03.12.2012 Views

Libro de resúmenes y programa(definitivo) - Universidad de Sevilla

Libro de resúmenes y programa(definitivo) - Universidad de Sevilla

Libro de resúmenes y programa(definitivo) - Universidad de Sevilla

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fenómenos <strong>de</strong> transporte a todas<br />

las escalas<br />

Quinto encuentro <strong>de</strong> la red española <strong>de</strong> física <strong>de</strong> sistemas fuera <strong>de</strong>l<br />

equilibrio


PROGRAMA:<br />

Hora Miércoles 7<br />

9:30-10:00 RECEPCIÓN<br />

10:00-10:40 CAFÉ<br />

10:40-11:30 MARINI<br />

11:30-12:10 GARCIMARTIN<br />

12:10-12:50 DOMINGUEZ<br />

13:00-15:00 COMIDA<br />

15:00-15:50 KURCHAN<br />

15:50-16:30 VEGA<br />

16:30-17:00 CAFÉ<br />

17:00-17:40 PUERTAS<br />

17:40-18:20 SANCHEZ<br />

Hora Jueves 8 Viernes 9<br />

9:30-10:20 VAN ROIJ VAN DER MEER<br />

10:20-10:50 CAFÉ CAFÉ<br />

10:50-11:30 SCAGLIARINI HURTADO<br />

11:30-12:10 PLATERO HITA<br />

12:10-12:50 PRADOS ABAD<br />

13:00-15:00 COMIDA COMIDA<br />

15:00-15:40 VILAR<br />

15:40-16:20 RUIZ-MONTERO<br />

16:20-17:00 CEBRIÁN<br />

17:00-17:30 CAFÉ<br />

21:00 CENA<br />

La cena será en el restaurante Porta Rossa en la Calle Arenal 5.


Acceso Wi-Fi:<br />

Red: ReInUS<br />

Usuario: re<strong>de</strong>spfe5<br />

Password: sev79mar&


Resúmenes


Diffusion and reactions in biologically motivated problems<br />

E. Abad<br />

Centro Universitario <strong>de</strong> Mérida, Avda. Santa Teresa <strong>de</strong> Jornet, 38, E-06080 Mérida<br />

S. B. Yuste<br />

Dpto. <strong>de</strong> Física, <strong>Universidad</strong> <strong>de</strong> Extremadura, Av. Elvas s/n, 06071 Badajoz<br />

K. Lin<strong>de</strong>nberg<br />

Department of Chemistry and Biochemistry, and BioCircuits Institute, University of CaliforniaSan<br />

Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, USA<br />

In this contribution we review some recent results from stochastic mo<strong>de</strong>ls for transport properties<br />

in three biologically motivated problems. The first problem concerns the calculation of<br />

conductance properties of ion channels via a master equation approach. We study the case of<br />

a narrow channel with monoionic conduction and set up a 1D rate mo<strong>de</strong>l where ions overcome<br />

large energy barriers by hopping between neighbouring energy minima. We compute the hopping<br />

rates in terms of first passage times and splitting probabilities for the un<strong>de</strong>rlying generalized<br />

Kramers problem [1]. Within this framework we are able to compute conductance properties for<br />

the gramicidin A channel in terms of a single adjustable parameter (the equilibrium ion entry rate).<br />

We obtain good fits to experimental curves by tuning this parameter within a physiologically acceptable<br />

range. Next, we consi<strong>de</strong>r transport in a ratchet mo<strong>de</strong>l providing an i<strong>de</strong>alized <strong>de</strong>scription<br />

of the motion of motor proteins along microtubuli. More specifically, we study the overdamped<br />

motion of a Brownian particle in a 1D periodic potential whose amplitu<strong>de</strong> fluctuates between two<br />

states un<strong>de</strong>r the action of coloured noise [2]. The latter aims to mimic memory effects arising<br />

from ATP hydrolysis -the driving force responsible for the protein motion along the microtubule-.<br />

We compute the particle flux as a function of temperature and the autocorrelation time of the<br />

coloured noise. We find that the results are very sensitive to the specific <strong>de</strong>tails of the potential<br />

geometry, and in many cases we observe flux reversals when varying the typical system parameters<br />

Finally, we address the problem of morphogen gradient formation by extending the classical<br />

1D synthesis-diffusion-<strong>de</strong>gradation (SSD) mo<strong>de</strong>l to account for the possibility of anomalous subdiffusion<br />

[3]. The resulting reaction-subdiffusion equation contains a Riemann-Liouville fractional<br />

<strong>de</strong>rivative which accounts for memory effects arising from anomalous transport. When solved using<br />

the proper boundary conditions, our equation gives morphogen concentration profiles which<br />

strongly differ from those yiel<strong>de</strong>d by the SSD mo<strong>de</strong>l. We discuss the possible relevance of the<br />

above results for biological systems.<br />

[1] E.Abad, J. Reingruber, and M.S.P. Sansom, On a novel rate theory for transport in narrow<br />

ion channels and its application to flux optimization via geometric effects, J. Chem. Phys. 130,<br />

085101 (2009).<br />

[2] E. Abad and A. Mielke, Brownian motion in periodic fluctuating potentials, Ann. Physik 7<br />

(1998), 9-23.<br />

[3] S.B. Yuste, E. Abad and K. Lin<strong>de</strong>nberg, Reaction-subdiffusion mo<strong>de</strong>l for morphogen gradient<br />

formation, Phys. Rev. E 82, 061123 (2010).


