13.07.2015 Views

Properties of biocomposites based on lignocellulosic fillers

Properties of biocomposites based on lignocellulosic fillers

Properties of biocomposites based on lignocellulosic fillers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESSCarbohydrate Polymers xxx (2006) xxx–xxxwww.elsevier.com/locate/carbpol<str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>lignocellulosic</strong> <strong>fillers</strong>L. Avérous a, *, F. Le Digabel ba LIPHT, ECPM, Université Louis Pasteur, 25 rue Becquerel, 67087 Strasbourg Cedex 2, Franceb UMR FARE INRA/URCA, BP 1039, 51687 Reims Cedex 2, FranceReceived 15 December 2005; received in revised form 15 March 2006; accepted 1 April 2006AbstractThis paper is focused <strong>on</strong> the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal and mechanical behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> processed <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> (biodegradable composites).These materials have been created by extrusi<strong>on</strong> and injecti<strong>on</strong> moulding. The matrix, a biodegradable and aromatic copolyester(polybutylene adipate-co-terephthalate), has been fully characterised (NMR, SEC). The <strong>lignocellulosic</strong> materials used as <strong>fillers</strong> are aby-product <str<strong>on</strong>g>of</str<strong>on</strong>g> an industrial fracti<strong>on</strong>ati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat straw. Different filler fracti<strong>on</strong>s have been selected by successive sieving,and then carefully analysed (granulometry, chemical structure). Cellulose, lignin, and hemicellulose c<strong>on</strong>tents have been determinedthrough different techniques. The <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> thermal behaviour has been investigated by TGA (thermal degradati<strong>on</strong>) and DSC (transiti<strong>on</strong>temperatures, crystallinity). These materials present good mechanical behaviour due to high filler-matrix compatibility. Theimpacts <str<strong>on</strong>g>of</str<strong>on</strong>g> filler c<strong>on</strong>tent, filler size and the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> each fracti<strong>on</strong> have been analysed. To predict the mechanical behaviour, Takayanagi’sequati<strong>on</strong> seems to provide an accurate answer to evaluate the modulus in a range, 0–30 wt% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fillers</strong>.Ó 2006 Elsevier Ltd. All rights reserved.Keywords: Biocomposite; Biodegradable; Lignocellulosic <strong>fillers</strong>; Mechanical properties1. Introducti<strong>on</strong>Tailoring new composites within a perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainabledevelopment or eco-design, is a philosophy thatis applied to more and more materials. Ecological c<strong>on</strong>cernshave resulted in a renewed interest in natural, renewableresources-<str<strong>on</strong>g>based</str<strong>on</strong>g> and compostable materials, and thereforeissues such as materials eliminati<strong>on</strong> and envir<strong>on</strong>mentalsafety are becoming important. For these reas<strong>on</strong>s, materialcomp<strong>on</strong>ents such as natural fibres, biodegradable polymerscan be c<strong>on</strong>sidered as ‘‘interesting’’ – envir<strong>on</strong>mentally safe –alternatives for the development <str<strong>on</strong>g>of</str<strong>on</strong>g> new biodegradablecomposites (<str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>).The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable polymers in differentfamilies has been published and presented elsewhere(Avérous, 2004). Agro-polymers (e.g., polysaccharides)are the first family. They are obtained from biomass by* Corresp<strong>on</strong>ding author. Tel.: +33 03 90 24 27 07; fax: +33 03 90 24 2716.E-mail address: AverousL@ecpm.u-strasbg.fr (L. Avérous).fracti<strong>on</strong>ati<strong>on</strong>. The polyesters obtained by fermentati<strong>on</strong>from biomass or from genetically modified plants (e.g.,polyhydroxyalkanoate: PHA) are the sec<strong>on</strong>d group. Polymers<str<strong>on</strong>g>of</str<strong>on</strong>g> the third family are synthesised from m<strong>on</strong>omersobtained from biomass (e.g., polylactic acid: PLA). Fourthand last family are polyesters totally synthesised by petrochemicalprocess (e.g., polycaprolact<strong>on</strong>e: PCL, polyesteramide:PEA, aliphatic or aromatic copolyesters), from fossilresources. A large number <str<strong>on</strong>g>of</str<strong>on</strong>g> these biodegradable polymersare commercially available. They show a large range <str<strong>on</strong>g>of</str<strong>on</strong>g>properties and at present, they can compete with n<strong>on</strong>-biodegradablepolymers in different industrial fields (e.g.,packaging, agriculture, hygiene, and cutlery).Lignocellulose-<str<strong>on</strong>g>based</str<strong>on</strong>g> fibres are the most widely used, asbiodegradable filler. Intrinsically, these fibres have a number<str<strong>on</strong>g>of</str<strong>on</strong>g> interesting mechanical and physical properties(Bledzki & Gassan, 1999; Mohanty, Misra, & Hinrichsen,2000; Saheb & Jog, 1999). These renewable materials presentstr<strong>on</strong>g variati<strong>on</strong>s according to the botanical origin(Table 1). With their envir<strong>on</strong>mentally friendly characterand some techno-ec<strong>on</strong>omical advantages, these fibres0144-8617/$ - see fr<strong>on</strong>t matter Ó 2006 Elsevier Ltd. All rights reserved.doi:10.1016/j.carbpol.2006.04.004


