05.12.2012 Views

The RAPTA-5.2: Code for Modeling of VVER Type Fuel Rod - IAEA

The RAPTA-5.2: Code for Modeling of VVER Type Fuel Rod - IAEA

The RAPTA-5.2: Code for Modeling of VVER Type Fuel Rod - IAEA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

<strong>The</strong> <strong>RAPTA</strong>-<strong>5.2</strong>:<br />

<strong>Code</strong> <strong>for</strong> <strong>Modeling</strong> <strong>of</strong> <strong>VVER</strong> <strong>Type</strong> <strong>Fuel</strong> <strong>Rod</strong> Behavior<br />

under Design Basis Accidents Conditions<br />

JSC “VNIINM”<br />

JSC “TVEL”<br />

Fedotov P.V., Goncharov A.A., Kumachev A.V., Nechaeva O.A., Novikov V.V.,<br />

Salatov A.V., Pimenov Yu.V., Dolgov Yu.N.


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

<strong>RAPTA</strong>-<strong>5.2</strong> simulates the following processes:<br />

• Heat distribution from sources in the fuel to the<br />

clad outer surface;<br />

• <strong>The</strong>rmoelastic de<strong>for</strong>mation <strong>of</strong> fuel, additional<br />

swelling and gas release depending on<br />

temperature rise;<br />

• <strong>The</strong>rmoelastic-plastic de<strong>for</strong>mation <strong>of</strong> the cladding<br />

under external coolant pressure, inner gas<br />

pressure and mechanical interaction with fuel<br />

pellet (PCMI);<br />

• Cladding oxidation taking heat release into<br />

account;<br />

• Inner gas pressure;<br />

• Cladding failure during ballooning.


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

High temperature oxidation<br />

E110 sponge based alloy irradiated at MIR reactor up to burnup 38 MWt*d/kgU<br />

After irradiation After oxidation at 1100 °C during 2100 s<br />

E110 alloy irradiated at Balakovo NPP up to burnup 65 MWt*d/kgU<br />

After irradiation After oxidation at 1100 °C during 3600 s


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

Temperature, C<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0 400 800 1200<br />

Time, s<br />

Typical experiment scenario<br />

High temperature oxidation<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

30<br />

20<br />

10<br />

0<br />

calculation = experiment<br />

0 10 20 30<br />

Experiment<br />

Specific weight gain


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

Burst tests<br />

E110 alloy irradiated at Novovoronezh NPP up to burnup 48 MWd/kgU<br />

Test procedure:<br />

• sample heat up to the test temperature from 800 to 1200 °С,<br />

• isothermal exposure,<br />

• loading by inner pressure at rate 0.01MPa/s and registration <strong>of</strong> the pressure at burst<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

эксперимент=расчет<br />

0 2 4 6<br />

Experiment<br />

Pressure at burst


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

Temperature, C<br />

Temperature, C<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

1200<br />

1000<br />

0<br />

4500 4600 4700 4800 4900 5000<br />

Time, s<br />

Temperature <strong>of</strong> cladding external surface<br />

800<br />

600<br />

400<br />

200<br />

0<br />

5400 5500 5600 5700 5800 5900<br />

Time,s<br />

Temperature <strong>of</strong> cladding external surface<br />

Integral LOCA tests<br />

PARAMETR – FRA №1 (<strong>VVER</strong> type)<br />

Pressure, MPa<br />

PARAMETR – FRA №2 (<strong>VVER</strong> type)<br />

Pressure, MPa<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4500 4600 4700 4800 4900 5000<br />

Time, s<br />

4<br />

3<br />

2<br />

1<br />

Internal pressure<br />

0<br />

5400 5500 5600 5700 5800 5900<br />

Time, s<br />

Internal pressure


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

Temperature, C<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Temperature, C<br />

0<br />

3350 3450 3550 3650 3750<br />

Time, s<br />

3850 3950 4050<br />

Integral LOCA tests<br />

PARAMETR – FRA №3 (PWR type)<br />

Temperature <strong>of</strong> cladding external surface<br />

PARAMETR – FRA №4 (PWR type)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

3500 3600 3700 3800 3900 4000<br />

Time, s<br />

Temperature <strong>of</strong> cladding external surface<br />

Pressure, MPa<br />

Pressure, MPa<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

3350 3450 3550 3650 3750<br />

Time, s<br />

3850 3950 4050<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

Internal pressure<br />

0<br />

3500 3600 3700 3800 3900 4000<br />

Time, s<br />

Internal pressure


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

Temperature, °С<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2000 2200 2400 2600<br />

