13.07.2015 Views

Projections from the lateral geniculate nucleus in the cat and monkey

Projections from the lateral geniculate nucleus in the cat and monkey

Projections from the lateral geniculate nucleus in the cat and monkey

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Anat. (1967), 101, 4, pp. 677-692 677With 7 figuresPr<strong>in</strong>ted <strong>in</strong> Great Brita<strong>in</strong><strong>Projections</strong> <strong>from</strong> <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong><strong>in</strong> <strong>the</strong> <strong>cat</strong> <strong>and</strong> <strong>monkey</strong>M. E. WILSON AND B. G. CRAGGM.R.C. Cerebral Functions Research Group, Department of Anatomy,University College LondonThe surpris<strong>in</strong>g claim of Glickste<strong>in</strong>, Miller & Smith (1964) that <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong><strong>nucleus</strong> (LGN) <strong>in</strong> <strong>the</strong> <strong>cat</strong> emits a crossed projection through <strong>the</strong> corpus callosum to<strong>the</strong> contra-<strong>lateral</strong> visual cortex has important impli<strong>cat</strong>ions for work on split-bra<strong>in</strong>ed<strong>cat</strong>s (Myers, 1956) <strong>and</strong> <strong>monkey</strong>s (Downer, 1959). This claim was based on lesionsmade by a particular stereotaxic approach to <strong>the</strong> LGN, <strong>and</strong> we thought it worthwhileto see whe<strong>the</strong>r a different stereotaxic approach, which avoided <strong>the</strong> corpus callosum,would give <strong>the</strong> same result.We found no evidence of a crossed geniculo-striate projection <strong>in</strong> ei<strong>the</strong>r <strong>cat</strong> or<strong>monkey</strong>, but <strong>in</strong> <strong>the</strong> course of this work made <strong>the</strong> unexpected f<strong>in</strong>d<strong>in</strong>g that <strong>the</strong> LGN<strong>in</strong> <strong>the</strong> <strong>cat</strong> projects to three separate ipsi-<strong>lateral</strong> areas of neo-cortex. These comprisevisual areas I <strong>and</strong> II <strong>and</strong> <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> middle suprasylvian gyrus. Visualareas I <strong>and</strong> II have been shown to correspond to areas 17 <strong>and</strong> 18 of Otsuka & Hassler(1962), by Bilge, Seneviratne & Whitteridge (1963) <strong>and</strong> Hubel & Wiesel (1965). Wehave not found <strong>the</strong>se cytoarchitectonic boundaries sufficiently well def<strong>in</strong>ed to beuseful for localiz<strong>in</strong>g <strong>the</strong> degenerated projections. Various control lesions have beenmade to determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> projections to visual area IL <strong>and</strong> <strong>the</strong> suprasylviangyrus arise <strong>in</strong> <strong>the</strong> LGN or <strong>in</strong> neighbour<strong>in</strong>g structures.MATERIAL AND METHODSTwenty-three <strong>cat</strong>s <strong>and</strong> two <strong>monkey</strong>s were anaes<strong>the</strong>tized with pentobarbital sodium,<strong>and</strong> given penicill<strong>in</strong>. Bra<strong>in</strong> lesions were made under sterile conditions with a coagulat<strong>in</strong>gcurrent passed through a needle electrode held <strong>in</strong> a stereotaxic mach<strong>in</strong>e. In <strong>the</strong><strong>cat</strong>s, a burr hole was made <strong>in</strong> <strong>the</strong> cranium just anterior to <strong>the</strong> <strong>lateral</strong> edge of <strong>the</strong>tentorium. The needle was <strong>the</strong>n advanced through <strong>the</strong> postero-<strong>lateral</strong> neo-cortex <strong>and</strong>hippocampus to a known co-ord<strong>in</strong>ate <strong>in</strong> <strong>the</strong> diencephalon, on a track that was nearlyhorizontal. In <strong>the</strong> <strong>monkey</strong>s, <strong>the</strong> head holder was altered to allow <strong>the</strong> neck to beflexed so that Reid's basel<strong>in</strong>e was vertical. The electrode was <strong>the</strong>n lowered througha burr hole <strong>in</strong> <strong>the</strong> occipital bone to pass through <strong>the</strong> cerebellum, entorh<strong>in</strong>al cortex<strong>and</strong> hippocampus <strong>and</strong> so reach <strong>the</strong> LGN <strong>from</strong> <strong>the</strong> ventral side. After survivalperiods of 1-3 weeks, <strong>the</strong> bra<strong>in</strong>s were perfused <strong>and</strong> subsequently sta<strong>in</strong>ed by <strong>the</strong>method of Nauta & Gygax (1954), <strong>and</strong> a mounted series of sections sta<strong>in</strong>ed withcresyl violet.A multi-compartmented sieve was designed to process <strong>the</strong> sections for <strong>the</strong> Nautamethod. This had <strong>the</strong> advantage that <strong>the</strong> loose frozen sections were kept <strong>in</strong> strictserial order <strong>and</strong> were not damaged by tedious <strong>in</strong>dividual h<strong>and</strong>l<strong>in</strong>g. The sieve was


678M. E. WILSON AND B. G. CRAGGmade by drill<strong>in</strong>g twenty-two holes each i <strong>in</strong> <strong>in</strong> diameter through a disc of Perspex1 <strong>in</strong> thick <strong>and</strong> 51 <strong>in</strong> <strong>in</strong> diameter. A h<strong>and</strong>le was attached so that <strong>the</strong> horizontal disccould be moved <strong>from</strong> one polyethylene dish to ano<strong>the</strong>r. The lower face of <strong>the</strong> discwas softened by soak<strong>in</strong>g <strong>in</strong> acetone, <strong>and</strong> <strong>the</strong>n pressed flat on a sheet of nylon nett<strong>in</strong>gtill dry. The Perspex that embedded <strong>the</strong> nylon nett<strong>in</strong>g was protected by a coat ofAraldite or DePex (Gurr). Successive sections were placed <strong>in</strong> <strong>the</strong> twenty-two compartmentswhile <strong>the</strong> sieve was <strong>in</strong> I <strong>in</strong> of distilled water, <strong>and</strong> this batch of sectionswas <strong>the</strong>n processed as a unit by mov<strong>in</strong>g <strong>the</strong> sieve <strong>from</strong> one dish to <strong>the</strong> next. Thedishes were filled to a depth of about I <strong>in</strong> with an appropriate solution (i.e. about100 ml), <strong>and</strong> were agitated throughout <strong>the</strong> process by a mechanical rocker. A s<strong>in</strong>glesection was taken <strong>from</strong> <strong>the</strong> sieve at <strong>the</strong> end of <strong>the</strong> treatment <strong>in</strong> 15 %0 AgNO3 <strong>and</strong>processed <strong>in</strong> <strong>the</strong> ammoniacal-silver bath. The latter was adjusted if necessary to give<strong>the</strong> required result, as expla<strong>in</strong>ed previously (Cragg, 1965), <strong>and</strong> <strong>the</strong> rest of <strong>the</strong> batchwere <strong>the</strong>n sta<strong>in</strong>ed toge<strong>the</strong>r. After reduction, <strong>the</strong> batch was treated with two baths ofsodium thiosulphate, washed <strong>and</strong> dehydrated still <strong>in</strong> <strong>the</strong> sieve. The sections were<strong>the</strong>n taken <strong>in</strong>dividually <strong>in</strong>to creosote beechwood oil <strong>and</strong> mounted on slides. Thesieve is now available commercially <strong>from</strong> Electrophysiological Instruments Ltd., at21 Marshall Street, Ed<strong>in</strong>burgh, Scotl<strong>and</strong>.RESULTS<strong>Projections</strong> <strong>from</strong> <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong> <strong>in</strong> <strong>the</strong> <strong>monkey</strong>In <strong>the</strong> first <strong>monkey</strong>, <strong>the</strong>re was a th<strong>in</strong>-needle track through <strong>the</strong> cerebellum, entorh<strong>in</strong>alcortex, subiculum <strong>and</strong> fimbria, end<strong>in</strong>g <strong>in</strong> a lesion 1-5 mm <strong>in</strong> diameter whichaffected <strong>the</strong> postero-dorsal pole of <strong>the</strong> LGN <strong>and</strong> <strong>the</strong> <strong>in</strong>ferior part of <strong>the</strong> pulv<strong>in</strong>ar<strong>nucleus</strong>. The occipital lobes were studied <strong>in</strong> parasagittal section. In <strong>the</strong> cortex <strong>the</strong>rewas dense fibre degeneration <strong>in</strong> <strong>the</strong> antero-ventro-<strong>lateral</strong> part of <strong>the</strong> striate area thatabuts <strong>the</strong> lunate sulcus <strong>and</strong> lies immediately dorsal to <strong>the</strong> <strong>in</strong>ferior occipital sulcus(i.e. <strong>in</strong> <strong>the</strong> cortical representation of <strong>the</strong> macula). This patch of degeneration wasentirely conf<strong>in</strong>ed to <strong>the</strong> cortex conta<strong>in</strong><strong>in</strong>g <strong>the</strong> stria of Gennari, <strong>and</strong> did not extendforwards <strong>in</strong>to <strong>the</strong> peristriate cortex. The cortical degeneration was ipsi-<strong>lateral</strong> to <strong>the</strong>lesion, all parts of <strong>the</strong> contra-<strong>lateral</strong> striate <strong>and</strong> peristriate cortex be<strong>in</strong>g clear ofdegeneration.In <strong>the</strong> second <strong>monkey</strong>, <strong>the</strong>re was a similar needle track but <strong>the</strong> lesion was far<strong>the</strong>rforwards <strong>in</strong> <strong>the</strong> middle of <strong>the</strong> antero-posterior extent of <strong>the</strong> LGN. The lesion was1 mm <strong>in</strong> diameter <strong>and</strong> entirely conf<strong>in</strong>ed to <strong>the</strong> <strong>lateral</strong> limb of <strong>the</strong> LGN. In <strong>the</strong> occipitallobes, which were cut frontally, <strong>the</strong>re was dense fibre degeneration <strong>in</strong> <strong>the</strong> ventralwall of <strong>the</strong> calcar<strong>in</strong>e sulcus on <strong>the</strong> medial side of <strong>the</strong> hemisphere at <strong>the</strong> posterior endof <strong>the</strong> bra<strong>in</strong> (i.e. <strong>the</strong> degeneration was <strong>in</strong> <strong>the</strong> representation of <strong>the</strong> peripheral visualfield). The degeneration was aga<strong>in</strong> conf<strong>in</strong>ed to <strong>the</strong> striate area, <strong>and</strong> none was seen <strong>in</strong><strong>the</strong> peristriate cortex, or <strong>the</strong> occipital lobe contra-<strong>lateral</strong> to <strong>the</strong> lesion. The degenerationwith<strong>in</strong> <strong>the</strong> striate area <strong>in</strong> <strong>the</strong>se two <strong>monkey</strong> bra<strong>in</strong>s was dense <strong>in</strong> <strong>the</strong> deeper layers<strong>and</strong> became gradually less dense superficially. Most of <strong>the</strong> f<strong>in</strong>e preterm<strong>in</strong>al fibreswere seen <strong>in</strong> layer 4, some reached layer 3, but <strong>the</strong>re were none <strong>in</strong> layer 2.