Resolución <strong>de</strong> la ecuación cinética en superre<strong>de</strong>s semiconductoras<br />

mediante métodos <strong>de</strong> partículas y diferencias finitas.<br />

Elena Cebrian<br />

Departamento <strong>de</strong> Matemáticas y Computación. <strong>Universidad</strong> <strong>de</strong> Burgos.<br />

Mariano Alvaro, Manuel Carretero y Luis L.Bonilla<br />

G. Millán Institute of Fluid Dynamics, Nanosciencce and Industrial Mathematics, <strong>Universidad</strong> Carlos<br />

III <strong>de</strong> Madrid, Avenida <strong>de</strong> la <strong>Universidad</strong> 30, 28911 Leganés<br />

Las superre<strong>de</strong>s semiconductoras son cristales artificiales unidimensionales formados por crecimiento<br />

epitaxial <strong>de</strong> capas pertenecientes a semiconductores diferentes [4]. Fueron i<strong>de</strong>adas por<br />

Esaki y Tsu [6] para obtener oscilaciones <strong>de</strong> Bloch. La banda <strong>de</strong> conducción <strong>de</strong> la superred es<br />

una sucesión periódica <strong>de</strong> barreras y pozos. Cuando se aplica una diferencia <strong>de</strong> potencial entre<br />

los contactos, es posible obtener oscilaciones estables <strong>de</strong> la corriente [4], causadas por pulsos<br />

<strong>de</strong>l campo eléctrico originados en el cátodo que se mueven hasta <strong>de</strong>saparecer por ánodo y son<br />

similares a las <strong>de</strong>l efecto Gunn (GHz) aunque diferentes a las <strong>de</strong> Bloch (THz) [7]. Las oscilaciones<br />

tipo Gunn han sido observadas en experimentos con superre<strong>de</strong>s GaAs/AlAs <strong>de</strong>s<strong>de</strong> 1996<br />

y son la base <strong>de</strong> los dispositivos con oscilaciones rápidas.<br />

El transporte <strong>de</strong> electrones en una minibanda <strong>de</strong> la superred pue<strong>de</strong> ser <strong>de</strong>scrito por una<br />

ecuación cinética acoplada a la ecuación <strong>de</strong> Poisson [3]. El operador <strong>de</strong> colisión pue<strong>de</strong> ser simplificado<br />

mediante un término tipo Bhatnagar-Gross-Krook (BGK) [2]. La relación <strong>de</strong> dispersión<br />

entre las minibandas <strong>de</strong> energía y los momentos es periódica <strong>de</strong>bido a la relación entre la velocidad<br />

<strong>de</strong> difusión <strong>de</strong> los electrones y el campo eléctrico, el cual tiene un valor máximo [4]. Entonces<br />

la velocidad <strong>de</strong> difusión <strong>de</strong>crece cuando el campo crece para valores gran<strong>de</strong>s <strong>de</strong>l campo<br />

(movilidad diferencial negativa). Esto da lugar a las oscilaciones autosostenidas tipo Gunn <strong>de</strong> la<br />

corriente cuando se toman condiciones <strong>de</strong> contorno apropiadas [4].<br />

Bonilla y otros [1,3] han <strong>de</strong>rivado la ecuación <strong>de</strong> convección-difusión no lineal <strong>de</strong>l campo<br />

eléctrico a partir <strong>de</strong>l mo<strong>de</strong>lo cinético acoplado a la ecuación <strong>de</strong> Poisson con término <strong>de</strong> colisión<br />

tipo BGK, usando un método perturbativo tipo Chapman Enskog en el límite hiperbólico en el cual<br />

el operador <strong>de</strong> colisión es <strong>de</strong>l mismo or<strong>de</strong>n que el término que contiene al campo eléctrico y domina<br />

al resto <strong>de</strong> los términos. Entonces las oscilaciones autosostenidas <strong>de</strong> la corriente se obtienen<br />

resolviendo numéricamente las ecuaciones <strong>de</strong> convección-difusión con condiciones <strong>de</strong> contorno<br />

apropiadas. En esta presentación se muestra cómo se ha abordado la resoluci’on numérica <strong>de</strong>l<br />

mo<strong>de</strong>lo cinético semiclásico usando por un lado el método <strong>de</strong> partículas pon<strong>de</strong>rado [5] y por otro<br />

un método <strong>de</strong> diferencias finitas. Con ambos métodos se han obtenido prácticamente los mismos<br />

resultados, los cuales son muy similares a los obtenidos con la ecuación hidrodin’amica.<br />

[1] M. Alvaro, M. Carretero, L. L. Bonilla. Numerical method for hydrodynamic modulation<br />

equations <strong>de</strong>scribing Bloch oscillations in semiconductor superlattices (prepint).<br />

[2] P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94 (1954) 511-525.<br />

[3] L.L. Bonilla, R. Escobedo, A. Perales, Phys. Rev. B 68 (2003) 241304(R) (4 pages).<br />

[4] L.L. Bonilla, H.T. Grahn, Rep. Prog. Phys. 68 (2005) 577-683.<br />

[5] E. Cebrin, L.L.Bonilla and A.Carpio, J. Comput. Phys. (228), 7689-7705 (2009).<br />

[6] L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61-65 (1970).<br />

[7] H. Kroemer, Pages 20-98. John Wiley, N. Y. 1972.