ARTICLE IN PRESS2 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxxTable 1Chemical compositi<strong>on</strong> (wt%) <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetable fibersFiber Cellulose Hemicellulose Pectin Lignin AshBast fibersFlax a 71 19 2 2 1–2Hemp a 75 18 1 4 1–2Jute a 72 13 >1 13 8Ramie a 76 15 2 1 5Leaf fibersAbaca a 70 22 1 6 1Sisal a 73 13 1 11 7Seed-hair fibersCott<strong>on</strong> a 93 3 3 – 1Wheat straw a 51 26 – 16 7LCF <strong>fillers</strong>LCF 0–1 58 8 – 31 3LCF 0–0.1 56 7 – 31 6LCF 0.1–1 59 8 – 31 2a Sources: Young, 2004; Le Digabel, 2004.motivate more and more different industrial sectors (automotive)to replace comm<strong>on</strong> fibreglass, for example.Biocomposites are obtained by the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradablepolymer as the matrix material and biodegradable<strong>fillers</strong> (e.g., <strong>lignocellulosic</strong> <strong>fillers</strong>). Since bothcomp<strong>on</strong>ents are biodegradable, the composite as the integralpart is also expected to be biodegradable (Mohantyet al., 2000). For short-term applicati<strong>on</strong>s, <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>present str<strong>on</strong>g advantages, and a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> papershas been published <strong>on</strong> this topic. Except some publicati<strong>on</strong>s<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> polysaccharide matrix (e.g., plasticized starch)(Avérous & Boquill<strong>on</strong>, 2004; Avérous, Fringant, & Moro,2001) most <str<strong>on</strong>g>of</str<strong>on</strong>g> the published studies (Avérous, 2004) are<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> biopolyesters (biodegradable polyesters) matrices(Mohanty et al., 2000; Netravali & Chabba, 2003). Forinstance, PHA has been combined with <strong>lignocellulosic</strong>fibres (Bourban et al., 1997; Wollerdorfer & Bader,1998), jute fibres (Mohanty, Khan, & Hinrichsen, 2000a;Wollerdorfer & Bader, 1998), abaca fibres (Shibata, Takachiyo,Ozawa, Yosomiya, & Takeishi, 2002), pineapplefibres (Luo & Netravali, 1999), flax fibres (Van de Velde& Kiekens, 2002), wheat straw fibres (Avella et al., 2000)or <strong>lignocellulosic</strong> flour (Dufresne, Dupeyre, & Paillet,2003; Fernandes, Pietrini, & Chiellini, 2004). PLA has beenassociated with paper waste fibres, wood flour (Levit,Farrel, Gross, & McCarthy, 1996), kenaf (Nishino, Hirao,Kotera, Nakamae, & Inagaki, 2003), jute (Plackett,Logstrup Andersen, Batsberg Pedersen, & Nielsen, 2003)or flax fibres (Oksman, Skrifvars, & Selin, 2003; Van deVelde & Kiekens, 2002). Some authors have tested flax(Van de Velde & Kiekens, 2002) or sisal (Ruseckaite &Jiménez, 2003) with PCL. Mohanty, Khan, and Hinrichsen(2000b) have reinforced PEA with jute fibres. Aliphaticcopolyesters have been used with cellulosic fibres(Wollerdorfer & Bader, 1998), bamboo fibres (Kitagawa,Watanabe, Mizoguchi, & Hamada, 2002) or flax, oil palm,jute or ramie fibres (Wollerdorfer & Bader, 1998). Aromaticcopolyesters have been associated with wheat straw <strong>fillers</strong>.Some results <strong>on</strong> such systems are presented in aprevious publicati<strong>on</strong> (Le Digabel, Boquill<strong>on</strong>, Dole, M<strong>on</strong>ties,& Avérous, 2004). Le Digabel et al. (2004) have showna good compatibility between the <strong>fillers</strong> and the biodegradablematrix without compatibilizers or special <strong>fillers</strong>treatment.This paper is focussed <strong>on</strong> the processing and <strong>on</strong> the analysis<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>lignocellulosic</strong> <strong>fillers</strong> (LCF)which are by-products <str<strong>on</strong>g>of</str<strong>on</strong>g> an industrial fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>wheat straw. These <strong>fillers</strong> are combined with biodegradablearomatic copolyester, polybutylene adipate-co-terephthalate(PBAT). The use <str<strong>on</strong>g>of</str<strong>on</strong>g> low cost bio-<strong>fillers</strong> is a way to reducethe cost <str<strong>on</strong>g>of</str<strong>on</strong>g> the end product with improved properties. Theaim <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is more particularly targeted at the thermaland mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>. We haveanalysed the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler size and c<strong>on</strong>tent and, wehave tried to predict by modelling the corresp<strong>on</strong>ding evoluti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> the modulus. This paper complements and expands aprevious publicati<strong>on</strong> (Le Digabel et al., 2004).2. Experimental2.1. MaterialsThe matrix, a biodegradable and aromatic copolyester(polybutylene adipate-co-terephthalate, PBAT) has beenkindly supplied by Eastman (EASTAR BIO Ultra Copolyester14766). Copolyester chemical structure is drawn inFig. 1. This copolyester is soluble at room temperature indifferent solvents such as THF, CH 2 Cl 2 and CHCl 3 . Theratio between each m<strong>on</strong>omer has been determined by 1 HNMR. Fig. 2 shows the NMR spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> PBAT, dissolvedin chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm. The integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the adequatepeaks (2.33 and 8.1 ppm) gives PBAT compositi<strong>on</strong>, 43%<str<strong>on</strong>g>of</str<strong>on</strong>g> butylene terephthalate and 57% <str<strong>on</strong>g>of</str<strong>on</strong>g> butylene adipate.Molecular weight (M w ) and polydispersity index (IP) are48,000 and 2.4, respectively. They have been determinedby size exclusi<strong>on</strong> chromatography (SEC). Melt flow index(MFI) is 13 g/10 mn at 190 °C/2.16 kg. PBAT density is1.27 g/cm 3 at 23 °C.The <strong>lignocellulosic</strong> materials used as <strong>fillers</strong> are a byproduct<str<strong>on</strong>g>of</str<strong>on</strong>g> an industrial fracti<strong>on</strong>ati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> wheatstraw (ARD, Pomacle, France). This product is obtainedFig. 1. Chemical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the copolyester (PBAT).


ARTICLE IN PRESSL. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx 3C 6 H 4(8,1 ppm)OCH 2 CH 2COCH 2 CH 2OCH 2COCH 2(2,33 ppm)CHCl 3Integral1.00001.01051.33611.35023.785610.09.59.08.58.07.57.06.56.04.54.03.53.02.52.01.51.00.55.5 5.0(ppm)Fig. 2. 1 H NMR spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> PBAT.from a multi-step process. 250 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> chopped wheat straw(10–15 cm) are introduced into a 1 m 3 reactor under highshearing to promote fibre fragmentati<strong>on</strong>. Wheat straw ishydrolysed in acid medium (H 2 SO 4 , 0.1 N) under pressure(3.5 bars) at 130 °C, during maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 mn (Roller,1990). The soluble fracti<strong>on</strong> (mostly hemicellulose sugars) isfiltered and refined for further applicati<strong>on</strong>s. The insolublefracti<strong>on</strong>, the by-product called <strong>lignocellulosic</strong> filler (LCF)is neutralised, washed and dried with a turbo-dryer (AlphaVomm, Italy). The process yield from the wheat straw tothe LCF is 33%. The dried LCF filler is sieved with a1 mm grid to eliminate the biggest <strong>fillers</strong> (20 wt%). Thisproduct is named LCF 0–1 . According to Fig. 3, this lastfracti<strong>on</strong> is sieved with a 0.1 mm grille and then two fracti<strong>on</strong>sare obtained, LCF 0.1–1 and LCF 0–0.1 .2.2. Biocomposites processingIn a previous publicati<strong>on</strong>, we have shown that the fillermatrixinteracti<strong>on</strong>s are sufficient to avoid filler treatmentand/or additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compatibilizers, which are costly. Priorto blending, <strong>fillers</strong> and thermoplastic granules are dried inan air-circulating oven at 80 °C, for up to 4 and 1 h, respectively.PBAT and varying amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF are directlyadded in the feeding z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a single screw extruder(SCAMIA S 2032, France) equipped with a specificdesigned torpedo-like element to promote high shearingand mixing. The screw diameter (D) and the L/D ratioare 30 mm and 26/1, respectively. Typically, for technicalreas<strong>on</strong>s due to the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler dispersi<strong>on</strong>, the maximumLCF c<strong>on</strong>tent is 30–40 wt%. Extrusi<strong>on</strong> temperature is135 °C. Three millimetre diameter strands are pelletizedafter air-cooling. These granules are extruded <strong>on</strong>ce againat the same c<strong>on</strong>diti<strong>on</strong> to improve the filler dispersi<strong>on</strong> intothe matrix.Standard dumbbell test pieces (NFT 51-034-1981) aremoulded with an injecti<strong>on</strong> moulding machine (DK codimNGH 50/100) in a temperature range between 115 and130 °C, with an injecti<strong>on</strong> pressure and speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 barsand 50 mm/s. Holding pressure and times are 500 barsand 12 s (PBAT) or 14 s (<str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>), respectively.Mould temperature is 30 °C. The total cooling time is22 s (neat PBAT) and 24 s. The injecti<strong>on</strong>-moulded specimensare approximately 10 mm wide and 4 mm thick inthe central part (French standard NFT 51-0.34 1981).2.3. Characterisati<strong>on</strong>sPBAT molecular weights and polydispersity index havebeen determined by SEC with PS standards for the calibrati<strong>on</strong>.Analyses are performed in THF <strong>on</strong> two PL-gel 5 lmmixed-C, a 5 lm 100 Å and a 5 lm Guard columns in aShimadzu LC-10AD liquid chromatograph equipped witha Shimadzu RID-10A refractive index detector and a ShimadzuSPP-M10A diode array UV detector.NMR equipment is a NMR 300 MHz (Bruker 300Ultrashield, USA). Samples have been dissolved in deuteratedchlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm.


