13.07.2015 Views

Properties of biocomposites based on lignocellulosic fillers

Properties of biocomposites based on lignocellulosic fillers

Properties of biocomposites based on lignocellulosic fillers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESS12 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx35180El<strong>on</strong>gati<strong>on</strong> at the Yield Point (%)30252015105Modulus (MPa)1601401201008060402000 1020 30Filler weight fracti<strong>on</strong> (wt %)00 10 20 30Filler weight fracti<strong>on</strong> (wt %)El<strong>on</strong>gati<strong>on</strong> at break (%)2001801601401201008060> 200 > 200Stress at break (MPa)6050403020> 80 > 8040201000 10 20 30Filler weight fracti<strong>on</strong> (wt %)00 10 20 30Filler weight fracti<strong>on</strong> (wt %)9Stress at the Yield Point (MPa)8765432100 10 20 30Filler weight fracti<strong>on</strong> (wt %)Fig. 13. Tensile mechanical properties – Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler (LCF 0–1 ) c<strong>on</strong>tent (from 0 to 30 wt%).Ratio bicocomposites/matrix1,41,210,80,60,40,20Yield stressYield strain0 10 20 30Filler volume fracti<strong>on</strong> (%)Fig. 14. Fittings <strong>on</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some tensile mechanical properties(Yield stress and strain) vs. volume filler (LCF 0–1 ) c<strong>on</strong>tent.NMR the ratio between the co-m<strong>on</strong>omers and by SEC, themolecular weights. The <strong>fillers</strong> have been obtained fromwheat straw after an acid hydrolysis step to eliminate mainhemicellulose and after a fragmentati<strong>on</strong> phase. The dried<strong>fillers</strong> have been sieved. We have obtained a populati<strong>on</strong>with a heterogeneous size distributi<strong>on</strong>. After a sec<strong>on</strong>d sieving,we have achieved two homogeneous fracti<strong>on</strong>s with twoaverage sizes, 45 and 460 micr<strong>on</strong>s. The three types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fillers</strong>have been carefully characterised. These <strong>fillers</strong> present highlignin c<strong>on</strong>tents. We have analysed the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the introducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>fillers</strong> into the matrix through thermal andmechanical analysis. By TGA, we have shown that the <strong>fillers</strong>degradati<strong>on</strong> temperature is higher enough to be compatiblewith the processing temperatures (extrusi<strong>on</strong> andinjecti<strong>on</strong> moulding). Additi<strong>on</strong>ally, adding filler hasincreased the thermal degradati<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> thematrix, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reinforcing c<strong>on</strong>tent. By DSC,we have shown that the filler did not modify the level <str<strong>on</strong>g>of</str<strong>on</strong>g>crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix, but the <strong>fillers</strong> have induced anucleating effect. We have obtained a T g increase linkedto a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain mobility. This increase has beenassociated with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the T c and T f . We have determinedthe heat <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> at 12–13 J/g. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the<strong>fillers</strong> size and c<strong>on</strong>tent have been analysed through uniaxial

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!