05.12.2012 Views

Topics in Cohomology of Groups_Serge Lang.pdf

Topics in Cohomology of Groups_Serge Lang.pdf

Topics in Cohomology of Groups_Serge Lang.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lecture Notes <strong>in</strong> Mathematics<br />

Editors:<br />

A. Dold, Heidelberg<br />

E Takens, Gron<strong>in</strong>gen<br />

1625


S r<strong>in</strong> er<br />

BPl<strong>in</strong> g<br />

Heidelberg<br />

New York<br />

Barcelona<br />

Budapest<br />

Hong Kong<br />

London<br />

Milan<br />

Paris<br />

Santa Clara<br />

S<strong>in</strong>gapore<br />

Tokyo


<strong>Serge</strong> <strong>Lang</strong><br />

<strong>Topics</strong> <strong>in</strong><br />

<strong>Cohomology</strong> <strong>of</strong> <strong>Groups</strong><br />

~ Spr<strong>in</strong>ger


Author<br />

<strong>Serge</strong> <strong>Lang</strong><br />

Mathematics Derpartment<br />

Yale University, Box 208 283<br />

10 Hillhouse Avenue<br />

New Haven, CT 06520-8283, USA<br />

Library <strong>of</strong> Congress Catalog<strong>in</strong>g-<strong>in</strong>-Publication Data<br />

<strong>Lang</strong>, <strong>Serge</strong>, 1927-<br />

[Rapport sur ]a cohomo]ogie des groupes. English]<br />

<strong>Topics</strong> <strong>in</strong> cohomo]ogy oF groups / <strong>Serge</strong> <strong>Lang</strong>.<br />

p, cm. -- (Lecture notes <strong>in</strong> mathematics ; 1625)<br />

Inc]udes bib]iographica] re~erences (p. - ) and <strong>in</strong>dex.<br />

ISBN 3-540-61181-9 (a]k, paper)<br />

1. C]ass Fle]d theor W. 2. Group theory. 3. Homo;ogy theory.<br />

I, Title, II. Series: Lecture notes <strong>in</strong> mathematics (Spr<strong>in</strong>ger<br />

-Ver]ag) ; 1625.<br />

QA247.L3513 1996<br />

512'.74--dc20 96-26607<br />

The first part <strong>of</strong> this book was orig<strong>in</strong>ally published <strong>in</strong> French with the title<br />

"Rapport sur la cohomologie des groupes" by Benjam<strong>in</strong> Inc., New York, 1996.<br />

It was translated <strong>in</strong>to English by the author for this edition. The last part<br />

(pp. 188-215) is new to this edition.<br />

Mathematics Subject Classification (1991): 11S25, 11S31, 20J06, 12G05, 12G10<br />

ISBN 3-540-61181-9 Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg New York<br />

This work is subject to copyright. All rights are reserved, whether the whole or part<br />

<strong>of</strong> the material is concerned, specifically the rights <strong>of</strong> translation, repr<strong>in</strong>t<strong>in</strong>g, re-use<br />

<strong>of</strong> illustrations, recitation, broadcast<strong>in</strong>g, reproduction on micr<strong>of</strong>ilms or <strong>in</strong> any other<br />

way, and storage <strong>in</strong> data banks. Duplication <strong>of</strong> this publication or parts there<strong>of</strong> is<br />

permitted only under the provisions <strong>of</strong> the German Copyright Law <strong>of</strong> September 9,<br />

1965, <strong>in</strong> its current version, and permission for use must always be obta<strong>in</strong>ed from<br />

Spr<strong>in</strong>ger-Verlag. Violations are liable for prosecution under the German Copyright<br />

Law.<br />

9 Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg 1996<br />

Pr<strong>in</strong>ted <strong>in</strong>Germany<br />

Typesett<strong>in</strong>g: Camera-ready TEX output by the author<br />

SPIN: 10479722 46/3142-543210 - Pr<strong>in</strong>ted on acid-free paper


Contents<br />

Chapter I. Existence and Uniqueness<br />

w The abstract uniqueness theorem ....................... 3<br />

w Notations, and the uniqueness theorem <strong>in</strong> Mod(G) ...... 9<br />

w Existence <strong>of</strong> the cohomological functor on Mod(G) ..... 20<br />

w Explicit computations ................................. 29<br />

w Cyclic groups .......................................... 32<br />

Chapter II. Relations with Subgroups<br />

w Various morphisms .................................... 37<br />

w Sylow subgroups ....................................... 50<br />

w Induced representations ............................... 52<br />

w Double cosets ......................................... 58<br />

Chapter III. Cohomological Triviality<br />

w The tw<strong>in</strong>s theorem .................................... 62<br />

w The triplets theorem ................................... 68<br />

w Splitt<strong>in</strong>g module and Tate's theorem ................... 70<br />

Chapter IV. Cup Products<br />

w Erasability and uniqueness ............................. 73<br />

w Existence .............................................. 83<br />

w Relations with subgroups .............................. 87<br />

w The triplets theorem ................................... 88<br />

w The cohomology r<strong>in</strong>g and duality ...................... 89<br />

w Periodicity ............................................ 95<br />

w The theorem <strong>of</strong> Tate-Nakayama ........................ 98<br />

w Explicit Nakayama maps ............................. 101


VI<br />

Chapter V. Augmented Products<br />

w Def<strong>in</strong>itions ........................................... 109<br />

w Existence ............................................ 112<br />

w Some properties ...................................... 113<br />

Chapter VI. Spectral Sequences<br />

w Def<strong>in</strong>itions ........................................... 116<br />

w The Hoehschild-Serre spectral sequence ............... 118<br />

w Spectral sequences and cup products .................. 121<br />

Chapter VII. <strong>Groups</strong> <strong>of</strong> Galois Type<br />

(Unpublished article <strong>of</strong> Tate)<br />

w Def<strong>in</strong>itions and elementary properties ................. 123<br />

w <strong>Cohomology</strong> .......................................... 128<br />

w Cohomological dimension ............................. 138<br />

w Cohomological dimension _< 1 ......................... 143<br />

w The tower theorem ................................... 149<br />

w Galois groups over a field ............................. 150<br />

Chapter VIII. Group Extensions<br />

w Morphisms <strong>of</strong> extensions .............................. 156<br />

w Commutators and transfer <strong>in</strong> an extension ............ 160<br />

w The deflation ......................................... 163<br />

Chapter IX. Class formations<br />

w Def<strong>in</strong>itions ........................................... 166<br />

w The reciprocity homomorphism ...................... 171<br />

w Weil groups .......................................... 178<br />

Chapter X. Applications <strong>of</strong> Galois <strong>Cohomology</strong> <strong>in</strong><br />

Algebraic Geometry (from letters <strong>of</strong> Tate)<br />

w Torsion-free modules ................................. 189<br />

w F<strong>in</strong>ite modules ....................................... 191<br />

w The Tate pair<strong>in</strong>g ..................................... 195<br />

w (0, 1)-duality for abelian varieties ..................... 199<br />

w The full duality ...................................... 201<br />

w Brauer group ......................................... 202<br />

w Ideles and idele classes ............................... 210<br />

w Idele class cohomology ............................... 212


Preface<br />

The Benjam<strong>in</strong> notes which I published (<strong>in</strong> French) <strong>in</strong> 1966 on the<br />

cohomology <strong>of</strong> groups provided miss<strong>in</strong>g chapters to the Art<strong>in</strong>-Tate<br />

notes on class field theory, developed by cohomological methods.<br />

Both items were out <strong>of</strong> pr<strong>in</strong>t for many years, but recently Addison-<br />

Wesley has aga<strong>in</strong> made available the Art<strong>in</strong>-Tate notes (which were<br />

<strong>in</strong> English). It seemed therefore appropriate to make my notes on<br />

cohomology aga<strong>in</strong> available, and I thank Spr<strong>in</strong>ger-Verlag for pub-<br />

lish<strong>in</strong>g them (translated <strong>in</strong>to English) <strong>in</strong> the Lecture Notes series.<br />

The most basic necessary background on homological algebra<br />

is conta<strong>in</strong>ed <strong>in</strong> the chapter devoted to this topic <strong>in</strong> my Algebra<br />

(derived functors and other material at this basic level). This ma-<br />

terial is partly based on what have now become rout<strong>in</strong>e construc-<br />

tions (Eilenberg-Cartan), and on Grothendieck's <strong>in</strong>fluential paper<br />

[Gr 59], which appropriately def<strong>in</strong>ed and emphasized 5-functors as<br />

such.<br />

The ma<strong>in</strong> source for the present notes are Tate's private papers,<br />

and the unpublished first part <strong>of</strong> the Art<strong>in</strong>-Tate notes. The most<br />

significant exceptions are: Rim's pro<strong>of</strong> <strong>of</strong> the Nakayama-Tate the-<br />

orem, and the treatment <strong>of</strong> cup products, for which we have used<br />

the general notion <strong>of</strong> multil<strong>in</strong>ear category due to Cartier.<br />

The cohomological approach to class field theory was carried out<br />

<strong>in</strong> the late forties and early fifties, <strong>in</strong> Hochschild's papers [Ho 50a],<br />

[Ho 50b], [HoN 52], Nakayama [Na 41], [Na 52], Shafarevich [Sh 46],<br />

Well's paper [We 51], giv<strong>in</strong>g rise to the Weft groups, and sem<strong>in</strong>ars<br />

<strong>of</strong> Art<strong>in</strong>-Tate <strong>in</strong> 1949-1951, published only years later [ArT 67].<br />

As I stated <strong>in</strong> the preface to my Algebraic Number Theory, there


are several approaches to class field theory. None <strong>of</strong> them makes<br />

any other obsolete, and each gives a different <strong>in</strong>sight from the oth-<br />

ers.<br />

The orig<strong>in</strong>al Benjam<strong>in</strong> notes consisted <strong>of</strong> Chapters I through IX.<br />

Subsequently I wrote up Chapter X, which deals with applications<br />

to algebraic geometry. It is essentially a transcription <strong>of</strong> weekly<br />

<strong>in</strong>stallment letters which I received from Tate dur<strong>in</strong>g 1958-1959. I<br />

take <strong>of</strong> course full responsibility for any errors which might have<br />

crept <strong>in</strong>, but I have made no effort to make the exposition anyth<strong>in</strong>g<br />

more than a rough sketch <strong>of</strong> the material. Also the reader should<br />

not be surprised if some <strong>of</strong> the diagrams which have been qualified<br />

as be<strong>in</strong>g commutative actually have character -1.<br />

The first n<strong>in</strong>e chapters are basically elementary, depend<strong>in</strong>g only<br />

on standard homological algebra. The Art<strong>in</strong>-Tate axiomatization<br />

<strong>of</strong> class formations allows for an exposition <strong>of</strong> the basic properties <strong>of</strong><br />

class field theory at this elementary level. Pro<strong>of</strong>s that the axioms<br />

are satisfied are <strong>in</strong> the Art<strong>in</strong>-Tate notes, follow<strong>in</strong>g Tate's article<br />

[Ta 52]. The material <strong>of</strong> Chapter X is <strong>of</strong> course at a different level,<br />

assum<strong>in</strong>g some knowledge <strong>of</strong> algebraic geometry, especially some<br />

properties <strong>of</strong> abelian varieties.<br />

I thank Spr<strong>in</strong>ger Verlag for keep<strong>in</strong>g all this material ill pr<strong>in</strong>t. I<br />

also thank Donna Belli and Mel Del Vecchio for sett<strong>in</strong>g the manu-<br />

script <strong>in</strong> AMSTeX, <strong>in</strong> a victory <strong>of</strong> person over mach<strong>in</strong>e.<br />

<strong>Serge</strong> <strong>Lang</strong><br />

New Haven, 1995


CHAPTER I<br />

Existence and Uniqueness<br />

w The abstract uniqueness theorem<br />

We suppose the reader is familiar with the term<strong>in</strong>ology <strong>of</strong> abelian<br />

categories. However, we shall deal only with abelian categories<br />

which are categories <strong>of</strong> modules over some r<strong>in</strong>g, or which are ob-<br />

ta<strong>in</strong>ed from such <strong>in</strong> some standard ways, such as categories <strong>of</strong> com-<br />

plexes <strong>of</strong> modules. We also suppose that the reader is acqua<strong>in</strong>ted<br />

with the standard procedures construct<strong>in</strong>g cohomological functors<br />

by means <strong>of</strong> resolutions with complexes, as done for <strong>in</strong>stance <strong>in</strong><br />

my Algebra (third edition, Chapter XX). In some cases, we shall<br />

summarize such constructions for the convenience <strong>of</strong> the reader.<br />

Unless otherwise specified, all functors on abelian categories<br />

will be assumed additive. What we call a 6-functor (follow<strong>in</strong>g<br />

Grothendieck) is sometimes called a connected sequence <strong>of</strong> func-<br />

tors. Such a functor is def<strong>in</strong>ed for a consecutive sequence <strong>of</strong> <strong>in</strong>te-<br />

gers, and transforms an exact sequence<br />

-<strong>in</strong>to an exact sequence<br />

O~A~B~C~O<br />

9 ..---~ HP(A) ~ HP(B) -~ HP(C) ~ HP+I(A) ---....<br />

functorially. If the functor is def<strong>in</strong>ed for all <strong>in</strong>tegers p with<br />

-zc < p < co, then we say that this functor is cohomological.


Let H be a 5-functor on an abelian category 9.1. We say that<br />

H is erasable by a subset 9Yt <strong>of</strong> objects <strong>in</strong> A if for every A <strong>in</strong><br />

9.[ there exists l~A E 92t and a monomorphism CA : A ~ !~A<br />

such that H(MA) = 0. This def<strong>in</strong>ition is slightly more restrictive<br />

than the usual general def<strong>in</strong>ition (Algebra, Chapter XX, w but its<br />

conditions are those which are used <strong>in</strong> the forthcom<strong>in</strong>g applications.<br />

An eras<strong>in</strong>g functor for H consists <strong>of</strong> a functor<br />

M'A ---,M(A)<br />

<strong>of</strong> 9.1 <strong>in</strong>to itself, and a monomorphism r <strong>of</strong> the identity <strong>in</strong> M, i.e.<br />

for each object A we are given a monomorphism<br />

~A : A--+ MA<br />

such that, if u 9 A ~ B is a morphism <strong>in</strong> 92, then there exists a<br />

morphism M(u) and a commutative diagram<br />

0<br />

> A ~*> M(A)<br />

"I I M(,)<br />

, B > M(B)<br />

SB<br />

such that M(uv) = M(u)M(v) for the composite <strong>of</strong> two morphisms<br />

u, v. In addition, one requires H(MA) = 0 for all A E 9.1.<br />

Let X(A) = XA be the cokernel <strong>of</strong> eA.<br />

morphism<br />

X(u) : XA Xs<br />

such that the follow<strong>in</strong>g diagram is commutative:<br />

For each u there is a<br />

0 , A ) MA ) XA ) 0<br />

.I I I<br />

0 , B ' MB , Xe ~ 0,<br />

and for the composite <strong>of</strong> two morphisms u, v we have X(uv) =<br />

X(u)X(v). We then call X the c<strong>of</strong>unctor <strong>of</strong> M.<br />

Let P0 be an <strong>in</strong>teger, and H = (H p) a 8-functor def<strong>in</strong>ed for<br />

some values <strong>of</strong> p. We say that M is an eras<strong>in</strong>g functor for H <strong>in</strong><br />

dimension > p0 if HP(MA) = 0 for all A E 9.1 and all p > p0.


I.l 5<br />

We have similar notions on the left. Let H be an exact 6-functor<br />

on 9/. We say that H is coerasable by a subset gYr if for each object<br />

A there exists an epimorphism<br />

rlA" M A --* A<br />

with i~/IA E g~, such that H(i~VfA) -- 0. A coeras<strong>in</strong>g functor M<br />

for H consists <strong>of</strong> an epimorphism <strong>of</strong> M with the identity. If r / is<br />

such a functor, and u : A ---* B is a morphism, then we have a<br />

commutative diagram with exact horizontal sequences:<br />

0 ' YA ~ MA 'a'-+ A ) 0<br />

IU(")<br />

0 ) Ys 'Ms ~B ~0<br />

rib<br />

and YA is functorial <strong>in</strong> A, i.e. Y(uv) = Z(u)Y(v).<br />

Remark. In what follows, eras<strong>in</strong>g fur.Lctors will have the addi-<br />

tional property that the exact sequence associated with each object<br />

A will split over Z, and therefore rema<strong>in</strong>,; exact under tensor pro-<br />

ducts or horn. An eras<strong>in</strong>g functor <strong>in</strong>to an abelian category <strong>of</strong><br />

abetian groups hav<strong>in</strong>g this property will be said to be splitt<strong>in</strong>g.<br />

Theorem 1.1. First uniqueness theorem. Let 9.1 be an<br />

abelian category. Let H,F be two 6-fvnctors def<strong>in</strong>ed <strong>in</strong> degrees<br />

0, 1 (resp. 0,-1) with values <strong>in</strong> the same abelian category. Let<br />

(~20, ~1) and (~0, ~) be 6-raorphisms <strong>of</strong> H <strong>in</strong>to F, co<strong>in</strong>cid<strong>in</strong>g <strong>in</strong><br />

dimension 0 (resp. (~-1,~0) and (~-1,~o)). Suppose that H 1<br />

is erasable (resp. H -1 is coerasable). Then we have r = ~1<br />

(resp. ~-1 = ~-1).<br />

Pro<strong>of</strong>. The pro<strong>of</strong> be<strong>in</strong>g self dual, we give it only for the case <strong>of</strong><br />

<strong>in</strong>dices (0, 1). For each object A E 9/we :have an exact sequence<br />

0 --+A ~ MA ---+ XA ----* 0<br />

and H 1 (MA) = 0. There is a commutative diagram<br />

H~ , H~ ~" , Hi(A) , 0<br />

Fo(MA) , Fo(xa) 6F -:. Ft(A) , 0


with horizontal exact sequences, from which it follows that 6H is<br />

surjective. It follows at once that )91 = ~1.<br />

In the preced<strong>in</strong>g theorem, )91 and ~1 are given. One can also<br />

prove a result which implies their existence.<br />

Theorem 1.2. Second uniqueness theorem. Let 92 be an<br />

abelian category. Let H, F be 5-functors def<strong>in</strong>ed <strong>in</strong> degrees (0, 1)<br />

(resp. 0,-1) with values <strong>in</strong> the same abelian category. Let<br />

)90 : H ~ -~ F ~ be a morphism. Suppose that H 1 is erasable by<br />

<strong>in</strong>jectives (rasp. H -1 is coerasable by projectives). Then there<br />

exists a unique morphism<br />

)91:H 1 ---* F 1 (resp.)9_1 : H -1 --+ F -1)<br />

such that (~o,)91) (resp. ()9o,~-1)) is also a &morphism. The<br />

association )90 ~ )91 is functorial <strong>in</strong> a sense made explicit below.<br />

Pro<strong>of</strong>. Aga<strong>in</strong> the pro<strong>of</strong> is self dual and we give it only <strong>in</strong> the<br />

cases when the <strong>in</strong>dices are (0, 1). For each object A E 92 we have<br />

the exact sequence<br />

O-"* A-'+ l~/f A --+ X A ---*0<br />

and HI(MA) = 0. We have to def<strong>in</strong>e a morphism<br />

c21(A) : Hi(A) ~ FI(A)<br />

which commutes with the <strong>in</strong>duced morphisms and with 5. We have<br />

a commutative diagram<br />

H~ , H~<br />

F~ , F~<br />

~ ~ Hi(A) , 0<br />

5F<br />

FI(A)<br />

with exact horizontal sequences. The right surjectivity is just the<br />

eras<strong>in</strong>g hypothesis. The left square commutativity shows that<br />

Ker 6 H is conta<strong>in</strong>ed <strong>in</strong> the kernel <strong>of</strong> 6F~90(XA). Hence there exists<br />

a unique morphism<br />

c21(A) : Hi(A) ---, FI(A)


1.1 7<br />

which makes the right square commutative. We shall prove that<br />

~a(A) satisfies the desired conditions.<br />

First, let u : A -+ B be a morphism. From the hypotheses, there<br />

exists a commutative diagram<br />

0 ~ A ~ MA ~ XA ~0<br />

0 , B , MB , XB ~0<br />

the morphism M(u) be<strong>in</strong>g def<strong>in</strong>ed because MA is <strong>in</strong>jective. The<br />

morphism X(u) is then def<strong>in</strong>ed by mak<strong>in</strong>g the right square com-<br />

mutative. To simplify notation, we shall write u <strong>in</strong>stead <strong>of</strong> M(u)<br />

and X(u).<br />

We consider the cube:<br />

614<br />

H~ .H I(A) ,<br />

oo.). ,o(x,) ~ Vl(B)<br />

F~ .Hi(B)<br />

We have to show that the right face is commutative. We have:<br />

~I(B)HI(u)SH = !pl(B)SHH~<br />

_- (~F~P0H0(u)<br />

= ,~FF~<br />

= F'(u)Sr~o<br />

= FI(u)~,(A)S,.<br />

We have used the fact (implied by the hypotheses) that all the<br />

faces <strong>of</strong> the cube are commutative except possibly the right face.<br />

S<strong>in</strong>ce 3H is surjective, one gets what we want, namely<br />

~pl(B)Hl(u) = Fa(u)~pa(A).