Time, s<br />

2800 3000 3200<br />

Integral LOCA tests<br />

BT-2<br />

0<br />

2000 2200 2400 2600<br />

Time, s<br />

2800 3000 3200<br />

Temperature <strong>of</strong> cladding external surface Internal pressure<br />

Pressure, MPa<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

Temperature <strong>of</strong> cladding external surface<br />

Temperature, o C<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

100 mm<br />

400 mm<br />

480 mm<br />

000 mm<br />

200<br />

0 200 400 600<br />

Time, s<br />

800 1000 1200<br />

Temperature <strong>of</strong> cladding external surface<br />

Integral LOCA tests<br />

IFA-650.6<br />

IFA-650.11<br />

Pressure, MPa<br />

6<br />

4<br />

2<br />

Rig<br />

<strong>Fuel</strong> rod<br />

Internal pressure<br />

0<br />

0 200 400 600<br />

Time, s<br />

800 1000 1200<br />

Internal pressure


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

0<br />

0 100 200 300<br />

Experiment<br />

400 500 600<br />

Time to rupture<br />

Pressure at burst<br />

experiment = calculation<br />

experiment = calculation<br />

2<br />

2 3 4 5<br />

Experiment<br />

6 7 8<br />

Integral LOCA tests<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

1050<br />

1000<br />

950<br />

900<br />

850<br />

800<br />

750<br />

experiment = calculation<br />

700<br />

700 750 800 850 900 950 1000 1050<br />

Experiment<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Temperature at burst<br />

experiment = calculation<br />

0<br />

0 10 20 30<br />

Experiment<br />

40 50 60<br />

De<strong>for</strong>mation in ruptured section


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

RIA experiments<br />

E110 alloy irradiated at Novovoronezh and<br />

Kola NPPs up to burnup 50 and 60 MWd/kgU<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

experiment = calculation<br />

0 2 4 6 8 10<br />

Experiment<br />

Height average de<strong>for</strong>mation<br />

LHGR, W/cm<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

600000<br />

400000<br />

200000<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

#RT 6<br />

0<br />

0.00 0.05 0.10<br />

Time, s<br />

0.15 0.20<br />

Linear heat generation rate<br />

10<br />

0<br />

experiment = calculation<br />

0 20 40<br />

Experiment<br />

60 80<br />

Xenon and Krypton volume fraction


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

RIA experiments<br />

<strong>The</strong> <strong>RAPTA</strong>-<strong>5.2</strong> estimations <strong>of</strong> maximal fuel and<br />

cladding temperatures and fuel peak enthalpy are in<br />

good agreement with the same obtained by FRAP-<br />

T6/<strong>VVER</strong> calculations.<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

1100<br />

1050<br />

1000<br />

950<br />

900<br />

850<br />

experiment = calculation<br />

800<br />

800 850 900 950 1000 1050 1100<br />

FRAP-T6/<strong>VVER</strong><br />

Cladding peak temperature<br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

<strong>RAPTA</strong>-<strong>5.2</strong><br />

2700<br />

2500<br />

2300<br />

2100<br />

1900<br />

1700<br />

experiment = calculation<br />

1500<br />

1500 1700 1900 2100 2300 2500 2700<br />

FRAP-T6/<strong>VVER</strong><br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

<strong>Fuel</strong> peak temperature<br />

110<br />

100<br />

experiment = calculation<br />

100 120 140 160 180 200<br />

FRAP-T6/<strong>VVER</strong><br />

<strong>Fuel</strong> peak enthalpy


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

SUMMARY<br />

<strong>The</strong> verification results show that the code <strong>RAPTA</strong>-<strong>5.2</strong> is a best estimate code.<br />

<strong>The</strong> main directions <strong>of</strong> further development are:<br />

1. <strong>The</strong> transition from deterministic calculations to probabilistic analysis.<br />

2. Evolution <strong>of</strong> <strong>RAPTA</strong>-<strong>5.2</strong> code <strong>for</strong> calculation <strong>of</strong> thermo-mechanical and corrosion<br />

behavior <strong>of</strong> PWR fuel.<br />

3. Development <strong>of</strong> new and perfection <strong>of</strong> existent models <strong>of</strong> the processes occurring in<br />

the fuel rods.


Technical meeting on fuel behaviour and modelling under severe transient and LOCA conditions<br />

October 18 – 21, 2011, Mito-city Ibaraki-ken, Japan<br />

THANK YOU FOR YOUR ATTENTION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!