From gravitational colapse to spinodal <strong>de</strong>composition<br />

Alvaro Domínguez<br />

Física Teórica, <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>, Apdo. <strong>de</strong> Correos 1065, <strong>Sevilla</strong> 41080, Spain<br />

Colloidal monolayers (colloidal particles trapped at the interface between two fluids) are a<br />

faithful experimental realization of a two-dimensional fluid, for which reason they have attracted<br />

much interest during the last years. The interaction between particles un<strong>de</strong>r generic conditions<br />

can be dominated by the capillary forces due to the <strong>de</strong>formation of the fluid interface. The large<br />

difference between the effective interaction range (∼millimeters) and the typical interparticle separation<br />

(∼micrometers) is particularly interesting. Together with the <strong>de</strong>pen<strong>de</strong>nce of the capillary<br />

force on separation, this characteristic confers the system features of both a self–gravitating fluid<br />

as well as of a van <strong>de</strong>r Waals fluid.<br />

We have studied a mean-field dynamical mo<strong>de</strong>l for this system. We present the results of theoretical<br />

calculations and N-body simulations for the instability of an initially homogeneous particle<br />

distribution, paying special attention to the crossover of the evolution from “gravitational collapse”<br />

to “spinodal <strong>de</strong>composition”.


Reducción <strong>de</strong> atascos mediante obstáculos.<br />

Angel Garcimartín, Iker Zuriguel y Alvaro Janda<br />

Departamento <strong>de</strong> Física y Matemática Aplicada Facultad <strong>de</strong> Ciencias <strong>Universidad</strong> <strong>de</strong> Navarra<br />

31080 Pamplona, Spain<br />

Presentamos resultados experimentales sobre el efecto que provoca un obstáculo colocado<br />

justo antes <strong>de</strong> la salida <strong>de</strong> un silo. Si la posición <strong>de</strong> este obstáculo es la a<strong>de</strong>cuada, hemos<br />

encontrado que se pue<strong>de</strong> reducir la probabilidad <strong>de</strong> atasco en un factor 100. Sorpren<strong>de</strong>ntemente,<br />

el flujo medio no varía apreciablemente. Por mediciones indirectas po<strong>de</strong>mos concluir que la causa<br />

<strong>de</strong> este fenómeno es la reduccin <strong>de</strong> la presin en la zona que queda entre el orificio <strong>de</strong> salida y el<br />

obstáculo (figura). Tambin se presentará un experimento en ciernes para probar si este mismo<br />

método es eficaz con seres vivos.<br />

[1] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo and D. Maza, Silo Clogging<br />

Reduction by the Presence of an Obstacle, Phys. Rev. Lett. 107 (2011), 278001.


Correlaciones espaciales en problemas <strong>de</strong> reacción-difusión<br />

con el algoritmo <strong>de</strong> Gillespie<br />

Jorge Luis Hita y José M. Ortiz <strong>de</strong> Zárate<br />

<strong>Universidad</strong> Complutense<br />

Recientemente hemos iniciado un <strong>programa</strong> para simular, utilizando el algoritmo <strong>de</strong> Gillespie,<br />

problemas <strong>de</strong> reacción-difusión isotermos en una dimensión espacial. Preten<strong>de</strong>mos estudiar<br />

numéricamente las correlaciones estadísticas <strong>de</strong> las fluctuaciones <strong>de</strong> la concentración en<br />

distintos puntos espaciales; con el objetivo último <strong>de</strong> verificar que son <strong>de</strong> corto alcance si las<br />

reacciones químicas (procesos cinéticos) estn en equilibrio y que son <strong>de</strong> largo alcance si las<br />

reacciones químicas están fuera <strong>de</strong>l equilibrio.<br />

Presentaremos algunos <strong>de</strong> los resultados más relevantes que hemos obtenido hasta ahora.<br />

Primero en sistemas homogéneos (sin difusión y, por consiguiente, con concentración espacialmente<br />

uniforme) estudiaremos el número <strong>de</strong> partículas N necesarias para que la distribución <strong>de</strong><br />

probabilidad <strong>de</strong> las fluctuaciones en la concentración, <strong>de</strong>bidas al carácter estocstico <strong>de</strong>l proceso<br />

cinético, pueda consi<strong>de</strong>rarse gaussiana. Una convergencia óptima a una gaussiana se consigue<br />

con pocos cientos <strong>de</strong> partículas, como se <strong>de</strong>muestra con un test <strong>de</strong> percentiles. La varianza σ<br />

obtenida <strong>de</strong> estas simulaciones coinci<strong>de</strong> con las predicciones <strong>de</strong> la system-size expansion <strong>de</strong><br />

van Kampen.<br />

También presentaremos resultados obtenidos <strong>de</strong> simular la difusión (1D) con una adaptación<br />

<strong>de</strong>l algoritmo <strong>de</strong> Gillespie recientemente propuesta para este fin. Como era <strong>de</strong> esperar, las<br />

distribuciones <strong>de</strong> probabilidad <strong>de</strong> las fluctuaciones son gaussianas con varianza dada por la raíz<br />

cuadrada <strong>de</strong>l número medio <strong>de</strong> partículas por sitio. El siguiente paso será combinar difusión y<br />

reacciones químicas.