The above argument may be expressed <strong>in</strong> the form <strong>of</strong> a useful<br />

general lemma.<br />

If, <strong>in</strong> a cube, all the ]aces are commutative except possibly one,<br />

and one <strong>of</strong> the arrows as above is surjective, then this face is<br />

also commutative.<br />

Next we have to show that ~1 commutes with 6, that is (~P0,cPl)<br />

is a 6-morphism. Let<br />

0 ~ A' --* A ~ A" ~ 0<br />

be an exact sequence <strong>in</strong> 9/. Then there exist morphisms<br />

v : A ~ MA, and w : A" ---* XA,<br />

mak<strong>in</strong>g the follow<strong>in</strong>g diagram commutative:<br />

0 ) A' ~ A , A" ) 0<br />

0 ) A' ' ]VIA, ) XA' ) 0<br />

because MA, is <strong>in</strong>jective. There results the follow<strong>in</strong>g commutative<br />

diagram:<br />

H~ '')<br />

,,<br />

Ho(XA ,) 9 H'(A')<br />

~o /~) ~ ~(A')<br />

FO(XA ,) 9 r I(A')<br />

6F


1.2 9<br />

We have to show that the right square is commutative. Note<br />

that the top and bottom triangles are commutative by def<strong>in</strong>ition <strong>of</strong><br />

a 6-functor. The left square is commutative by the hypothesis that<br />

c20 is a morphism <strong>of</strong> functors. The front square is commutative by<br />

def<strong>in</strong>ition <strong>of</strong> ~I(A'). We thus f<strong>in</strong>d<br />

(r = I(A')6HH~ (top triangle)<br />

which concludes the pro<strong>of</strong>.<br />

= 6FqOoH~ (front square)<br />

= ~rF~ (left square)<br />

- - 6F~0<br />

(bottom triangle),<br />

F<strong>in</strong>ally, let us make explicit what we mean by say<strong>in</strong>g that ~1<br />

depends functorially on ~0- Suppose we have three functors H, F, E<br />

def<strong>in</strong>ed <strong>in</strong> degrees 0,1; and suppose given ~0 : H ~ ~ F ~ and<br />

~0 : F ~ ~ E ~ Suppose <strong>in</strong> addition that the eras<strong>in</strong>g functor erases<br />

both H 1 and F 1 . We can then construct ~1 and r by apply<strong>in</strong>g<br />

the theorem. On the other hand, the composite<br />

r = ~0 " H ~ ---+ E ~<br />

is also a morphism, and the theorem implies the existence <strong>of</strong> a<br />

morphism<br />

{?1 " H1 --+ E 1<br />

such that ({?0, (71) is a 6-morphism. By uniqueness, we obta<strong>in</strong><br />

{71 = r o ~I.<br />

This is what we mean by the assertion that c21 depends functorially<br />

on ~o.<br />

w Notation, and the uniqueness theorem <strong>in</strong> Mod(G)<br />

We now come to the cohomology <strong>of</strong> groups. Let G be a group.<br />

As usual, we let Q and Z denote the rational numbers and the<br />

<strong>in</strong>tegers respectively. Let Z[G] be the group r<strong>in</strong>g over Z. Then


10<br />

ZIG] is a free module over Z, the group elements form<strong>in</strong>g a basis<br />

over Z. Multiplicatively, we have<br />

ct 6 G cr , r<br />

the sums be<strong>in</strong>g taken over all elements <strong>of</strong> G, but only a f<strong>in</strong>ite<br />

number <strong>of</strong> a~ and b,- be<strong>in</strong>g r 0. Similarly, one def<strong>in</strong>es the group<br />

algebra k[G] over an arbitrary commutative r<strong>in</strong>g k.<br />

The group r<strong>in</strong>g is <strong>of</strong>ten denoted by P = Fa. It conta<strong>in</strong>s the ideal<br />

I6 which is the kernel <strong>of</strong> the augmentation homomorphism<br />

e: Z[G] ~ Z<br />

def<strong>in</strong>ed by 6 (~--] n~a) = )-~ n~. One sees at once that Ia is Z-free,<br />

with a basis consist<strong>in</strong>g <strong>of</strong> all elements a - e, with ~ rang<strong>in</strong>g over the<br />

elements <strong>of</strong> G not equal to the unit element. Indeed, if ~ n~ = O,<br />

then we may write<br />

)-'n,,a=,, ~-~n~,(o-e).<br />

Thus we obta<strong>in</strong> an exact sequence<br />

0 ~ za ~ z[a] --+ Z ~ 0,<br />

used constantly <strong>in</strong> the sequel. The sequence splits, because ZIG] is<br />

a direct sum <strong>of</strong> Ia and Z 9 ea (identified with Z).<br />

Abelian groups form an abelian category, equal to the category<br />

<strong>of</strong> Z-modules, denoted by Mod(Z). Similarly, the category <strong>of</strong> mod-<br />

ules over a r<strong>in</strong>g R will be denoted by Mod(R).<br />

An abelian group A is said to be a G-module if one is given an<br />

operation (or action) <strong>of</strong> G on A; <strong>in</strong> other words, one is given a map<br />

satisfy<strong>in</strong>g<br />

GxA---~A<br />

(oT)a = c~(Ta) e . a = a o(a -5 b) = aa + o'b


1.2 11<br />

for all a, r E G and a, b E A. We let e = ea be the unit element <strong>of</strong><br />

G. One extends this operation by l<strong>in</strong>earity to the group r<strong>in</strong>g Z[G].<br />

Similarly, if k is a commutative r<strong>in</strong>g and A is a k-module, one<br />

extends the operation <strong>of</strong> G on A to k[G] whenever the operation<br />

<strong>of</strong> G commutes with the operation <strong>of</strong> k on A. Then the category<br />

<strong>of</strong> k[G]-modules is denoted by Modk(G) or Mod(k, G).<br />

The G-modules form an abelian category, the morphisms be<strong>in</strong>g<br />

the G-homomorphisms. More precisely, if f : A --+ B is a morphism<br />

<strong>in</strong> Mod(Z), and if A, B are also G-modules, then G operates on<br />

Horn(A, B) by the formula<br />

(~rf)(a)=cr(f(a-la)) for sEA and crEG.<br />

If there is any danger <strong>of</strong> confusion one may write [a]f to denote this<br />

operation. If [cr]f - f, one says that f is a G-homomorphism,<br />

or a G-morphism. The set <strong>of</strong> G-morphisms from A <strong>in</strong>to B is an<br />

abelian group denoted by Horns(A, B). The category consist<strong>in</strong>g<br />

<strong>of</strong> G-modules and G-morphisms is denoted by Mod(G). It is the<br />

same as Mod(Pa).<br />

Let A E Mod(G). We let A a denote the submodule <strong>of</strong> A con-<br />

sist<strong>in</strong>g <strong>of</strong> all elements a E A such that aa = a for all a E G. In<br />

other words, it is the submodule <strong>of</strong> fixed elements by G. Then A G<br />

is an abelian group, and the association<br />

H~ 9 A ~ A a<br />

is a functor from Mod(G) <strong>in</strong>to the category <strong>of</strong> abelian groups, also<br />

denoted by Grab. This functor is left exact.<br />

We let xa denote the canonical map (<strong>in</strong> the present case the<br />

identity) <strong>of</strong> an element a E A G <strong>in</strong>to H~(A).<br />

Theorem 2.1. Let Ha be a cohomological functor on Mod(G)<br />

with values <strong>in</strong> Mod(Z), and such that H~ is def<strong>in</strong>ed as above.<br />

Assume that H~(M) = 0 if M is <strong>in</strong>jective and r > 1. Assume<br />

also that H~(A) = 0 for A E Mod(G) and r < O. Then two such<br />

cohomological functors are isomorphic, by a unique morphism<br />

which is the identity on H~(A).<br />

This theorem is just a special case <strong>of</strong> the general uniqueness theo-<br />

rem.


12<br />

Corollary 2.2. If G = {e} then H$(A) = 0/or all r > O.<br />

Pro<strong>of</strong>. Def<strong>in</strong>e HG by lett<strong>in</strong>g H~(A) = A e and H~(A) = 0 for<br />

r # 0. Then it is immediately verified that He is a cohomologica/<br />

functor, to which we can apply the uniqueness theorem.<br />

Corollary 2.3. Let n E Z and let nA " A --* A be the morphism<br />

a ~-+ na for a E A. Then H~(nA) =nH (where H stands for<br />

Hb(A)).<br />

Pro<strong>of</strong>. S<strong>in</strong>ce the coboundary 8 is additive, it commutes with<br />

multiplication by n, and aga/n we can apply the uniqueness theo-<br />

rem.<br />

The existence <strong>of</strong> the functor HG will be proved <strong>in</strong> the next sec-<br />

tion.<br />

We say that G operates trivially on A if A = A a, that is<br />

cra -- a for all a E A and ~ C G. We always assume that G<br />

operates trivially on Z, Q, and Q/Z.<br />

We def<strong>in</strong>e the abehan group<br />

AG = A/IAa.<br />

This is the factor group <strong>of</strong> A by the subgroup <strong>of</strong> elements <strong>of</strong> the<br />

form (or - e)a with cr E G and a C A. The association<br />

A ~-+ AG<br />

is a functor from Mod(G) <strong>in</strong>to Grab.<br />

Let U be a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G. We may then def<strong>in</strong>e<br />

the trace<br />

S~: A U --* A G by the formula SU(a) = E 6a,<br />

where {c} is the set <strong>of</strong> left cosets <strong>of</strong> U <strong>in</strong> G, and 6 is a representative<br />

<strong>of</strong> c, so that<br />

G= [.3 ~U.<br />

If U = {e}, then G is f<strong>in</strong>ite, and <strong>in</strong> that case the trace is written<br />

SG, so<br />

SG(a) = E (;a.<br />

~6G<br />

For the record, we state the follow<strong>in</strong>g useful lemma.<br />

C<br />

C


1.2 13<br />

Lemma 2.4. Let A,B, C be G-modules. Let U be a subgroup<br />

<strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dez <strong>in</strong> G. Let<br />

A-L B--L C-% D<br />

be morphisms <strong>in</strong> Mod(G), had suppose that u, w are G-morphisms<br />

while v is a U-morphism. Then<br />

Pro<strong>of</strong>. Immediate.<br />

S (wvu) = ws (v)u<br />

We shall now describe some embedd<strong>in</strong>g functors <strong>in</strong> Mod(G).<br />

These will turn out to erase some cohomological functors to be<br />

def<strong>in</strong>ed later. Indeed, <strong>in</strong>jective or projective modules will not suffice<br />

to erase cohomology, for several reasons. First, when we change the<br />

group G, an <strong>in</strong>jective does not necessarily rema<strong>in</strong> <strong>in</strong>jective. Second,<br />

an exact sequence<br />

0 ---* A ~ J ---* A" --~ 0<br />

with an <strong>in</strong>jective module J does not necessarily rema<strong>in</strong> exact when<br />

we take its tensor product with an arbitrary module B. Hence we<br />

shall consider another class <strong>of</strong> modules which behave better <strong>in</strong> both<br />

respects.<br />

Let G be a group and let B be an abelian group, i.e. a Z-<br />

module. We denote by MG(B) or M(G, B) the set <strong>of</strong> functions<br />

from G <strong>in</strong>to B, these form<strong>in</strong>g an abelian group <strong>in</strong> the usual way<br />

(add<strong>in</strong>g the values). We make Ms(B) <strong>in</strong>to a G-module by def<strong>in</strong><strong>in</strong>g<br />

an operation <strong>of</strong> G by the formulas<br />

= for a.<br />

We have trivially (ar)(f) = a(rf). Furthermore:<br />

Proposition 2.6. Ze~ G ~ be a subgroup <strong>of</strong> G and let<br />

G = U x~G' be a coset decomposition. For f E M(G,B) let<br />

Ot<br />

f~ be the f~nction <strong>in</strong> M(G',B) such tha~ f~(y) = f(x~y) for<br />

y E G'. Then the map<br />

Ot


14<br />

is an isomorphism<br />

<strong>in</strong> the category <strong>of</strong> G'-moduIes.<br />

M(G,B) ~-~ H M(G"B)<br />

The pro<strong>of</strong> is immediate, and Proposition 2.5 is a special case<br />

with G' equal to the trivial subgroup.<br />

Let A 6 Mod(G), and def<strong>in</strong>e<br />

ot<br />

~A : A ---* Ma(A)<br />

by the condition that eA(a) is the function fa such that fa(a) = aa<br />

for all a 6 A and cr E G. We then obta<strong>in</strong> an exact sequence<br />

(1) 0 ---* A ~A MG(A) ---+ XA ---* 0<br />

<strong>in</strong> Mod(G). Furthermore, this sequence splits over Z, because the<br />

map<br />

My(A) ~ A given by f ~ f(e)<br />

splits the left arrow <strong>in</strong> this sequence, i.e. composed with 6A it yields<br />

the identity on A. Consequently tensor<strong>in</strong>g this sequence with an<br />

arbitrary G-module B preserves exactness.<br />

We already know that Ma is an exact functor. In addition, if<br />

f : A ---* B is a morphism <strong>in</strong> Mod(G), then <strong>in</strong> the follow<strong>in</strong>g diagram<br />

(2)<br />

0 , A ~A ' MG(A) ' XA , 0<br />

fl ~MG(f) ~X(f)<br />

0 ~ B ) Ma(B) ) XB ~ 0<br />

~B<br />

the left square is commutative, and hence the right square is com-<br />

mutative. Therefore, we f<strong>in</strong>d:<br />

Theorem 2.5. Let G be a group. Notations as above, the pair<br />

(MG,e) is an embedd<strong>in</strong>g functor <strong>in</strong> Mod(G). The associated<br />

exact sequence (1) splits over Z for each A 6 Mod(C).<br />

In the next section, we shall def<strong>in</strong>e a cohomological functor HG<br />

on Mod(G) for which (Ma, ~) is an eras<strong>in</strong>g functor. By Proposition<br />

2.6, we shall then f<strong>in</strong>d:


1.2 15<br />

Corollary 2.6. Let G' be a subgroup <strong>of</strong> G, and consider Mod(G)<br />

as a subcategory <strong>of</strong> Mod(G'). Then Ha, is a cohomological func-<br />

tot on Mod(G), and (Ma, r is an eras<strong>in</strong>g functor for Ha,.<br />

Thus we shall have achieved our objective <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g a serviceable<br />

eras<strong>in</strong>g functor simultaneously for a group and its subgroups, be-<br />

hav<strong>in</strong>g properly under tensor products. The eras<strong>in</strong>g functor as<br />

above will be called the ord<strong>in</strong>ary eras<strong>in</strong>g functor.<br />

Remark. Let U be a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G. Let A, B E<br />

Mod(G). Let f 9 A ---* B be a U-morphism. We may take the trace<br />

su(f) 9 X ---+ B<br />

which is a G-morphism. Furthermore, consider<strong>in</strong>g Mod(G) as a<br />

subcategory <strong>of</strong> Mod(U), we see that (IV/a, r is an embedd<strong>in</strong>g func-<br />

tor relative to U, that is, there exist U-morpkisms IV/a(f) and<br />

X(f) such that the diagram (2) is commutative, but with vertical<br />

U-morphisms.<br />

Apply<strong>in</strong>g the trace to these vertical morphisms, and us<strong>in</strong>g Lemma<br />

2.4, we obta<strong>in</strong> a commutative diagram:<br />

(3)<br />

0 ~ A ~A , Ma(A) ' XA ) 0<br />

0 , B , Ma(B) , XB ~ 0<br />

~B<br />

The case <strong>of</strong> f<strong>in</strong>ite groups<br />

For the rest <strong>of</strong> this section, we assume that G is f<strong>in</strong>ite.<br />

We def<strong>in</strong>e two functors from Mod(G) <strong>in</strong>to Mod(Z) by<br />

H~ " A ~-+ AC /SaA<br />

Ha 1 : A ~ Aso/IaA.<br />

We denote by AsG the kernel <strong>of</strong> Sa <strong>in</strong> A. This is a special case <strong>of</strong><br />

the notation whereby if f : A --, B is a homomorphism, we let A/<br />

be its kernel.