ARTICLE IN PRESS4 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxxAcid hydrolysisWheat straw240 KgFracti<strong>on</strong>ati<strong>on</strong>Sieving 1mmLCF80 KgHemicellulosesSugarsLCF 0-165 KgSieving 0.1mmLCF 0-0.1 LCF 0.1-1Fig. 3. Fillers fracti<strong>on</strong>s elaborati<strong>on</strong>: wheat straw fracti<strong>on</strong>ing schema.The <strong>fillers</strong> size distributi<strong>on</strong>s have been determined bylight scattering with a particles size analyzer (Mastersizer2000, Malvern Instruments, UK), in a 10 nm–2 mm range.Optical observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>fillers</strong> are performed with atransmissi<strong>on</strong>/reflecti<strong>on</strong> microscope (Zeiss, Germany).Scanning electr<strong>on</strong> microscopy (SEM) is performed with aLEO Gemini 98 (USA) instrument to investigate the fillermorphology, at low voltage without metal coating.The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>fillers</strong> is determined. Lignin andmineral c<strong>on</strong>tents are determined by Klas<strong>on</strong> lignin method,according to the protocol described by M<strong>on</strong>ties (1984). Foreach sample, 300 mg (M) are added to 3 ml H 2 SO 4 . After2hat20°C, the soluti<strong>on</strong> is diluted into 40 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilledwater. Then, the mix is carried out at reflux for 3 h. Afterfiltrati<strong>on</strong>, the solid residue is washed several times with distilledwater until neutrality <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrate is obtained. Theresidue is dried at 100 °C for 20 h and weighted (P 1 ). Thisresidue is calcinated at 500 °C for 210 min and then weighted(P 2 ) to determine the mineral c<strong>on</strong>tent. Three samples areanalysed for each filler fracti<strong>on</strong>. The Klas<strong>on</strong> lignin c<strong>on</strong>tentis determined according to Eq. (1).LigninsðKLÞ ¼ P 1 P 2ð1ÞMAfter acid hydrolysis (H 2 SO 4 ) and filtrati<strong>on</strong> to eliminatelignin and minerals, sugar titrati<strong>on</strong> allowed quantifyingthe cellulose and hemicellulose c<strong>on</strong>tents according to theprocedure described by Lequart, Ruel, Lapierre, Pollet,and Kurek (2000). This analysis is carried out with highperformance liquid chromatography (HPLC) with a Di<strong>on</strong>exÓ column (ani<strong>on</strong> exchange column). During the analysis,the different dissolved sugars are i<strong>on</strong>ized with NaOH(0.1 N) which is the mobile phase. The glucose c<strong>on</strong>centrati<strong>on</strong>gives the cellulose c<strong>on</strong>tent. The different sugars obtainedfrom hemicellulose hydrolysis are also quantified.The filler density is determined by pycnometry measurements<strong>on</strong> 10, 20, and 30% LCF filled <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> (injectedsamples) assuming there are no voids in the tested<str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>.The thermal stability is determined by thermo-gravimetricanalysis with a high resoluti<strong>on</strong> TGA (2950 WATERSTA Instruments, USA) at a heating rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 °C min 1from 30 to 550 °C. Degradati<strong>on</strong> temperatures are determined<strong>on</strong> DTG scans, at the peak maximum.Differential scanning calorimeter (DSC 2920, TAInstruments, USA) is used. Samples (between 10 and15 mg) are sealed in aluminium pans. The heating andcooling rates are 10 °C min 1 . A nitrogen flow(45 ml min 1 ) is maintained throughout the test. For allmaterials, the first scan is used for eliminating the thermalhistory <str<strong>on</strong>g>of</str<strong>on</strong>g> the material. Each sample is heated to150 °C then cooled to 50 °C before a sec<strong>on</strong>d heatingscan to 150 °C. The glass transiti<strong>on</strong> temperature (T g )and melting temperature (T m ) are determined from thesec<strong>on</strong>d heating scan. The crystallisati<strong>on</strong> temperature(T c ) is obtained from the cooling scan because the samplesare not quenched. The temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> (T i )is the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystallizati<strong>on</strong> during the cooling.T g is determined at the mid-point <str<strong>on</strong>g>of</str<strong>on</strong>g> heat capacity changes,T m at the <strong>on</strong>set peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the endothermic and T c atthe <strong>on</strong>set peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the exothermic. Three samples for eachblend are tested. By integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>dingpeaks, we have determined the different heats <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong>and fusi<strong>on</strong> (DH c and DH f ). These values (determinedin J/g) can be corrected from a diluti<strong>on</strong> effectlinked to the <strong>fillers</strong> incorporati<strong>on</strong> into the matrix e.g.,see Eq. (2) where ww is the filler fracti<strong>on</strong>.DH 0 c ¼DH c1 wwð2Þ