<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>679<strong>Projections</strong> <strong>from</strong> <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong> <strong>in</strong> <strong>the</strong> <strong>cat</strong>The <strong>cat</strong> bra<strong>in</strong>s were cut <strong>in</strong>to coronal blocks by cuts 8 <strong>and</strong> 23 mm <strong>in</strong> front of <strong>the</strong>posterior limit of <strong>the</strong> occipital lobe. The posterior block conta<strong>in</strong>ed <strong>the</strong> po<strong>in</strong>t of entryof <strong>the</strong> needle electrode, <strong>the</strong> middle block had most of <strong>the</strong> cortical-fibre degeneration,<strong>and</strong> <strong>the</strong> anterior block was free <strong>from</strong> degeneration <strong>in</strong> <strong>the</strong> two bra<strong>in</strong>s <strong>in</strong> which it wasstudied. The blocks were reassembled <strong>and</strong> photographed before section<strong>in</strong>g, <strong>and</strong> <strong>the</strong>pr<strong>in</strong>ts used to reconstruct <strong>the</strong> distribution of <strong>the</strong> cortical fibre degeneration. S<strong>in</strong>ce<strong>in</strong> <strong>the</strong> <strong>cat</strong> <strong>the</strong> needle electrode entered <strong>the</strong> neo-cortex <strong>and</strong> passed through <strong>the</strong> whiteA B tA>iit; A.t. i s > } We X ;4P 4 P 2 P 0 ~ .41 ~ ~4OF~~~~~~~~(Fr3 Fr5 Fr6Fig. 1. A The position of a needle track aimed at <strong>the</strong> LGN show<strong>in</strong>g <strong>the</strong> structures traversedat six levels <strong>in</strong> coronal sections at <strong>the</strong> <strong>in</strong>di<strong>cat</strong>ed distances <strong>in</strong> mm anterior (Fr) or posterior (P)to <strong>the</strong> <strong>in</strong>teraural plane. B The size of a typical needle track <strong>in</strong> a Nauta preparation. Degeneratedfibres can be seen under higher magnifi<strong>cat</strong>ion. Scale = 100jtm.matter before reach<strong>in</strong>g <strong>the</strong> diencephalon, it was important to know what corticalfibredegeneration would be produced by <strong>the</strong> needle track alone if no thalamic lesionwere made. Figure 1 shows a typical track through <strong>the</strong> bra<strong>in</strong>. It should be noted that<strong>the</strong> first thalamic structure encountered by <strong>the</strong> needle is <strong>the</strong> posterior end of <strong>the</strong> LGN.Control lesionsIn two <strong>cat</strong>s (C 1, C 2) <strong>the</strong> needle was <strong>in</strong>serted just short of <strong>the</strong> LGN <strong>and</strong> no lesionmade, while <strong>in</strong> three o<strong>the</strong>r <strong>cat</strong>s (C3-C 5) <strong>the</strong> needle was <strong>in</strong> <strong>the</strong> third ventricle above<strong>the</strong> thalamus when <strong>the</strong> current was passed. In <strong>the</strong> posterior block (as def<strong>in</strong>ed above)of <strong>the</strong>se five bra<strong>in</strong>s degenerated fibres were found spread<strong>in</strong>g <strong>from</strong> <strong>the</strong> needle trackto <strong>the</strong> <strong>in</strong>ferior half or three-quarters of <strong>the</strong> postero-<strong>lateral</strong> gyrus on both its <strong>lateral</strong><strong>and</strong> medial surfaces, <strong>and</strong> to <strong>the</strong> posterior suprasylvian gyrus. In C 1 <strong>the</strong>re was a