16<br />

We let<br />

~c : A a ---+ H~(A)= AG/SGA.<br />

n~V: Asc --~ Hal(A)= Asa/IGA.<br />

be the canonical maps. The pro<strong>of</strong> <strong>of</strong> the follow<strong>in</strong>g result is easy<br />

and straightforward, and will be left to the reader.<br />

Theorem 2.7. The functors H~ l and H~ form a 5-functor if<br />

one def<strong>in</strong>es the coboundary as follows. Let<br />

0 --~ A' -L A -~ A" ~ 0<br />

be an exact sequence <strong>in</strong> Mod(G). For a" E A"sa "we def<strong>in</strong>e<br />

5mG(a") = xG(u-lSGv -l a'').<br />

The <strong>in</strong>verse images <strong>in</strong> this last formula have the usual mean<strong>in</strong>g.<br />

One chooses any element a such that va = a", then one takes the<br />

trace SG. One shows that this is an element <strong>in</strong> the image <strong>of</strong> u, so we<br />

can take u -1 <strong>of</strong> this element to be an element <strong>of</strong> A 'c, whose class<br />

modulo ScA' is well def<strong>in</strong>ed, i.e. is <strong>in</strong>dependent <strong>of</strong> the choices <strong>of</strong><br />

a such that va = a". The verification <strong>of</strong> these assertions is trivial,<br />

and left to the reader. (Cf. Algebra, Chapter III, w<br />

Theorem 2.8. Let Ha be a cohomologicaI functor on Mod(G)<br />

(with f<strong>in</strong>ite group G), with value <strong>in</strong> Mod(Z), and such that H~<br />

is as above. Suppose that H~(M) = 0 if M is <strong>in</strong>jective and<br />

r


1.2 17<br />

Let K1, K2, K be commutative r<strong>in</strong>gs, and let T be a biadditive<br />

bifunctor<br />

T: Mod(K1) x Mod(K2) ---+ Mod(K).<br />

Suppose we are given an action <strong>of</strong> G on A1 E Mod(K1) and on<br />

A2 E Mod(K2), so A1 E Mod(KI[G]) and A2 E Mod(K2[G]).<br />

Then T(AI,A2) is a K[G]-module, under the operation T(cr, a) if<br />

T is covariant <strong>in</strong> both variables, and T(cr -1 , a) if T is contravariant<br />

<strong>in</strong> the first variable and covariant <strong>in</strong> the second. This remark will<br />

be applied to the case when T is the tensor product or T = Horn.<br />

A K[G]-module A is called K[G]-regular if the identity 1A is a<br />

trace, that is there exists a K-morphism v : A ~ A such that<br />

1A = sa(v).<br />

When K = Z, a K[G]-regular module is simply called G-regular.<br />

Proposition 2.11. Let K1, K2, K be commutative r<strong>in</strong>gs as<br />

above, and let T be as above. Let Ai C Mod(Ki) (i = 1,2)<br />

and suppose A~ is K,[G]-regular for i = 1,2. Then T(A1,A2) is<br />

K[G]-regular.<br />

Pro<strong>of</strong>. Left to the reader.<br />

Proposition 2.12. Let G' be a subgroup <strong>of</strong> the f<strong>in</strong>ite group G.<br />

Let A C Mod(K,G). If A is K[G]-regular then d is also K[G']-<br />

regular. If G' is normal <strong>in</strong> G, then A G' is K[G/G']-regular.<br />

Pro<strong>of</strong>. Write G = U G'xi express<strong>in</strong>g G as a right coset decom-<br />

position <strong>of</strong> G'. Then by assumption, we can write 1A <strong>in</strong> the form<br />

r6G' i<br />

with some K-morphism v. The two assertions <strong>of</strong> the proposition<br />

are then clear, accord<strong>in</strong>g as we take the double sum <strong>in</strong> the given<br />

order, or reverse the order <strong>of</strong> the summation.<br />

Proposition 2.13. Let A E Mod(K,G). Then A is K[G]-<br />

projective if and only if A is K-projective and K[G]-regular.<br />

Pro<strong>of</strong>. We recall that a projective module is characterized by<br />

be<strong>in</strong>g a direct summand <strong>of</strong> a free module. Suppose that A is K[G]-<br />

projective. We may then write A as a direct summand <strong>of</strong> a free


18<br />

K[G]-module F = A | B, with the natural <strong>in</strong>jection i and projec-<br />

tion 7r <strong>in</strong> the sequence<br />

A ~--~A<br />

with rri = 1A, and both i, 7r are K[G]-homomorphisms. S<strong>in</strong>ce F is<br />

K[G]-free, it follows that 1F = Sa(v) for some K-homomorphism<br />

v. Then by Lemma 2.4,<br />

1A = 7clFi = 7rSe(v)i = Sa(Trvi),<br />

whence A is K[G]-regular. Conversely, let A be K-projective and<br />

K[G]-regular. Let<br />

71"<br />

F---+ A ---~ O<br />

be an exact sequence <strong>in</strong> Mod(K, G), with F be<strong>in</strong>g K[G]-free. By<br />

hypothesis, there exists a K-morphism if : A --~ F such that<br />

7riK = 1A, and there exists a K-morphism v : A --+ A such that<br />

1A = SG(v). We then f<strong>in</strong>d<br />

~s~(i~v) = s~(~i~v) = Sc(v) = 1~,<br />

which shows that SG(iKv) splits % whence A is a direct summand<br />

<strong>of</strong> a free module, and is therefore K[G]-projective. This proves the<br />

proposition.<br />

With the same type <strong>of</strong> pro<strong>of</strong>, tak<strong>in</strong>g the trace <strong>of</strong> a projection,<br />

one also obta<strong>in</strong>s the follow<strong>in</strong>g result.<br />

Proposition 2.14. In Mod(G), a direct summand <strong>of</strong> a G-<br />

regular module is also G-regular. In particular, every projective<br />

module <strong>in</strong> Mod(G) is also G-regular.<br />

Pro<strong>of</strong>. The second assertion is obvious for free modules, whence<br />

it follows from the first assertion for projectives.<br />

For f<strong>in</strong>ite groups we have a modification <strong>of</strong> the embedd<strong>in</strong>g rune-<br />

for def<strong>in</strong>ed previously for arbitrary groups, and this modification<br />

will enjoy stronger properties. We consider the follow<strong>in</strong>g two exact<br />

sequences:<br />

(3)<br />

(4)<br />

o~ Ia ~ Z[G] & Z ~0<br />

o--, Z--~ Z[G] ~ Ya ~ O.


1.2 19<br />

The first one is just the one already considered, with the augmenta-<br />

tion homomorphism c. The second is def<strong>in</strong>ed as follows. We embed<br />

Z <strong>in</strong> Z[G] on the diagonal, that is<br />

C I " ?'/ e---~ n ~-~ 0".<br />

S<strong>in</strong>ce G acts trivially on Z, it follows that s t is a G-homomorphism.<br />

We denote its cokernel by Jc.<br />

Proposition 2.15. The exact sequences (3) and (4) split <strong>in</strong><br />

Mod(Z).<br />

Pro@ We already know this for (3). For (4), given ~ = ~2 n~a<br />

<strong>in</strong> ZIG] we have a decomposition<br />

aEG<br />

aEG ~#e<br />

~EG ~#e<br />

which shows that Z[G] is a direct sum <strong>of</strong> c'(Z) and another module,<br />

as was to be shown.<br />

Given any A C Mod(G), tak<strong>in</strong>g the tensor product (over Z)<br />

<strong>of</strong> the split exact sequences (3) and (4) with A yields split exact<br />

sequences by a basic elementary property <strong>of</strong> the tensor product,<br />

with G-morphisms eA = e | 1A and el4 = e' | 1A, as shown below:<br />

(4A)<br />

(5A)<br />

0~Iv| ~A Z|<br />

0---,A=ZNA ~Z[G]|<br />

!<br />

CA<br />

As usual, we identify Z | A with A. Let Me be the functor given<br />

by<br />

M~(A) = Z[G] | A.<br />

We observe that Ma(A) is G-regular. In the next section, we shall<br />

def<strong>in</strong>e a cohomological functor on Mod(G) for which Ma will be<br />

an eras<strong>in</strong>g functor.


20<br />

Let f 9 A ---+ B be a G-morphism, or more generally, suppose G ~<br />

is a subgroup <strong>of</strong> G and A, B 9 Mod(G), while f is a G~-morphism.<br />

Then<br />

Ma(f) = 1 | f<br />

is a GI-morphism.<br />

w Existence <strong>of</strong> the cohomological functors on Mod(G)<br />

Although we reproduced the pro<strong>of</strong>s <strong>of</strong> uniqueness, because they<br />

were short, we now assume that the reader is acqua<strong>in</strong>ted with stan-<br />

dard facts <strong>of</strong> general homology theory. These are treated <strong>in</strong> Alge-<br />

bra, Chapter XX, <strong>of</strong> which we now use w especially Proposition<br />

8.2 giv<strong>in</strong>g the existence <strong>of</strong> the derived functors. We apply this<br />

proposition to the bifunctor<br />

T(A,B) = Homa(A,B) for A,B 9 Mod(G),<br />

with an arbitrary group G. We have<br />

We then f<strong>in</strong>d:<br />

Homa(Z, A) = A a.<br />

Theorem 3.1. Let X be a projective resolution <strong>of</strong> Z <strong>in</strong> Mod(G).<br />

Let H(A) be the homology <strong>of</strong> the complex Homa(X,A). Then<br />

H = {H ~} is a cohomology functor on Mod(G), such that<br />

Hr(A) = O if r < O.<br />

H~ = A a.<br />

Hr(A) = 0 if A is <strong>in</strong>jective <strong>in</strong> Mod(G) and r >= 1.<br />

This cohomology functor is determ<strong>in</strong>ed up to a unique isomor-<br />

phism.<br />

For the convenience <strong>of</strong> the reader, we write the first few terms <strong>of</strong><br />

the sequences implicit <strong>in</strong> Theorem 3.1. From the resolution<br />

we obta<strong>in</strong> the sequence<br />

9 "---* X1 ---* X0 ---+ Z --* 0<br />

0 --~ Horns(Z, A) --~ Horns(X0, A)-~ Homo(X1, A)-~


1.3 21<br />

so the cohomology sequence arisihg from an exact sequence<br />

starts with an exact part<br />

0 ---* A' --~ A ---. A" ---. 0<br />

0 ---* A 'c ~ A a ~ A ''G ~ HI(A').<br />

Dually, we work with the tensor product. We let /a as before<br />

be the augmentation ideal. For A 6 Mod(G), IaA is the G-module<br />

generated by all elements aa - a with a 6 A, and even consists <strong>of</strong><br />

such elements. We consider the functor A ~ Aa = A/faA from<br />

Mod(G) <strong>in</strong>to Grab. For A, B E Mod(G) we def<strong>in</strong>e<br />

Then Ta is a bifunctor<br />

TG(A,B) : A | B = (A | B)G.<br />

Ta" Mod(G) x Mod(G) --* Grab,<br />

covariant <strong>in</strong> both variables. From Algebra, Chapter XX, Proposi-<br />

tion 3.2', we f<strong>in</strong>d:<br />

Theorem 3.2. Let X be a projective resolution o~ Z <strong>in</strong> Mod(G).<br />

Let Ta be as above, and let H = {Hr} be the homology <strong>of</strong> the<br />

complex TG(X, A). Then H is a homological functor such that:<br />

Hr(d) : 0 i/r >0.<br />

Ho(A) = AG.<br />

H~(A) : 0 i~ A is projective <strong>in</strong> Mod(G) and r >= 1.<br />

The explicit determ<strong>in</strong>ation <strong>of</strong> Ho(A) = Av comes from the fact<br />

that<br />

X1 | A --* Xo | A --* Z | A ---* 0<br />

is exact, and that Z | A is functorially isomorphic to Ao.<br />

Given a short exact sequence 0 ---* A' --+ A ~ A" ---* 0, the long<br />

homology exact sequence starts<br />

9 "---* HI(A")-* A b --~ Aa ~ A" G ---~ O.<br />

The previous two theorems fit a standard pattern <strong>of</strong> the derived<br />

functor. In some <strong>in</strong>stances, we have to go back to the way these<br />

functors are constructed by means <strong>of</strong> complexes, say as <strong>in</strong> Algebra,<br />

Chapter XX, Theorem 2.1. We summarize this construction as<br />

follows for abelian categories.


22<br />

Theorem 3.3. Let 92, ~8 be abeIian categories. Let<br />

Y:92 --~ C(f8)<br />

be an exact functor to the category <strong>of</strong> complexes <strong>in</strong> ~3. Then<br />

there exists a cohomologicaI functor H on 92 with values <strong>in</strong> ~,<br />

such that Hr(A) = homology <strong>of</strong> the complex Y(A) <strong>in</strong> dimension<br />

r. Given a short exact sequence <strong>in</strong> 92:<br />

and therefore the exact sequence<br />

0 ~ A' ---* ~ A -5 A" ~ 0<br />

0---+ Y(A')--~ Y(A) ---, Y(A")---+ O,<br />

the coboundary is given by the usual formula Y(u) -ldY(v) -1 .<br />

For the applications, readers may take ~ to be the category <strong>of</strong><br />

abelian groups, and 92 is Mod(G) most <strong>of</strong> tke time.<br />

Corollary 3.4. Let 921,92 be abelian categories and F a bif~nc-<br />

tor on 921 92 with values <strong>in</strong> ~, contravariant (resp. covariant)<br />

<strong>in</strong> the first variable and covariant <strong>in</strong> the second. Let X be a<br />

complex <strong>in</strong> C(921) such that the functor A F(X,A) on 92 is<br />

exact. Then there exists a cohomological functor (resp. homolog-<br />

icaI functor) H on 92 with values <strong>in</strong> ~, obta<strong>in</strong>ed as <strong>in</strong> Theorem<br />

3.3, with F(X,A) = Y(A).<br />

Next we deal with f<strong>in</strong>ite groups, for which we obta<strong>in</strong> a non-trivial<br />

cohomological functor <strong>in</strong> all dimensions, us<strong>in</strong>g constructions with<br />

complexes as <strong>in</strong> the above two theorems.<br />

F<strong>in</strong>ite groups. Suppose now that G is f<strong>in</strong>ite, so we have the<br />

trace homomorphism<br />

S=Sa:A--* A<br />

for every A E Mod(G). We omit the <strong>in</strong>dex G for simplicity, so the<br />

kernel <strong>of</strong> the trace <strong>in</strong> A is denoted by As. We also write [ <strong>in</strong>stead<br />

<strong>of</strong> Ia as long as G is the only group under consideration. It is clear<br />

t-hat IA is conta<strong>in</strong>ed <strong>in</strong> As and the association<br />

A ~ As/IA<br />

is a functor from Mod(G) <strong>in</strong>to Grab. We then have Tate's theo-<br />

rem.


1.3 23<br />

Theorem 3.5. Let G be a f<strong>in</strong>ite group. There is a cohomolog-<br />

ical functor H on rood(G) with values <strong>in</strong> Grab such that:<br />

H ~ is the functor A ~-~ AG/SaA.<br />

H (A) = 0 if A is <strong>in</strong>jective and r > 1<br />

H~(A) = 0 if A is projective and r is arbitrary.<br />

H is erased by G-regular modules, and thus is erased by Mo.<br />

Pro<strong>of</strong>. Fix the projective resolution X <strong>of</strong> Z and apply the two<br />

bifunctors | and Homo to obta<strong>in</strong> a diagram:<br />

""* X1QGA ""* Xo| HomG(Xo,A)<br />

Z| HoraG(Z,A)<br />

0 0<br />

"* HomG(X1,A)<br />

We have AG = Z| and Homo(Z,A) = A ~ The right side<br />

with Homo comes from Theorem 3.1 and the left side comes from<br />

Theorem 3.2. We shall splice these two sides together. The trace<br />

maps Ao --* A ~ and yields a morphism <strong>of</strong> the functor A ~ Ao to<br />

the functor A ~ A G. Hence there exists a unique homomorphism<br />

5 which makes the follow<strong>in</strong>g diagram commutative.<br />

XI~GA "-'+ Xo@ A ~ Homa(Xo,A) ---* HomG(X1,A) --*<br />

T<br />

T<br />

AG ----* A G<br />

SG<br />

0 0<br />

The upper horizontal l<strong>in</strong>e is then a complex. Each Xr | A may<br />

be considered as a functor <strong>in</strong> A, and similarly for Homo(Xr, A).<br />

These functors are exact s<strong>in</strong>ce X~ is projective. Furthermore, 5 is a<br />

morphism <strong>of</strong> the functor XO| <strong>in</strong>to the functor Homo(X0, .). We<br />

let<br />

Y,-(A) = { Homo(X~,A) for r => 0<br />

X-~-I | A for r < 0.<br />

Then Y(A) is a complex, and A ~ Y(A) is exact, mean<strong>in</strong>g that if<br />

0 --* A' --~ A --* A" ~ 0 is a short exact sequence, then<br />

0 ~ Y(A')--~ Y(A)~ Y(A")~ 0


24<br />

is exact. We are thus <strong>in</strong> the standard situation <strong>of</strong> construct<strong>in</strong>g a<br />

homology functor, say as <strong>in</strong> Algebra, Chapter XX, Theorem 2.1,<br />

whereby Hr(A) is the homology <strong>in</strong> dimension r <strong>of</strong> the complex<br />

Y(A). In dimensions 0 and -1, we f<strong>in</strong>d the functors <strong>of</strong> Theorem<br />

3.1 and 3.2, thus prov<strong>in</strong>g all but the last statement <strong>of</strong> the theorem,<br />

concern<strong>in</strong>g the erasability.<br />

To show that G-regular modules erase the cohomology, we do it<br />

first <strong>in</strong> dimension r > 0. There exists a homotopy (Cf. Algebra,<br />

Chapter X_X, w i.e. a family <strong>of</strong> Z-morphisms<br />

such that<br />

Dr " Xr -'* Xr+l<br />

idr = idx~ = 0r+lDr + Dr-lOt.<br />

(Cf. the Remark at the end <strong>of</strong> w loc. cir.) Let f : X,- ---* A be a<br />

cocycle. By def<strong>in</strong>ition, fOr+l = 0 and hence<br />

f = f o id~ = fDr-1 Or.<br />

On the other hand, by hypothesis there exists a Z-morphism<br />

v 9 A ---* A such that 1A = SG(V). Thus we f<strong>in</strong>d<br />

f = 1Af = Sc(v)f = Sv(vf) = Sc(vfD~-lOr)<br />

=SG(vfDr-1)O~,<br />

which shows that f is a coboundary, <strong>in</strong> other words, the cohomology<br />

group is trivial.<br />

For r = 0 we obviously have H~ = 0 if A is G-regular. For<br />

r = -1, the reader will check it directly. For r < -1, one repeats<br />

the above argument for r => 1 with the tensor product, essentially<br />

dualiz<strong>in</strong>g the argument (revers<strong>in</strong>g the arrows). This concludes the<br />

pro<strong>of</strong> <strong>of</strong> Theorem 3.3.<br />

Alternatively, the splic<strong>in</strong>g used to prove Theorem 3.3 could also<br />

be done as follows, us<strong>in</strong>g a complete resolution <strong>of</strong> Z.<br />

Let X = (Xr)r> 0 be a G-free resolution <strong>of</strong> Z, with Xr f<strong>in</strong>itely<br />

generated for all r, acyclic, with augmentation ~. Def<strong>in</strong>e<br />

X-r-1 = Hom(Xr, Z) for r >__ 0.