ARTICLE IN PRESSL. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx 5The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity (in %) can be estimated with Eq.(3).X c ð%Þ ¼DH f 100ð3ÞDH 100% 1 wwTensile testing is carried out with an Instr<strong>on</strong> UniversalTesting Machine (model 4204) in tensile mode, accordingto the ASTM D882-91, with a crosshead speed <str<strong>on</strong>g>of</str<strong>on</strong>g>50 mm min 1 . Ten samples for each formulati<strong>on</strong> are tested.Before testing to stabilize the different specimens, storagec<strong>on</strong>diti<strong>on</strong>s are 23 °C and 50% RH (Relative Humidity)for 5 days. The n<strong>on</strong>-linear mechanical behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the differentsamples is determined through different parameters.The nominal and the true strains are given by Eqs. (4) and(5), respectively. In these equati<strong>on</strong>s, L and L 0 are the lengthduring the test and at zero time, respectively. Two differentstrains are calculated; strain at the yield point (e Y )andatbreak (e b ).hei ¼ L L 0ð4ÞL 0e ¼ Ln L ð5ÞL 0The nominal stress is determined by Eq. (6), where F is theapplied load and S 0 is the initial cross-secti<strong>on</strong>al area. Thetrue stress is given by Eq. (7) where F is the applied loadand S is the cross-secti<strong>on</strong>al area. S is estimated assumingthat the total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample remained c<strong>on</strong>stant,according to Eq. (8). Both, stress at the yield point (r Y )and at break (r b ) are determined.hri ¼ F ð6ÞS 0r ¼ F ð7ÞSS ¼ S 0 L 0ð8ÞLYoung’s modulus (E) is measured from the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> the lowstrain regi<strong>on</strong> in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 (r = e = 0).3. Results and discussi<strong>on</strong>3.1. LCF analysisFig. 4 shows the size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the different fracti<strong>on</strong>s(LCF 0–1 , LCF 0–0.1 , and LCF 0.1–1 ). LCF 0–1 presentsa double granulometric distributi<strong>on</strong>, a populati<strong>on</strong> centredat 50 lm and another <strong>on</strong>e at 700 lm. After sieving, weobtain two log-normal curves i.e., two homogeneous populati<strong>on</strong>s.A first distributi<strong>on</strong> is centred at 50 lm and another<strong>on</strong>e at 630 lm. Table 2 gives the different average sizes.Figs. 5 and 6 show both fracti<strong>on</strong>s at different magnificati<strong>on</strong>swith various observati<strong>on</strong> techniques, optical (Fig. 5)and electr<strong>on</strong> (Fig. 6) microscopies. Fig. 5 (c and d) showscoloured <strong>fillers</strong> with acidified phloroglucinol which revealsphenolic compounds as the lignin. By c<strong>on</strong>trast, we can seethe cellulose organisati<strong>on</strong> (micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils) in both samples.Optical micrographs (Fig. 5) show main differencesbetween both fracti<strong>on</strong>s. LCF 0–0.1 looks like a powder withpoorly-shaped fibres (Figs. 5a and c). LCF 0.1–1 is morefibrous; we show some pieces with the fibres network andthe micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils (Figs. 5b and d). Observati<strong>on</strong> carried outby SEM (see Fig. 6) shows very well the original organisati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> the plant with the fibre organisati<strong>on</strong> and the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils.The fracture areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibres networks and thesubsequent defibrillati<strong>on</strong>s linked to the <strong>fillers</strong> preparati<strong>on</strong>process are shown <strong>on</strong> LCF 0.1–1 SEM micrographs (seeFigs. 6c and d). LCF 0–0.1 seems to be a mix <str<strong>on</strong>g>of</str<strong>on</strong>g> differentshapes, fibrous (short and small pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres) and moreor less spherical lignin-<str<strong>on</strong>g>based</str<strong>on</strong>g> particles. This diversity is dueto the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the industrial fracti<strong>on</strong>ati<strong>on</strong> process <strong>on</strong> theplant tissues. Wheat straw is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> different tissueswhich are more or less destroyable during the process.On <strong>on</strong>e hand, leaves, internodes and the parenchyma (seeFig. 7) are more particularly destroyable. On the otherhand, the sclerenchyme and the fibres networks are moreresistant.Table 1 presents the chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> differentvegetable fibres. Compared to the others, wheat strawshows rather low cellulose c<strong>on</strong>tent, a high lignin compositi<strong>on</strong>but also a high ash c<strong>on</strong>tent linked to a high silica fracti<strong>on</strong>.According to Zhang, Liu, and Li (1990), silica ismainly located <strong>on</strong> the leaves, 12% <str<strong>on</strong>g>of</str<strong>on</strong>g> ash in the leaves comparedto e.g., 6% in the internodes. Average value is 7–8%<str<strong>on</strong>g>of</str<strong>on</strong>g> ash in the straw (Zhang et al., 1990).Table 1 shows also the compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the differentLCF fracti<strong>on</strong>s. We can show the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the wheat strawtreatment. LCF shows higher lignin c<strong>on</strong>tent. Assumingthat the lignin which is insoluble is poorly affected by thehydrolysis process, the lignin quantity (in weight) staysc<strong>on</strong>stant from the initial wheat straw to the LCF 0–1 . Then,lignin can be used as a reference. Cellulose and hemicellulosec<strong>on</strong>tents have been decreased under the hydrolysistreatment. Around 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total cellulose and 85% <str<strong>on</strong>g>of</str<strong>on</strong>g>the hemicellulose have been eliminated during the processand collected mostly in the soluble fracti<strong>on</strong> (see Table 1).We can notice that the process yield <str<strong>on</strong>g>of</str<strong>on</strong>g> hemicellulose sugarsrecovery is not total. By HPLC analysis, the hemicellulosecompositi<strong>on</strong> can be given. Hemicellulose is composed with96% <str<strong>on</strong>g>of</str<strong>on</strong>g> xylose, 3% <str<strong>on</strong>g>of</str<strong>on</strong>g> arabinose, and 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> mannose.On Table 1, LCF 0–0.1 shows intermediate values betweenLCF 0–0.1 and LCF 0.1–1 . Comparing LCF 0–0.1 and LCF 0.1–1 ,we can notice that silica (ash) is more particularly presentin the finest fracti<strong>on</strong>. Then, LCF 0–0.1 must be composed,more particularly, <str<strong>on</strong>g>of</str<strong>on</strong>g> pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> chopped leaves, which presenthigher silica c<strong>on</strong>tent.3.2. Biocomposites thermal propertiesTGA has been carried out to evaluate the thermalbehaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> with filler c<strong>on</strong>tentfrom 0 to 40 wt. Fig. 8 and Table 3 show the main results.Until more than 10 wt%, we cannot observe the transiti<strong>on</strong>linked to the <strong>fillers</strong>. At 300 °C, the variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> weight


ARTICLE IN PRESS6 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx654% volume32101 10 100 1000 10000Size (μm) LCF 0-1mm76LCF 0-0.1 mmLCF 0.1-1 mm5% volume432101 10 100 1000 10000Size (μm)Fig. 4. Granulometric distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the different <strong>fillers</strong> (LCF 0–1 , LCF 0–0.1 , and LCF 0.1–1 ).Table 2Fillers average sizesLCF 0–1 LCF 0–0.1 LCF 0.1–1Average size (micr<strong>on</strong>s) 320 50 460Volume weightedlosses are due the water uptake at equilibrium, which ishigher for <strong>lignocellulosic</strong> <strong>fillers</strong> compared to PBAT. Then,the weight loss increases with filler c<strong>on</strong>tent. This result canbe obtained by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix water uptake(1%) and the filler water uptake (13–14%), corrected forthe corresp<strong>on</strong>ding c<strong>on</strong>tents. Table 3 shows that the matrixdegradati<strong>on</strong> temperature and the corresp<strong>on</strong>ding <strong>on</strong>setincrease with the filler c<strong>on</strong>tent. These latter results are <strong>on</strong>agreement with Ruseckaite and Jiménez (2003) studies<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> PCL matrix or with a previous work (Avérous& Boquill<strong>on</strong>, 2004) <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> plasticized starch. In the sameway, the filler degradati<strong>on</strong> temperature (around 360 °C) isc<strong>on</strong>sistent with values obtained by other authors (Avérous& Boquill<strong>on</strong>, 2004; Ruseckaite & Jiménez, 2003) <strong>on</strong> <strong>lignocellulosic</strong><strong>fillers</strong>. Additi<strong>on</strong>ally, we can show that LCF <strong>fillers</strong>are thermally stable up to 200 °C. The degradati<strong>on</strong> behaviour<str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>fillers</strong> is then compatible with the plastic processingtemperatures.Fig. 9 shows the PBAT thermogram determined byDSC. Table 4 gives main thermal characteristics. Comparedto most thermoplastics, T g and T f are rather low,and processing temperature is not high, around 130 °C.We can notice that this copolymer presents a single transiti<strong>on</strong>for T g , T c and T m due to the repartiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the differentsequences. These temperatures are intermediate betweenthe data <str<strong>on</strong>g>of</str<strong>on</strong>g> both homopolymers, polybutylene adipateand polybutylene terephthalate (Chang & Tsai, 1994). Atroom temperature, PBAT is <strong>on</strong> the rubber plateau i.e.,between T g and T f . Without knowing the theoreticalenthalpy for 100% crystalline PBAT, we have used theapproach presented by Herrera, Franco, Rodriguez-Galan,and Puiggali (2002). Theoretical enthalpy is calculated bythe c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the different chain groups. The c<strong>on</strong>tributi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> ester, methylene and p-phenylene groups are2.5, 4.0, and 5.0 kJ/mol, respectively. The calculated value(DH 100% ) is equal to 22.3 kJ/mol i.e., 114 J/g. The degree


ARTICLE IN PRESSL. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx 7aLCF 0-0.1mm (×5). b LCF 0.1-1mm (×5).500 µm 300 µmcLCF 0-0.1mm (×20). dLCF 0.1-1mm (×20).100 µm100 µmFig. 5. Optical micrographs at different magnificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–0.1 (a and c) and LCF 0.1–1 (b and d). Samples c and d are treated with acidifiedphloroglucinol to reveal phenolic compounds.abcLCF 0-0.1 mm10 µm 20 µmdLCF 0-0.1 mmLCF 0.1-1mm200 µm 200 µmLCF 0.1-1mmFig. 6. Scanning electr<strong>on</strong>ic micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0-0.1 (a and b) and LCF 0.1–1 (c and d).