Spontaneous Symmetry Breaking at the Fluctuating Level<br />

Pablo I. Hurtado and Pedro L. Garrido<br />

Departamento <strong>de</strong> Electromagnetismo y Física <strong>de</strong> la Materia, and Instituto Carlos I <strong>de</strong> Física<br />

Teórica y Computacional, <strong>Universidad</strong> <strong>de</strong> Granada, Granada 18071, Spain<br />

Phase transitions not allowed in equilibrium steady states may happen however at the fluctuating<br />

level. We observe for the first time this striking and general phenomenon measuring<br />

current fluctuations in an isolated diffusive system. While small fluctuations result from the sum<br />

of weakly-correlated local events, for currents above a critical threshold the system self-organizes<br />

into a coherent traveling wave which facilitates the current <strong>de</strong>viation by gathering energy in a localized<br />

packet, thus breaking translation invariance. This results in Gaussian statistics for small<br />

fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with<br />

predictions <strong>de</strong>rived from hydrodynamic fluctuation theory, strongly suggest that rare events are<br />

generically associated with coherent, self-organized patterns which enhance their probability.<br />

[1] P.I. Hurtado and P.L. Garrido, Phys. Rev. Lett. 107, 180601 (2011).


Inequalities that generalize the second law.<br />

Jorge Kurchan<br />

CNRS, Francia<br />

Some fifteen years ago, Jarzynski proved a very general and elementary equality, form which<br />

a form of the Second Principle follows immediately. More recently, Hatano and Sasa showed that<br />

one may generalize this to systems whose dynamics is by construction non-equilibrium even in<br />

the stationary regime; such as, for example, a bar with a potential difference at the ends. The<br />

problem with this generalization of the Second Law is that it requires the precise knowledge of the<br />

probability distribution in every stationary nonequilibrium configuration, and, more seriously, that<br />

the inequality obtained may be in some cases empty. We have been studying alternative versions<br />

of the Second Law, which may potentially be used in most cases, and which in addition suggest a<br />

variational principle for the distribution function.


Dynamics of Fluids in Nanospaces<br />

Umberto Marini Bettolo Marconi, Camerino<br />

In this contribution we review some recent results from stochastic mo<strong>de</strong>ls for transport properties<br />

in three biologically motivated problems. The first problem concerns the calculation of<br />

conductance properties of ion channels via a master equation approach. We study the case of<br />

a narrow channel with monoionic conduction and set up a 1D rate mo<strong>de</strong>l where ions overcome<br />

large energy barriers by hopping between neighbouring energy minima. We compute the hopping<br />

rates in terms of first passage times and splitting probabilities for the un<strong>de</strong>rlying generalized<br />

Kramers problem [1]. Within this framework we are able to compute conductance properties for<br />

the gramicidin A channel in terms of a single adjustable parameter (the equilibrium ion entry rate).<br />

We obtain good fits to experimental curves by tuning this parameter within a physiologically acceptable<br />

range. Next, we consi<strong>de</strong>r transport in a ratchet mo<strong>de</strong>l providing an i<strong>de</strong>alized <strong>de</strong>scription<br />

of the motion of motor proteins along microtubuli. More specifically, we study the overdamped<br />

motion of a Brownian particle in a 1D periodic potential whose amplitu<strong>de</strong> fluctuates between two<br />

states un<strong>de</strong>r the action of coloured noise [2]. The latter aims to mimic memory effects arising<br />

from ATP hydrolysis -the driving force responsible for the protein motion along the microtubule-.<br />

We compute the particle flux as a function of temperature and the autocorrelation time of the<br />

coloured noise. We find that the results are very sensitive to the specific <strong>de</strong>tails of the potential<br />

geometry, and in many cases we observe flux reversals when varying the typical system parameters<br />

Finally, we address the problem of morphogen gradient formation by extending the classical<br />

1D synthesis-diffusion-<strong>de</strong>gradation (SSD) mo<strong>de</strong>l to account for the possibility of anomalous subdiffusion<br />

[3]. The resulting reaction-subdiffusion equation contains a Riemann-Liouville fractional<br />

<strong>de</strong>rivative which accounts for memory effects arising from anomalous transport. When solved using<br />

the proper boundary conditions, our equation gives morphogen concentration profiles which<br />

strongly differ from those yiel<strong>de</strong>d by the SSD mo<strong>de</strong>l. We discuss the possible relevance of the<br />

above results for biological systems. References [1] E.Abad, J. Reingruber, and M.S.P. Sansom,<br />

On a novel rate theory for transport in narrow ion channels and its application to flux optimization<br />

via geometric effects, J. Chem. Phys. 130, 085101 (2009). [2] E. Abad and A. Mielke, Brownian<br />

motion in periodic fluctuating potentials, Ann. Physik 7 (1998), 9-23. [3] S.B. Yuste, E. Abad and<br />

K. Lin<strong>de</strong>nberg, Reaction-subdiffusion mo<strong>de</strong>l for morphogen gradient formation, Phys. Rev. E 82,<br />

061123 (2010).


Coherent dynamics of electrons in ac driven quantum dot arrays<br />

G. Platero<br />

Instituto <strong>de</strong> Ciencia <strong>de</strong> Materiales (CSIC) Cantoblanco , Madrid , Spain.<br />

A powerful method of manipulating the coherent dynamics of quantum particles is to control<br />

the phase of their tunnelling. We will show how such phases can be produced in two distinct and<br />

complementary ways. We have consi<strong>de</strong>red the dynamics of two interacting electrons hopping on<br />

a quasi onedimensional lattice with a nontrivial topology, threa<strong>de</strong>d by a uniform magnetic flux, and<br />

study the effect of adding a time periodic ac electric field. We will show that the dynamical phases<br />

produced by the driving field can combine with the familiar AharonovBohm phases arising from<br />

the magnetic flux to give precise control over the dynamics and localization of the particles, even<br />

in the presence of strong particle interactions [1]. Recent electron spin resonance experiments<br />

measure coherent spin rotations of one single electron, a fundamental ingredient for quantum<br />

operations. We will show how it is possible to manipulate electron charge and spin dynamics in<br />

double and triple quantum dots by means of ac magnetic fields. We <strong>de</strong>monstrate that by tuning<br />

the the field intensity, frequency and the phase difference between the fields within each dot,<br />

charge localization can be achieved. Furthermore, ac magnetic fields are also able to induce spin<br />

locking, i.e., to freeze the electronic spin, at certain field parameters and symmetry configurations<br />