1.3 25<br />

Thus we have def<strong>in</strong>ed G-modules Xs for negative dimensions s.<br />

One sees immediately that these modules are G-free. If (ei) is a<br />

basis <strong>of</strong> X~ over Z[G] for r >= 0, then we have the dual basis (e v)<br />

for the dual module. By duality, we thus obta<strong>in</strong> G-free modules <strong>in</strong><br />

negative dimensions. We may sphce these two complexes around<br />

0. For simplicity, say X0 has dimension 1 over Z[G] (which is the<br />

case <strong>in</strong> the complexes we select for the apphcations). Thus let<br />

x0 = with = 1.<br />

Let ~v be the dual basis <strong>of</strong> X-i = Horn(X0, Z). We def<strong>in</strong>e 00 by<br />

gEG<br />

We can illustrate the relevant maps by the diagram:<br />

o~=8-1 8o<br />

X-2 ~ X-l" X0 9<br />

o<br />

/<br />

z<br />

/<br />

81<br />

X1 ~<br />

The boundaries ~9-~-i for r >= 0 are def<strong>in</strong>ed by duality. One ver-<br />

ifies easily that the complex we have just obta<strong>in</strong>ed is acyclic (for<br />

<strong>in</strong>stance by us<strong>in</strong>g a homotopy <strong>in</strong> positive dimension, and by dualis-<br />

<strong>in</strong>g). We can then consider Homa(X, A) for A variable <strong>in</strong> Mod(G),<br />

and we obta<strong>in</strong> an exact functor<br />

A ~ Homa(X, A)<br />

from Mod(G) <strong>in</strong>to the category <strong>of</strong> complexes <strong>of</strong> abelian groups. In<br />

dimension 0, the homology <strong>of</strong> this complex is obviously<br />

H~ = AC/SaA,


26<br />

and the uniqueness theorem applies.<br />

The cohomological functor <strong>of</strong> Theorem 3.5 for f<strong>in</strong>ite groups will<br />

be called the special cohomology, to dist<strong>in</strong>guish it from the coho-<br />

mology def<strong>in</strong>ed for arbitrary groups, differ<strong>in</strong>g <strong>in</strong> dimension 0 and<br />

the negative dimensions. We write it as HG if we need to specify G<br />

<strong>in</strong> the notation, especially when we shall deal with different groups<br />

and subgroups. It is uniquely determ<strong>in</strong>ed, up to a unique isomor-<br />

phism. When G is fixed throughout a discussion, we cont<strong>in</strong>ue to<br />

denote it by H. Thus depend<strong>in</strong>g .on the context, we may write<br />

H(A) = HG(A)= H(G,A) for A e Mod(G).<br />

The standard complex<br />

The complex which we now describe allows for explicit compu-<br />

tations <strong>of</strong> the cohomology groups. Let X~ be the free Z[G]-module<br />

hav<strong>in</strong>g for basis r-tuples (al,..., err) <strong>of</strong> elements <strong>of</strong> G. For r = 0<br />

we take X0 to be free over Z[G], <strong>of</strong> dimension 1, with basis element<br />

denoted by (.). We def<strong>in</strong>e the boundary maps by<br />

r<br />

§ ~-~(--1)J(crl,...,crjo'j+l,...,vrr)<br />

+<br />

j--1<br />

We leave it to the reader to verify that dd = 0, i.e. we have a<br />

complex called the standard complex.<br />

The above complex is the non-homogeneous form <strong>of</strong> another<br />

standard complex hav<strong>in</strong>g noth<strong>in</strong>g to do with groups. Indeed, let S<br />

be a set. For r = 0, 1, 2,... let Er be the free Z-module generated<br />

by (r + 1)-tuples (x0,..., xr) with x0,..., x~ 6 S. Thus such (r + 1)-<br />

tuples form a basis <strong>of</strong> Er over Z. There is a unique homomorphism<br />

such that<br />

dr+ 1 : Er+l -+ Er<br />

r+l<br />

dr+l(xo,...,Xr) = ~fi-~(--1)J(xo,...,Xj,...,Xr+i),<br />

j=O


1.3 27<br />

where the symbol ~j means that this term is to be omitted. For<br />

r = 0 we def<strong>in</strong>e r : E0 ~ Z to be the unique homomorphism such<br />

that r = 1. The map s is also called the augmentation. Then<br />

we obta<strong>in</strong> a resolution <strong>of</strong> Z by the complex<br />

---* E~+I ---* E~ ---* ... ---* E0 ---* Z --~ 0.<br />

The above standard complex for an arbitrary set is called the ho-<br />

mogeneous standard complex. It is exact, as one sees by us<strong>in</strong>g<br />

a homotopy as follows. Let z E S and def<strong>in</strong>e<br />

h" E,, ---, E,.+I by h(:co,... ,:r,,.)= (z, xo,...,z,.).<br />

Then it is rout<strong>in</strong>ely verified that<br />

dh + hd = id<br />

Exactness follows at once.<br />

and dd = O.<br />

r<br />

Suppose now that the set S is the group G. Then we may def<strong>in</strong>e<br />

an action <strong>of</strong> G on the homogeneous complex E by lett<strong>in</strong>g<br />

~(,0,..., ~) = (~0,..., ~r).<br />

It is then rout<strong>in</strong>ely verified that each E~ is Z[G]-free. We take<br />

z = e. Thus the homogeneous complex gives a Z[G]-free resolution<br />

<strong>of</strong> Z.<br />

In addition, we have a Z[G]-isomorphism X ~ E between the<br />

non-homogeneous and the homogeneous complex uniquely deter-<br />

m<strong>in</strong>ed by the value on basis elements such that<br />

(~1,...,~) ~ (e,,1, ~1~2,...,~,2 ... ~).<br />

The reader will immediately verify that the boundary operator c9<br />

given for X corresponds to the boundary operator as given on E<br />

under this isomorphism.<br />

If G is f<strong>in</strong>ite, then each Xr is f<strong>in</strong>itely generated. We may then<br />

proceed as was done <strong>in</strong> general to def<strong>in</strong>e the standard modules<br />

X8 <strong>in</strong> negative dimensions. The dual basis <strong>of</strong> {(Crl,..., cry)} will<br />

be denoted by {[~1,-.. ,~r]} for ~ >__ 1. The dual basis <strong>of</strong> (.) <strong>in</strong><br />

dimension 0 will be denoted by [-]. For f<strong>in</strong>ite groups, we thus<br />

obta<strong>in</strong>:


28<br />

Theorem 3.6. Let a be a f<strong>in</strong>ite group. Let X = {Xr}(r E Z)<br />

be the standard complex. Then X is Z[G]-free, acyclic, and such<br />

that the association<br />

A ~ Horns(X, A)<br />

is an exact functor <strong>of</strong> Mod(G) <strong>in</strong>to the category <strong>of</strong> complexes <strong>of</strong><br />

abeIian groups. The correspond<strong>in</strong>g cohomological functor H is<br />

such that H~ = Aa/SGA.<br />

Examples. In the standard complex, the group <strong>of</strong> 1-cocycles<br />

consists <strong>of</strong> maps f : G ---* A such that<br />

f(a) + crf(v) = f(ar) for all o, r E G.<br />

The 1-coboundaries consist <strong>of</strong> maps f <strong>of</strong> the form f(~) = aa - a<br />

for some a E A. Observe that if G has trivial action on A, then by<br />

the above formulas,<br />

HI(A)=Hom(G,A).<br />

In particular, H 1 (Q/Z) = G is the character group <strong>of</strong> G.<br />

The 2-cocycles have also been known as factor sets, and are<br />

maps f(a, r) <strong>of</strong> two variables <strong>in</strong> G satisfy<strong>in</strong>g<br />

f(o', T) + f(o'r,p) = o'f(r,p) + f(cr, vp).<br />

In Theorem 3.5, we showed that for f<strong>in</strong>ite groups, H is erased by<br />

Ms. The analogous statement <strong>in</strong> Theorem 3.1 has been left open.<br />

We can now settle it by us<strong>in</strong>g the standard complex.<br />

Theorem 3.7. Let G be any group. Let B E Mod(Z). Then<br />

for all subgroups G' <strong>of</strong> G we have<br />

Hr(G',Ma(B)) = 0 for r > O.<br />

Pro<strong>of</strong>. By Proposition 2.6 it suffices to prove the theorem when<br />

G' = G. Def<strong>in</strong>e a map h on the cha<strong>in</strong>s <strong>of</strong> the standard complex by<br />

h: Cr(G, MG(B)) ---. Cr-'(G, Ma(B))


1.4<br />

by lett<strong>in</strong>g<br />

One verifies at once that<br />

f = hdf + dhf,<br />

whence the theorem follows. (Cf. Algebra, Chapter XX, w<br />

w Explicit computations<br />

In this section we compute some low dimensional cohomology<br />

groups with some special coefficients.<br />

We recall the exact sequences<br />

o-+ la z --, o<br />

0--, Z---, q-~ Q/Z--~0.<br />

We suppose G f<strong>in</strong>ite <strong>of</strong> order n. We write I = 1c and H = HG for<br />

simplicity. We f<strong>in</strong>d:<br />

H-3(Q/Z) ~ H-2(Z) ~ H-I(I) = I/I 2<br />

H-2(Q/Z) ~ H-I(Z) ~ H~ = 0<br />

H-I(Q/Z) ~ H~ ~ H~(I) = Z/nZ<br />

H~ ~ H~(Z) ~ H2(I) = 0<br />

H~(Q/Z) ~ H2(Z) ~ H3(I) = G.<br />

The pro<strong>of</strong> <strong>of</strong> these formulas arises as follows. Each middle term<br />

<strong>in</strong> the above exact sequences annuls the cohomological functor be-<br />

cause ZIG] is G-regular <strong>in</strong> the first case, and Q is uniquely divisible<br />

<strong>in</strong> the second case. The stated isomorphisms other than those fur-<br />

thest to the right axe then those <strong>in</strong>duced by the coboundary <strong>in</strong> the<br />

cohomology exact sequence.<br />

As for the values furthest to the right, they are proved as follows.<br />

For the first one with 1/12, we note that every element <strong>of</strong> I has<br />

trace 0, and hence H-I(I) = 1/12 directly from its def<strong>in</strong>ition as <strong>in</strong><br />

Theorem 2.7.<br />

For the second l<strong>in</strong>e, we immediately have H-I(Z) = 0 s<strong>in</strong>ce an<br />

element <strong>of</strong> Z with trace 0 can only be equal to 0.<br />

29


30<br />

For the third l<strong>in</strong>e, we have obviously H~ = Z/nZ from the<br />

def<strong>in</strong>ition.<br />

For the fourth l<strong>in</strong>e, Hi(Z) = 0 because from the standard com-<br />

plex, this group consists <strong>of</strong> homomorphism from G <strong>in</strong>to Z, and G<br />

is f<strong>in</strong>ite.<br />

For the fifth l<strong>in</strong>e, we f<strong>in</strong>d G because Hi(Q/Z) is the dual group<br />

Hom(G, Q/Z).<br />

Remark. Let U be a subgroup <strong>of</strong> G. Then<br />

Hr(U,Z[G]) = Hr(U, Q) = 0 for r E Z.<br />

Hence the above table applies also to a subgroup U, if we replace<br />

Ha by Hu and replace na = #(G) by nu = #(U) <strong>in</strong> the third<br />

l<strong>in</strong>e, as well as G by U <strong>in</strong> the last l<strong>in</strong>e.<br />

As far as I/I 2 is concerned, we have another characterization.<br />

Proposition 4.1. Let G be a group (possible <strong>in</strong>f<strong>in</strong>ite). Let G c<br />

be its commutator group. Let [a be the ideal <strong>of</strong> ZIG] generated<br />

by all elements <strong>of</strong> the form cr - e. Then there is a functoriaI<br />

isomorphism (covariant on the category <strong>of</strong> groups)<br />

a/a c . za / by c - e) +<br />

Pro<strong>of</strong>. We can def<strong>in</strong>e a map G --+ 1/12 by cr ~-+ (~ - e) + 12 . One<br />

verifies at once that this map is a homomorphism. S<strong>in</strong>ce I/I 2 is<br />

commutative, G c is conta<strong>in</strong>ed <strong>in</strong> the kernel <strong>of</strong> the homomorphism,<br />

whence we obta<strong>in</strong> a homomorphism G/G c ---+ I/I 2. Conversely, I<br />

is Z-free, and the elements (or - e) with cr E G, ~ # e form<br />

a basis over Z. Hence there exists a homomorphism I ~ G/G c<br />

def<strong>in</strong>ed by the formula (a - e) ~-+ crG c, cr # e. In addition, this<br />

homomorphism is trivial on 12, as one verifies at once. Thus we<br />

obta<strong>in</strong> a homomorphism <strong>of</strong> 1/I 2 <strong>in</strong>to G/G c, which is visibly <strong>in</strong>verse<br />

<strong>of</strong> the previous homomorphism <strong>of</strong> G/G c <strong>in</strong>to [/I 2. This proves the<br />

proposition.<br />

- In particular, from the first l<strong>in</strong>e <strong>of</strong> the table, we f<strong>in</strong>d the isomorphism<br />

H-2(Z) ..~ G/G ~,<br />

obta<strong>in</strong>ed from the coboundary and the isomorphism <strong>of</strong> Proposition<br />

4.1. This isomorphism is important <strong>in</strong> class field theory.


1.4 31<br />

We end our explicit computations with one more result on H 1 .<br />

Proposition 4.2. Let G be a group, A E Mod(G), and let<br />

a E HI(G,A). Let {a(cr)} be a 1-cocycle represent<strong>in</strong>g a. There<br />

exists a G-morphism<br />

f :Ia---~ A<br />

such that f(~r- e) = a(~), i.e. one had f E (Hom(IG, A)) a.<br />

Then the sequence<br />

0 ---* A = Horn(Z, A) --* Hom(Z[G], A) --* Horn(Is,A) ---* 0<br />

is exact, and tak<strong>in</strong>g the coboundary with respect to this short<br />

exact sequence, one has<br />

5(~Gf) = -o~.<br />

Pro<strong>of</strong>. S<strong>in</strong>ce the elements (a -. e) form a basis <strong>of</strong> Ia over Z, one<br />

can def<strong>in</strong>e a Z-morphism f satisfy<strong>in</strong>g f(o" - e) = a(~) for ~ :fie.<br />

The formula is even valid for cr = e, because putt<strong>in</strong>g ~ = r = e <strong>in</strong><br />

the formula for the coboundary<br />

a(~r) = a(cr) + era(r),<br />

we f<strong>in</strong>d a(e) = O. We claim that f is a G-morphism. Indeed, for<br />

a, r E G we f<strong>in</strong>d:<br />

f(cr(r - e)) = f(ar - or) = f((crr - e) - (or - e))<br />

= f(ar - e) - f(~r - e)<br />

= a(ar) -- a(o-)<br />

---- ~a(~)<br />

= ~rf(r - e).<br />

To compute xaf we first have to f<strong>in</strong>d a standard coch<strong>in</strong> <strong>of</strong><br />

Hom(Z[G], A) <strong>in</strong> dimension 0, mapp<strong>in</strong>g on f, that is an element<br />

-f' E Hom(Z[G],A) whose restriction to IG is f. S<strong>in</strong>ce<br />

Z[G] = rc + Z~<br />

is a direct sum, we can def<strong>in</strong>e f' by prescrib<strong>in</strong>g that f'(e) = 0 and<br />

f' is equal to f on Is. One then sees that go = ~f' - f' is a cocycle


32<br />

<strong>of</strong> dimension 1, <strong>in</strong> Horn(Z, A), represent<strong>in</strong>g xcf by def<strong>in</strong>ition. I<br />

claim that under the identification <strong>of</strong> Horn(Z, A) with A, the map<br />

g~ corresponds to -a(cr). In other words, we have to verify that<br />

gz(e) = --a(cr). Here goes:<br />

ga(e) = (<strong>of</strong>')(e) - f'(e)<br />

= o-f'(o --1 )<br />

= <strong>of</strong>(o "-1 -e)<br />

= f(e - o)<br />

= -a(~),<br />

thus prov<strong>in</strong>g our assertion and conclud<strong>in</strong>g the pro<strong>of</strong> <strong>of</strong> Proposition<br />

4.2.<br />

w Cyclic groups<br />

Throughout th<strong>in</strong> section we let G be a f<strong>in</strong>ite cyclic group, and we<br />

let ~ be a generator <strong>of</strong> G<br />

The ma<strong>in</strong> feature <strong>of</strong> the cohomology <strong>of</strong> such a cyclic group is that<br />

the cohomology is periodic <strong>of</strong> period 2, as we shall now prove.<br />

We start with the &functor <strong>in</strong> two dimensions<br />

H51 and H~.<br />

Recall that g: A v -+ H~ A) = AG/SGA and<br />

ax: As~ ---+ H-I(G,A) = Asa/IaA<br />

are the canonical homomorphisms. We are go<strong>in</strong>g to def<strong>in</strong>e a coho-<br />

mological functor directly from these maps. For r E Z we let:<br />

f H-I(G,A) ifr is odd<br />

H~(G,A) / H~ A) if r is even.<br />

We then have to def<strong>in</strong>e the coboundary. Let<br />

0 ---+ A' --~ A --L A" ---+ 0


1.5 33<br />

be a short exact sequence <strong>in</strong> Mod(G). For each r E Z we def<strong>in</strong>e<br />

x~ and ~x~ <strong>in</strong> the natural way given the above def<strong>in</strong>ition, and for<br />

a" E A "a we pick any element a E A such that va = a" and def<strong>in</strong>e<br />

~,xr(a") - ~r(cra - a).<br />

Similarly, <strong>in</strong> odd dimensions, for a" E Asc we pick a E A such that<br />

va = a" and we def<strong>in</strong>e<br />

= xr(SGa).<br />

It is immediately verified that ~, is well-def<strong>in</strong>ed (depend<strong>in</strong>g on the<br />

choice <strong>of</strong> generator or), that is <strong>in</strong>dependent <strong>of</strong> the choice <strong>of</strong> a such<br />

that va = a". It is then also rout<strong>in</strong>ely and easily verified that the<br />

sequence {H r} (r E Z) with the coboundary ** is a cohomologi-<br />

cal functor. S<strong>in</strong>ce it vanishes on G-regular modules, and is given<br />

as before <strong>in</strong> dimension < 0, it follows that it is isomorphic to the<br />

special functor def<strong>in</strong>ed previously, by the uniqueness theorem. Di-<br />

rectly from this new def<strong>in</strong>ition, we now see that for all r E Z and<br />

A E Mod(G) we have the periodicity<br />

H"+2(G,A)=H"(G,A).<br />

Of course, by truncat<strong>in</strong>g on the left we can def<strong>in</strong>e a similar<br />

functor <strong>in</strong> the ord<strong>in</strong>ary cue. We put H~ = A c as before, and<br />

for r _> 1 we let:<br />

H-I(G,A) ifrisodd<br />

H"(A) = HO(G,A ) if r is even.<br />

We def<strong>in</strong>e the coboundary as before, so we f<strong>in</strong>d a cohomological<br />

functor which is periodic for r >__ O, and 0 <strong>in</strong> negative dimensions.<br />

Aga<strong>in</strong> the uniqueness theorem shows that it co<strong>in</strong>cides with the<br />

functor def<strong>in</strong>ed <strong>in</strong> the previous sections. The beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the co-<br />

homology sequence reads:<br />

0 ---+ A '~ ~ A a --~ A ''a ----+ H-I(G,A)<br />

and it cont<strong>in</strong>ues as for the special functor.<br />

The cohomology sequence for the special functor can be conve-<br />

niently written as <strong>in</strong> the next theorem.