ARTICLE IN PRESS8 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxxFibres networksParenchymaSclerenchymeFig. 7. Schema <str<strong>on</strong>g>of</str<strong>on</strong>g> the cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a wheat straw stem with thedifferent tissues.<str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity (in %) is estimated with Eq. (3). PBAT crystallinityis rather low, around 12%. We can notice that theDCp gap at the glass transiti<strong>on</strong> is rather small. The differentthermodynamic values are c<strong>on</strong>sistent with data obtained byother authors (Herrera et al., 2002).Table 4 presents the different values obtained by DSCdeterminati<strong>on</strong>s <strong>on</strong> PBAT with increasing filler c<strong>on</strong>tents.As shown in Table 4, the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing amounts<str<strong>on</strong>g>of</str<strong>on</strong>g> LCF results in a slight but significant increase in T g <str<strong>on</strong>g>of</str<strong>on</strong>g>PBAT, from 39.3 to 35.7 °C. According to Avellaet al., this trend may be explained by intermolecular interacti<strong>on</strong>sbetween the hydroxyl groups <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>fillers</strong> and thecarb<strong>on</strong>yl groups <str<strong>on</strong>g>of</str<strong>on</strong>g> the PBAT ester functi<strong>on</strong>s. These hydrogenb<strong>on</strong>ds would probably reduce the polymer mobilityand then increase T g values. The PBAT/LCF <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>do not show any significant variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T f , in agreementwith the data <str<strong>on</strong>g>of</str<strong>on</strong>g> Avella et al. (2000). We haveshown by SEC that the molecular weight variati<strong>on</strong> is insignificant.We have not detected any chain degradati<strong>on</strong> phenomenaunder the thermo-mechanical treatment. We cannotice that crystallizati<strong>on</strong> and fusi<strong>on</strong> heats decrease. Thisis due to a diluti<strong>on</strong> effect linked to the <strong>fillers</strong> incorporati<strong>on</strong>into the matrix. However, when the enthalpy is correctedby the filler c<strong>on</strong>tent, these values stay rather c<strong>on</strong>stante.g., DH 0 cdata (Table 4). The corrected heats <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong>and fusi<strong>on</strong> are equivalent; we do not have significantcrystallizati<strong>on</strong> during the sec<strong>on</strong>d scan. The heats <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong>and fusi<strong>on</strong> are equal to 13–14 J/g i.e., around2.6 kJ/mol. The diluti<strong>on</strong> effect seems also to affect DCp1009080Increasing filler c<strong>on</strong>tent:0, 10, 30 and 40 wt%– RLC 0%.001RLC 10%.001RLC 30%.001RLC 40%.00170Weight (%)60504030201000 50 100 150 200 250 300 350 400 450 500 550Temperature (˚C)Fig. 8. TGA thermograms, mass fracti<strong>on</strong> vs. temperature. TG <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF-<str<strong>on</strong>g>based</str<strong>on</strong>g> <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> (0, 10, 30, and 40 wt % <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–1 ).Table 3Main TGA resultsTransiti<strong>on</strong> 1 Transiti<strong>on</strong> 2 Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> weight At 300 °C–Filler––Matrix–Onset 1Degradati<strong>on</strong> temperaturemaximum 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> DTGOnset 2Degradati<strong>on</strong> temperaturemaximum 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> DTGPBAT No visible ‘‘transiti<strong>on</strong>’’ 382 °C (15%) 410 °C (60%) 1%LCF-10% 384 °C (15%) 411 °C (59%) 3%LCF-30% 323 °C (6%) 364 °C (17%) 398 °C (61%) 413 °C (63%) 5%LCF-40% 324 °C (10%) 357 °C (22%) 401 °C (48%) 421 °C (70%) 7%Between brackets are given the total weight loss at the corresp<strong>on</strong>ding temperature.


ARTICLE IN PRESSL. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx 9PBATExo10% 20%30%Flux de chaleur (W/g)30 40 50 60 70 80 90 100Température (˚)0,10-0,1cooling2 nd scan-0,21 st scan-0,3-50 -25 0 25 50 75 100 125 150 175Temperature (˚C)Fig. 9. DSC thermograms. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat flow vs. temperature for different <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> (0, 10, 20, 30 wt % <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–1 ).Table 4Main DSC resultsSample T g (°C) DCp (W g 1 ) T c (°C) T i (°C) DH c (J g 1 ) DH 0 c ðJg 1 Þ T f (°C) DH f (J g 1 ) X c (%)PBAT 39.3 ± 0.3 0.038 ± 0.001 68.0 ± 1.0 84 ± 1 13.5 ± 0.2 13.5 ± 0.2 113.9 ± 0.5 13.9 ± 0.3 12PBAT-10% 38.2 ± 0.2 0.028 ± 0.002 68.0 ± 0.4 87 ± 1 11.3 ± 0.1 12.6 ± 0.1 113.2 ± 0.7 11.7 ± 0.2 11PBAT-20% 36.6 ± 0.2 0.020 ± 0.001 71.0 ± 0.3 90 ± 1 11.4 ± 0.2 14.2 ± 0.3 113.8 ± 0.5 11.2 ± 0.4 12PBAT-30% 35.7 ± 0.2 0.010 ± 0.001 70.7 ± 0.3 91 ± 1 9.3 ± 0.5 13.3 ± 0.7 114.2 ± 0.6 10.0 ± 0.3 12which tends to decrease with <strong>fillers</strong> incorporati<strong>on</strong>. We cannotice that an increase in LCF c<strong>on</strong>centrati<strong>on</strong> does notaffect the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> PBAT crystallinity, which stays c<strong>on</strong>stantat around 12%. Fig. 9 shows crystallizati<strong>on</strong> curves<str<strong>on</strong>g>of</str<strong>on</strong>g> neat PBAT and PBAT/LCF <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>. The incorporati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> LCF induces a slight but significant increasein T c . This is probably linked to the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymermobility. The beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystallisati<strong>on</strong> (T i ) duringthe cooling tends to increase with increasing <strong>fillers</strong>c<strong>on</strong>tent. The <strong>fillers</strong> modify the crystallisati<strong>on</strong> by increasingthe number <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleating sites. Fig. 9 shows that the PBATcrystallisati<strong>on</strong> peak is Gaussian but with increasing <strong>fillers</strong>c<strong>on</strong>tent, this peak becomes more and more asymmetricwith an earlier crystallisati<strong>on</strong>.3.3. Biocomposite mechanical propertiesFig. 10 presents the mechanical behaviour (nominal values)under uniaxial tensile test <str<strong>on</strong>g>of</str<strong>on</strong>g> PBAT-<str<strong>on</strong>g>based</str<strong>on</strong>g> samples,with or without <strong>fillers</strong>. Stress–strain evoluti<strong>on</strong>s show thatPBAT at room temperature is a ductile material with a highel<strong>on</strong>gati<strong>on</strong> at break (e b ), more than 200%. This is c<strong>on</strong>sistentwith T g and T f values. The matrix mechanical characteristicsare given <strong>on</strong> Table 5. Fig. 10 shows also that even athigh filler (LCF 0–1 ) c<strong>on</strong>tent the material keeps its ductilecharacter.C<strong>on</strong>cerning <strong>fillers</strong>, modulus evaluati<strong>on</strong> is always problematic.The modulus has been evaluated following theapproach developed by G<strong>on</strong>zalez-Sanchez and Exposito-Alvarez (1999). Different PP composites had been processedwith increasing LCF 0–1 c<strong>on</strong>tent (Le Digabel et al.,2004). The filler modulus has been estimated by fitting asemi-empirical Halpin–Tsai model <strong>on</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thecomposites Young’s modulus as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fillers</strong> volumefracti<strong>on</strong>. By extrapolati<strong>on</strong> at 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fillers</strong> (seeFig. 11), we obtain the filler modulus, estimated at6.7 GPa. This value is c<strong>on</strong>sistent with wheat straw data givenin the literature (Hornsby, Hinrichsen, & Tarverdi,1997; Kr<strong>on</strong>bergs, 2000) and with values obtained <strong>on</strong> different<strong>lignocellulosic</strong> materials (Young, 2004).