680M. E. WILSON AND B. G. CRAGGmoderate amount of fibre degeneration <strong>in</strong> <strong>the</strong> crown only of <strong>the</strong> middle suprasylviangyrus extend<strong>in</strong>g forwards <strong>in</strong>to <strong>the</strong> middle block. The <strong>lateral</strong> gyrus was however clearof degeneration <strong>in</strong> <strong>the</strong> middle block, <strong>and</strong> <strong>in</strong> <strong>the</strong> o<strong>the</strong>r four bra<strong>in</strong>s (C2-C 5) <strong>the</strong> wholeof <strong>the</strong> middle block was clear of degeneration apart <strong>from</strong> an occasional degeneratedfibre. No reason has been found for <strong>the</strong> degeneration <strong>in</strong> C 1 be<strong>in</strong>g more extensive than<strong>in</strong> C2-C5.In two o<strong>the</strong>r <strong>cat</strong>s (C 10, C 16) <strong>the</strong> needle track ended <strong>in</strong> a thalamic lesion (described<strong>in</strong> a later section), but <strong>the</strong>re was no fibre degeneration <strong>in</strong> <strong>the</strong> cortex of <strong>the</strong> <strong>lateral</strong> ormiddle suprasylvian gyri more than 12 mm <strong>in</strong> front of <strong>the</strong> occipital pole. In additionLGLS.PLGFig. 2. A composite representation of <strong>the</strong> distribution of cortical-fibre degeneration <strong>in</strong> <strong>the</strong>control bra<strong>in</strong>s C 2-C 7. The dotted l<strong>in</strong>es show where <strong>the</strong> bra<strong>in</strong>s were cut <strong>in</strong>to posterior, middle<strong>and</strong> anterior blocks. The needle electrode entered <strong>the</strong> cortex with<strong>in</strong> <strong>the</strong> region of <strong>the</strong> black circle.ESG, ectosylvian gyrus; LG, <strong>lateral</strong> gyrus; LS, <strong>lateral</strong> sulcus; PLG, postero-<strong>lateral</strong> gyrus;SSG, suprasylvian gyrus; SSS, suprasylvian sulcus.to <strong>the</strong> <strong>in</strong>advertent damage done by <strong>the</strong> needle track <strong>in</strong> <strong>the</strong> white matter, <strong>the</strong> cortexat <strong>the</strong> po<strong>in</strong>t of entry was sometimes damaged <strong>in</strong> <strong>the</strong> superficial layers. In two fur<strong>the</strong>r<strong>cat</strong>s (C 6, C 7) <strong>the</strong> relevant superficial layers of cortex were damaged deliberatelywithout <strong>in</strong>sert<strong>in</strong>g a needle. One of <strong>the</strong>se small lesions was conf<strong>in</strong>ed to <strong>the</strong> postero<strong>lateral</strong>gyrus, <strong>and</strong> <strong>the</strong> o<strong>the</strong>r to <strong>the</strong> posterior suprasylvian gyrus, but <strong>in</strong> both bra<strong>in</strong>s<strong>the</strong> only degenerated fibres found were localized to <strong>the</strong> immediate vic<strong>in</strong>ity of <strong>the</strong>lesion.Most of <strong>the</strong> <strong>in</strong>formation to be presented <strong>in</strong> <strong>the</strong> rest of this paper was derived <strong>from</strong><strong>the</strong> study of <strong>the</strong> cortex <strong>in</strong> <strong>the</strong> middle block, 8-23 mm anterior to <strong>the</strong> occipital pole.The results <strong>in</strong> <strong>the</strong> control bra<strong>in</strong>s may be summarized (Fig. 2) by say<strong>in</strong>g that <strong>the</strong><strong>lateral</strong> gyrus <strong>from</strong> 12 mm ahead of <strong>the</strong> occipital pole was almost entirely free <strong>from</strong>degeneration <strong>in</strong> all n<strong>in</strong>e of <strong>the</strong> control lesions, while <strong>in</strong> all seven of <strong>the</strong> control lesionswithout thalamic <strong>in</strong>volvement <strong>the</strong> <strong>lateral</strong> gyrus was free throughout <strong>the</strong> middleblock. The suprasylvian gyrus was similarly free <strong>from</strong> degeneration except <strong>in</strong> onebra<strong>in</strong> (C 1), <strong>in</strong> which <strong>the</strong> crown but not <strong>the</strong> walls of <strong>the</strong> gyrus conta<strong>in</strong>ed degeneration.The posterior block however conta<strong>in</strong>ed degeneration caused by <strong>the</strong> needle trackwhich must be allowed for <strong>in</strong> draw<strong>in</strong>g conclusions <strong>from</strong> <strong>the</strong> results of thalamic lesions.


<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>681Fr5O Fr65 Fr80 Fr9O0Fig 3. The distribution of cortical-fibre degeneration follow<strong>in</strong>g a lesion <strong>in</strong> <strong>the</strong> LGN <strong>in</strong> C 8. Thelesion is shown at four levels of <strong>the</strong> atlas of <strong>the</strong> <strong>cat</strong>'s bra<strong>in</strong> published by Jasper & Ajmone-Marsan(1955). In <strong>the</strong> cortical-diagram note <strong>the</strong> wide separation of <strong>the</strong> two medial projections at <strong>the</strong>posterior end of <strong>the</strong> middle block <strong>and</strong> <strong>the</strong>ir convergence at <strong>the</strong> representation of <strong>the</strong> verticalmeridian anteriorly. The suprasylvian degeneration <strong>in</strong> <strong>the</strong> wall of <strong>the</strong> gyrus is only seen <strong>in</strong> <strong>the</strong>cross-sections. SS, splenial sulcus.


682M. E. WILSON AND B. G. CRAGGLGN lesionsThree <strong>cat</strong>s (C 8-C 10) had thalamic damage entirely conf<strong>in</strong>ed to <strong>the</strong> LGN, while <strong>in</strong>o<strong>the</strong>rs <strong>the</strong>re was additional <strong>in</strong>volvement of medially placed structures. The threelesions to be described were small enough to produce an <strong>in</strong>terest<strong>in</strong>g topographicaldistribution of degeneration <strong>in</strong> <strong>the</strong> visual cortex. To underst<strong>and</strong> this it is necessaryto remember that <strong>the</strong> vertical meridian of <strong>the</strong> visual field is represented on <strong>the</strong> medialedge of <strong>the</strong> LGN (Bishop, Kozak, Levick & Vakkur, 1962; Seneviratne & Whitteridge,1962). On <strong>the</strong> cortex, <strong>the</strong> vertical meridian is represented at <strong>the</strong> boundary between <strong>the</strong>areas designated as Visual I <strong>and</strong> Visual II (Talbot & Marshall, 1941 ; Bilge, Seneviratne& Whitteridge, 1963). Hubel & Weisel (1965) <strong>and</strong> Whitteridge (1966) showed thatthis boundary co<strong>in</strong>cided with that between <strong>the</strong> area striata (17) <strong>and</strong> <strong>the</strong> area occipitalis(18) as def<strong>in</strong>ed by Otsuka & Hassler (1962). Fur<strong>the</strong>rmore, <strong>the</strong> anterior part of<strong>the</strong> LGN projects to <strong>the</strong> anterior visual cortex, <strong>and</strong> <strong>the</strong> posterior part of <strong>the</strong> LGNposteriorly (M<strong>in</strong>kowski, 1913).In <strong>the</strong> first <strong>cat</strong> (C 8), <strong>the</strong> lesion extends <strong>from</strong> postero-<strong>lateral</strong> to antero-medial LGN(Fig. 3), <strong>and</strong> thus affects <strong>the</strong> representation of <strong>the</strong> peripheral visual field at <strong>the</strong> posteriorend of <strong>the</strong> LGN, <strong>and</strong> <strong>the</strong> field near <strong>the</strong> vertical meridian at <strong>the</strong> anterior end of<strong>the</strong> LGN. S<strong>in</strong>ce <strong>the</strong> lesion extends to <strong>the</strong> antero-medial tip of <strong>the</strong> LGN, <strong>the</strong> mostanterior degeneration seen on <strong>the</strong> cortex (Fig. 3) corresponds to <strong>the</strong> anterior limitof <strong>the</strong> visual area. In <strong>the</strong> cortex, two areas of degeneration are found, one on <strong>the</strong>medial wall of <strong>the</strong> hemisphere <strong>in</strong> area 17 or Visual I, <strong>and</strong> <strong>the</strong> o<strong>the</strong>r on <strong>the</strong> top of <strong>the</strong><strong>lateral</strong> gyrus <strong>in</strong> area 18 or Visual II. In <strong>the</strong> posterior part of <strong>the</strong> middle block, adegeneration-free zone <strong>in</strong>tervenes between <strong>the</strong>se two areas of degeneration whichare widely separated, as are <strong>the</strong> representations of <strong>the</strong> peripheral field (away <strong>from</strong><strong>the</strong> vertical meridian) <strong>in</strong> Visual I <strong>and</strong> Visual II. Anteriorly, <strong>the</strong> two areas of degenerationcome toge<strong>the</strong>r at <strong>the</strong> representation of <strong>the</strong> vertical meridian on <strong>the</strong> <strong>lateral</strong> side ofVisual I <strong>and</strong> <strong>the</strong> adjo<strong>in</strong><strong>in</strong>g medial side of Visual II (see Fig. 3). It will be argued belowthat this topographical correspondence between <strong>the</strong> distribution of <strong>the</strong> cortical-fibredegeneration <strong>and</strong> <strong>the</strong> position of <strong>the</strong> lesion <strong>in</strong> <strong>the</strong> LGN is a strong reason for th<strong>in</strong>k<strong>in</strong>gthat <strong>the</strong> cells of <strong>the</strong> LGN project to <strong>the</strong> two areas Visual I <strong>and</strong> Visual II, <strong>and</strong> that <strong>the</strong>result is not due to damage to fibres of o<strong>the</strong>r orig<strong>in</strong> which happen to be pass<strong>in</strong>g near<strong>the</strong> lesion <strong>in</strong> <strong>the</strong> LGN.In C8 no degeneration was found on <strong>the</strong> medial lip of <strong>the</strong> <strong>lateral</strong> sulcus correspond<strong>in</strong>gto area praeoccipitalis (19), <strong>the</strong> Visual III of <strong>the</strong> electrophysiologists.However, a sparse but def<strong>in</strong>ite projection was found to <strong>the</strong> <strong>lateral</strong> wall of <strong>the</strong> middlesuprasylvian gyrus, a region that was clear of degeneration <strong>in</strong> all <strong>the</strong> control bra<strong>in</strong>s.In <strong>the</strong> three areas of degeneration described above, <strong>the</strong> broken fibres were of similarmedium calibre, <strong>and</strong> were dense <strong>in</strong> <strong>the</strong> deeper layers of <strong>the</strong> cortex, but scarcelyextended above layer 4.In <strong>the</strong> second <strong>cat</strong>, C9, <strong>the</strong> lesion was on <strong>the</strong> <strong>lateral</strong> edge of <strong>the</strong> LGN, <strong>and</strong> passedforwards to <strong>the</strong> anterior extremity of <strong>the</strong> <strong>nucleus</strong>, with some possibility of damageto <strong>the</strong> reticular <strong>nucleus</strong> just beyond, <strong>and</strong> to one small bundle of fibres <strong>from</strong> <strong>the</strong><strong>nucleus</strong> <strong>lateral</strong>is posterior. This <strong>the</strong>n was a lesion <strong>in</strong> <strong>the</strong> representation of <strong>the</strong> farperipheral visual field. In <strong>the</strong> striate cortex <strong>the</strong> fibre degeneration was ventro-medialnear <strong>the</strong> splenial sulcus (Fig. 4). A second patch of degeneration appeared on <strong>the</strong>


