropy pr<strong>in</strong>ciple [17].A. The Mix<strong>in</strong>g Model <strong>of</strong> ICA2D Fourierdoma<strong>in</strong>10 | P a g e


Medical Image Watermark<strong>in</strong>g us<strong>in</strong>g Multi Ridgelet and Fast ICASourcesS 1S 2S NMix<strong>in</strong>gmatrixAFig.3 Watermark Embedd<strong>in</strong>gBDemix<strong>in</strong>gmatrix3.The iterative algorithm f<strong>in</strong>ds the direction <strong>of</strong> weightvector W maximiz<strong>in</strong>g the non-gaussianity <strong>of</strong> theprojection W T X for the data X.4. Randomize the <strong>in</strong>itial weight vector W.5. letFig.2 Mix<strong>in</strong>g Model6. Let7.If not converged go to step 5.imageMultiWat Inversridermegelarkridgelet Fig.4 Watermark emb etExtractiontraeddi ktransfnsfng eormoryWatermark mFAST ICAed image WATERMARKING METHODIV.B. Watermark Embedd<strong>in</strong>gIn the proposed method ,the image and watermarkis decomposed by multiscale ridgelet transform. Thecoefficients <strong>of</strong> mulriscale ridgelet for watermarkimageW MR is embedded <strong>in</strong> the low resolution part <strong>of</strong> theimage I MRI MR (low) = I MR (low) (1+αW MR (low)) .........................(7)From the spectrum analysis <strong>of</strong> the image most <strong>of</strong>the useful <strong>in</strong>formation is located <strong>in</strong> the low resolutionpart <strong>of</strong> the image. The <strong>in</strong>visibility <strong>of</strong> watermark isenhanced by us<strong>in</strong>g proper value for α. On the contrary,<strong>in</strong> case <strong>of</strong> attacks low resolution part <strong>of</strong> the image ispreserved <strong>in</strong> the low representation <strong>of</strong> the image ,mak<strong>in</strong>gthe watermark robust.The other coefficients are embedded <strong>in</strong> the highfrequency components <strong>of</strong> the image represent<strong>in</strong>g theedges and textures. To <strong>in</strong>crease the robustness <strong>of</strong> thewatermark we use the equationI MR (hi)= I MR (hi) + βW MR (hi) .........................................(8)To ma<strong>in</strong>ta<strong>in</strong> the <strong>in</strong>visibility <strong>of</strong> the image.C. Watermark ExtractionFor extraction process Fast ICA is used.1. Before apply<strong>in</strong>g fast ICA the <strong>in</strong>put vector datashould be centered.2. The data should be centered by comput<strong>in</strong>g themean <strong>of</strong> each component <strong>of</strong> X and subtract<strong>in</strong>g thatmean. This has the effect <strong>of</strong> mak<strong>in</strong>g each componenthave zero mean.XX-E(X)C. Quality Measures <strong>of</strong> proposed methodAny new method is evaluated based quality measures.For this new method we have used four qualitymeasures.i)Mean Square ErrorMSE =...........(9)ii) Peak Signal to Noise RatioThe ratio between the maximum power <strong>of</strong> a signaland the power <strong>of</strong> corrupt<strong>in</strong>g noise .It is def<strong>in</strong>ed via themean squared error for which two I*J images f and zwhere one <strong>of</strong> the images is noise and the other is givenasPSNR is given by..............