ARTICLE IN PRESS10 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxxStress (MPa)PBATLCF 10%LCF 20%Strain (%)Fig. 10. Tensile mechanical behaviour (nominal values). Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stress vs. strain for different <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> (0, 10, 20 wt % <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–1 ).Table 5Tensile mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PBATModulus (MPa) Yield stress (MPa) Strength at break (MPa) El<strong>on</strong>gati<strong>on</strong> at the yieldpoint (%)El<strong>on</strong>gati<strong>on</strong> at break (%)E Ær Y æ Nominal r Y True Ær b æ Nominal r b True Æe Y æ Nominal e Y True Æe b æ Nominal e b True40 6 8 >12 >84 32 28 >600 >2003.3.1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> filler sizeFig. 12 shows, respectively, the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the modulusand the true values <str<strong>on</strong>g>of</str<strong>on</strong>g> e Y , e b , r Y ,andr b for the different <strong>fillers</strong>fracti<strong>on</strong>s. These graphs present the mechanical behaviour<str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–1 , LCF 0–0.1 , and LCF 0.1–1 <str<strong>on</strong>g>based</str<strong>on</strong>g><str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> reinforced at 30 wt%. These compositesshow a comm<strong>on</strong> behaviour compared to equivalent reinforcedthermoplastics. LCF fracti<strong>on</strong>s act as reinforcingmaterials. By adding <strong>fillers</strong>, we obtain str<strong>on</strong>g evoluti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical properties compared to the neat matrix;e.g. we increase the moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> an order between 3.3 and 6.4times. We can see that by increasing the filler size, weobtain both modulus and yield stress increases but also adecrease <str<strong>on</strong>g>of</str<strong>on</strong>g> e Y , e b , and r b . C<strong>on</strong>cerning the modulus andthe el<strong>on</strong>gati<strong>on</strong> at break, LCF 0–1 shows intermediate valuesbetween LCF 0–0.1 and LCF 0.1–1 data. The smallest fracti<strong>on</strong>(LCF 0–0.1 ) which is not the major fracti<strong>on</strong> seems to driveLCF 0–1 properties for the el<strong>on</strong>gati<strong>on</strong> at the yield pointand the different tensile stresses. In any case, the biggestfracti<strong>on</strong> (LCF 0.1–1 ) fully drives the LCF 0–1 tensileproperties3.3.2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler c<strong>on</strong>tentTo estimate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler, composite/matrixratios are calculated from tensile test results. In Fig. 13are shown different variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical parametersversus the <strong>fillers</strong> (LCF 0–1 ) volume fracti<strong>on</strong>. Volume fracti<strong>on</strong>s(/) are determined from the fracti<strong>on</strong>s in weight8Modulus (Gpa)7654R 2 = 0.99232100 0.2 0.4 0.6 0.8 1Volume fracti<strong>on</strong> (%)Fig. 11. Halpin-Tsai fitting <strong>on</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–1 -<str<strong>on</strong>g>based</str<strong>on</strong>g> PP composites vs. filler volume fracti<strong>on</strong>.


ARTICLE IN PRESSL. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx 1115300El<strong>on</strong>gati<strong>on</strong> at the Yield point (%)105LCF 0-1 mmLCF 0-0.1 mmLCF 0,1-1 mmModulus (MPa)25020015010050LCF 0-1 mmLCF 0-0.1 mmLCF 0,1-1 mm007012El<strong>on</strong>gati<strong>on</strong> at break (%)6050403020LCF 0-1 mmLCF 0-0.1 mmLCF 0,1-1 mmStress (MPa)10864Yield pointBreak10200LCF 0-1 mm LCF 0-0.1 mm LCF 0,1-1 mmFig. 12. Tensile mechanical properties- Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler fracti<strong>on</strong> (LCF 0–1 , LCF 0–0.1 , and LCF 0.1–1 )at30wt%.(ww) according to Eq. (9), using the density <str<strong>on</strong>g>of</str<strong>on</strong>g> each comp<strong>on</strong>ent(d). LCF density is 1.45 g/cm 3 . This value has beendetermined by pycnometry measurements <strong>on</strong> 10, 20, and30 wt% LCF 0–1 <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g>. This data is <strong>on</strong> agreementwith cellulose and lignin densities./ i ¼ Pww i=d iww i =d iiDetermining composites/matrix ratios, Fig. 14 shows thatyield stress ratios are adjusted <strong>on</strong> a positive linear trend(slope = 0.057) according the filler volume fracti<strong>on</strong>. Theyield strain ratios are fitted <strong>on</strong> a negative exp<strong>on</strong>ential curve(coefficient = 0.072).3.3.3. Percolati<strong>on</strong> effect and moduli modellingWe can notice <strong>on</strong> Fig. 14 that, by increasing the volumefracti<strong>on</strong>, we obtain a modulus evoluti<strong>on</strong> with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g>the slope. According to the literature, the percolati<strong>on</strong>threshold obtained by 2D/3D simulati<strong>on</strong>s (Favier, Dendievel,Canova, Cavaille, & Gilormini, 1997) for such fillerlength is around 10 wt%. But the influence <strong>on</strong> the modulus<str<strong>on</strong>g>of</str<strong>on</strong>g> this percolati<strong>on</strong> threshold is too low to be taken intoaccount <strong>on</strong> a model c<strong>on</strong>trary to e.g., nanocomposite systems(Favier et al., 1997), where the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the threshold<strong>on</strong> the modulus is higher.To fit and to estimate the modulus evoluti<strong>on</strong>, differentsimple models have been tested such as the models <str<strong>on</strong>g>of</str<strong>on</strong>g> Voigt(Eq. (10)), Reuss (Eq. (11)), and Takayanagi (Eq. (12)).The composite modulus (E c ) is determined from E f andE m , which are the filler and the matrix moduli, respectively.The lowest and the highest moduli estimati<strong>on</strong>s are givenby the serial model from Reuss (E c(R) ) and by the parallelð9Þmodel from Voigt (E c(V) ), respectively. The modulus valueshould be comprised between these two boundaries.E cðV Þ ¼ / m E m þ / f E fð10Þ1¼ / mþ / fð11ÞE cðRÞ E m E fTakayanagi’s model is a phenomenological model obtainedby combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> serial and parallel models. The compositemodulus (E c(T) ) is determined by the Eq. (12) with k, anadjustment parameter (Nielsen & Landel, 1994).E cðT Þ ¼ð1kÞE m þ1 / fE mkþ / fE fð12ÞFig. 15 shows that Takayanagi’s equati<strong>on</strong> seems to be anexcellent model to predict the modulus evoluti<strong>on</strong> in therange 0–30 wt% <str<strong>on</strong>g>of</str<strong>on</strong>g> filler. The parameter (k) has been determinedby adjustment at 4.5. Reuss and Voigt’s models arenot well adapted to estimate correctly the composite moduli.This is because the matrix and the <strong>fillers</strong> mechanicalcharacteristics are too different. But, we can show thatthe composite moduli are comprised between both boundaries,E c(R) and E c(V) .4. C<strong>on</strong>clusi<strong>on</strong>Different <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> have been produced by introducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>lignocellulosic</strong> <strong>fillers</strong> into aromatic biodegradablepolyester, polybutylene adipate-co-terephthalate. Thepaper is targeted toward presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the different processesand their corresp<strong>on</strong>ding product characteristics(from the compounds to the composites). The matrix hasbeen carefully analysed e.g., we have determined by