<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>683<strong>lateral</strong> half of <strong>the</strong> <strong>lateral</strong> gyrus. S<strong>in</strong>ce Visual IL <strong>and</strong> Visual III abut <strong>in</strong> this region,it is difficult to say whe<strong>the</strong>r <strong>the</strong> degeneration observed conta<strong>in</strong>ed a separate projectionto Visual III <strong>in</strong> this bra<strong>in</strong>. Def<strong>in</strong>ite fibre degeneration was aga<strong>in</strong> seen <strong>in</strong> <strong>the</strong><strong>lateral</strong> wall of <strong>the</strong> middle suprasylvian gyrus, <strong>and</strong> scanty degeneration also occurred<strong>in</strong> <strong>the</strong> adjo<strong>in</strong><strong>in</strong>g medial wall of <strong>the</strong> ectosylvian gyrus. The last f<strong>in</strong>d<strong>in</strong>g <strong>and</strong> <strong>the</strong> possibilityof damage to <strong>the</strong> reticular <strong>nucleus</strong> <strong>and</strong> <strong>nucleus</strong> <strong>lateral</strong>is posterior <strong>in</strong> this bra<strong>in</strong>are <strong>the</strong> only respects <strong>in</strong> which <strong>the</strong>se results differ <strong>from</strong> <strong>the</strong> pattern set by C8.P1 Fr8 Fr17ffAi~~~~~~~APu Pu LPLFig. 4D The distribution LP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~of cortical-fib degeneration <strong>in</strong>In <strong>the</strong>Gtird at,10,<strong>the</strong>esioL a that three levels LPCL MdvPL~~~~M'~GM "CTONRPed~~~~~~~~~~~~~~~~~~~~~~~~~~~eFr5O0 Fr6-5 Fr8O0produced N deeerto \NR7/.<strong>in</strong>d


684M. E. WILSON AND B. G. CRAGGlimited value because <strong>the</strong> posterior placement of <strong>the</strong> lesion caused <strong>the</strong> corticaldegeneration to occur <strong>in</strong> <strong>the</strong> posterior block. The surpris<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g that <strong>the</strong> LGNappears to project to Visual II as well as to Visual I makes it desirable to determ<strong>in</strong>ewhe<strong>the</strong>r <strong>the</strong>se degenerated projections could have arisen <strong>from</strong> structures border<strong>in</strong>g<strong>the</strong> LGN. Exam<strong>in</strong>ation of Nissl-sta<strong>in</strong>ed sections of <strong>the</strong> thalamus did not reveal anyretrograde reaction <strong>in</strong> <strong>the</strong> nuclei medial to <strong>the</strong> LGN <strong>in</strong> any of <strong>the</strong>se experiments.It never<strong>the</strong>less seemed desirable to place lesions <strong>in</strong> <strong>the</strong>se more medial structures tosee whe<strong>the</strong>r <strong>the</strong> resultant pattern of degeneration would fit that seen after lesions of<strong>the</strong> LGN.Lesions of structures medial to <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>One <strong>cat</strong> (C 11) had a lesion that was centrally placed at <strong>the</strong> posterior end of <strong>the</strong>LGN, but that moved medially far<strong>the</strong>r forwards to <strong>in</strong>volve <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar<strong>nucleus</strong> of <strong>the</strong> LGN. In <strong>the</strong> cortex degenerated fibres were distributed as an almostcont<strong>in</strong>uous b<strong>and</strong> <strong>in</strong> <strong>the</strong> dorso-medial part of <strong>the</strong> <strong>lateral</strong> gyrus, as would be expectedof a lesion close to <strong>the</strong> representation of <strong>the</strong> vertical meridian. However, degeneratedfibres were also present <strong>in</strong> <strong>the</strong> <strong>lateral</strong> wall of <strong>the</strong> <strong>lateral</strong> gyrus, <strong>in</strong> a region that maybe ei<strong>the</strong>r area 18 or 19. Some degeneration was aga<strong>in</strong> present <strong>in</strong> <strong>the</strong> <strong>lateral</strong> wall of<strong>the</strong> suprasylvian gyrus <strong>in</strong> <strong>the</strong> middle part of its antero-posterior extent. These resultsare similar to those obta<strong>in</strong>ed <strong>in</strong> C8 except for <strong>the</strong> added degeneration <strong>in</strong> <strong>the</strong> <strong>lateral</strong>wall of <strong>the</strong> <strong>lateral</strong> gyrus, <strong>and</strong> <strong>the</strong> added <strong>in</strong>volvement of <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar<strong>nucleus</strong> <strong>in</strong> <strong>the</strong> lesion.In <strong>cat</strong> C 12 a lesion was made with<strong>in</strong> <strong>the</strong> posterior half of <strong>the</strong> pulv<strong>in</strong>ar <strong>nucleus</strong> with<strong>in</strong>volvement of <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> of <strong>the</strong> LGN. No retrograde cellreaction was seen <strong>in</strong> <strong>the</strong> LGN <strong>in</strong> Nissl-sta<strong>in</strong>ed preparations. No fibre degenerationoccurred <strong>in</strong> <strong>the</strong> dorsal or medial parts of <strong>the</strong> <strong>lateral</strong> gyrus (area 17), but degeneration<strong>in</strong> <strong>the</strong> <strong>lateral</strong> half of <strong>the</strong> <strong>lateral</strong> gyrus extended down <strong>in</strong>to <strong>the</strong> depths of <strong>the</strong> <strong>lateral</strong>sulcus. In <strong>the</strong> suprasylvian gyrus, degeneration was moderate on <strong>the</strong> crown, butbecame dense <strong>in</strong> <strong>the</strong> <strong>lateral</strong> wall. There was also moderate degeneration <strong>in</strong> <strong>the</strong> medialwall of <strong>the</strong> ectosylvian gyrus, <strong>and</strong> a small patch at <strong>the</strong> bottom of <strong>the</strong> splenial sulcus.The last-named region had been free of degeneration <strong>in</strong> <strong>the</strong> bra<strong>in</strong>s described above,with <strong>the</strong> possible exception of C 11: no degeneration was seen <strong>in</strong> this bra<strong>in</strong>, but <strong>the</strong>medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> was damaged anteriorly, <strong>and</strong> <strong>the</strong>re was a gap <strong>in</strong> <strong>the</strong>series of sections of this bra<strong>in</strong> at an anterior level.In C 13 a small lesion damaged <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> of <strong>the</strong> LGN <strong>and</strong>part of <strong>the</strong> N. posterior <strong>and</strong> N. <strong>lateral</strong>is posterior. Cortical fibre degeneration wasfound <strong>in</strong> <strong>the</strong> <strong>lateral</strong> two-thirds of <strong>the</strong> <strong>lateral</strong> gyrus extend<strong>in</strong>g down <strong>the</strong> <strong>lateral</strong> wallof <strong>the</strong> gyrus, <strong>in</strong> <strong>the</strong> <strong>lateral</strong> half of <strong>the</strong> middle suprasylvian gyrus aga<strong>in</strong> extend<strong>in</strong>gdown <strong>the</strong> wall, <strong>and</strong> <strong>in</strong> a small patch at <strong>the</strong> bottom of <strong>the</strong> splenial sulcus. Scants<strong>cat</strong>tered degeneration occurred elsewhere <strong>in</strong> <strong>the</strong> medial wall of <strong>the</strong> hemisphere(area 17) <strong>and</strong> at <strong>the</strong> tip of <strong>the</strong> medial wall of <strong>the</strong> ectosylvian gyrus. The degeneration<strong>in</strong> area 17 was probably due to <strong>the</strong> passage of <strong>the</strong> needle track through <strong>the</strong> centralpart of <strong>the</strong> LGN. Degeneration found on <strong>the</strong> posterior ectosylvian gyrus is probablydue to track damage <strong>in</strong> <strong>the</strong> white matter.In C 14 <strong>the</strong> lesion penetrated <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> <strong>and</strong> extended as farforwards as <strong>the</strong> N. ventralis anterior, caus<strong>in</strong>g also some damage <strong>in</strong> <strong>the</strong> pulv<strong>in</strong>ar