[2]. Spin Blocka<strong>de</strong> has been measured in transport experiments through double quantum dots.<br />

We will discuss the effect of ac magnetic fields on spin blocka<strong>de</strong> and we will show that ac magnetic<br />

fields can not only remove spin blocka<strong>de</strong> , but also restore it due to collective rotations of the<br />

two spins. at certain parameters of the field [3].<br />

[1] C.E. Creffield and G. Platero, Phys. Rev. Lett. 105, 086804 (2010).<br />

[2] A. Gómez-León and G. Platero, Phys. Rev. B, 84, 121310(R) (2011).<br />

[3] M. Busl et al., Phys. Rev. B, 81, 121306(R) (2010); R. Sánchez et al., Phys. Rev. B ,77,<br />

165312 (2008).


Large Fluctuations in Driven Dissipative Media<br />

A. Prados and A. Lasanta<br />

Física Teórica, <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>, Apdo. <strong>de</strong> Correos 1065, <strong>Sevilla</strong> 41080, Spain<br />

Pablo I. Hurtado<br />

Instituto Carlos I <strong>de</strong> Física Teórica y Computacional, <strong>Universidad</strong> <strong>de</strong> Granada, Granada 18071,<br />

Spain<br />

We analyze the fluctuations of the dissipated energy in a simple and general mo<strong>de</strong>l where<br />

dissipation, diffusion and driving are the key ingredients. The full dissipation distribution, which<br />

follows from hydrodynamic fluctuation theory, shows non-Gaussian tails and no negative branch,<br />

thus violating the fluctuation theorem as expected from the irreversibility of the dynamics. It exhibits<br />

simple scaling forms in the weak- and strong-dissipation limits, with large fluctuations favored<br />

in the former case but strongly suppressed in the latter. The typical path associated to a<br />

given dissipation fluctuation is also analyzed in <strong>de</strong>tail. Our results, confirmed in extensive simulations,<br />

strongly support the validity of hydrodynamic fluctuation theory to <strong>de</strong>scribe fluctuating<br />

behavior in driven dissipative media.<br />

[1] A. Prados, A. Lasanta and P. I. Hurtado, Phys. Rev. Lett. 107, 140601 (2011)


Comparison of different forcings in active microheology<br />

in colloids<br />

Antonio M. Puertas<br />

Group of Complex Fluids Physics, Departamento <strong>de</strong> Fısica Aplicada<br />

<strong>Universidad</strong> <strong>de</strong> Almería, 04120 Almería (SPAIN)<br />

Whereas pasive microrheology in colloids is based solely on the observation of single particle<br />

motion, in active microrheology, colloidal tracers experience external forces and their behaviour<br />

is observed. In both cases, the complex microscopic mechanical behaviour is measured and a<br />

connection with bulk quantities is usually sought. I will present here simulations of active microrhelogy<br />

in a <strong>de</strong>nse system of hard colloids where one particle is dragged through the system. The<br />

tracer is dragged i) with a constant external force, (the velocity fluctuates) ii) at a constant speed<br />

(with a fluctuating force) or iii) held in a harmonic trap moving at constant speed. The friction<br />

coefficient is measured using the linear relationship between the (average) drag force and the<br />

(average) velocity, in the stationary regime. Different results are obtained in the three different<br />

cases, providing distinct aspects of the microscopic dynamics of the system. Larger friction coefficients<br />

are measured at constant velocity as the tracer must open its way through the system,<br />

and agree with the case of the harmonic trap at low velocities. On the other hand, small friction<br />

coefficients are obtained when the particle is dragged at a constant force, and agree with the<br />

harmonic trap at large velocities. Interestingly, a yield ”stress” is observed in the constant force<br />

case, giving an estimate of the strength of the cage of neighbours. In all cases, comparison is<br />

ma<strong>de</strong> with theoretical results based on a low <strong>de</strong>nsity theory [Phys. Fluids 17, 073101 (2005)].


Temperature anisotropy in granular fluids<br />

Maria J. Ruiz-Montero and J. Javier Brey<br />

Física Teórica. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong><br />

One of the consequences of inelasticity in granular mixtures is that the energy equipartition<br />

required in equilibrium systems is not verified. The granular temperatures of the components of<br />

the mixture, <strong>de</strong>fined from the average kinetic energy of each species are not equal. This feature<br />

was pointed out many years ago [1], and a systematic study of it has been carried out in the last<br />

years.<br />

Once established that the partial temperatures are different, some questions arise: should they<br />

be incorporated to the set of variables nee<strong>de</strong>d to i<strong>de</strong>ntify the macroscopic state of the mixture? If<br />

the answer is negative, are the partial temperatures <strong>de</strong>termined by the usual set of hydrodynamic<br />

fields and the properties of the particles? In this work we will study the steady state of a vibrated<br />

granular mixture in the presence of gravity in the low <strong>de</strong>nsity limit, and we will show that the<br />

macroscopic state in the bulk of the system is <strong>de</strong>fined by intensive variables that do not inclu<strong>de</strong><br />

the partial temperatures of the system. Also, the local cooling rates of each of the components<br />

will be investigated, and the accuracy of the expression obtained assuming a local homogeneous<br />

cooling state distribution [2] of the gas will be analyzed by comparing it with computer simulations<br />

of the system.<br />

[1] J.T. Jenkins and F. Mancini, J. Appl. Mech. Vol. 35, 27 (1987).<br />

[2] V. Garzo and J.W. Dufty, Phys. Rev. E Vol. 60, 5706 (1999).