ARTICLE IN PRESS12 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx35180El<strong>on</strong>gati<strong>on</strong> at the Yield Point (%)30252015105Modulus (MPa)1601401201008060402000 1020 30Filler weight fracti<strong>on</strong> (wt %)00 10 20 30Filler weight fracti<strong>on</strong> (wt %)El<strong>on</strong>gati<strong>on</strong> at break (%)2001801601401201008060> 200 > 200Stress at break (MPa)6050403020> 80 > 8040201000 10 20 30Filler weight fracti<strong>on</strong> (wt %)00 10 20 30Filler weight fracti<strong>on</strong> (wt %)9Stress at the Yield Point (MPa)8765432100 10 20 30Filler weight fracti<strong>on</strong> (wt %)Fig. 13. Tensile mechanical properties – Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the filler (LCF 0–1 ) c<strong>on</strong>tent (from 0 to 30 wt%).Ratio bicocomposites/matrix1,41,210,80,60,40,20Yield stressYield strain0 10 20 30Filler volume fracti<strong>on</strong> (%)Fig. 14. Fittings <strong>on</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some tensile mechanical properties(Yield stress and strain) vs. volume filler (LCF 0–1 ) c<strong>on</strong>tent.NMR the ratio between the co-m<strong>on</strong>omers and by SEC, themolecular weights. The <strong>fillers</strong> have been obtained fromwheat straw after an acid hydrolysis step to eliminate mainhemicellulose and after a fragmentati<strong>on</strong> phase. The dried<strong>fillers</strong> have been sieved. We have obtained a populati<strong>on</strong>with a heterogeneous size distributi<strong>on</strong>. After a sec<strong>on</strong>d sieving,we have achieved two homogeneous fracti<strong>on</strong>s with twoaverage sizes, 45 and 460 micr<strong>on</strong>s. The three types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fillers</strong>have been carefully characterised. These <strong>fillers</strong> present highlignin c<strong>on</strong>tents. We have analysed the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the introducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>fillers</strong> into the matrix through thermal andmechanical analysis. By TGA, we have shown that the <strong>fillers</strong>degradati<strong>on</strong> temperature is higher enough to be compatiblewith the processing temperatures (extrusi<strong>on</strong> andinjecti<strong>on</strong> moulding). Additi<strong>on</strong>ally, adding filler hasincreased the thermal degradati<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> thematrix, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reinforcing c<strong>on</strong>tent. By DSC,we have shown that the filler did not modify the level <str<strong>on</strong>g>of</str<strong>on</strong>g>crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix, but the <strong>fillers</strong> have induced anucleating effect. We have obtained a T g increase linkedto a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain mobility. This increase has beenassociated with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the T c and T f . We have determinedthe heat <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> at 12–13 J/g. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the<strong>fillers</strong> size and c<strong>on</strong>tent have been analysed through uniaxial


ARTICLE IN PRESSL. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx 130,8Modulus (GPa)0,7Voigt0,60,50,40,3Takayanagi0,20,100 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4Filler volume c<strong>on</strong>tent (%)ReussFig. 15. Fittings <strong>on</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> LCF 0–1 -<str<strong>on</strong>g>based</str<strong>on</strong>g> <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> vs. filler volume fracti<strong>on</strong> c<strong>on</strong>tent (Takayanagi, Voigt, and Reussmodels).tensile test results. Compared to comm<strong>on</strong> reinforced thermoplastics,these <str<strong>on</strong>g>biocomposites</str<strong>on</strong>g> have shown a similarbehaviour. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the composite mechanicalbehaviour was due to a reinforcing effect associated toquite good <strong>fillers</strong>-matrix interacti<strong>on</strong>s. To predict the modulusevoluti<strong>on</strong>, we have shown that Takayanagi’s equati<strong>on</strong>is an accurate and a simple answer to evaluate the modulusin a range comprises between 0 and 30 wt%.The associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable polymer with these <strong>lignocellulosic</strong><strong>fillers</strong> is a good soluti<strong>on</strong> to overcome primaryissues with biodegradable polymers, i.e., the cost and themechanical properties. Then, the different associati<strong>on</strong>s wecan obtain can fulfill the requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> different fields<str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>, such as n<strong>on</strong>-food packaging or othershort-lived applicati<strong>on</strong>s (agriculture, sport, etc.) wherel<strong>on</strong>g-lasting polymers are not entirely adequate. In additi<strong>on</strong>,these materials are in agreement with the emergentc<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainable development.AcknowledgementsThis work is funded by Europol’Agro through a researchprogram devoted to materials <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> agriculturalresources. The authors thank Zuzana Kadlecova (VSCHT-Czech Rep./ECPM-France) and Cheng Ngov (ECPM-France) for NMR and SEC determinati<strong>on</strong>s, respectively.Besides, we thank Pr. M<strong>on</strong>ties for his great investment inthis project.ReferencesAvella, M., La Rota, G., Martuscelli, E., Raimo, M., Sadocco, P., Elegir,G., & Riva, R. (2000). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)and wheat straw fibre composites: thermal, mechanical properties andbiodegradati<strong>on</strong> behaviour. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science, 35(4),829–836.Avérous, L. (2004). Biodegradable multiphase systems <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> plasticizedstarch: a review. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Macromolecular Science – Part CPolymer Reviews, C4(3), 231–274.Avérous, L., & Boquill<strong>on</strong>, N. (2004). Biocomposites <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> plasticizedstarch: thermal and mechanical behaviours. Carbohydrate Polymers,56(2), 111–122.Avérous, L., Fringant, C., & Moro, L. (2001). Plasticized starch-celluloseinteracti<strong>on</strong>s in polysaccharide composites. Polymer, 42(15), 6571–6578.Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose<str<strong>on</strong>g>based</str<strong>on</strong>g>fibres. Progress in Polymer Science, 24, 221–274.Bourban, Ch., Karamuk, E., De F<strong>on</strong>daumiere, M. J., Ruffieux, K.,Mayer, J., & Wintermantel, E. (1997). Processing and characterizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> a new biodegradable composite made <str<strong>on</strong>g>of</str<strong>on</strong>g> a PHB/V matrix andregenerated cellulosic fibers. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Polymer Degradati<strong>on</strong>,5(3), 159–166.Chang, S.-J., & Tsai, H. B. (1994). Copolyesters. VII. Thermal transiti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> poly(butylene terephtalate-co-adipate)s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied PolymerScience, 51, 999–1004.Dufresne, A., Dupeyre, D., & Paillet, M. (2003). Lignocellulosic flourreinforcedpoly(hydroxybutyrate-co-valerate) composites. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Applied Polymer Science, 87(8), 1302–1315.Favier, V., Dendievel, R., Canova, G., Cavaille, J. Y., & Gilormini, P.(1997). Simulati<strong>on</strong> and modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> three-dimensi<strong>on</strong>al percolatingstructures: case <str<strong>on</strong>g>of</str<strong>on</strong>g> a latex matrix reinforced by a network <str<strong>on</strong>g>of</str<strong>on</strong>g> cellulosefibers. Acta Materialia, 45(4), 1557–1565.Fernandes, E. G., Pietrini, M., & Chiellini, E. (2004). Bio-<str<strong>on</strong>g>based</str<strong>on</strong>g> polymericcomposites comprising wood flour as filler. Biomacromolecules, 5(4),1200–1205.G<strong>on</strong>zalez-Sanchez, C., & Exposito-Alvarez, L. A. (1999). Micromechanics<str<strong>on</strong>g>of</str<strong>on</strong>g> lignin/polypropylene composites suitable for industrial applicati<strong>on</strong>s.Angewandte Makromolekulare Chemie, 272, 65–70.Herrera, R., Franco, L., Rodriguez-Galan, A., & Puiggali, J. (2002).Characterizati<strong>on</strong> and degradati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(butylene adipateco-terephthalate)s.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Science: Part A: PolymerChemistry, 40, 4141–4157.Hornsby, P. R., Hinrichsen, E., & Tarverdi, K. (1997). Preparati<strong>on</strong> andproperties <str<strong>on</strong>g>of</str<strong>on</strong>g> polypropylene composites reinforced with wheat and flaxstraw fibers. Part II: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> composite microstructure andmechanical properties. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science, 32, 1009–1015.Kitagawa, K., Watanabe, D., Mizoguchi, M., & Hamada, H. (2002).Bamboo particle filled composites. Polymer Processing SymposiumPPS-18, (Guimares) Portugal.