<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong> 685<strong>nucleus</strong> (see Fig. 5). The pattern of degeneration was similar to that <strong>in</strong> C 13, exceptthat degeneration <strong>in</strong> <strong>the</strong> medial wall of <strong>the</strong> hemisphere was conf<strong>in</strong>ed to a small patchat <strong>the</strong> bottom of <strong>the</strong> splenial sulcus. These four bra<strong>in</strong>s (C 11-C 14) had <strong>in</strong> commondamage to <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> of <strong>the</strong> LGN, <strong>and</strong> all possessed a de-Pul . >LYLP4%. .\ MD /7'\-~~~~~ ~~~~LP L','' 1/ DL , Hb /'GL, .'~3 ( 2/MD'hP'a0TNGM9 t _ *NCP -a . GI.to' GM V%R.4-:~~~~ AL4Fig. SnN siSN SN1 ~ N :- j~~~~~~~~~~~~~~~~~~~~~~~~~~4 .~~~~~~~~~~~~~~~~~~~~~~~~~~~~generatedproecto to th <strong>lateral</strong> \atoAh aea.gr hc a otpeeeaeK'3,Q..5.<strong>the</strong> Figlesion affec<strong>in</strong>g (C8C1)w<strong>the</strong>mda <strong>in</strong>trelamionarncesof <strong>the</strong> LGN.Fr5-0 Fr6-5 -0 ~~~~~~~~~~~~~Fr6-.4~-<strong>in</strong>rCe14rshown(Cdiagramalsoshowed degeneration <strong>in</strong> a small region at <strong>the</strong> bottom of <strong>the</strong> splenial sulcus. Thislatter region <strong>and</strong> <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> <strong>lateral</strong> gyrus have <strong>in</strong> common that <strong>the</strong>y may


686M. E. WILSON AND B. G. CRAGGconta<strong>in</strong> part of area 18 or 19 or both. It is, however, difficult to say whe<strong>the</strong>r <strong>the</strong>regions receiv<strong>in</strong>g <strong>the</strong> degenerated projection should be designated as area 18 or 19(see Discussion).In ano<strong>the</strong>r <strong>cat</strong>, C 15, <strong>the</strong> lesion damaged ma<strong>in</strong>ly <strong>the</strong> pulv<strong>in</strong>ar <strong>nucleus</strong>, with some<strong>in</strong>volvement of <strong>the</strong> N. <strong>lateral</strong>is posterior <strong>and</strong> N. <strong>lateral</strong>is dorsalis, but did not touch<strong>the</strong> LGN or its medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong>. The cortical degeneration was conf<strong>in</strong>edto <strong>the</strong> crown <strong>and</strong> <strong>lateral</strong> wall of <strong>the</strong> suprasylvian gyrus <strong>in</strong> <strong>the</strong> middle part of itsantero-<strong>lateral</strong> extent. The <strong>lateral</strong> gyrus was entirely free <strong>from</strong> degeneration (seeFig. 6).A lesion that extended most of <strong>the</strong> length of <strong>the</strong> N. <strong>lateral</strong>is posterior was made <strong>in</strong>ano<strong>the</strong>r <strong>cat</strong> (C 16) without <strong>in</strong>volvement of o<strong>the</strong>r nuclei. No retrograde reaction wasseen <strong>in</strong> Nissl preparations <strong>in</strong> <strong>the</strong> LGN or pulv<strong>in</strong>ar <strong>nucleus</strong>. Fibre degeneration wasfound only on <strong>the</strong> posterior ectosylvian <strong>and</strong> posterior suprasylvian gyri, <strong>and</strong> wasprobably due to track damage. Waller & Barris (1937) suggested that N. <strong>lateral</strong>isposterior projects to <strong>the</strong> anterior end of <strong>the</strong> suprasylvian gyrus. Unfortunately, <strong>the</strong>frontal block was not sta<strong>in</strong>ed. The results <strong>in</strong> C 16 do, however, exclude a projectionto <strong>the</strong> <strong>lateral</strong> gyrus <strong>from</strong> this source.Comb<strong>in</strong>ed lesions of <strong>the</strong> LGN <strong>and</strong> more medial structuresIn <strong>the</strong> course of mak<strong>in</strong>g <strong>the</strong> lesions described above, seven o<strong>the</strong>r bra<strong>in</strong>s (C 17-C23)were studied <strong>in</strong> which a lesion <strong>in</strong> <strong>the</strong> LGN had spread to <strong>in</strong>volve more medial structures<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> <strong>and</strong> <strong>the</strong> pulv<strong>in</strong>ar <strong>nucleus</strong>. In onebra<strong>in</strong> (C 17) <strong>the</strong> lesion was just beneath <strong>the</strong> LGN, damag<strong>in</strong>g <strong>the</strong> latter medially <strong>and</strong><strong>in</strong>volv<strong>in</strong>g <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong>, <strong>and</strong> part of <strong>the</strong> posterior <strong>nucleus</strong>, N.<strong>lateral</strong>is posterior <strong>and</strong> perhaps part of <strong>the</strong> pulv<strong>in</strong>ar <strong>nucleus</strong>. Dense degeneration wasdistributed <strong>lateral</strong>ly across <strong>the</strong> <strong>lateral</strong> gyrus <strong>from</strong> its medial edge, but did not descendfar <strong>in</strong>to <strong>the</strong> <strong>lateral</strong> wall of <strong>the</strong> gyrus. There was also some slight degeneration on <strong>the</strong>medial wall of <strong>the</strong> hemisphere especially at <strong>the</strong> bottom of <strong>the</strong> splenial sulcus, <strong>and</strong> <strong>in</strong><strong>the</strong> middle suprasylvian gyrus. In <strong>the</strong> o<strong>the</strong>r six <strong>cat</strong>s <strong>the</strong> lesion <strong>in</strong>volved <strong>the</strong> LGNdorso-medially, as well as <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> <strong>and</strong> o<strong>the</strong>r medial structures.Two of <strong>the</strong>se lesions were so far posterior that <strong>the</strong> degeneration <strong>in</strong> <strong>the</strong> cortexwas conf<strong>in</strong>ed to <strong>the</strong> posterior block where it was mixed with degeneration due to <strong>the</strong>needle track through <strong>the</strong> white matter. In <strong>the</strong> o<strong>the</strong>r four bra<strong>in</strong>s (C 18-C21) <strong>the</strong>re wasdegeneration <strong>in</strong> <strong>the</strong> middle suprasylvian gyrus <strong>and</strong> <strong>in</strong> <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> <strong>lateral</strong>gyrus, <strong>and</strong> at <strong>the</strong> bottom of <strong>the</strong> splenial sulcus. Besides this constant f<strong>in</strong>d<strong>in</strong>g, <strong>the</strong>rewas degeneration <strong>in</strong> <strong>the</strong> crown of parts of <strong>the</strong> <strong>lateral</strong> gyrus correspond<strong>in</strong>g to <strong>the</strong>variable antero-posterior placement of <strong>the</strong> lesion <strong>in</strong> <strong>the</strong> LGN.Contra-<strong>lateral</strong> degenerationAll <strong>the</strong> fibre degeneration described above was ipsi-<strong>lateral</strong> with <strong>the</strong> lesion, <strong>and</strong> nocontra-<strong>lateral</strong> degeneration <strong>in</strong> <strong>the</strong> <strong>lateral</strong> gyrus was seen <strong>in</strong> any of <strong>the</strong> eleven bra<strong>in</strong>swith lesions of <strong>the</strong> LGN (C 8-11, 17-23). The lesions conf<strong>in</strong>ed to more medial structuresdid not cause contra-<strong>lateral</strong> degeneration ei<strong>the</strong>r. The needle track was f<strong>in</strong>e <strong>and</strong>avoided <strong>the</strong> corpus callosum (Fig. 1). The range of survival times covered <strong>the</strong> periodof 1-3 weeks specified by Glickste<strong>in</strong>, Miller & Smith (1964).