34<br />

Theorem 5.1. Let. G be f<strong>in</strong>ite cyclic and let a be a generator.<br />

Let<br />

0 ---* A I ---* A --~ A" ---, 0<br />

be a short exact sequence <strong>in</strong> Mod(G).<br />

is exact:<br />

H-1 .H-I(A '')<br />

Then the follow<strong>in</strong>g hexagon<br />

HI(A ') = H-I(A ') H~ ')<br />

H~ H~<br />

Suppose given an exact hexagon <strong>of</strong> f<strong>in</strong>ite abelian groups as shown:<br />

H2<br />

H6 Ha<br />

\ /<br />

Hs 9 H4<br />

and let hi be the order <strong>of</strong> Hi, that is hi = (Hi : 0). Let<br />

fi : Hi ---* Hi+l with i mod 6<br />

be the correspond<strong>in</strong>g homomorphism <strong>in</strong> the diagram. Then<br />

Hence<br />

hi = (Hi : fi-lHi-1)(fi-lHi-1 : O) = mimi-1.<br />

momlm2rnsm4m5 hlhahs<br />

1-- ----<br />

rnlm2rnsrn4msrns h2h4h6 "<br />

We may apply this formula to the exact sequence <strong>of</strong> Theorem 5.1.<br />

Assume that each group Hi(A) is f<strong>in</strong>ite, and let hi(A) = order <strong>of</strong><br />

Hi(G, A). Then<br />

hl(A')ht(A")h2(A)<br />

1= hl(d)h2(A')h2(A")"


1.5 35<br />

Now let A E Mod(G) be arbitrary. If hi(A) and h2(A) are f<strong>in</strong>ite,<br />

we def<strong>in</strong>e the Herbrand quotient h2D(A) to be<br />

h2(A)<br />

h2/l(A)- hi(A)<br />

(A._, :SoA)<br />

Asc : (a - e)A)"<br />

If h~(A) or h2(A) is not f<strong>in</strong>ite, we say that the Herbrand quotient<br />

is not def<strong>in</strong>ed. This Herbrand quotient is <strong>in</strong> fact a Euler charac-<br />

teristic, cf. for <strong>in</strong>stance Algebra, Chapter XX, w If A is a f<strong>in</strong>ite<br />

abelian group <strong>in</strong> Mod(G), then the Herbrand quotient is def<strong>in</strong>ed.<br />

The ma<strong>in</strong> properties <strong>of</strong> the Herbrand quotient are conta<strong>in</strong>ed <strong>in</strong> the<br />

next theorems.<br />

Theorem 5.2. Herbrand's Lemma. Let G be a f<strong>in</strong>ite cyclic<br />

group, and let<br />

0 ~ A' ---* A ---* A" ---* 0<br />

be a short exact sequence <strong>in</strong> 1VIod(G). /] two out <strong>of</strong> three Her-<br />

brand quotients h2/l(A'),h2/l(A),h2/l(A") are def<strong>in</strong>ed so is the<br />

third, and one has<br />

h2/l(A ) = h2/l(A')h2/l(AU).<br />

Pro<strong>of</strong>. This follows at once from the discussion preced<strong>in</strong>g the<br />

theorem. It is also a special case <strong>of</strong> Algebra, Chapter XX, Theorem<br />

3.3.<br />

Theorem 5.3. Let G be f<strong>in</strong>ite cyclic and suppose A E Mod(G)<br />

is f<strong>in</strong>ite. Then h2/l(A ) = O.<br />

Pro<strong>of</strong>. We have a lattice <strong>of</strong> subgroups:<br />

A<br />

J<br />

ASa A~,_~<br />

I I<br />

(~ - e)A SeA<br />

The factor groups A/Asc and SaA are isomorphic, and so are<br />

A/A,_, and (a - e)A. Comput<strong>in</strong>g the order (A: 0) go<strong>in</strong>g around<br />

0


36<br />

both sides <strong>of</strong> the hexagon, we f<strong>in</strong>d that the factor groups <strong>of</strong> the two<br />

vertical sides have the same order, that is<br />

(Asc : (a - e)A) = (A~_~ : SGA).<br />

That h2/l(A) = 1 now follows from the def<strong>in</strong>itions.<br />

F<strong>in</strong>ally we have a result concern<strong>in</strong>g the Herrbrand quotient for<br />

trivial action.<br />

Theorem 5.4. Let G be a f<strong>in</strong>ite cyclic group <strong>of</strong> prime order p.<br />

Let A E Mod(G). Let t(A) be the Herbrand quotient relative to<br />

the trivial action <strong>of</strong> G on the abelian group A, so that<br />

t(A) - (Ap 0)<br />

(A/pA'O)<br />

Suppose this quotient is def<strong>in</strong>ed. Then t(AG), t(Av), and h2/l(A)<br />

are def<strong>in</strong>ed, and one has<br />

h2/l(A) p-1 = t(AC)P/t(A) = t(AG)P/t(A).<br />

Pro<strong>of</strong>. We leave the pro<strong>of</strong> as an exercise (not completely trivial).


CHAPTER II<br />

Relations with Subgroups<br />

This chapter tabulates systematically a number <strong>of</strong> relations be-<br />

tween the cohomology <strong>of</strong> a group and that <strong>of</strong> its subgroups and<br />

factor groups.<br />

w Various morphisms<br />

(a) Chang<strong>in</strong>g the group G. Let ), : G' ~ G be a group<br />

homomorphism. Then gives rise to an exact functor<br />

~: Mod(a)-~ Mod(C')<br />

because every G-module can be considered as a G'-module if we<br />

def<strong>in</strong>e the action <strong>of</strong> an element cr ~ E G ~ on an element a E A by<br />

~'a = ~(~')a.<br />

We may therefore consider the cohomoiogical functor Ho, o ~;~ (or<br />

the special functor He, o ~:~ if G' is f<strong>in</strong>ite) on Mod(G).<br />

In dimension 0, we have a morphism <strong>of</strong> functors<br />

g~ --+ H~, o ~<br />

given by the <strong>in</strong>clusion A ~ ~ A G' = (~x(A)) c'. If <strong>in</strong> addition G<br />

and G' are f<strong>in</strong>ite, then we have a morpkism <strong>of</strong> functors<br />

H a ---. H a, o ~


38<br />

given by the homomorphism Aa/SGA --~ AG'/SG, A, with G' act-<br />

<strong>in</strong>g on A <strong>in</strong> the manner prescribed above, via A.<br />

By the uniqueness theorem, there exists a unique morphism <strong>of</strong><br />

cohomological functor (5-morphism)<br />

A* : HG "-+ HG' o ~x or HG--~HG, o~x,<br />

the second possibility aris<strong>in</strong>g when G and G' are f<strong>in</strong>ite. We shall<br />

now make this map )~* explicit <strong>in</strong> various special cases.<br />

Suppose A is surjective. Then we call A* the lift<strong>in</strong>g morphism,<br />

and we denote it by lif(gG,. In this case, G may be viewed as a factor<br />

group <strong>of</strong> G ~ and the lift<strong>in</strong>g goes from the factor group to the group.<br />

On the other hand, when G ~ is a subgroup <strong>of</strong> G, then A* will be<br />

called the restriction, and will be studied <strong>in</strong> detail below.<br />

Let A E Mod(G) and B E Mod(G'). We may consider A as<br />

a G'-module as above (via the given A). Let v : A --* B be a<br />

G'-morphism. Then we say that the pair (A,v) is a morphism<br />

<strong>of</strong> (G, A) to (G', B). One can def<strong>in</strong>e formally a category whose<br />

objects axe pairs (G, A) for which the morphisms are precisely the<br />

pairs (k, v). Every morphism (k, v) <strong>in</strong>duces a homomorphism<br />

(A,v). : H~(G,A) ~ H~(G',B),<br />

and similarly replac<strong>in</strong>g H by the special H if G and G' are f<strong>in</strong>ite,<br />

by tak<strong>in</strong>g the composite<br />

H"(G,A) x*, Hr(G',A) H~,(,)H~(G, B)"<br />

Of course, we should write more correctly Hr(G ', ~5~(A)), but usu-<br />

ally we delete the explicit reference to r when the reference is<br />

clear from the context.<br />

Proposition 1.1. Let (A,v) be a morphism <strong>of</strong> (G,A) to G',B),<br />

is a morphism <strong>of</strong> (G,A) to (G",C), and one has


II.1 39<br />

Pro<strong>of</strong>. S<strong>in</strong>ce ~* is a morphism <strong>of</strong> functors, the follow<strong>in</strong>g diagram<br />

is commutative:<br />

Consequently we f<strong>in</strong>d<br />

H~(G,,~x(A)) Ha,(~) H~(G,,B)<br />


40<br />

(c) Inflation. Let A : G ---, G/G' be a surjective homomor-<br />

phism. Let A E Mod(G). Then A G' is a G/G'-module for the<br />

obvious action <strong>in</strong>duced by the action <strong>of</strong> G, trivia[ on G', and <strong>of</strong><br />

course A G' is also a G-module for this operation. We have a mor-<br />

phism <strong>of</strong> <strong>in</strong>clusion<br />

u : A a' ~ A<br />

<strong>in</strong> Mod(G), which <strong>in</strong>duces a homomorphism<br />

H~(u) = u~ " H~(G,A a') ~ H~(G,A) for r => 0.<br />

We def<strong>in</strong>e <strong>in</strong>flation<br />

<strong>in</strong>t~a/c'- H~(G/G',A a') ---, H~(G,A)<br />

to be the composite <strong>of</strong> the functorial morphism<br />

H"(G/G',A a' ) .-_, H"(G,A a' )<br />

followed by the <strong>in</strong>duced homomorphism ur for r => 0. Note that<br />

<strong>in</strong>flation is NOT def<strong>in</strong>ed for the special cohomology functor when<br />

G is f<strong>in</strong>ite.<br />

In dimension 0, the <strong>in</strong>flation therefore gives the identity map<br />

(A G' )G/G' --+ A G.<br />

In dimension r > 0, it is <strong>in</strong>duced by the cocha<strong>in</strong> homomorphism <strong>in</strong><br />

the standard complex, which to each cocha<strong>in</strong> {f(~h,... ,~r)} with<br />

~i E G/G' associates the cocha<strong>in</strong> {f(al,... ,~rr)} whose values are<br />

constant on cosets <strong>of</strong> G'.<br />

We have already observed that if G acts trivially on A, then<br />

Hi(G, A) is simply Horn(G, A). Therefore we obta<strong>in</strong>:<br />

Proposition 1.3. Let G' be a normal subgroup o/G and sup-<br />

pose G acts trivially on A. Then the <strong>in</strong>flatwn<br />

<strong>in</strong>i~a/c'- HI(G/G',A a') ~ HI(G,A)<br />

<strong>in</strong>duces the <strong>in</strong>flation <strong>of</strong> a homomorphism ~ : G/G' --* A to a<br />

homomorphism X " G --~ A.<br />

Let G' be a normal subgroup <strong>of</strong> G. We may consider the asso-<br />

ciation<br />

FG:A~A G'


II.1 41<br />

as a functor, not exact, from Mod(G) to Mod(G/G'). Inflation is<br />

then a morphism <strong>of</strong> functors (but not a cohomological morphism)<br />

Ha~a, o FG, --+ Ha<br />

on the category Mod(G). Even though we are not deal<strong>in</strong>g with<br />

a cohomological morphism, we can still use the uniqueness theo-<br />

rem to prove certa<strong>in</strong> commutativity formulas, by decompos<strong>in</strong>g the<br />

<strong>in</strong>flation <strong>in</strong>to two pieces.<br />

As another special case <strong>of</strong> Proposition 1.1, we have:<br />

Proposition 1.4. Let G', N be subgroups <strong>of</strong> G with N normal<br />

<strong>in</strong> G, and N conta<strong>in</strong>ed <strong>in</strong> G'. Then on Hr(G/N, A N) we have<br />

<strong>in</strong>~GG ' ,IN o resG,/N G/N = resG G, o <strong>in</strong>~G/N.<br />

We also have transitivity, also as a special case <strong>of</strong> Proposition<br />

1.1.<br />

Proposition 1.4. Let G ---* G1 ---* G2 be aurjective group ho-<br />

momorphisma. Then<br />

<strong>in</strong>g'o <strong>in</strong>g~ = <strong>in</strong>i~a =.<br />

(d) Conjugation. Let U be a subgroup <strong>of</strong> G. For ~ E G we<br />

have the conjugate subgroup<br />

v = = =<br />

The notation is such that U (~) = (U~) ~'. On Mod(G) we have two<br />

cohomological functors, Hu and Hu-. In dimension 0, we have an<br />

isomorphism <strong>of</strong> functors<br />

A U--~A U~ given by a~r-la.<br />

We may therefore extend this isomorphism uniquely to an isomor-<br />

phism <strong>of</strong>/-/u with Hu. which we denote by a, and which we call<br />

conjugation.<br />

Similarly if U is f<strong>in</strong>ite, we have conjugation ~, on the special<br />

functor Ha --~ Hu~.


42<br />

Proposition 1.5. If or E U then a, is the identity on Hu (reap.<br />

Hu if U is f<strong>in</strong>ite).<br />

Pro<strong>of</strong>. The assertion is true <strong>in</strong> dimension O, whence <strong>in</strong> all di-<br />

mensions.<br />

Let f : A --* B be a U-morphism with A, B E Mod(G). Then<br />

f~ = [cr -1If = f[~r] : A ---* B<br />

is a U~-morphism. The fact that a, is a morphism <strong>of</strong> functors<br />

shows that<br />

o = o rv(f)<br />

as morphisms on H(U, A) (and similarly for H replaced by H if U<br />

is f<strong>in</strong>ite).<br />

If U is a normal subgroup <strong>of</strong> G, then or, is an automorphism <strong>of</strong><br />

Hu (resp. Hu if U is f<strong>in</strong>ite). In other words, G acts on Hu (or<br />

Hu). S<strong>in</strong>ce we have seen that or, is trivial if ~ E U it follows that<br />

actually G/U acts on Hu (resp. Hu).<br />

Proposition 1.7. Let V C U be subgroups <strong>of</strong> G, and let ~r E G.<br />

Then<br />

a, ores =res . oct.<br />

on Hu (resp. Hu if U is f<strong>in</strong>ite).<br />

Proposition 1.8. Let V C U be subgroups <strong>of</strong> G o f f<strong>in</strong>ite <strong>in</strong>dex,<br />

and let a E G. Suppose V normal <strong>in</strong> U. Then<br />

<strong>in</strong> ~ o~r, =(r. o<strong>in</strong> IV<br />

on H(U/V, AV), with A E Mod(G).<br />

Both the above propositions are special cases <strong>of</strong> Proposition 1.1.<br />

(e) The transfer. Let U be a subgroup <strong>of</strong> G, <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex.<br />

The trace gives a morphism <strong>of</strong> functors H~] ~ U~ by the formula<br />

S U 9 A U ---, A G,<br />

and similarly <strong>in</strong> the special case when G is f<strong>in</strong>ite, H~r --~ H~ by<br />

S U . AU/SuA -., Aa/SaA.


II.1 43<br />

The unique extension to the cohomological functors will be denoted<br />

by tr U, and will be called the transfer. The follow<strong>in</strong>g proposition<br />

is proved by verify<strong>in</strong>g the asserted commutativity <strong>in</strong> dimension 0,<br />

and then apply<strong>in</strong>g the uniqueness theorem. In the case <strong>of</strong> <strong>in</strong>flation,<br />

we decompose this map <strong>in</strong> its two components.<br />

Proposition 1.9. Let V C U C G be subgroups o/f<strong>in</strong>ite <strong>in</strong>dex<br />

<strong>in</strong> G. Then on Hv (resp. Hv) we have<br />

(I) tra g o tr y :tra v.<br />

(2) ~.otr V =tr vocr. for cr C a.<br />

(3) If V is normal <strong>in</strong> a, then on H~(U/V, AV) with r >= 0 we<br />

have<br />

. U/V =tr Uo<strong>in</strong>~U/v.<br />

<strong>in</strong>f~a/v o r, rG/V<br />

The next result is particularly important.<br />

Proposition 1.10. Let U be a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G.<br />

Then on Ha (resp. Ha) we have<br />

tr U ores a = (G" U),<br />

where (G :U) on the right abbreviates (G" U)H, i.e. multipli-<br />

cation by the <strong>in</strong>dex on the cohomology functor.<br />

Pro<strong>of</strong> Aga<strong>in</strong> the formula is immediate <strong>in</strong> dimension O, s<strong>in</strong>ce re-<br />

striction is just <strong>in</strong>clusion, and so the trace simply multiplies el-<br />

ements by (G : U). Then the proposition follows <strong>in</strong> general by<br />

apply<strong>in</strong>g the uniqueness theorem.<br />

Corollary 1.11. Suppose G f<strong>in</strong>ite <strong>of</strong> order n. Then for all<br />

r E Z and A E Mod(C) we have nH~(G,A) = 0.<br />

Pro<strong>of</strong>i Take U = {e} <strong>in</strong> the proposition and use the fact that<br />

g~(e,A) =0.<br />

Corollary 1.12. Suppose G f<strong>in</strong>ite, and A E Mod(G) f<strong>in</strong>itely<br />

generated over Z. Then H"(G, A) is a f<strong>in</strong>ite group for all r E Z.<br />

Pro<strong>of</strong>. First Hr(G, A) is f<strong>in</strong>itely generated, because <strong>in</strong> the stan-<br />

dard complex, the cocha<strong>in</strong>s are determ<strong>in</strong>ed by their values on the


44<br />

f<strong>in</strong>ite number <strong>of</strong> generators <strong>of</strong> the complex <strong>in</strong> each idmension. S<strong>in</strong>ce<br />

Hr(G, A) is a torsion group by the preced<strong>in</strong>g corollary, it follows<br />

that it is f<strong>in</strong>ite.<br />

Corollary 1.13. Suppose G f<strong>in</strong>ite and A E Mod(G) is uniquely<br />

divisible by every <strong>in</strong>teger m 6 Z, m # O. Then Hr(G, A) = 0 for<br />

all r E Z.<br />

Proposition 1.14. Let U C G be a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex.<br />

Let A, B 6 Mod(G) and let f : A ---* B be a U-morphism. Then<br />

Ha(SV(f)) = trv o Hv(f) o rest,<br />

and similarly with H <strong>in</strong>stead <strong>of</strong> H when G is f<strong>in</strong>ite.<br />

Pro<strong>of</strong>. We use the fact that the assertion is immediate <strong>in</strong> dimen-<br />

sion 0, together with the technique <strong>of</strong> dimension shift<strong>in</strong>g. We also<br />

use Chapter I, Lemma 2.4, that we can take a G-morp~sm <strong>in</strong> and<br />

out <strong>of</strong> a trace, so we f<strong>in</strong>d a commutative diagram<br />

0 , A , MG(A) , XA , 0<br />

! 1 l<br />

0 , B , MG(B) , XB , 0<br />

the three vertical maps be<strong>in</strong>g sU(f),SU(M(f)) and sU(x(f)) respectively.<br />

In the hypothesis <strong>of</strong> the proposition, we replace f by<br />

X(f) : XA ----+ XB, and we suppose the proposition proved for<br />

X(f). We then have two squares which form the faces <strong>of</strong> a cube as<br />

shown:<br />

res : Hu(XA)<br />

HG(XA)<br />

HG(XB) ~ res<br />

~(A{Hc(S~(x(I)))<br />

HG(B) "<br />

tr<br />

-<br />

\<br />

Hu(A)<br />

Hu(B)<br />

The maps go<strong>in</strong>g forward are the coboundary homomorphisms, and<br />

are surjective s<strong>in</strong>ce MG erases cohomology. Thus the diagram al-<br />

lows an <strong>in</strong>duction on the dimension to conclude the pro<strong>of</strong>. In the<br />

case <strong>of</strong> the special functor H, we use the dual diagram go<strong>in</strong>g to the<br />

left for the <strong>in</strong>duction.