ARTICLE IN PRESS14 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxxKr<strong>on</strong>bergs, E. (2000). Mechanical strength testing <str<strong>on</strong>g>of</str<strong>on</strong>g> stalk materials andcompacting energy evaluati<strong>on</strong>. Industrial Crops and Products, 11,211–216.Le Digabel, F., Boquill<strong>on</strong>, N., Dole, P., M<strong>on</strong>ties, B., & Avérous, L.(2004). <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermoplastic composites <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> wheat straw<strong>lignocellulosic</strong> <strong>fillers</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Polymer Science, 93(1),428–436.Le Digabel, F. (2004). Incorporati<strong>on</strong> de co-produits de paille de blé dansdes matrices thermoplastiques. Approche de la compatibilité chargematriceet propriétés des composites. Ph.D. Thesis URCA Reims(France) 198p.Lequart, C., Ruel, K., Lapierre, C., Pollet, B., & Kurek, B. (2000). Abioticand enzymatic degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat straw cell wall: a biochemical andultrastructural investigati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, 80, 249–259.Levit, M. R., Farrel, R. E., Gross, R. A., & McCarthy, S. P. (1996).Composites <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> poly(lactic acid) and cellulosic materials:mechanical properties and biodegradability. Annual Technical C<strong>on</strong>ference– Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Plastics Engineers 54th, Vol. 2, pp. 1387–1391.Luo, S., & Netravali, A. N. (1999). Interfacial and mechanical properties<str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>ment-friendly ‘‘green’’ composites made from pineapplefibers and poly(hydroxybutyrate-co-valerate) resin. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> MaterialsScience, 34(15), 3709–3719.Mohanty, A. K., Khan, M. A., & Hinrichsen, G. (2000a). Surfacemodificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jute and its influence <strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradablejute-fabric/Biopol composites. Composites Science and Technology,60(7), 1115–1124.Mohanty, A. K., Khan, M. A., & Hinrichsen, G. (2000b). Influence <str<strong>on</strong>g>of</str<strong>on</strong>g>chemical surface modificati<strong>on</strong> <strong>on</strong> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable jutefabrics – polyester amide composites. Composites Part A: AppliedScience and Manufacturing, 31(2), 143–150.Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ibres,biodegradable polymer and composites: an overview. MacromolecularMaterials and Engineering(276/277), 1–24.M<strong>on</strong>ties, B. (1984). Dosage de la lignine insoluble en milieu acide.Agr<strong>on</strong>omie, 4, 387–392.Netravali, A. N., & Chabba, S. (2003). Composites get greener. MaterialsToday, 6(4), 22–29.Nielsen, L. E., & Landel, R. F. (1994). Mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> polymersand Composites. New York: Marcel Dekker.Nishino, T., Hirao, K., Kotera, M., Nakamae, K., & Inagaki, H. (2003).Kenaf reinforced biodegradable composite. Composites Science andTechnology, 63(9), 1281–1286.Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres asreinforcement in polylactic acid (PLA) composites. Composites Scienceand Technology, 63(9), 1317–1324.Plackett, D., Logstrup Andersen, T., Batsberg Pedersen, W., &Nielsen, L. (2003). Biodegradable composites <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> l-polylactideand jute fibres. Composites Science and Technology, 63(9),1287–1296.Roller, M. (1990). Valorisati<strong>on</strong> n<strong>on</strong> alimentaire des co-produits du blé:c<strong>on</strong>tributi<strong>on</strong> à l’extracti<strong>on</strong> et à la purificati<strong>on</strong> d’hexoses et de pentosesen vue de la synthèse de polyglycosides d’alkyles. Ph.D. Thesis, InstitutNati<strong>on</strong>al Agr<strong>on</strong>omique Paris Grign<strong>on</strong> (France), 214p.Ruseckaite, C. R., & Jiménez, A. (2003). Thermal degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures<str<strong>on</strong>g>of</str<strong>on</strong>g> polycaprolact<strong>on</strong>e with cellulose derivatives. Polymer Degradati<strong>on</strong>and Stability, 81(2), 353–358.Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: areview. Advances in Polymer Technology, 18(4), 351–363.Shibata, M., Takachiyo, K., Ozawa, K., Yosomiya, R., & Takeishi,H. (2002). Biodegradable polyester composites reinforced withshort abaca fiber. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Polymer Science, 85(1),129–138.Van de Velde, K., & Kiekens, P. (2002). Biopolymers: overview <str<strong>on</strong>g>of</str<strong>on</strong>g> severalproperties and c<strong>on</strong>sequences <strong>on</strong> their applicati<strong>on</strong>s. Polymer Testing,21(4), 433–442.Wollerdorfer, M., & Bader, H. (1998). Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural fibres <strong>on</strong> themechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable polymers. Industrial Crops andProducts, 8, 105–112.Young, R. A. (2004). Vegetable Fibers. In H. F. Mark (Ed.) (third ed.).Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Science and Technology, Part 3 (Vol. 12). NY:Wiley.Zhang, D. X., Liu, & Li, Z. (1990). The analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber morphology andchemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the differents <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat straw, China Pulp andPaper, pp. 16–21.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!