El ~ ~0JO-<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> geniciilate <strong>nucleus</strong> 687LLE~~~~~~~~~~oe~~~~~~~~~~~~~.oLiC)/- 0.CL~ ~ ~ ~ ~ ~ ~ ~ ~ ~C)~~~~~~~~~~~~~~~~~~~~~~~~~~~EC~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~LLLL~~~~~~~~~~~~~~~43Anat. IoI


688M. E. WILSON AND B. G. CRAGGDISCUSSIONIn <strong>the</strong> <strong>monkey</strong>, our first lesion destroyed <strong>the</strong> postero-dorsal pole of <strong>the</strong> LGN, <strong>and</strong>produced cortical fibre degeneration <strong>in</strong> <strong>the</strong> antero-ventro-<strong>lateral</strong> corner of <strong>the</strong> striatecortex <strong>in</strong> <strong>the</strong> angle between <strong>the</strong> lunate <strong>and</strong> <strong>in</strong>ferior occipital sulci. This result isconsistent with previous work, for Clark & Penman (1934) found that a lesion <strong>in</strong> <strong>the</strong>macular part of <strong>the</strong> ret<strong>in</strong>a produced transynaptic neuronal atrophy <strong>in</strong> <strong>the</strong> posterodorsalpole of <strong>the</strong> LGN, <strong>and</strong> Talbot & Marshall (1941) recorded electrical responses<strong>in</strong> <strong>the</strong> antero-ventro-<strong>lateral</strong> part of <strong>the</strong> striate cortex to photic stimulation of <strong>the</strong>macula. Degenerated fibres <strong>in</strong> <strong>the</strong> striate cortex after lesions <strong>in</strong> <strong>the</strong> LGN were notconcentrated <strong>in</strong> <strong>the</strong> stria of Gennari, <strong>and</strong> this is consistent with <strong>the</strong> preservation of<strong>the</strong> latter after undercutt<strong>in</strong>g <strong>the</strong> striate cortex, as found by Clark & Sunderl<strong>and</strong>(1939). In both our <strong>monkey</strong>s with LGN lesions, fibre degeneration <strong>in</strong> <strong>the</strong> striate areaextended to <strong>the</strong> boundary of areas 17 <strong>and</strong> 18. Myers (1965) showed that this part of<strong>the</strong> striate area is connected to <strong>the</strong> adjacent part of area 18. The abrupt cessation of<strong>the</strong> degeneration at <strong>the</strong> boundary of area 17 with area 18 was thus conv<strong>in</strong>c<strong>in</strong>gevidence that <strong>the</strong> LGN <strong>in</strong> <strong>the</strong> <strong>monkey</strong> does not project <strong>in</strong>to <strong>the</strong> appropriate part ofarea 18. Fibre degeneration was, moreover, absent <strong>from</strong> <strong>the</strong> rest of areas 18 <strong>and</strong> 19.Our results <strong>in</strong> <strong>the</strong> <strong>cat</strong> show that <strong>the</strong> striate area receives a topographically organizedprojection <strong>from</strong> <strong>the</strong> LGN, e.g. medial lesions <strong>in</strong> <strong>the</strong> latter produce fibre degeneration<strong>in</strong> <strong>the</strong> <strong>lateral</strong> edge of area 17, while a <strong>lateral</strong> lesion (C9) caused fibre degenerationdeep <strong>in</strong> <strong>the</strong> medial wall of <strong>the</strong> <strong>lateral</strong> gyrus (see Fig. 7). The rostro-caudal arrangementis consistent with <strong>the</strong> results of earlier workers who studied <strong>the</strong> lo<strong>cat</strong>ion of retrogradedegeneration <strong>in</strong> <strong>the</strong> LGN after mak<strong>in</strong>g lesions <strong>in</strong> parts of <strong>the</strong> <strong>lateral</strong> gyrus (M<strong>in</strong>kowski,1913; Waller & Barris, 1937). The mapp<strong>in</strong>g of <strong>the</strong> visual field by electrophysiologicalmethods <strong>in</strong> <strong>the</strong> LGN (Seneviratne & Whitteridge, 1962; Bishop, Kozak, Levick &Vakkur, 1962) <strong>and</strong> on <strong>the</strong> visual cortex (Talbot & Marshall 1941; Bilge, Seneviratne &Whitteridge, 1963) aga<strong>in</strong> implies <strong>the</strong> same topographical relationship between <strong>the</strong>LGN <strong>and</strong> <strong>the</strong> visual cortex.Our f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>cat</strong> of a second projection <strong>from</strong> <strong>the</strong> LGN that supplies afferentsto area 18 was unexpected, although this area was known to conta<strong>in</strong> a second topographicalrepresentation of <strong>the</strong> visual field (Visual II) as shown by Talbot (1942)<strong>and</strong> Bilge, Seneviratne & Whitteridge (1963). Indeed Talbot (1942) suggested thatVisual IIreceived an <strong>in</strong>dependent projection <strong>from</strong> <strong>the</strong> LGN, for <strong>the</strong> responses <strong>the</strong>rewere not 'depressed by narcosis or cautery of <strong>the</strong> <strong>lateral</strong> gyrus', <strong>and</strong> were '<strong>in</strong>dependentof convulsants applied at <strong>the</strong> medial locus'. Moreover, Doty (1958) was able torecord photic responses <strong>from</strong> <strong>the</strong> <strong>lateral</strong> half of <strong>the</strong> <strong>lateral</strong> gyrus after <strong>the</strong> moremedial area had been removed. However, removal of <strong>the</strong> middle of <strong>the</strong> <strong>lateral</strong> gyrus(conta<strong>in</strong><strong>in</strong>g VisualII) produced only a small area of retrograde degeneration <strong>in</strong> <strong>the</strong>medial edge of <strong>the</strong> LGN. This degeneration was attributed to <strong>the</strong> lesion extend<strong>in</strong>g<strong>in</strong>to <strong>the</strong> optic radiation runn<strong>in</strong>g to <strong>the</strong> striate cortex (Doty, 1958).There is a possibility that <strong>the</strong> projection to Visual II degenerates after lesions <strong>in</strong> <strong>the</strong>LGN because of damage to fibres of extraneous orig<strong>in</strong> which might pass through <strong>the</strong>LGN. There are however, two facts that make this explanation improbable: first,<strong>the</strong> disposition of <strong>the</strong> degeneration <strong>in</strong> Visual II is topographically organized <strong>in</strong> amanner complementary to that <strong>in</strong> Visual I (see Fig. 7), be<strong>in</strong>g thus compatible with