(10)iii) Structural Index Similarity Measure(SSIM)The extracted watermarks can be compared withorig<strong>in</strong>al watermark subjectively. Beside subjectivelyjudgment for the watermark fidelity, we have def<strong>in</strong>ed anobjective measure <strong>of</strong> similarity between the orig<strong>in</strong>alwatermark and the extracted watermark <strong>in</strong> the follow<strong>in</strong>gway:...............(11)V. CONCLUSIONSThe computer tomography, MRI and ultrasound imagesare taken and watermarked. We have taken 50 images <strong>in</strong>each image and studied. The Gaussian, rotation, scal<strong>in</strong>g,salt key and pepper noise and speckle noise are added andthe peak to signal noise ratio is calculated. The11 | P a g e


S.NoAttacksRT (LenaImage)Ref 18RT(Medicalimage)proposedRT (LenaImage)Ref 18RT(Medicalimage)proposedUmaamaheshvari et. al.correspond<strong>in</strong>g structural similarity <strong>in</strong>dex and meansquare error are also calculated and found to besignificantly higher. So we can conclude that a abovemethod gives a acceptable result when compared withthe previous techniques.CT ImagesPERFORMANCE MATRICESTABLE 1: FOR CT IMAGESIMAGE3 58.5229 0.0914 0.9973IMAGE4 8.5978 0.0898 0.9972IMAGE5 59.7017 0.0696 0.9981TABLE II: FOR MRI IMAGESULTRAImagesPSNR MSE SSIMIMAGE1 59.2181 0.0779 0.9979IMAGE2 58.5565 0.0907 0.9973MRIImagesPSNR MSE SSIMMAGE1 67.9157 0.0105 0.9997IMAGE2 71.3853 0.0047 0.9996IMAGE3 71.1752 0.0050 0.9989IMAGE4 69.9087 0.0066 0.9997IMAGE5 67.9319 0.0105 0.9997TABLE III: FOR MRI IMAGESPSNR MSE SSIMIMAGE1 80.4523 0.0006 0.9993IMAGE2 72.3905 0.0037 0.9998IMAGE3 70.4234 0.0059 0.9996IMAGE4 70.6903 0.0055 0.9990IMAGE5 77.1617 0.0013 0.9990Ct images PSNR MSE SSIMGaussian 56.4556 0.0798 0.9046Rotation 56.4679 0.0773 0.9597Scal<strong>in</strong>g 55.4093 0.0793 0.9505Salt and pepper 57.2532 0.0792 0.9791speckle 56.2267 0.0787 0.9754MRI images PSNR MSE SSIMGaussian 67.9985 0.0032 0.9265Rotation 66.9370 0.0026 0.9316Scal<strong>in</strong>g 66.9895 0.0027 0.9316Salt and pepper 67.5509 0.0002 0.9297speckle 67.7110 0.0001 0.9419ultra images PSNR MSE SSIMGaussian 72.3957 0.0023 0.9934Rotation 72.8094 0.0029 0.9475Scal<strong>in</strong>g 70.9152 0.0002 0.9162Salt and pepper 72.0169 0.0006 0.9009speckle 72.8900 0.0026 0.9724TABLE IV: COMPARISONTABLESCREEN SHOT:TABLE V: EFFECT OF DIFFERENT NOISES ON DIFFERENT IMAGESPSNRSSIM1. Gaussian22.32 67.9985 0.9001 0.92652. Rotation23.18 66.9370 0.8764 0.93163 Scal<strong>in</strong>g - 66.9895 - 0.93164 Salt andpepper21.29 67.5509 0.8884 0.92975 speckle - 67.7110 - 0.941912 | P a g e


Medical Image Watermark<strong>in</strong>g us<strong>in</strong>g Multi Ridgelet and Fast ICAREFERENCES[1] J. B.Planitz and A. Maeder ―Medical Image Watermark<strong>in</strong>g: Astudy on Image Degradation‖ e- Health research Center, ICTCSIRO, Brisbane, QLD 4000[2] J. Nayak, P. Subbanna Bhat, R. Acharya U and Niranjan UC―Simultaneous storage <strong>of</strong> medical images <strong>in</strong> the spatial andfrequency doma<strong>in</strong>: A comparative study‖ BioMedicalEng<strong>in</strong>eer<strong>in</strong>g OnL<strong>in</strong>e, pp. 3-17, 2004[3] Schyndle, R.G.V., Tirkel, A.Z., Osbrone, C.F.: A DigitalWatermark. In: Proc. <strong>of</strong> <strong>IEEE</strong> Int. Conf. on Image process<strong>in</strong>g,vol. 