II. 1 45<br />

Corollary 1.15. Suppose G f<strong>in</strong>ite and A,B E Mod(G). Let<br />

f 9 A ---, B be a Z-morphism. Then SG(f) " A --~ B <strong>in</strong>duces 0<br />

on all the cohomology groups.<br />

Pro<strong>of</strong>. We can take U = {e} <strong>in</strong> the preced<strong>in</strong>g proposition.<br />

Explicit formulas<br />

We shall use systematically the followihg notation. We let {c}<br />

be the set <strong>of</strong> right cosets <strong>of</strong> a subgroup U <strong>of</strong> G (not necessarily<br />

f<strong>in</strong>ite). We choose a set <strong>of</strong> coset representatives denoted by ~. If<br />

cr E G, we denote by ~ the representative <strong>of</strong> Uc. We may then<br />

write<br />

G = UU~ : U~-IU<br />

c c<br />

s<strong>in</strong>ce {~--1} is a system <strong>of</strong> representatives for the left cosets <strong>of</strong> U <strong>in</strong><br />

G. By def<strong>in</strong>ition, we have U~ = Uc, whence for all a E G, we have<br />

caca 1 E U.<br />

We now give the explicit formula for the transfer on standard<br />

cochalns. It is <strong>in</strong>duced by the cocha<strong>in</strong> map f ~ trU(f) given by<br />

trU(f)(cr0,... ,or,) = E c-l f(ca~ " " ' ccrr-~-~l )"<br />

For a non-homogeneous cochaln, we have the formula<br />

c<br />

trGU(f)(~rl,... ,at) =<br />

- -<br />

,... , C0.10.2 C0.10. 1-1<br />

c<br />

,...,r r 1).<br />

(f) Translation. Let G be a group, U a subgroup and N a<br />

normal subgroup <strong>of</strong> G. Let A E Mod(G). Then we have a lattice


46<br />

<strong>of</strong> submodules <strong>of</strong> A:<br />

A<br />

I<br />

AUnN<br />

J<br />

A U A N<br />

/<br />

AUN<br />

I<br />

A a<br />

We have UN/N ,.m U/(U O N), and U acts on A N s<strong>in</strong>ce G acts<br />

on A N. Furthermore U O N leaves A N fixed, and so we have a<br />

homomorphism called translation<br />

tsl," H~(UN/N,A N) ~ H~(U/(U O N),A UnN)<br />

for r __> 0. The isomorphism UN/N .~ U/(U N N) is compatible<br />

with the <strong>in</strong>clusion <strong>of</strong> A N <strong>in</strong> A vnN. Similarly, if G is f<strong>in</strong>ite, we get<br />

the translation for the special cohomology H <strong>in</strong>stead <strong>of</strong> H, with<br />

r_>O.<br />

Tak<strong>in</strong>g G arbitrary and r _>_ O, we have a commutative diagram:<br />

H,.(G/N, AN) res Hr(UN/N, AN ) <strong>in</strong>f H"(UN, A)<br />

<strong>in</strong>f I ur(v/(u n N),A vnN) 1~<br />

H"(G,A) ,<br />

<strong>in</strong>f l<br />

H~(U,A) , H"(U,A)<br />

res<br />

The composition, which one can achieve <strong>in</strong> three ways,<br />

tsl, " H"(G/N,A N) --~ H~(U,A)<br />

will also be called translation, and is denoted tsl,.<br />

In dimension -1, we have the follow<strong>in</strong>g explicit determ<strong>in</strong>ation<br />

<strong>of</strong> cohomology.<br />

l tsl


II.1<br />

Proposition 1.16.<br />

Let A E Mod(G).<br />

(1) For a E dsa we have SU(a) E As~ and<br />

res~n~a(a) = nru(a) = ~G(a).<br />

(3) Let a E Asv and cr E G. Then a-la E Asw<br />

(7,~u( a) = >I


48<br />

In particular, if U is a subgroup <strong>of</strong> G, we have the canonical ho-<br />

momorphism<br />

<strong>in</strong>c. 9 U/U ~ ---. GIG ~<br />

<strong>in</strong>duced by the <strong>in</strong>clusion.<br />

If U is <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G then we have the transfer from group<br />

theory<br />

def<strong>in</strong>ed by the product<br />

Tr~ = =a/C~177 c --.Uly ~<br />

Tr ( V c) = UC)<br />

Cf. for <strong>in</strong>stance Art<strong>in</strong>-Tate, Chapter XlII, w<br />

We shall now see that the transfer and restriction on H -2 cor-<br />

respond to the <strong>in</strong>clusion and transfer on the groups (so the order<br />

is reversed).<br />

Theorem 1.17. Let G be a f<strong>in</strong>ite group and U a subgroup.<br />

Then:<br />

1. The transfer trU: H-2(U,Z) ~ H-2(G,Z) corresponds to<br />

the natural map U/U c ----. G/G c <strong>in</strong>duced by the <strong>in</strong>clusion <strong>of</strong><br />

U <strong>in</strong> G. Thus we may write<br />

tr(C,-) = C,-.<br />

2. The restriction res G" H-2(G, Z) ---. H-2(U, Z) corresponds<br />

to the transfer <strong>of</strong> group theory. Thus we may write<br />

res (C ) =<br />

. Conjugation o'.: H-2(U,Z) --. I4.-2(U~,Z) corresponds<br />

to the map <strong>of</strong> U/U c <strong>in</strong>to U~/(U~) c <strong>in</strong>duced by conjugation<br />

with a E G, so we may write


II.1 49<br />

Pro<strong>of</strong>. S<strong>in</strong>ce Z[U] is naturally conta<strong>in</strong>ed <strong>in</strong> Z[G] we obta<strong>in</strong> a<br />

commutative diagram<br />

0 , zv z[u] , z ,0<br />

0 > Iv Z[G] , Z , 0<br />

the vertical maps be<strong>in</strong>g <strong>in</strong>clusions, and the map on Z be<strong>in</strong>g the<br />

identity. The horizontal sequences are exact. Consequently we<br />

obta<strong>in</strong> a commutative diagram<br />

H-2(U, Z)<br />

H-2(U, Z)<br />

, H-I(U, Iu) ~ Z~IX~:<br />

~ <strong>in</strong>c.<br />

, H-I(U, Ic) ~(IG)s~/IuIa.<br />

The coboundaries are isomorphisms, and hence <strong>in</strong>c. is also an iso-<br />

morphism. Thus we may write, as we have done, (fG)sr:/fufc<br />

<strong>in</strong>stead <strong>of</strong> Iu/I~]. In dimension -1 we may then use the explicit<br />

determ<strong>in</strong>ation <strong>of</strong> H -2 from the preced<strong>in</strong>g proposition, which we do<br />

case by case.<br />

Let ~- E U. Then v - e is <strong>in</strong> (IG)su, and we have<br />

trU~


50<br />

because c ~ ca permutes the cosets. S<strong>in</strong>ce caca 1 is <strong>in</strong> U, we may<br />

rewrite this equality <strong>in</strong> the form<br />

~(~a~ -~ _ ~)(~- ~) + ~(~a~ -~ _ ~)<br />

C C<br />

= ~(~a~ -~ - ~) mod 177<br />

C<br />

If we apply ~x to both sides, one sees that the second formula is<br />

proved, tak<strong>in</strong>g <strong>in</strong>to account the formula for the transfer <strong>in</strong> group<br />

theory, which ~ves<br />

Tr~(aa c) = [I(~a~-i uo).<br />

As to the third formula, it is proved similarly, us<strong>in</strong>g the equalities<br />

= (,_ ~)(~-1 _~)+(~_ ~)<br />

----(r-e) modIufa.<br />

This concludes the pro<strong>of</strong> <strong>of</strong> Theorem 1.17.<br />

w Sylow subgroups<br />

Let G be a f<strong>in</strong>ite group <strong>of</strong> order N. For each prime p I _IV there<br />

exists a Sylow subgroup Gp, i.e. a subgroup <strong>of</strong> order a power <strong>of</strong><br />

p such that the <strong>in</strong>dex (G : Gp) is prime to p. Furthermore, two<br />

Sylow subgroups are conjugate.<br />

In particular, if A E Mod(G) then Hr(Gp, A) is well def<strong>in</strong>ed, up<br />

to a conjugation isomorphism.<br />

By Corollary 1.11 we know that Hr(G,A) is a torsion group.<br />

Therefore<br />

H~(G, A)=GH"(G,A,p),<br />

pIN<br />

where H~(a, A, p) is the p-primary subgroup <strong>of</strong> Hr(a, A), i.e. con-<br />

sists <strong>of</strong> those elements whose period is a power <strong>of</strong> p. In particular,<br />

if G = Gp is a p-group, then<br />

H~(G,A) = H~(G,A,p).


II.2 51<br />

Theorem 2.1. Let Gp be a p-Sylow subgroup <strong>of</strong> G. Then for<br />

all r E Z, the restriction<br />

is <strong>in</strong>jective, and the transfer<br />

resg, "H~(G,A,p)--~ Hr(G,A)<br />

tr~" . H~(Gp, A) --~ H~(G,A,p)<br />

is surjective. We have a direct sum decomposition<br />

H~(Gp,A) = Im rest, + Ker tr~ p.<br />

Pro<strong>of</strong>. Let q= (Gp : e) be the order <strong>of</strong>Gp andm=(G : Gp).<br />

These <strong>in</strong>tegers are relatively prime, and so there exists an <strong>in</strong>teger<br />

m ~ such that rn'm = 1 rood q. For all a E H~(Gp, A) we have<br />

a = rn'rnc~ -- rn' 9 tr~ p rest, (c~) = ~ra' G, rn' 9 resgp (c~),<br />

whence the <strong>in</strong>jectivity and surjectivity foUow as asserted. For the<br />

third, we have for/3 E Hr(Gp, A),<br />

= res .~'tr(Z) + (# - res .~'tr(#)),<br />

the restriction and transfer be<strong>in</strong>g taken as above. One sees immedi-<br />

ately that the first term on the right is the image <strong>of</strong> the restriction,<br />

and the second term is the kernel <strong>of</strong> the transfer. The sum is direct,<br />

because if/3 = res(a), tr(fl) = 0, then<br />

tr(res(~)) = .~ = 0,<br />

whence m'rno~ = ~ = 0 and so t3 = 0. This concludes the pro<strong>of</strong>.<br />

Corollary 2.2. Given r E Z, and A E Mod(G), the map<br />

p<strong>in</strong><br />

gives an <strong>in</strong>jective homomorphism<br />

W(V,a) -~ 1-I H~(GP'A) 9<br />

pIN


52<br />

Corollary 2.3. /f H~(Gp, A) is <strong>of</strong> f<strong>in</strong>ite order for all p ] N,<br />

then so is H~(G, A), and the order <strong>of</strong> this latter group divides<br />

the product <strong>of</strong> the orders <strong>of</strong> H~(Gp,A) for all piN.<br />

Corollary 2.4. /f H~(Gp,A) = 0 for alI p, then H~(G,A) = O.<br />

w Induced representations<br />

Let G be a group and U a subgroup. We are go<strong>in</strong>g to def<strong>in</strong>e a<br />

functor<br />

MU: Mod(U) --* Mod(G).<br />

Let B E Mod(U). We let MU(B) be the set <strong>of</strong> mapp<strong>in</strong>gs from G<br />

<strong>in</strong>to B satisfy<strong>in</strong>g<br />

One can also write<br />

af(x)=f(ax) for ~rEU and xEG.<br />

MU(B) = (MG(B)) U.<br />

The sum <strong>of</strong> two mapp<strong>in</strong>gs is taken as usual summ<strong>in</strong>g their values,<br />

so Mu(B) is an abelian group. We can def<strong>in</strong>e an action <strong>of</strong> G on<br />

MU(B) by the formula<br />

We then have transitivity.<br />

(af)(x) = f(xa) for cr, x E G.<br />

Proposition 3.1. Let V C U be subgroups <strong>of</strong> G.<br />

functors<br />

MUoM v and M v<br />

are isomorphic <strong>in</strong> a natural way.<br />

We leave the pro<strong>of</strong> to the reader.<br />

Then the<br />

We use the same notation as <strong>in</strong> w with a right coset decompo-<br />

sition {c} <strong>of</strong> U <strong>in</strong> G, and chosen representatives ~. We cont<strong>in</strong>ue to<br />

use B E Mod(U).


II.3 53<br />

Proposition 3.2. Let G be a group and U a subgroup with<br />

right cosets {c}. Then the map f ~ resf, which to an element<br />

f 9 Mg(B) associates its restriction to the coset representatives<br />

{~}, is a Z-isomorphism<br />

MU(B)--* M(G/U,B)<br />

where M(G/U, B) is the additive group <strong>of</strong> maps from the coset<br />

space G/U <strong>in</strong>to B.<br />

Pro@ The formula f(o'~') = af(~-) for ~r 9 U and r 9 G shows<br />

that the values f(~) <strong>of</strong> f on coset representatives determ<strong>in</strong>e f, so<br />

the restriction map above is <strong>in</strong>jective. Furthermore, given a map<br />

fo : G/U ~ B, if we def<strong>in</strong>e f0(e) = fo(c), then we may extend f0<br />

to a map f : G ~ B by the same formula, so the proposition is<br />

clear.<br />

Proposition 3.3. Let G be a group and U a subgroup. Then<br />

M U is an additive, covariant, exact functor <strong>of</strong> Mod(U) to Mod(G).<br />

Pro<strong>of</strong>. Let h : B ---* B' be a surjective morpkism <strong>in</strong> Mod(U),<br />

and suppose f' : G/U ---* B' is a given map. For each value f'(5)<br />

there exists an element b E B such that h(b) = f'(5). We may then<br />

def<strong>in</strong>e a map f : G/U ~ B such that fob = ft. From this one sees<br />

that M~(B) ---* MU(B ') is surjective. The rest <strong>of</strong> the proposition<br />

is even more rout<strong>in</strong>e.<br />

Theorem 3.4. Let G be a group and U a subgroup. The bi-<br />

functors<br />

Home(A, Mg (B)) and Som (d, 8)<br />

from Mod(G) x MoG(U) to Mod(Z) are isomorphic under the<br />

follow<strong>in</strong>g associations. Given f e Homc(d, MU(B)), we let f~<br />

be the map A ~ B such that fl(a) = f(a)(e). Then fl is <strong>in</strong><br />

Homu(A, B). Conversely, given h E Homu(A, B) and<br />

a e A, letg~ be def<strong>in</strong>ed byg~(cr) = h(cra). Thena~-+ga is <strong>in</strong><br />

Homa(A, MU(B)). The maps f ~-* fl,a ~-* (a ~ g~) are <strong>in</strong>verse<br />

to each other.<br />

Pro<strong>of</strong>. Rout<strong>in</strong>e verification left to the reader.<br />

The above theorem is fundamental, and is one version <strong>of</strong> the<br />

basic formalism <strong>of</strong> <strong>in</strong>duced representations. Cf. Algebra, Chapter<br />

XVIII, w


54<br />

Corollary 3.5. We have (MU(B)) a = B v.<br />

Pro<strong>of</strong>. Take A = Z <strong>in</strong> the theorem.<br />

Corollary 3.6. If B is <strong>in</strong>jective <strong>in</strong> Mod(U) then MU(B) is<br />

<strong>in</strong>jective <strong>in</strong> Mod(G).<br />

Pro<strong>of</strong>. Immediate from the def<strong>in</strong>ition <strong>of</strong> <strong>in</strong>jectivity.<br />

Theorem 3.7. Let G be a group and U a subgroup. The map<br />

Hr(G, MU(B))----, Hr(U,B)<br />

obta<strong>in</strong>ed by compos<strong>in</strong>g the restriction res~ followed by the U-<br />

, orph,s, g g(e), is an iso orph,s, for r >= 0<br />

Pro<strong>of</strong>. We have two cohomological functors Ha o MG U and Hu<br />

on Mod(U), because Mg is exact. By the two above corollaries,<br />

they are both equM to 0 on <strong>in</strong>jective modules, and are isomorphic<br />

<strong>in</strong> dimension 0. By the uniqueness theorem, they are isomorphic <strong>in</strong><br />

all dimensions. This isomorphism is the one given <strong>in</strong> the statement<br />

<strong>of</strong> the theorem, because if we denote by Tr : Mg(B) ~ B the<br />

U-morphism such that 7rg = g(e), then<br />

Hu(~r) o rest" Hu o M U<br />

G ""*Hu<br />

is clearly a 6-morphism which, <strong>in</strong> dimension 0, <strong>in</strong>duces the pre-<br />

scribed isomorphism (MU(B)) a on B U. This proves the theorem.<br />

Suppose now that U is <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G. Let A = Mg(B).<br />

For each. coset c, we may def<strong>in</strong>e a U-endomorphism 1re : A ~ A <strong>of</strong><br />

A <strong>in</strong>to itself by the formula:<br />

0. ifcr CU<br />

7r~(f)(cr) = f(cra) if cr E U.<br />

Indeed, zrc is additive, and if ~- E U, then<br />

r(zrcf)(cr) = (wcf)(Tcr) for all ~ E G.<br />

Indeed, if cr ~ U then both sides are equal to O; and if cr E U, then<br />

we use the fact that f E MU(B) to conclude that they axe equal.<br />

Let us denote by A1 the set <strong>of</strong> elements f E MU(B) such that<br />

f(~r) = 0 if a ~ U. Then AI is a U-module, as one verifies at once.


II.3 55<br />

Theorem 3.8. Let U be <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G. Then:<br />

(i) Let A1 be the U-submodule <strong>of</strong> elements f 9 l~U(B) such<br />

that f(cr) = 0 if cr ~ U. Then<br />

MU(B)=O~-IA, ,<br />

and every such f can be written uniquely <strong>in</strong> the form<br />

s =<br />

(ii) The map f ~-~ f(e) gives a U-isomorphism A1 ---+ B.<br />

Pro<strong>of</strong>. For the first assertion, let a = re0 with r 9 U. Then<br />

E c-l(rrcf)((r)<br />

=<br />

If c # Co then the correspond<strong>in</strong>g term is O. Hence <strong>in</strong> the above<br />

sum, there will be only one term # O, with c = co. In tlMs case,<br />

we f<strong>in</strong>d the value f(r~0) = f(~). This shows that f can be written<br />

as asserted, and it is clear that the sum is direct. F<strong>in</strong>ally A1 is<br />

U-isomorphic to B because each f I A1 is uniquely determ<strong>in</strong>ed by<br />

its value f(e), tak<strong>in</strong>g <strong>in</strong>to account that rf(e) = f(r) for r e U.<br />

This same fact shows that we can def<strong>in</strong>e f I A1 by prescrib<strong>in</strong>g<br />

f(e) = b 9 B and f(~) = ~b. This proves the theorem.<br />

We cont<strong>in</strong>ue to consider the case when U is <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G.<br />

Let A 9 Mod(G). We say that A is semilocal for U, or relative<br />

to U, if there exists a U-submodule A1 <strong>of</strong> A such that A is equal<br />

to the direct sum<br />

A = O c-lAl"<br />

r<br />

We then say that the U-module A1 is the local component. It is<br />

clear that A is uniquely determ<strong>in</strong>ed by its local component, up to<br />

an isomorphism. More precisely:<br />

r


56<br />

Proposition 3.9. Let A1,A t E Mod(U).<br />

(i)<br />

(ii)<br />

Let fl : A1 "~ A~ be a U-isomorphism, and let A,A' be<br />

G-modules, which are semilocal for U, with local compo-<br />

nents A1 and A~ respectively. Then there exists a unique<br />

G-isomorphism f : A ---* A' which extends fl.<br />

Let A E Mod(G) and let A1 be a Z-submodule <strong>of</strong> A. Sup-<br />

pose that A is direct sum <strong>of</strong> a f<strong>in</strong>ite number <strong>of</strong> ~rA1 (for<br />

cr E G}. Then A is semilocal for the subgroup <strong>of</strong> elements<br />

v E G such that ~'A1 = A1.<br />

Pro<strong>of</strong>. Immediate.<br />

Theorem 3.8 and Proposition 3.9 express the fact that to each<br />

U-module B there exists a unique G-module semilocal for U, with<br />

local component (U, B).<br />

Proposition 3.10. Let A E Mod(G), U a subgroup <strong>of</strong> f<strong>in</strong>ite<br />

<strong>in</strong>dex <strong>in</strong> G, and A semilocal for U with local component A1. Let<br />

rl : A ~ A1 be the projection, and ~r its composition with the<br />

<strong>in</strong>clusion <strong>of</strong> Ax <strong>in</strong> A. Then<br />

1A =<br />

<strong>in</strong> other words, the identity on A is the trace <strong>of</strong> the projection.<br />

Pro<strong>of</strong>. Every element a E A can be written uniquely<br />

with ac E A1. By def<strong>in</strong>ition,<br />

a - ~ c, lac<br />

E"<br />

= Z<br />

The proposition is then clear from the def<strong>in</strong>itions, tak<strong>in</strong>g <strong>in</strong>to ac-<br />

count the fact that if c, c t are two dist<strong>in</strong>ct cosets, then ~r~ac, = O.<br />

K G is f<strong>in</strong>ite, one can make the trace more explicit.


