13.07.2015 Views

Efficiency of carbon removal per added iron in ocean iron fertilization

Efficiency of carbon removal per added iron in ocean iron fertilization

Efficiency of carbon removal per added iron in ocean iron fertilization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

272Mar Ecol Prog Ser 364: 269–282, 2008Table 2. The thus-far best estimate <strong>of</strong> (C:Fe) large-diatoms-optimal , ~23 000, as well as various other estimates from the literature forC:Fe <strong>of</strong> diatoms and whole plankton assemblages (Bruland et al. 1991, based on Mart<strong>in</strong> & Knauer 1973, Mart<strong>in</strong> et al. 1976, Collier& Edmond 1983) and their deep <strong>ocean</strong> debris and m<strong>in</strong>eralization ratios (Mart<strong>in</strong> et al. 1989). Literature values <strong>of</strong> diatoms forthe 84% (n = 21) lower <strong>per</strong>centile <strong>of</strong> all published values, after Sarthou et al. (2005). Us<strong>in</strong>g all sources (n = 25), <strong>in</strong>clud<strong>in</strong>g 4 moreoutlier ratio values, the average <strong>in</strong>creases to C:Fe = 68 863 ± 112 167 (mean ± SD). GFAAS: graphite furnace atomic absorptionspectrometry. See ‘Results’ for def<strong>in</strong>itions <strong>of</strong> study area acronymsDescription C:Fe ratio value Method Source(C:Fe) large-diatoms-optimal ~23 000 SOFeX IN patch; synchrotron X-ray Tw<strong>in</strong><strong>in</strong>g et al. (2004)(C:Fe) large-diatoms-Fe-limited ~100 000–160 000 SOFeX OUT patch Tw<strong>in</strong><strong>in</strong>g et al. (2004)(C:Fe) diatoms-literature 28 571 ± 24 440 84% <strong>per</strong>centile (n = 21) Sarthou et al. (2005)(C:Fe) diatoms-literature 68 863 ± 112 167 100% <strong>per</strong>centile (n = 25) Sarthou et al. (2005)(C:Fe) whole-plankton–tows ~21 000 GFAAS Bruland et al. (1991)(C:Fe) excess-deep-particles ~33 000 Debris by GFAAS Mart<strong>in</strong> et al. (1989)(C:Fe) Thalassiosira <strong>ocean</strong>ica ~30 000–100 000 Optimal growth rate Sunda et al. (1991)(C:Fe) Thalassiosira <strong>ocean</strong>ica ~500 000 Suboptimal 90% growth Sunda et al. (1991)(C:Fe) nitricl<strong>in</strong>e ~483 000 L<strong>in</strong>ear regression Mart<strong>in</strong> et al. (1989)(C:Fe) oxycl<strong>in</strong>e ~384 000 L<strong>in</strong>ear regression Mart<strong>in</strong> et al. (1989)(C:Fe) plankton-content 227000 ± 5000 (n = 10) KEOPS shipboard; Sarthou et al. (2008)175 000–333 000 range 55 Fe radiotracer, with oxalatewash<strong>in</strong>g <strong>of</strong>f the extracellular FeAnother approach to assess <strong>iron</strong> requirement is byassess<strong>in</strong>g growth rate as a function <strong>of</strong> the ambient concentration<strong>of</strong> dissolved trace-nutrient Fe. As there is nogood understand<strong>in</strong>g yet on the effect <strong>of</strong> Fe chemicalspeciation (notably Fe-organic complexes) on thegrowth rate <strong>of</strong> a given phytoplankton species, it is bestto simply take the dissolved Fe concentration as thegrowth-rate-controll<strong>in</strong>g parameter <strong>in</strong> otherwise natural,un<strong>per</strong>turbed, Antarctic seawater (Timmermans etal. 2004). Timmermans et al. (2004) demonstrated thatthe K m values for growth <strong>of</strong> large Antarctic <strong>ocean</strong>icdiatoms Fragilariopsis kerguelensis, Chaetocerosdichaeta, Thalassiosira sp., Corethron pennatum andAct<strong>in</strong>ocyclus sp. range from 0.19 nM to 1.14 nM, i.e.generally well above the average concentration <strong>of</strong> dissolvedFe <strong>in</strong> Antarctic surface waters. Moreover, theseK m values have been shown to be <strong>in</strong>versely related tothe surface:volume ratio <strong>of</strong> these diatoms (de Baar etal. 2005). These results are consistent with the observationthat large diatoms bloom only occasionally <strong>in</strong>the open Antarctic Ocean, presumably upon an event<strong>of</strong> Fe supply either from below (de Baar et al. 1995) orfrom above by wet deposition <strong>of</strong> Fe-rich dust. Notably<strong>in</strong> the Southern Ocean Iron Enrichment Ex<strong>per</strong>iment(SOIREE) <strong>fertilization</strong>, the (<strong>in</strong>side-patch) dissolved Fewas always above ~0.2 nM, allow<strong>in</strong>g Fragilariopsiskerguelensis to ma<strong>in</strong>ta<strong>in</strong> at least its half maximumgrowth rate (de Baar et al. 2005) and eventuallybecome the dom<strong>in</strong>ant species <strong>in</strong> response to the Fe <strong>fertilization</strong>.The above <strong>in</strong>dependent estimates <strong>of</strong> <strong>in</strong>tracellular Feconcentration (Tw<strong>in</strong><strong>in</strong>g et al. 2004) and large diatomsgrowth rates (Timmermans et al. 2004) were shown tobe <strong>in</strong> <strong>per</strong>fect agreement with the diffusion limitation <strong>of</strong>growth rate <strong>of</strong> these diatoms (de Baar et al. unpubl.data). At <strong>in</strong>creas<strong>in</strong>g size the less favorable surface:volume ratio prescribes a necessary higher ambient Feconcentration for growth cont<strong>in</strong>uation. Conversely,small cells with the same <strong>in</strong>tracellular Fe concentration,i.e. spheres with a typical diameter less than~8 µm, are never Fe-limited <strong>in</strong> an <strong>ocean</strong> where dissolvedFe always exceeds an 0.01 nM concentration(de Baar et al. unpubl. data). This is consistent with theobservation that small Chaetoceros brevis is neverFe-limited (Timmermans et al. 2001).While Fe enrichments thus far have shown a responsefrom the larger size class <strong>of</strong> diatoms, fromdecades <strong>of</strong> <strong>in</strong>dependent field observations we knowthat major blooms <strong>in</strong> the Antarctic Ocean are due toeither such large diatoms, or the colony-form<strong>in</strong>gPhaeocystis antarctica. For example, <strong>in</strong> the Ross Seathere are blooms <strong>of</strong> either diatoms or P. antarctica <strong>in</strong>dist<strong>in</strong>ct regions and seasons, and the cause for this dist<strong>in</strong>ctionis <strong>of</strong> great <strong>in</strong>terest (Arrigo et al. 2003, Tagliabue& Arrigo 2005). Recently, Sedwick et al. (2007)have shown from P. antarctica cultures <strong>in</strong> natural Antarcticseawater the K m value for growth <strong>of</strong> ~0.45 nMdissolved Fe. This is <strong>in</strong> the same range as for the abovelarge diatoms. Previous estimates for <strong>in</strong>cubations <strong>of</strong>Ross Sea Prymnesiophytes were about one order <strong>of</strong>magnitude lower (Coale et al. 2003), the latter presumablysolitary P. antarctica cells (diameter ~4 to 6 µm;Rousseau et al. 2007) with a more favorable surface:volumeratio for diffusive Fe assimilation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!