13.07.2015 Views

Properties of biocomposites based on lignocellulosic fillers

Properties of biocomposites based on lignocellulosic fillers

Properties of biocomposites based on lignocellulosic fillers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS6 L. Avérous, F. Le Digabel / Carbohydrate Polymers xxx (2006) xxx–xxx654% volume32101 10 100 1000 10000Size (μm) LCF 0-1mm76LCF 0-0.1 mmLCF 0.1-1 mm5% volume432101 10 100 1000 10000Size (μm)Fig. 4. Granulometric distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the different <strong>fillers</strong> (LCF 0–1 , LCF 0–0.1 , and LCF 0.1–1 ).Table 2Fillers average sizesLCF 0–1 LCF 0–0.1 LCF 0.1–1Average size (micr<strong>on</strong>s) 320 50 460Volume weightedlosses are due the water uptake at equilibrium, which ishigher for <strong>lignocellulosic</strong> <strong>fillers</strong> compared to PBAT. Then,the weight loss increases with filler c<strong>on</strong>tent. This result canbe obtained by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix water uptake(1%) and the filler water uptake (13–14%), corrected forthe corresp<strong>on</strong>ding c<strong>on</strong>tents. Table 3 shows that the matrixdegradati<strong>on</strong> temperature and the corresp<strong>on</strong>ding <strong>on</strong>setincrease with the filler c<strong>on</strong>tent. These latter results are <strong>on</strong>agreement with Ruseckaite and Jiménez (2003) studies<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> PCL matrix or with a previous work (Avérous& Boquill<strong>on</strong>, 2004) <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> plasticized starch. In the sameway, the filler degradati<strong>on</strong> temperature (around 360 °C) isc<strong>on</strong>sistent with values obtained by other authors (Avérous& Boquill<strong>on</strong>, 2004; Ruseckaite & Jiménez, 2003) <strong>on</strong> <strong>lignocellulosic</strong><strong>fillers</strong>. Additi<strong>on</strong>ally, we can show that LCF <strong>fillers</strong>are thermally stable up to 200 °C. The degradati<strong>on</strong> behaviour<str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>fillers</strong> is then compatible with the plastic processingtemperatures.Fig. 9 shows the PBAT thermogram determined byDSC. Table 4 gives main thermal characteristics. Comparedto most thermoplastics, T g and T f are rather low,and processing temperature is not high, around 130 °C.We can notice that this copolymer presents a single transiti<strong>on</strong>for T g , T c and T m due to the repartiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the differentsequences. These temperatures are intermediate betweenthe data <str<strong>on</strong>g>of</str<strong>on</strong>g> both homopolymers, polybutylene adipateand polybutylene terephthalate (Chang & Tsai, 1994). Atroom temperature, PBAT is <strong>on</strong> the rubber plateau i.e.,between T g and T f . Without knowing the theoreticalenthalpy for 100% crystalline PBAT, we have used theapproach presented by Herrera, Franco, Rodriguez-Galan,and Puiggali (2002). Theoretical enthalpy is calculated bythe c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the different chain groups. The c<strong>on</strong>tributi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> ester, methylene and p-phenylene groups are2.5, 4.0, and 5.0 kJ/mol, respectively. The calculated value(DH 100% ) is equal to 22.3 kJ/mol i.e., 114 J/g. The degree

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!