II.3 57<br />

Proposition 3.11. Let G be a group, and U a subgroup <strong>of</strong> f<strong>in</strong>ite<br />

<strong>in</strong>dex. Let A E Mod(G) be semilocal for U with local component<br />

A1. Then an element a E A is <strong>in</strong> A G if and only if<br />

a= ~ ~-1al with some al E A U.<br />

C<br />

I G is f<strong>in</strong>ite, then a f E SGA if and only ira1 E SuA1 <strong>in</strong> the<br />

above formula. The functors<br />

H~(MU(B)) and H~(B)<br />

(with variable B E Mod(U)) are isomorphic.<br />

Pro<strong>of</strong>. One verifies at once that for the first assertion, if an<br />

element a is expressed as the <strong>in</strong>dicated sum with al E A1 and<br />

a E A G then the projection maps A a <strong>in</strong>to A U. S<strong>in</strong>ce we already<br />

know that the projection gives an isomorphism between A c and<br />

A U it follows that all elements <strong>of</strong> A c are expressed as stated, with<br />

al E A U. If G is f<strong>in</strong>ite, then for b E A we have<br />

\rEU /<br />

and the second assertion follows directly from this formula.<br />

For f<strong>in</strong>ite groups, MG U maps U-regular modules to G-regular<br />

modules. This is important because such modules erase cohomology.<br />

Proposition 3.12. Let G be f<strong>in</strong>ite with subgroup U. If A is<br />

semilocal for U with local component (U, A1) and if A1 is U-<br />

regular, then A is G-regular.<br />

Pro<strong>of</strong>. If one can write 1A1 = Su(f) with some Z-morphism f,<br />

then<br />

1A = ScU(~rSu(f)) = SGU(Su(~f)) = Sa(zrf),<br />

which proves that A is G-regular.<br />

From the present view po<strong>in</strong>t, we recover a result already found<br />

previously.


58<br />

Corollary 3.13. Let G be a -f<strong>in</strong>ite group, with subgroup U and<br />

B <strong>in</strong> Mod(U). If B is U-regular then Mg(B) is G-regular.<br />

Theorem 3.14. Let U be a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> a group<br />

G. Suppose A 6 Mod(G) is semilocal for U, with local compo-<br />

nent A1. Let Trl : A ~ A1 be the projection and <strong>in</strong>c : Al ~ A<br />

the <strong>in</strong>clusion. Then the maps<br />

Hu(~rl ) ores G<br />

are <strong>in</strong>verse isomorphisms<br />

and tr u o Hu(<strong>in</strong>c)<br />

H"(G,A),=) Hr(U, A1).<br />

If G is f<strong>in</strong>ite, the same holds for the special functor H ~ <strong>in</strong>stead<br />

<strong>of</strong> H".<br />

Pro<strong>of</strong>. The composite<br />

A ,~1 A1 <strong>in</strong>c A<br />

is a U-morphism <strong>of</strong> A <strong>in</strong>to itself, which we denoted by ~-. We know<br />

that the identity 1A is the trace <strong>of</strong> this morphism. We can then<br />

apply Proposition 1.15 to prove the theorem for H. When G is<br />

f<strong>in</strong>ite, and we deal with the special functor H, we use Corollary<br />

3.13, the uniqueness theorem on cohomological functors vanish<strong>in</strong>g<br />

on U-regular modules, the two functors be<strong>in</strong>g<br />

HG o MG U and Hu.<br />

We thus obta<strong>in</strong> <strong>in</strong>verse isomorphisms <strong>of</strong> Hr(G, A) and Hr(U, A1).<br />

This concludes the pro<strong>of</strong>.<br />

Remark. Theorem 3.14 is one <strong>of</strong> the most fundamental <strong>of</strong> the<br />

theory, and is used constantly i/1 algebraic number theory when<br />

consider<strong>in</strong>g objects associated to a f<strong>in</strong>ite Galois extension <strong>of</strong> a num-<br />

ber field.<br />

w Double cosets<br />

Let G be a group and U a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex. Let S be an<br />

arbitrary subgroup <strong>of</strong> G. Then there is a disjo<strong>in</strong>t decomposition <strong>of</strong><br />

G <strong>in</strong>to double cosets<br />

G = UUTS = UST-Iu,<br />

7 7


II.4 59<br />

with {7} <strong>in</strong> some f<strong>in</strong>ite subset <strong>of</strong> G (because U is assumed <strong>of</strong> fi-<br />

nite <strong>in</strong>dex), represent<strong>in</strong>g the double cosets. For each 7 there is a<br />

decomposition <strong>in</strong>to simple cosets:<br />

s = U(s n ub])~ = U ~41( s n ub]),<br />

r~ r~<br />

where 7- t ranges over a f<strong>in</strong>ite subset <strong>of</strong> S, depend<strong>in</strong>g on 7. Then<br />

we claim that the elements {')'%} form a family <strong>of</strong> right coset rep-<br />

resentatives for U <strong>in</strong> G, so that<br />

1", T-y "y,T.y<br />

is a decomposition <strong>of</strong> G <strong>in</strong>to cosets <strong>of</strong> U. The pro<strong>of</strong> is easy. First,<br />

by hypothesis, we have<br />

a = U U u7(s n u[71)~,<br />

r~ -y<br />

and every element <strong>of</strong> G can be written <strong>in</strong> the form<br />

u177-1u27% = u7% , with ul,u2 E U.<br />

Second, one sees that the elements {')'%} represent different cosets,<br />

for if<br />

U7T-I = U7%~,,<br />

then 7 = 7' s<strong>in</strong>ce the 7 represent dist<strong>in</strong>ct double cosets, whence r- /<br />

and T 7' represent the same coset <strong>of</strong> 7-1U7, and are consequently<br />

equal.<br />

For the rest <strong>of</strong> this section, we preserve the above notation.<br />

Proposition 4.1. On the cohomological functor Hu (resp. Hu<br />

if G is f<strong>in</strong>ite) on Mod(G), the follow<strong>in</strong>g morphisms are equal:<br />

res~ o tr~ ~ sneer1 u[.,]<br />

---- ~r S o ressnu[~, ] o 7*.<br />

y<br />

Pro<strong>of</strong>. As usual, it suffices to verify this formula <strong>in</strong> dimension 0.<br />

Thus let a E A v. The operation on the left consists <strong>in</strong> first tak<strong>in</strong>g


60<br />

the trace $U(a), and then apply<strong>in</strong>g the restriction which is just the<br />

<strong>in</strong>clusion. The operation on the right consists <strong>in</strong> tak<strong>in</strong>g first 7-1a,<br />

and then apply<strong>in</strong>g the restriction which is the <strong>in</strong>clusion, followed<br />

by the trace<br />

trsSnU['r](7-1a) = ~ 7"~17 -la<br />

accord<strong>in</strong>g to the coset decomposition which has been worked out<br />

above. F<strong>in</strong>ally tak<strong>in</strong>g the sam over 7, one f<strong>in</strong>ds tr U, which proves<br />

the proposition.<br />

Corollary 4.2. If U is normal, then for A E Mod(G) and<br />

a E H"(U, A) we have<br />

res tr ( ) =<br />

and similarly for H if G is f<strong>in</strong>ite.<br />

Pro<strong>of</strong>. Clear.<br />

Let aga<strong>in</strong> A E Mod(G) and a E H(U,A).<br />

stable if for every ~r E G we have<br />

reSunu[,]a,[c~) = resUnu[,](a).<br />

We say that A is<br />

If U is normal <strong>in</strong> G, then a is stable if and only if a,a = a for all<br />

aEG.<br />

Proposition 4.3. Let a E H"(U, A) for A E Mod(G). If o~ =<br />

rest(/3) for some ~ E H~(G,A) then a is stable.<br />

Pro<strong>of</strong>. By Proposition 1.5 we know that ~r,/3 = /3. Hence we<br />

f<strong>in</strong>d<br />

reSunu[a] o a,(o~) = reSunu[a] o ~r, o resg(Z)<br />

[] [1<br />

= resanut l(Z)<br />

If we unw<strong>in</strong>d this formula via the <strong>in</strong>termediate subgroup U <strong>in</strong>stead<br />

<strong>of</strong> U[a], we f<strong>in</strong>d what we want to prove the proposition.


II.4<br />

Proposition 4.4. If c~ E H~(U, A) is stable, then<br />

resg o trU(~) ---- (G" U)o~.<br />

Pro<strong>of</strong>. We apply the general formula to the case when U = `9.<br />

The verification is immediate.<br />

Suppose f<strong>in</strong>ally that A is semilocal for U, with local component<br />

A1, projection ~rl " A ---* A1 as before. Then elements <strong>of</strong> ,9 possibly<br />

do not permute the submodules Ac transitively. However, we have:<br />

Proposition 4.5. Let ~ E G. Then cr E "97-1U " if and only if<br />

~A1 is <strong>in</strong> the same orbit <strong>of</strong> "9 as 7-1A1. For each 7, the sum<br />

r~<br />

~'~-1~-IA1<br />

is an ,9-module, semilocaI for "9 N U[7], with local component<br />

v~-17-1A1 ,<br />

Pro<strong>of</strong>. The assertion is immediate from the decomposition <strong>of</strong> g<br />

<strong>in</strong>to cosets r~-lT-1U.<br />

If ,9 and U are both <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> G, then the reader will ob-<br />

serve a symmetry <strong>in</strong> the above formulas, <strong>in</strong> particular <strong>in</strong> the double<br />

coset decomposition. In particular, we can rewrite the formula <strong>of</strong><br />

Proposition 4.3 <strong>in</strong> the form<br />

. u[-~]ns s<br />

(*) resg o tr~ -- E 7~-x o ~ru[~] o resu[,]ns.<br />

-y<br />

We just take <strong>in</strong>to account the commutativity <strong>of</strong> 7. and the other<br />

maps, replac<strong>in</strong>g U by `9, ,9 by U and 7 by 7 -1 .<br />

61


CHAPTER III<br />

Cohomological Triviality<br />

In this chapter we consider only f<strong>in</strong>ite groups, and the special<br />

functor HG, such that HG(A) = Aa/ScA. The ma<strong>in</strong> result i3<br />

Theorem 1.7.<br />

w The tw<strong>in</strong>s theorem<br />

We beg<strong>in</strong> by auxi].iaxy results. We let Fp = Z/pZ for a prime p.<br />

We always assume G has trivial action on Fp.<br />

Proposition 1.1. Let G be a p-group, and A E Mod(G) f<strong>in</strong>ite<br />

<strong>of</strong> order equal to a p-power. Then A c = 0 implies A = O.<br />

Pro<strong>of</strong>. We express A as a disjo<strong>in</strong>t ,mion <strong>of</strong> orbits <strong>of</strong> G. For<br />

each z E A we let Gz be the isotropy group, i.e. the subgroup <strong>of</strong><br />

elements a E G such that az = x. Then the number <strong>of</strong> elements<br />

<strong>in</strong> the orbit Gx is the <strong>in</strong>dex (G : G=). S<strong>in</strong>ce G leaves 0 fixed, and<br />

(AO) -E<br />

where rni is the number <strong>of</strong> orbits hav<strong>in</strong>g pi elements, it follows that<br />

either A - 0 or there is an element z # 0 whose orbit also has only<br />

one element, i.e. z is fixed by G, as was to be shown.


III.1 63<br />

Corollary 1.2. Let G be a p-group, ff A is a simple p-torsion<br />

G-module then A ~ Fp.<br />

Pro<strong>of</strong>. Immediate.<br />

Corollary 1.3. The radical <strong>of</strong> Fp[G] is equal to the ideal fp<br />

generated by all elements (a - e) over Fp.<br />

Pro<strong>of</strong>. A simple G-module over Fp[G] is f<strong>in</strong>ite, <strong>of</strong> order a power<br />

<strong>of</strong> p, so isomorphic to Fp, annihilated by Ip which is therefore<br />

conta<strong>in</strong>ed <strong>in</strong> the radical. The reverse <strong>in</strong>clusion is immediate s<strong>in</strong>ce<br />

F,[G]/r, ~ F,.<br />

Proposition 1.4. Let G be a p-group and A an Fp[G]-module.<br />

The follow<strong>in</strong>g conditions are equivalent.<br />

1. Hi(G, A) = 0 for some i with -c~ < i < oo.<br />

2. A is G-regular.<br />

3. A is G-free.<br />

Pro<strong>of</strong>. S<strong>in</strong>ce Fp is a field every Fp-module is free <strong>in</strong> Mod(Fp).<br />

If A is G-free then A is obviously G-regular. Conversely, if A is<br />

G-regular, with local component A1 for the unit element <strong>of</strong> G,<br />

then A1 is a direct sum <strong>of</strong> Fp a certa<strong>in</strong> number <strong>of</strong> times, and the<br />

G-orbit <strong>of</strong> a factor Fp is G-isomorphic to Fp[G], so A itself is a<br />

G-direct sum <strong>of</strong> such G-modules isomorphic to Fp [G], thus prov<strong>in</strong>g<br />

the equivalence <strong>of</strong> the last two conditions.<br />

It suffices now to prove the equivalence between the first and<br />

third conditions. Abbreviate f = Ip for the augmentation ideal<br />

<strong>of</strong> Fp[G]. Then A/IA is a vector space over Fp. Let {aj} be<br />

representatives <strong>in</strong> A for a basis over Fp, so that A is generated over<br />

Fp [G] by these elements aj and IA. Let E be the Fp [G]-free module<br />

with free generators ~j. There is a G-morphism E ---* A such that<br />

~zj ~ aj. Let B be the image <strong>of</strong> E <strong>in</strong> A, so that A = B + IA. S<strong>in</strong>ce<br />

I is nilpotent, I '~ = 0 for some positive <strong>in</strong>teger n, and we f<strong>in</strong>d<br />

A = B + IA+ B + IB + I2A = .-. = B +IB +... +I"A = B<br />

by iteration. Hence the map E --~ A is surjective.<br />

kernel. We have<br />

E/IE=A/IA<br />

Let A' be its


64<br />

and so A' C IE. Hence SaA' = 0. S<strong>in</strong>ce the follow<strong>in</strong>g sequence is<br />

exact<br />

O--+ A ' --+ E--~ A-'~ O,<br />

and 13 is G-regular, one f<strong>in</strong>ds Hr(G, A) = H~+I(G, A') for all r E Z.<br />

Suppose that the <strong>in</strong>dex i <strong>in</strong> the hypothesis is -2. Then<br />

H-I(G, A') = 0, so A'sa = IA'. S<strong>in</strong>ce A' = A'sa, we f<strong>in</strong>d A' = IA'<br />

and hence A' = 0 so E ~ A.<br />

On the other hand, if i # -2, we know by dimension shift<strong>in</strong>g<br />

that there exists a G-module C such that H~(U, C) ~ H~+I(U, A)<br />

for some <strong>in</strong>teger d, all r E Z and all subgroups U <strong>of</strong> G, and also<br />

H-2(G, C) = 0. Hence C is Fp[G]-free, so cohomologically trivial,<br />

and therefore similarly for A, so <strong>in</strong> particular H-2(G, A) = 0. This<br />

proves the proposition.<br />

Proposition 1.5. Let G be a p-group, A E Mod(G). Suppose<br />

there exists an <strong>in</strong>~egeri such ~hat I-Ii(G,A) = Hi+I(G, A) = 0.<br />

Suppose <strong>in</strong> addition that A is Z-free. Then A is G-regular.<br />

Pro<strong>of</strong>. We have an exact sequence<br />

and hence<br />

0 --+ A ~ A ~ A/pA --~ 0<br />

0 = Hi(A)--. Hi(A/pA)--~ Hi+I(A)= 0,<br />

the functor H be<strong>in</strong>g Ha. Therefore H'(A/pA) = 0. S<strong>in</strong>ce A/pA is<br />

an Fp[G]-module, we conclude from Proposition 1.3 that A/pA is<br />

Fp[G]-free, and therefore G-regular.<br />

S<strong>in</strong>ce we supposed A is Z-free, we see immediately that the<br />

sequence<br />

0 --* HomA(A,A) ~ HomA(A,A) --* Homz(A,A/pA) ---+ 0<br />

is exact. But Homz(A, A/pA) is G-regular, so<br />

p = p.: Hi(Homz(A, A)) --~ Hi(Homz(A,A))<br />

is an automorphism. Hence so is its iteration, and hence so is<br />

multiplication by the order (G : e) s<strong>in</strong>ce G is assumed to be a<br />

p-group. But (G : e). = 0, whence all the cohomology groups<br />

Hr(Homz(A,A)) = 0 for r E Z. In particular, H~ =<br />

0. From the def<strong>in</strong>itions, we conclude that the identity 1A is a trace,<br />

and so A is G-regular, thus prov<strong>in</strong>g Proposition 1.5.