Asymmetric thermopower in mesoscopic transport<br />

David Sánchez and Llorenç Serra<br />

Institut <strong>de</strong> Física Interdisciplinar i <strong>de</strong> Sistemes Complexos IFISC (CSIC-UIB), E-07122 Palma <strong>de</strong><br />

Mallorca, Spain.<br />

Departament <strong>de</strong> Física, Universitat <strong>de</strong> les Illes Balears, E-07122 Palma <strong>de</strong> Mallorca, Spain<br />

We consi<strong>de</strong>r a generic quantum conductor coupled to two electric terminals. Phase-coherent<br />

transport is generated across the conductor when an electric or thermal gradient is applied to the<br />

reservoirs. We investigate heat and charge transport un<strong>de</strong>r the influence of inelastic processes,<br />

which are mo<strong>de</strong>led using an additional reservoir acting as an i<strong>de</strong>al volgate and thermal probe.<br />

We illustrate our method with an application to a ballistic chaotic cavity. We find within random<br />

matrix theory that thermopower fluctuations disappear quickly as the probe mo<strong>de</strong> number<br />

increases [1].<br />

Importantly, we find that, upon elimination of the probe, the two-terminal Seebeck coefficient<br />

shows an asymmetry when an applied magnetic field reverses its direction. This asymmetry effect<br />

is revealed in the presence of incoherent scattering only. Furthermore, the asymmetry effect is of<br />

higher or<strong>de</strong>r in a Sommerfeld expansion [1]. We believe that our results are relevant to quantify<br />

the efficiency of thermoelectric nano<strong>de</strong>vices in the presence of <strong>de</strong>phasing.<br />

[1] D. Sánchez and Ll. Serra, Phys. Rev. B 84, 201307(R) (2011).


Self-assembly and flocking in active colloidal suspensions<br />

Andrea Scagliarini and Ignacio Pagonabarraga<br />

Departament <strong>de</strong> Física Fonamental Universitat <strong>de</strong> Barcelona<br />

Active fluids, such as suspensions of self-propelled particles or of cytoskeletal filaments and<br />

molecular motors, are a fascinating example of soft matter displaying non-trivial collective behaviours<br />

which representing issues in non-equilibrium statistical physics [1].<br />

Moreover, the recent <strong>de</strong>velopment of techniques to assemble miniaturized <strong>de</strong>vices has led to<br />

an ever-growing interest for micro- and nano- scale engines that can perform autonomous motion<br />

[2] (”microrobots”), as, for instance, self-phoretic colloids, for which the propulsion is induced<br />

by the generation of a chemical species in a reaction (locally) catalyzed at the particle surface<br />

[3,4]. In our simulations colloids are <strong>de</strong>scribed as resolved finite size particles, interacting with a<br />

concentration field according to a coarse-grained mo<strong>de</strong>l [5].<br />

We have tested the numerical implementation against exact results on the chemotactic behaviour<br />

of an isolated particle as well as on the self-propulsion mechanism. Our study on suspensions<br />

of several particles suggests the existence of a non-equilibrium transition from a flocking<br />

state to the formation of fractal-like aggregates, at changing a parameter accounting for the<br />

particle-”fuel” chemical affinity [6].<br />

[1] S. Ramaswamy, Annu. Rev. Con<strong>de</strong>s. Matter Phys. 1, 323 (2010).<br />

[2] R. Dreyfus et al, Nature 437, 862 (2005).<br />

[3] W.E. Paxton et al, J. Am. Chem. Soc. 126, 13424 (2004).<br />

[4] J.R. Howse et al, Phys. Rev. Lett. 99, 048102 (2007).<br />

[5] R. Golestanian et al, Phys. Rev. Lett. 94, 220801 (2005).<br />

[6] A. Scagliarini and I. Pagonabarraga, in preparation (2012).


Harvesting ”blue” energy by reversibly mixing river- and sea<br />

water.<br />

René van Roij<br />

Utrecht University, Holanda<br />

The mixing of fresh river water and salty sea water is an irreversible process, in which about<br />

2 kJ of (free) energy is dissipated with every liter of river water that flows into the sea, i.e. the<br />

equivalent of a waterfall of 200m. In this talk we will discuss how this energy can be harvested.<br />

After a general introduction we will focus on Brogioli’s recently <strong>de</strong>veloped capacitive <strong>de</strong>vice [1],<br />

which cyclicly charges and discharges nanoporous electro<strong>de</strong>s immersed in sea- and river water,<br />

respectively, such that the expansion and compression of the electrostatic double layer in fresh<br />

and salty water is exploited. We will show that Brogioli’s <strong>de</strong>vice can be seen as an analogue of a<br />

Stirling heat engine, and we propose a modification to construct the most efficient ”blue engine”<br />

based on a Carnot-like cycle [2]. The blue engine running in reverse-mo<strong>de</strong> is a <strong>de</strong>salination <strong>de</strong>vice,<br />

yielding separated fresh and salty water from brackish water at the expense of energy input;<br />

the heat-engine analogue is a fridge [2]. Interestingly, the potential of the porous electro<strong>de</strong>s in the<br />