<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>689<strong>the</strong> mapp<strong>in</strong>g of <strong>the</strong> visual field <strong>in</strong> Visual II (Whitteridge, 1966). Fibres aris<strong>in</strong>g <strong>in</strong> moremedial structures <strong>and</strong> pass<strong>in</strong>g through <strong>the</strong> LGN towards <strong>the</strong> <strong>in</strong>ternal capsule wouldbe <strong>in</strong>terrupted equally by medial or <strong>lateral</strong> lesions <strong>in</strong> <strong>the</strong> LGN, <strong>and</strong> would not <strong>the</strong>reforebe expected to show a topographical distribution related <strong>in</strong> <strong>the</strong> correct mannerto <strong>the</strong> position of <strong>the</strong> lesion <strong>in</strong> <strong>the</strong> LGN. Secondly, lesions have been made <strong>in</strong> <strong>the</strong>structures surround<strong>in</strong>g <strong>the</strong> LGN medially, <strong>and</strong> <strong>the</strong> result<strong>in</strong>g cortical degeneration<strong>in</strong> <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> <strong>lateral</strong> gyrus only slightly overlapped that found <strong>in</strong> Visual IIafter LGN lesions, <strong>and</strong> never extended to <strong>the</strong> medial boundary of Visual II wherecentral vision is represented <strong>and</strong> where degeneration was found after lesions <strong>in</strong> <strong>the</strong>medial part of <strong>the</strong> LGN.These two arguments do not apply to <strong>the</strong> cortical degeneration seen <strong>in</strong> <strong>the</strong> suprasylviangyrus after LGN lesions, for this was also present after lesions <strong>in</strong> more medialstructures <strong>and</strong> did not show any marked topographical distribution. There is, however,<strong>in</strong>dependent electrophysiological evidence of a direct projection <strong>from</strong> <strong>the</strong> LGNto <strong>the</strong> suprasylvian gyrus (Vastola, 1961) which has been corroborated by <strong>the</strong> evidenceof Thompson, Smith & Bliss (1963). Buser, Borenste<strong>in</strong> & Bruner (1959) have shownthat a pathway via <strong>the</strong> thalamus medial to <strong>the</strong> LGN may be important for photicallyevokedresponses on <strong>the</strong> crown of <strong>the</strong> middle suprasylvian gyrus. They did not showthat this pathway is essential, <strong>and</strong> <strong>in</strong> any case <strong>the</strong>y may have been deal<strong>in</strong>g with anarea of <strong>the</strong> suprasylvian gyrus more medial than that impli<strong>cat</strong>ed <strong>in</strong> our experimentswith <strong>the</strong> LGN lesions. Bruner (1965) has reduced but not abolished <strong>the</strong> photicallyevokedresponse <strong>in</strong> <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> middle suprasylvian gyrus by <strong>in</strong>ject<strong>in</strong>gpotassium chloride <strong>in</strong>to <strong>the</strong> thalamus medial to <strong>the</strong> LGN. No studies of retrogradedegeneration <strong>in</strong> which only <strong>the</strong> middle suprasylvian gyrus was removed have beenreported. Marshall, Talbot & Ades (1943) <strong>in</strong> one <strong>cat</strong> removed <strong>the</strong> <strong>lateral</strong> gyrus onone side <strong>and</strong>, after allow<strong>in</strong>g time for retrograde degeneration to occur, were unableto obta<strong>in</strong> <strong>the</strong> short latency response <strong>from</strong> <strong>the</strong> middle suprasylvian gyrus. It is unfortunatethat no histology was reported, as this result may imply that <strong>the</strong> middlesuprasylvian gyrus is supplied by col<strong>lateral</strong>s of fibres to <strong>the</strong> <strong>lateral</strong> gyrus <strong>and</strong> that<strong>the</strong>se col<strong>lateral</strong>s are <strong>in</strong>sufficient to susta<strong>in</strong> <strong>the</strong> parent-cell body when <strong>the</strong> ma<strong>in</strong> branchto <strong>the</strong> <strong>lateral</strong> gyrus is destroyed.In addition to <strong>the</strong>se three projections <strong>from</strong> <strong>the</strong> LGN discussed above, we founddegenerated fibres <strong>in</strong> <strong>the</strong> <strong>lateral</strong> half of <strong>the</strong> <strong>lateral</strong> gyrus after lesions of structuresmedial to <strong>the</strong> LGN (Fig. 7). This cortical degeneration seemed to be ma<strong>in</strong>ly <strong>in</strong> area 19,or Visual III of Whitteridge (1966) <strong>and</strong> Hubel & Weisel (1965), with perhaps someextension <strong>in</strong>to <strong>the</strong> <strong>lateral</strong> part of area 18 or Visual II. When degeneration was present<strong>in</strong> <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> <strong>lateral</strong> gyrus, it also appeared at <strong>the</strong> bottom of <strong>the</strong> splenialsulcus. Although this degeneration extended some way along <strong>the</strong> upper wall of <strong>the</strong>sulcus, it was still more deeply situated than that caused by <strong>the</strong> most <strong>lateral</strong> lesion<strong>in</strong> <strong>the</strong> LGN. By analogy with <strong>the</strong> situation on <strong>the</strong> dorsal surface it would appearthat this is a projection to ei<strong>the</strong>r area 18 or 19 related to <strong>the</strong> extreme periphery of <strong>the</strong>visual field. Cytoarchitectonic studies of this region are conflict<strong>in</strong>g: W<strong>in</strong>kler & Potter(1914) <strong>and</strong> Gurewitsch & Chatschaturian (1928) described an area 18 here, butOtsuka & Hassler (1962) dist<strong>in</strong>guish area 18 only on <strong>the</strong> dorsal surface of <strong>the</strong> bra<strong>in</strong>,<strong>and</strong> describe <strong>the</strong> region <strong>in</strong> <strong>the</strong> depth of <strong>the</strong> splenial sulcus as area 19. However, it isdifficult to imag<strong>in</strong>e a Visual II or Visual III (area 18 or 19) <strong>in</strong> <strong>the</strong> splenial sulcus <strong>in</strong>43-2


690M. E. WILSON AND B. G. CRAGG<strong>the</strong> topographical scheme proposed by Whitteridge (1966). The alternative hypo<strong>the</strong>sisthat <strong>the</strong> degeneration <strong>in</strong> <strong>the</strong> splenial sulcus lies <strong>in</strong> Visual I cannot be supportedei<strong>the</strong>r for topographical reasons, even allow<strong>in</strong>g that <strong>the</strong>re may be no representationof central vision <strong>in</strong> <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> (Stone & Hansen, 1966). A thirdpossibility is that <strong>the</strong> degeneration <strong>in</strong> <strong>the</strong> splenial sulcus is nei<strong>the</strong>r <strong>in</strong> Visual I, IInor III, but <strong>in</strong> some o<strong>the</strong>r cytoarchitectonic area, perhaps c<strong>in</strong>gulate cortex.The exact orig<strong>in</strong> of this projection <strong>from</strong> structures medial to <strong>the</strong> LGN is uncerta<strong>in</strong>.The relevant lesions always <strong>in</strong>volved <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong>, but also extended<strong>in</strong>to adjacent parts of <strong>the</strong> pulv<strong>in</strong>ar <strong>nucleus</strong>. One medially placed lesion (C 15)was restricted to <strong>the</strong> pulv<strong>in</strong>ar, <strong>lateral</strong>is dorsalis <strong>and</strong> <strong>lateral</strong>is posterior nuclei, <strong>and</strong>cortical-fibre degeneration was conf<strong>in</strong>ed to <strong>the</strong> middle suprasylvian gyrus (see Fig. 7).Garey (1965) has reported retrograde degeneration <strong>in</strong> <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong>follow<strong>in</strong>g cortical lesions placed <strong>lateral</strong> to area 17 of Otsuka & Hassler (1962). Theseresults suggest that <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> may be <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> projectionto <strong>the</strong> <strong>lateral</strong> part of <strong>the</strong> <strong>lateral</strong> gyrus (Visual III), but we cannot exclude <strong>the</strong>possibility that <strong>the</strong> most medial part of <strong>the</strong> pulv<strong>in</strong>ar <strong>nucleus</strong> untouched by <strong>the</strong> lesion<strong>in</strong> C 15 might also project to Visual III. Whe<strong>the</strong>r <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong>has an <strong>in</strong>dependent projection to <strong>the</strong> suprasylvian gyrus could not be determ<strong>in</strong>ed.The brief report by Garey (1965) also states that <strong>the</strong> LGN projects ipsi-<strong>lateral</strong>ly toareas 17-19, but it is not clear whe<strong>the</strong>r <strong>the</strong> medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> is <strong>in</strong>cluded<strong>in</strong> this statement.We found no evidence of a contra-<strong>lateral</strong> cortical projection <strong>from</strong> <strong>the</strong> LGN <strong>in</strong>eleven <strong>cat</strong>s <strong>and</strong> two <strong>monkey</strong>s. The contrary result by Glickste<strong>in</strong>, Miller & Smith(1964) is perhaps attributable to <strong>the</strong>ir approach through <strong>the</strong> corpus callosumdamag<strong>in</strong>g transcallosal fibres <strong>in</strong>terconnect<strong>in</strong>g <strong>the</strong> visual areas of cortex. As <strong>the</strong>s<strong>in</strong>gle control lesion reported by <strong>the</strong>se authors was ventral to <strong>the</strong> LGN, it is probablethat <strong>the</strong> track was anterior to that used <strong>in</strong> <strong>the</strong> o<strong>the</strong>r experiments, <strong>and</strong> might thushave missed <strong>the</strong> forward edge of <strong>the</strong> relevant transcallosal fibres.SUMMARY1. A stereotaxic approach to <strong>the</strong> thalamus was designed to avoid <strong>the</strong> corpuscallosum. An adaptation of <strong>the</strong> Nauta-Gygax method to batch-sta<strong>in</strong><strong>in</strong>g that preservedserial order <strong>and</strong> avoided <strong>the</strong> h<strong>and</strong>l<strong>in</strong>g of <strong>in</strong>dividual sections is described.2. Stereotaxic lesions were placed <strong>in</strong> <strong>the</strong> LGN of two <strong>monkey</strong>s. Fibre degenerationwas conf<strong>in</strong>ed to <strong>the</strong> ipsi-<strong>lateral</strong> striate cortex <strong>and</strong> ceased abruptly at <strong>the</strong> end of <strong>the</strong>stria of Gennari.3. Stereotaxic lesions were made wholly with<strong>in</strong> <strong>the</strong> LGN <strong>in</strong> three <strong>cat</strong>s. There weretwo areas of fibre degeneration with<strong>in</strong> <strong>the</strong> <strong>lateral</strong> gyrus correspond<strong>in</strong>g to Visual I <strong>and</strong>Visual II (areas 17 <strong>and</strong> 18) <strong>and</strong> one on <strong>the</strong> <strong>lateral</strong> wall of <strong>the</strong> middle suprasylviangyrus. The degeneration <strong>in</strong> <strong>the</strong> first two areas was topographically organized.4. Stereotaxic lesions were made <strong>in</strong> thalamic structures medial to <strong>the</strong> LGN <strong>in</strong>thirteen <strong>cat</strong>s. The medial <strong>in</strong>terlam<strong>in</strong>ar <strong>nucleus</strong> of <strong>the</strong> LGN was damaged <strong>in</strong> eleven<strong>cat</strong>s, three of which had no damage <strong>in</strong> <strong>the</strong> ma<strong>in</strong> body of <strong>the</strong> LGN. Fibre degenerationwas found on <strong>the</strong> <strong>lateral</strong> edge of <strong>the</strong> <strong>lateral</strong> gyrus, probably <strong>in</strong> area 19 (Visual III)<strong>and</strong> also <strong>in</strong> <strong>the</strong> depth of <strong>the</strong> splenial sulcus. There was no <strong>in</strong>di<strong>cat</strong>ion that accidental