2, pp. 86–90 (1994)[4] Hwang, M.S., Chang, C.C., Hwang, K.F.: A watermark<strong>in</strong>gtechnique based on one-way hash functions. <strong>IEEE</strong> Transcationson ConsumerElectronics 45(2), 286–294 (1999)[5] Djurovic, I., Stankovic, S., Pitas, I.: Digital watermark<strong>in</strong>g <strong>in</strong> thefractional fourier transformation doma<strong>in</strong>. <strong>Journal</strong> <strong>of</strong> Networkand <strong>Computer</strong> Applications 24(4), 167–173 (2001)[6] Sh<strong>in</strong>feng D. L<strong>in</strong>, Ch<strong>in</strong>-Feng Chen, ―A robust DCT-basedwatermark<strong>in</strong>g for copyright protection‖, <strong>IEEE</strong> Trans.Consumer Electron. 46 (3) (2000) 415–421[7] Barni .M,Bartiloni F , Cappell<strong>in</strong>i, V., Piva, A.: A DCT Doma<strong>in</strong>System for Robust Image watermark<strong>in</strong>g. Signal Process<strong>in</strong>g66(3), 357–372 (1998)[8] Feng, Z., Xiaom<strong>in</strong>, M., Shouyi, Y.: Multiple-chirp typed bl<strong>in</strong>dwatermark<strong>in</strong>g algorithm based on fractional Fourier transform.In: Proc.<strong>of</strong> Int. Sym. on Intelligent Signal Process<strong>in</strong>g andCommunicationSystems,[9] Yu, F.Q., Zhangi, Z.K., Xu, M.H.: A Digital Watermark<strong>in</strong>gAlgorithmfor Image Based on Fractional Fourier Transform. In: Proc. <strong>of</strong>First<strong>IEEE</strong> Conf. on Industrial Electronics and Applications,pp. 1–5(2006)[10] Xia, X., Boncelet, C.G., Arce, G.R.: A multiresolutionwatermark fordigital images. In: Proc. Fourth <strong>IEEE</strong> Int. Conf. on ImageProcess<strong>in</strong>g, Santa Barbara, CA, vol. 3, pp. 548– 551 (1997)[11] Barni, M., Bartiloni, F., Piva, A.: Improved wavelet basedwatermark<strong>in</strong>gthrough pixel wise mask<strong>in</strong>g. <strong>IEEE</strong> Transcations on ImageProcess<strong>in</strong>g10, 783–791 (2001)[12] Kundur, D., Hatz<strong>in</strong>akos, D.: Towards robust logo watermark<strong>in</strong>gus<strong>in</strong>gmeltiresolution image fusion. <strong>IEEE</strong> Transcations on Multimedia6,185–197(2004)[13] Wang, S.H., L<strong>in</strong>, Y.P.:Wavelet tree quantization for copyrightprotectionwatermark<strong>in</strong>g. <strong>IEEE</strong> Transcations on Image Process<strong>in</strong>g 13(2),154–165(2004 )[14] Zhang, X.D., Feng, J., Lo, K.T.: Image watermark<strong>in</strong>g us<strong>in</strong>g treebasedspatial-frequency feature <strong>of</strong> wavelet transform. J.Visual Comm.Image Representation 14, 474–491 (2003)[15] Umaamaheshvari A and Thanushkodi .K ―Survey <strong>of</strong>watermark<strong>in</strong>galgorithms for medical images .IJETT,vol.3 pp 401-410,2012.[16] Comon, Pierre(1998) Independent componenet analysis A newconceptSignal Process<strong>in</strong>g, 36(3):287– 314[17] Hyvär<strong>in</strong>en, A.; Karhunen, J.; Oja, E. (2001): IndependentComponentAnalysis, New York: Wiley, ISBN 978-0-471-40540-5[18]Maggayarkarasi P. And Arulselvi .S:A new Digital imageWatermark<strong>in</strong>gbased on F<strong>in</strong>ite Ridgelet transform and Extraction us<strong>in</strong>g ICA.Proceed<strong>in</strong>gs <strong>of</strong> ICETECT (2011)13 | P a g e

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!