<strong>de</strong>vice are as high as 500mV, exceeding the thermal voltage ( 25mV) by far, such that ordinary<br />

Poisson-Boltzmann (PB) theory breaks down, even for monovalent ions in water. The Stern layer<br />

and other ion-specific effects become relevant in this regime. We will discuss an extension of PB<br />

theory in which the ”polarisability holes” due to the poorly polarisable ions compared to water are<br />

taken into account, giving good agreement with experimental measurements of differential capacities<br />

[3].<br />

[1] D. Brogioli, Phys. Rev. Lett. 103, 058501 (2009).<br />

[2] N. Boon and R. van Roij, Mol. Phys. 109, 1229 (2011).<br />

[3] M. Hatlo, R. van Roij and L. Lue, Europhys. Lett. 97, 28010 (2012).


A granular ratchet: Spontaneous symmetry breaking and<br />

fluctuation theorems in a granular gas<br />

Devaraj van <strong>de</strong>r Meer, Peter Eshuis, Sylvain Joubaud, Ko van <strong>de</strong>r Weele and Detlef Lohse.<br />

Physics of Fluids group, University of Twente, The Netherlands.<br />

We construct a ratchet of the Smoluchowski-Feynman type, consisting of four vanes that are<br />

allowed to rotate freely in a vibrofluidized granular gas. The necessary out-of-equilibrium environment<br />

is provi<strong>de</strong>d by the inelastically colliding grains, and the equally crucial symmetry breaking<br />

by applying a soft coating to one si<strong>de</strong> of each vane. The onset of the ratchet effect occurs at a<br />

critical shaking strength via a smooth, continuous phase transition. For very strong shaking the<br />

vanes interact actively with the gas and a convection roll <strong>de</strong>velops, sustaining the rotation of the<br />

vanes. From the experimental results we show that a steady state fluctuation relation holds for<br />

the work injected to the system, and that its entropy production satisfies a <strong>de</strong>tailed fluctuation theorem.<br />

Surprisingly, we find that the above relations are satisfied even when a convection roll has<br />

<strong>de</strong>veloped and there exists a strong coupling between the motion of the vanes and the granular<br />

gas.


Properties of the segregation of a granular impurity un<strong>de</strong>r<br />

Couette-Fourier flows<br />

Francisco Vega Reyes, Vicente Garzó, Andrés Santos<br />

Departamento <strong>de</strong> Física, <strong>Universidad</strong> <strong>de</strong> Extremadura, E-06071 Badajoz. Spain<br />

We study in this work the segregation of a granular impurity un<strong>de</strong>r Couette-Fourier flow. Our<br />

system consists of two sets (1,2) composed of i<strong>de</strong>ntical inelastic hard spheres with low <strong>de</strong>nsity,<br />

each set being characterized by different size and mass. We also consi<strong>de</strong>r that each type of<br />

binary collisions (1-1, 1-2, 2-2 particle collisions) is characterized by a different <strong>de</strong>gree of inelasticity.<br />

One of the sets is present in an almost negligible concentration compared to the other<br />

set, and thus it can be consi<strong>de</strong>red as an ’impurity’ and the tracer limit for this species applies<br />

[1]. Our granular spheres are enclosed between two infinite parallel walls that act as shear and<br />

temperature sources. We consi<strong>de</strong>r that in general both walls are at different temperatures. We<br />

obtain an exact numerical solution of the corresponding inelastic Boltzmann-Lorentz equation for<br />

the granular impurity in this system (using the direct simulation Monte Carlo method, DSMC). Recently,<br />

special cases of granular Couette-Fourier flows for a monocomponent granular gas have<br />

been <strong>de</strong>scribed in the same geometry. They may be called LTy and LTu classes because they<br />

have linear temperature profiles: the first one, is linear vs. the space coordinate [2] whereas the<br />

LTu class has a linear profile vs. flow velocity, and is also characterized by a constant heat flux<br />

throughout the system [2]. We show that both special classes of flows also exist for the granular<br />

impurity, with the same aforementioned properties. Moreover, we show that an impurity un<strong>de</strong>r LTy<br />

and LTu Couette-Fourier flows, shows also the following hydrodynamic properties: 1) no diffusion<br />

with respect to the granular gas (i.e., both species have the same flow velocity profiles); 3) the<br />

ratio between both species temperatures is uniform in the system; 3) the pressure of the impurity<br />

is non-uniform. Properties 2) and 3) imply that the impurity molar fraction is not uniform, i.e., the<br />

impurity can segregate towards a specific region of the system. Property 1) implies that the segregation<br />

theoretical criteria of the type of former works apply [3]. We analyze this problem for a<br />

wi<strong>de</strong> range of values of the relevant parameters of the problem, including also preliminary results<br />

for more generic Couette-Fourier granular flows.<br />

[1] J. J. Brey, N. Khalil, and J. W. Dufty, New J. Phys. 13, 055019 (2011).<br />

[2] V. Garzó and F. Vega Reyes, Phys. Rev. E 79, 041303 (2009).<br />

[3] F. Vega Reyes, V. Garzó and A. Santos, Steady base states for non-Newtonian granular<br />

hydrodynamics, (2012), unpublished.<br />

[4] F. Vega Reyes, A. Santos, and V. Garzó, Phys. Rev. Lett. 104, 028001 (2010).