<strong>Projections</strong> <strong>from</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong> 691damage to fibres aris<strong>in</strong>g medial to <strong>the</strong> LGN could account for <strong>the</strong> projection foundafter a lesion conf<strong>in</strong>ed to <strong>the</strong> LGN.5. There was no evidence of a crossed geniculo-striate projection <strong>in</strong> eleven <strong>cat</strong>swith lesions <strong>in</strong> <strong>the</strong> LGN.We are grateful to Miss M. J. Toyne for histological assistance.REFERENCESBILGE, M., SENEVIRATNE, K. N. & WHITTERIDGE, D. (1963). The primary visual receptive area of <strong>the</strong>cerebral cortex <strong>in</strong> <strong>the</strong> <strong>cat</strong>. J. Physiol., Lond. 169, 36 P.BISHOP, P. O., KOZAK, W., LEVICK, W. R. & VAKKUR, G. J. (1962). The determ<strong>in</strong>ation of <strong>the</strong> projectionof <strong>the</strong> visual field on to <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong> <strong>in</strong> <strong>the</strong> <strong>cat</strong>. J. Physiol., Lond. 163, 503-539.BRUNER, J. (1965). Afferences visuelles non-primaire vers le cortex cerebral chez le chat. J. Physiol., Paris56, Suppl. 12, 1-120.BUSER, P., BORENSTEIN, P. & BRUNER, J. (1959). Etude de systemes 'associatifs' visuels et auditifs chez lechat anes<strong>the</strong>sia au chloralose. Electroenceph. cl<strong>in</strong>. Neurophysiol. 11, 305-324.CLARK, W. E. LE GROS & PENMAN, G. G. (1934). The projection of <strong>the</strong> ret<strong>in</strong>a <strong>in</strong> <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong>body. Proc. R. Soc. B, 114, 291-313.CLARK, W. E. LE GROS & SUNDERLAND, S. (1939). Structural changes <strong>in</strong> isolated visual cortex. J. Anat. 73,563-574.CRAGG, B. G. (1965). Afferent connexions of <strong>the</strong> allocortex. J. Anat. 99, 339-357.DOTY, R. W. (1958). Potentials evoked <strong>in</strong> <strong>cat</strong> cerebral cortex by diffuse <strong>and</strong> by punctiform photic stimuli.J. Neurophysiol. 21, 437-464.DOWNER, J. L. DE C. (1959). Changes <strong>in</strong> visually guided behaviour follow<strong>in</strong>g mid-sagittal division ofoptic chiasm <strong>and</strong> corpus callosum <strong>in</strong> <strong>monkey</strong> (Macaca mulatta). Bra<strong>in</strong> 82, 251-259.GAREY, L. J. (1965). Interrelationships of <strong>the</strong> visual cortex <strong>and</strong> superior colliculus <strong>in</strong> <strong>the</strong> <strong>cat</strong>. Nature, Lond.207, 1410-1411.GLICKSTEIN, M., MILLER, J. & SMITH, 0. A. (1964). Lateral <strong>geniculate</strong> <strong>nucleus</strong> <strong>and</strong> cerebral cortex.Evidence for a crossed pathway. Science, N.Y. 145, 159-161.GUREWITCH, M. & CHATSCSHATURIAN, A. (1928). Zur Cytoarchitektonik der Grosshimr<strong>in</strong>de der Feliden.Z. Anat. Entwgesch. 87, 100-138.HUBEL, D. & WIESEL, T. N. (1965). Receptive fields <strong>and</strong> functional architecture <strong>in</strong> two non-striate visualareas (18 <strong>and</strong> 19) of <strong>the</strong> <strong>cat</strong>. J, Neurophysiol. 28, 229-289.JASPER, H. H. & AJMONE-MARSAN, C. (1955). A Stereotaxic Atlas of <strong>the</strong> Diencephalon of <strong>the</strong> Cat. Ottawa:National Research Council of Canada.MARSHALL, W. H., TALBOT, S. A. & ADES, H. W. (1943). Cortical responses of <strong>the</strong> anaes<strong>the</strong>tized <strong>cat</strong> togross photic <strong>and</strong> electrical afferent stimulation. J. Neurophysiol. 6, 1-15.MINKOWSKI, M. (1913). Experimentelle Untersuchungen uber die Beziehungen der grosshirnr<strong>in</strong>de undder Netzhaut zu den primaren optischen zentren, Besonders zum corpus geniculatum externum. Arb.hirnanat. Inst. Zurich 7, 255-362.MYERS, R. E. (1956). Function of corpus callosum <strong>in</strong> <strong>in</strong>terocular transfer. Bra<strong>in</strong> 79, 358-363.MYERS, R. E. (1965). Organization of visual pathways. In Functions of <strong>the</strong> Corpus Callosum. Eds. E. G.Ettl<strong>in</strong>ger, A. V. S. de Reuck <strong>and</strong> R. Porter, pp. 133-138. London: Churchill.NAUTA, W. J. H. & GYGAX, P. A. (1954). Silver impregnation of degenerat<strong>in</strong>g axons <strong>in</strong> <strong>the</strong> central nervoussystem: a modified technique. Sta<strong>in</strong> Technol. 29, 91-93.OTSUKA, R. & HASSLER, R. (1962). Ober Aufbau und Gliederung de corticalen Sehsphare bei der Katze.Arch. Psychiat. NervKrankh. 203, 212-234.SENEVIRATNE, K. N. & WHITTERIDGE, D. (1962). Visual evoked responses <strong>in</strong> <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>.Electroenceph. cl<strong>in</strong>. Neurophysiol. 14, 785.STONE, J. & HANSEN, S. M. (1966). The projection of <strong>the</strong> <strong>cat</strong>'s ret<strong>in</strong>a on <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> <strong>nucleus</strong>.J. comp. Neurol. 126, 601-624.TALBOT, S. A. (1942). A <strong>lateral</strong> localization <strong>in</strong> <strong>cat</strong>'s visual cortex. Fedn Proc. Fedn Am. Socs exp. Biol. 1,84.TALBOT, S. A. & MARSHALL, W. H. (1941). Physiological studies on neural mechanisms of visual localization<strong>and</strong> discrim<strong>in</strong>ation. Am. J. Ophthal. 24, 1255-1263.THOMPSON, R. F., SMITH, H. E. & BLISS, D. (1963). Auditory, somatic sensory, <strong>and</strong> visual response <strong>in</strong>teractions<strong>and</strong> <strong>in</strong>terrelations <strong>in</strong> association <strong>and</strong> primary cortical fields of <strong>the</strong> <strong>cat</strong>. J. Neurophysiol. 26,365-378.


692 M. E. WILSON AND B. G. CRAGGVASTOLA, E. F. (1961). A direct pathway <strong>from</strong> <strong>the</strong> <strong>lateral</strong> <strong>geniculate</strong> body to association cortex. J. Neurophysiol.24, 469-487.WALLER, W. H. & BARRIS, R. W. (1937). Relationships of thalamic nuclei to <strong>the</strong> cerebral cortex <strong>in</strong> <strong>the</strong> <strong>cat</strong>.J. comp. Neurol. 67, 317-339.WHITrERIDGE, D. (1966). Personal communi<strong>cat</strong>ion.WINKLER, C. & POTER, A. (1914). An Anatomical Guide to Experimental Researches on <strong>the</strong> Cat's Bra<strong>in</strong>.Amsterdam: Versluys.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!