Multidimensional entropies for diagnosing Acute Myeloid Leukemia<br />

from patient samples using flow cytometry data<br />

Jose M. G. Vilar<br />

Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University<br />

of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation<br />

for Science, 48011 Bilbao, Spain<br />

Deciphering the basis of complex immunological diseases, such as leukemia, requires the<br />

characterization of diverse cell subtypes through measurements of multiple factors at the singlecell<br />

level. Rapid progress in this field <strong>de</strong>pends critically not only on the appropriate experimental<br />

techniques but also on the availability of computational tools able to tackle the inherent complexity<br />

of the experimental data. I will present a new method to compare cell populations based on their<br />

entropies along multidimensional landscapes constructed from the single-cell morphological and<br />

molecular attributes of flow cytometry data. Applied to samples from peripheral blood and bone<br />

marrow aspirate, this method accurately discriminates between Acute Myeloid Leukemia positive<br />

patients and healthy donors.


Asistentes


Nombre Institución Email<br />

Abad, Enrique. <strong>Universidad</strong> <strong>de</strong> Extremadura. eabad@unex.es<br />

Alarcón, Francisco. <strong>Universidad</strong> <strong>de</strong> Barcelona. falarcon@ffn.ub.es<br />

Alvaro, Mariano. <strong>Universidad</strong> Carlos III <strong>de</strong><br />

Madrid.<br />

mariano.alvaro@uc3m.es<br />

Aznar, María. <strong>Universidad</strong> <strong>de</strong> Barcelona. maznar@ffn.ub.es<br />

Bettolo Marconi, Umberto<br />

Marini.<br />

Universitá di Camerino, Italia. umberto.marinibettolo@gmail.<br />

com<br />

Brey, Javier. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. brey@us.es<br />

Brito, Ricardo. <strong>Universidad</strong> Complutense <strong>de</strong><br />

Madrid.<br />

brito@fis.ucm.es<br />

Buzón, Vicente. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. vbuzon@us.es<br />

Carretero, Manuel. <strong>Universidad</strong> Carlos III <strong>de</strong><br />

Madrid.<br />

manuel.carretero@uc3m.es<br />

Cebrián <strong>de</strong> Barrio, Elena. <strong>Universidad</strong> <strong>de</strong> Burgos. elenac@ubu.es<br />

Domínguez, Alvaro. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. dominguez@us.es<br />

García, Moises. <strong>Universidad</strong> <strong>de</strong> Extremadura. moises@unex.es<br />

García <strong>de</strong> Soria, María<br />

Isabel.<br />

<strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. gsoria@us.es<br />

Garcimartín, Angel. <strong>Universidad</strong> <strong>de</strong> Navarra. angel@fisica.unav.es<br />

Garzó, Vicente. <strong>Universidad</strong> <strong>de</strong> Extremadura. vicenteg@unex.es<br />

González, Emilio. <strong>Universidad</strong> <strong>de</strong> Almería. vaentis@ual.es<br />

Hita, Jorge Luis. <strong>Universidad</strong> Complutense <strong>de</strong><br />

Madrid.<br />

jluis@estumail.ucm.es<br />

Hurtado, Pablo. <strong>Universidad</strong> <strong>de</strong> Granada. phurtado@onsager.ugr.es<br />

Khalil, Nagi. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. nagi@us.es<br />

Kurchan, Jorge. CNRS, Francia. jorge@pmmh.espci.fr<br />

Lasanta, Antonio. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. alasanta@us.es<br />

Malgaretti, Paolo. <strong>Universidad</strong> <strong>de</strong> Barcelona. paoloin<strong>de</strong>scai@gmail.com<br />

Maynar, Pablo. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. maynar@us.es


Ortiz <strong>de</strong> Zárate, José María. <strong>Universidad</strong> Complutense <strong>de</strong><br />

Madrid.<br />

jmortizz@fis.ucm.es<br />

Pagonabarraga, Ignacio. <strong>Universidad</strong> <strong>de</strong> Barcelona. ipagonabarraga@ub.edu<br />

Platero, Gloria. ICMM-CSIC. gplatero@icmm.csic.es<br />

Prados, Antonio. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. prados@us.es<br />

Puertas, Antonio M. <strong>Universidad</strong> <strong>de</strong> Almería. apuertas@ual.es<br />

Rubí, Miguel. <strong>Universidad</strong> <strong>de</strong> Barcelona. mrubi@ub.edu<br />

Ruiz, Miguel. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong> miguelrg_2004@hotmail.com<br />

Ruiz-Montero, María José. <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. majose@us.es<br />

Sánchez, David. IFISC(UIB-CSIC). david.sanchez@uib.es<br />

Santos, Andrés. <strong>Universidad</strong> <strong>de</strong> Extremadura. andres@unex.es<br />

Scagliarini, Andrea. <strong>Universidad</strong> <strong>de</strong> Barcelona. ascagliarini@gmail.com<br />

van <strong>de</strong>r Meer, Devaraj. University of Twente, Holanda. d.van<strong>de</strong>rmeer@utwente.nl<br />

van Rooij, René. Utrecht University, Holanda. r.vanroij@uu.nl<br />

Vega Reyes, Francisco. <strong>Universidad</strong> <strong>de</strong> Extremadura. fvega@unex.es<br />

Vilar, José. <strong>Universidad</strong> <strong>de</strong>l País Vasco. j.vilar@ikerbasque.org<br />

Castrillo, Clara <strong>Universidad</strong> <strong>de</strong> <strong>Sevilla</strong>. claracastrillob@gmail.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!