III. 1 65<br />

Corollary 1.6. Hypotheses be<strong>in</strong>g as <strong>in</strong> the proposition, then A<br />

is projective <strong>in</strong> Mod(G).<br />

Pro<strong>of</strong>. Immediate consequence <strong>of</strong> Chapter I, Proposition 2.13.<br />

Let G be a f<strong>in</strong>ite group and A E Mod(G). We def<strong>in</strong>e A to be<br />

cohomologically trivial if H~(U, A) = 0 for all subgroups U <strong>of</strong><br />

G and all r E Z.<br />

Theorem 1.7. Tw<strong>in</strong> theorem. Let G be a f<strong>in</strong>ite group and<br />

A C Mod(G). Then A is cohomologically trivial if and only if<br />

for each p [ (G " e) there exists an <strong>in</strong>teger i v such that<br />

Hip(Gp,A) : Hi~+I(Gp,A) : 0<br />

for a p-Sylow subgroup G v <strong>of</strong> G.<br />

Pro<strong>of</strong>. Let E E ZIG] be G-free such that<br />

is exact. Then<br />

O-~ A '-~ E-~ A-~ O<br />

Hi~+I(Gv,A) = Hi~+2(Gp,A') = 0.<br />

S<strong>in</strong>ce A' is Z-free, it is also Gp-regular by Proposition 1.5. Hence<br />

!<br />

for all subgroups Gp <strong>of</strong> Gv we have H~(G~, A) = 0 for all r C Z.<br />

S<strong>in</strong>ce there is an <strong>in</strong>jection<br />

0 ~ H~(G',A)-~ 1-IH~(G'p,A)<br />

for all subgroups G' <strong>of</strong> G by Chapter II, Corollary 2.2. It follows<br />

that A is cohomologically trivial. The converse is obvious.<br />

Corollary 1.8. Let G be f<strong>in</strong>ite and A E Mod(G). The follow<strong>in</strong>g<br />

conditions are equivalent:<br />

1. A is cohomologicaIly trivial.<br />

2. The projective dimension <strong>of</strong> A is


66<br />

Pro<strong>of</strong>. Recall from Algebra that A has projective dimension<br />

_ _< s < oc if one can f<strong>in</strong>d an exact sequence<br />

O---, P1---, P2---~...---, Ps---~ A--,O<br />

with projectives Pi" One can complete this sequence by <strong>in</strong>troduc<strong>in</strong>g<br />

the kernels and cokernels as shown, the arches be<strong>in</strong>g exact.<br />

0<br />

Therefore<br />

/ \x3<br />

/ /\ /\<br />

0 0 0<br />

Hr(G',A) = Hr+I(G',X~_I) .... = H~+~-I(G', P1)=0.<br />

It is clear that a G-module <strong>of</strong> f<strong>in</strong>ite projective dimension is coho-<br />

mologically trivial.<br />

Conversely, let us write an exact sequence<br />

O--* A '--* P---~ A---* O<br />

where P is Z[G]-free. Then A' is Z-free, and by Proposition 1.5 it<br />

is also Gp-regular for all p. We now need a lemma.<br />

Lemma 1.9. Suppose M C Mod(G) is Z-free and Gp-regular<br />

for all primes p. Then M is G-regular, and so projective <strong>in</strong><br />

Mod(G).<br />

Pro<strong>of</strong>. We view H~ Homz(M,M)) as be<strong>in</strong>g <strong>in</strong>jected <strong>in</strong> the<br />

product<br />

HH~<br />

p<br />

and we apply the def<strong>in</strong>ition. We conclude that M is G-regular.<br />

S<strong>in</strong>ce M is Z-free it is Z[G]-projective by Corollary 1.6.<br />

We apply the lemma to M = A' to conclude that the projective<br />

dimension <strong>of</strong> A is __< 2. This proves Corollary 1.8.<br />

0


III.1 67<br />

Corollary 1.10. Let A E Mod(G) be cohomoIogically trivial,<br />

and let M E Mod(G) be without torsion. Then A | M is coho-<br />

mologically trivial.<br />

Pro<strong>of</strong>. There is an exact sequence<br />

O--~ PI ---~ P2---+ A--+ O<br />

with P1,P2 projective <strong>in</strong> Mod(G). S<strong>in</strong>ce M has no torsion, the<br />

sequence<br />

O ---* PI @ M --~ P2 @ M --* A | M ---* O<br />

is exact. But P1, P2 are G-regular (direct summands <strong>in</strong> free mod-<br />

ules, so regular), whence Pi | M is cohomologically trivial for<br />

i = 1, 2, whence A | M is cohomologically trivial.<br />

More generally, we have one more result, which we won't use <strong>in</strong><br />

the sequel.<br />

Suppose A is cohomologically trivial, and that we have an exact<br />

sequence<br />

O---~ PI ---~ P2--, A----~O<br />

with projectives P1, P2. Then we have an exact sequence<br />

--. Torl(P2, M) --~ Torl(A,M) ---* P~| --* P~NM ~ ANM ~ 0<br />

for an arbitrary M E Mod(G). Furthermore Torl(P2, M) = 0 s<strong>in</strong>ce<br />

P2 has no torsion (because ziG] is Z-free). By dimension shift<strong>in</strong>g,<br />

and similar reason<strong>in</strong>g for Horn, we f<strong>in</strong>d:<br />

Theorem 1.11. Let G be a f<strong>in</strong>ite group, A,B E Mod(G). and<br />

suppose A or B is cohomologicaIly trivial. Then for all r E Z<br />

and all subgroups G' <strong>of</strong> G, we have<br />

H~(G', A @ B) ~ H~+2(G ', TorZ(A, B))<br />

H~(G',Hom(A,B)) ~ H~-2(G',Ext~(A,B)).<br />

Corollary 1.12. Let G,A,B be as <strong>in</strong> the theorem. Then A|<br />

is cohomoIogicaIly trivial if and only if TorZ(A,B) is cohomo-<br />

logically trivial; and Horn(A, B) is cohomologicalIy trivial if and<br />

only if Ext~(d, B) is cohomoIogicaUy trivial.


68<br />

Corollary 1.13. Let G,A,B be as <strong>in</strong> the theorem. Then A|<br />

is cohomologically trivial if A or B is without p-torsion for each<br />

prime p divid<strong>in</strong>g (G 9 e).<br />

w The triplets theorem<br />

Let f : A --~ B be a morphism <strong>in</strong> Mod(G). Let U be a subgroup<br />

<strong>of</strong> G, and let<br />

f~: H'(U, A)---+ Hr(U, B)<br />

be the homomorph.isms <strong>in</strong>duced on cohomology. Actually we should<br />

write f~,u but we omit the <strong>in</strong>dex U for simplicity. We say that f<br />

is a cohomology isomorphism if f~ is an isomorphism for all r<br />

and all subgroups U. We say that A and B axe cohomologically<br />

equivalent if there exists a cohomology isomorphism f as above.<br />

Theorem 2.1. Let f : A ---. B be a morphism <strong>in</strong> Mod(G), and<br />

suppose there ezists some i E Z such that fi-1 is surjective, fi<br />

is an isomorphism, and fi+l is <strong>in</strong>jective, for all subgroups U <strong>of</strong><br />

G. Then f is a cohomology isomorphism.<br />

Pro<strong>of</strong>. Suppose first that f is <strong>in</strong>jective. We shall reduce the<br />

general case to this special case later. We therefore have an exact<br />

sequence<br />

O--.A f--~a 9-.C---~0,<br />

with C = B/fA, and the correspond<strong>in</strong>g cohomology sequence<br />

----* Hi_I(U,A) f~ HI_I(U,B) gl-_~1 HI_t(U,C)<br />

6--.LQ Hi(U,A) ~ HI(U,B) ~ Hi(U,C) - - -<br />

6~+._._~1 HI+X(U,A ) 1.~ HI(U,B )<br />

We shall see that Hi-I(U, C) = Hi(U, C) = 0. As to Hi-I(U, C) =<br />

0, it comes from the fact that fi-1 surjective implies gi-1 = O, and<br />

fi be<strong>in</strong>g an isomorphism implies 6i-1 = 0. As to Hi(U, C) = 0,<br />

it comes from the fact that fi surjective implies gi = 0, and fi+l<br />

<strong>in</strong>jective implies 6i+1 = 0. By the tw<strong>in</strong> theorem, we conclude that<br />

Hr(U, C) = 0 for all r E Z, whence f~ is an isomorphism for all r.<br />

We now reduce the theorem to the preced<strong>in</strong>g case, by the method<br />

<strong>of</strong> the mapp<strong>in</strong>g cyl<strong>in</strong>der. Let us put MG(A) = A and aA = a. We


III.2 69<br />

have an <strong>in</strong>jection<br />

c : A---* A.<br />

We map A <strong>in</strong>to the direct sum B | A by<br />

f:A---,B| such that f(a)=f(a)+e(a).<br />

One sees at once that f is a morphism <strong>in</strong> Mod(G). We have an<br />

exact sequence<br />

where C is the cokernel <strong>of</strong> f.<br />

O--~ A Z B| h--~C--~O<br />

We also have the projection morphism<br />

p:B| def<strong>in</strong>ed by p(b+~)=b.<br />

Its kernel is .4, and we have f = p f, whence the commutative<br />

diagram:<br />

We then obta<strong>in</strong> the diagram<br />

Hi-I(C)<br />

0<br />

~A i ~B| ~C ~0<br />

B<br />

Hi(i)=O<br />

l<br />

, Hi(a) s_~ HI(BOA) hi HI(C) ~ H~+I(A)<br />

HI+I(A)=0


70<br />

the cohomology groups H be<strong>in</strong>g Hu for any subgroup U <strong>of</strong> G. The<br />

triangles are commutative.<br />

The extreme vertical maps <strong>in</strong> the middle are 0 because .4 =<br />

MG(A), and consequently pi is an isomorphism, which has an <strong>in</strong>-<br />

verse p~-i We have put<br />

gi = hiP-i 1<br />

From the formula f = pf we obta<strong>in</strong> fi = Pill. We can therefore<br />

replace Hi(B | A) by H'(B) <strong>in</strong> the horizontal sequence, and we<br />

obta<strong>in</strong> an exact sequence which is the same as the one obta<strong>in</strong>ed <strong>in</strong><br />

the first part <strong>of</strong> the pro<strong>of</strong>. Thus the theorem is reduced to this first<br />

part, thus conclud<strong>in</strong>g the pro<strong>of</strong>.<br />

w The splitt<strong>in</strong>g module and Tate's theorem<br />

The second cohomology group <strong>in</strong> many cases, especially class<br />

field theory, plays a particularly important role. We shall describe<br />

here a method to kill a cocycle <strong>in</strong> dimension 2.<br />

Let G have order n and let a E H2(G,A). Recall the exact<br />

sequence<br />

Ia z[a] z 0,<br />

which is Z-split, and <strong>in</strong>duces an isomorphism<br />

5Hr(G,Z) --, H~+I(G,s for all r.<br />

Theorem 3.1. Let A E Mod(a) and (~ E H2(G,A). There<br />

exists A' E Mod(G) and an exact sequence<br />

O---~ A--~ A '--~ Ic---~ O,<br />

splitt<strong>in</strong>g over Z, such that a = 66~, where ~ is the generator <strong>of</strong><br />

H~ correspond<strong>in</strong>g to the class <strong>of</strong> 1 <strong>in</strong> H~ = Z/nZ,<br />

and<br />

~t,OL ~ O,<br />

<strong>in</strong> other words, c~ splits <strong>in</strong> A'.<br />

Pro<strong>of</strong>. We def<strong>in</strong>e A' to be the direct sum <strong>of</strong> A and a free abelian<br />

group on elements x,(a E G, a # e). We def<strong>in</strong>e an action <strong>of</strong> G on


III.3 71<br />

A' by means <strong>of</strong> a cocycle {aa,~-} represent<strong>in</strong>g a. We put z, = a,,,<br />

for convenience, and let<br />

(TX~- --~ Tar -- Xa -~- aa,r.<br />

One verifies by brute force that this def<strong>in</strong>ition is consistent by us<strong>in</strong>g<br />

the coboundary relation satisfied by the cocycle {a~,,~}, namely<br />

~az,r -- aA#,r + a)~,#r -- a#,r -- O.<br />

One sees trivially that a splits <strong>in</strong> A'. Indeed, (aa,,-) is the cobound-<br />

ary <strong>of</strong> the cocha<strong>in</strong> (x#).<br />

We def<strong>in</strong>e a morphism v : A' ---+ Ia by lett<strong>in</strong>g<br />

v(a)--Ofor a e A andv(xa)-a-efor r<br />

Here we identify A as a direct summand <strong>of</strong> A'. The map v is a<br />

G-morphism <strong>in</strong> light <strong>of</strong> the def<strong>in</strong>ition <strong>of</strong> the action <strong>of</strong> G on A'. It<br />

is obviously surjective, and the kernel <strong>of</strong> v is equal to A.<br />

There rema<strong>in</strong>s to verify that a = 66~. The coboundary 6r is<br />

represented by the 1-cocycle b~ = ~ - e <strong>in</strong> IG, represent<strong>in</strong>g an<br />

element /3 <strong>of</strong> Hi(G, Ic). We f<strong>in</strong>d 6/3 by select<strong>in</strong>g a cocha<strong>in</strong> <strong>of</strong> G<br />

<strong>in</strong> A', for <strong>in</strong>stance (z~,), such that v(z~) = ba. The coboundaxy<br />

<strong>of</strong> (Za) represents 6/3, and one then sees that this gives a, thus<br />

prov<strong>in</strong>g the theorem.<br />

We def<strong>in</strong>e an element A E Mod(G) to be a class module if for<br />

every subgroup U <strong>of</strong> G, we have H~(U,A) = 0, and if H2(G,A)<br />

is cyclic <strong>of</strong> order (G : e), generated by an element a such that<br />

rest(a) generates H2(U,A) and is <strong>of</strong> order (U" e). An element a<br />

as <strong>in</strong> this def<strong>in</strong>ition will be called fundamental. The term<strong>in</strong>ology<br />

comes from class field theory, where one meets such modules. See<br />

also Chapter IX.<br />

Theorem 3.2. Let G,A,a,u : A --+ A' be as <strong>in</strong> Theorem 3.1.<br />

Then A is a class module and a is fundamental if and only if A'<br />

is cohomologically ~rivial.<br />

Pro<strong>of</strong>. Suppose A is a class module and a fundamental. We<br />

have an exact sequence for all subgroups U <strong>of</strong> G:<br />

0---, Hi(A)---+ HI(A ') ---+ H~(I)---+ H2(A)--+ H2(A ') ---+ O.


72<br />

The 0 furthest to the right is due to the fact t&at<br />

S<strong>in</strong>ce<br />

H2(Ia) = Hi(Z) = 0.<br />

a = 6fl and fl = 6~,<br />

and Hi(U,/) is cyclic <strong>of</strong> order (U : e) generated by fl, it follows<br />

that<br />

Hi(I) ~ H2(A)<br />

is an isomorphism. We conclude that Hi(U, A') = 0 for all U.<br />

S<strong>in</strong>ce we also have the exact sequence<br />

H2(A)---+ H2(A ') ---* H2(/)= 0,<br />

and a splits <strong>in</strong> A', we conclude that H2(U, A') = 0 for aLl U. Hence<br />

A ~ is cohomologicaUy trivial by the tw<strong>in</strong> theorem.<br />

Conversely, suppose A' cohomologically trivial. Then we have<br />

isomorphisms<br />

Hi(I) & H2(A) and H~ ~ Hi(z),<br />

for all subgroups U <strong>of</strong> G. This shows that H2(U, A) is <strong>in</strong>deed cyclic<br />

<strong>of</strong> order (U : e), generated by 66~. This concludes the pro<strong>of</strong>.


CHAPTER IV<br />

Cup Products<br />

w Erasability and uniqueness<br />

To treat cup products, we have to start with the general notion<br />

<strong>of</strong> multil<strong>in</strong>eaz categories, due to Cartier.<br />

Let 92 be an abelian category. A structure <strong>of</strong> multil<strong>in</strong>ear cat-<br />

egory on 92 consists <strong>in</strong> be<strong>in</strong>g given, for each (n + 1)-tuple<br />

A1,...,A,~,B <strong>of</strong> objects <strong>in</strong> 92, an abelian group L(A1,...,An,B)<br />

satisfy<strong>in</strong>g the follow<strong>in</strong>g conditions9<br />

MUL 1. For n = 1,L(A,B) = Hom(A,B).<br />

MUL 2. Let<br />

fl : An x... Azm ---* B1<br />

f~: A~I 215 --* B~<br />

g: B1 x...xB~ --* C<br />

be multil<strong>in</strong>ear. Then we may compose g(fl,..., f,-) <strong>in</strong><br />

L(An,..., A,.,~,, C), and this composition is multil<strong>in</strong>ear <strong>in</strong><br />

g, fl,...,fr.<br />

MUL 3. With the same notation, we have g(id,...,id) = g.


74<br />

MUL 4. The composition is associative, <strong>in</strong> the sense that (with<br />

obvious notation)<br />

g(k(h... ),k(h... ),... ,fr(h... )) = g(k,...,/r)(h... ).<br />

As usual the reader may th<strong>in</strong>k <strong>in</strong> terms <strong>of</strong> ord<strong>in</strong>ary multil<strong>in</strong>ear<br />

maps on abelian groups. These def<strong>in</strong>e a multil<strong>in</strong>ear category, from<br />

which others can be def<strong>in</strong>ed by plac<strong>in</strong>g suitable conditions.<br />

Example. Let G be a group. Then Mod(G) is a multil<strong>in</strong>ear cat-<br />

egory if we def<strong>in</strong>e L(A1,..., A,, B) to consist <strong>of</strong> those Z-multil<strong>in</strong>ear<br />

maps O satisfy<strong>in</strong>g<br />

for all a E G and ai E Ai.<br />

O(aal,...,aa,~) =aO(al,...,an)<br />

We can extend <strong>in</strong> the obvious way the notion <strong>of</strong> functor to mul-<br />

til<strong>in</strong>ear categories. Explicitly, a functor F : 92 --0 ~ <strong>of</strong> such a<br />

category <strong>in</strong>to another is given by a map T : f ~ T(f) = f., which<br />

to each multil<strong>in</strong>eax map f <strong>in</strong> 92 associates a multil<strong>in</strong>ear map <strong>in</strong> B,<br />

satisfy<strong>in</strong>g the follow<strong>in</strong>g condition. Let<br />

fl: A1 x .. x AN1<br />

fp: Anp_~ x .. x Anp<br />

9 B1<br />

.B,<br />

g:B1 x .. x Bp " C<br />

be multil<strong>in</strong>ear <strong>in</strong> 92. Then we can compose g(fl,..., fp) and<br />

Tg(Tfl,..., Tfp). The condition is that<br />

T(g(fl,...,L))=Tg(Tfl,...,TL) and T(id)= id.<br />

We could also def<strong>in</strong>e the notion <strong>of</strong> tensor product <strong>in</strong> a multil<strong>in</strong>ear<br />

abelian category. It is a bifunctor, bil<strong>in</strong>ear, on 92 x 92, satisfy<strong>in</strong>g the<br />

universal mapp<strong>in</strong>g property just as for the ord<strong>in</strong>ary tensor product.<br />

In the applications, it will be made explicit <strong>in</strong> each case how such<br />

a tensor product arises from the usual one.<br />

Furthermore, <strong>in</strong> the specific cases <strong>of</strong> multil<strong>in</strong>ear abelian cate-<br />

gories to be considered, the category will be closed under tak<strong>in</strong>g<br />

tensor products, i.e. if A, B are objects <strong>of</strong> 9/, then the l<strong>in</strong>ear fac-<br />

torization <strong>of</strong> a multil<strong>in</strong>ear map is also <strong>in</strong> 92.


IV. 1 75<br />

Let now E1 = (EC~),...,E= = (E~") and H = (H r) be 6-<br />

functors on the abelian category 92, which we suppose multil<strong>in</strong>ear,<br />

and the functors have values <strong>in</strong> a multil<strong>in</strong>ear abelian category ~.<br />

We assume that for each value <strong>of</strong> pl,.. 9 pn taken on by El,..., E,~<br />

respectively, the sum pl + '" + p,~ is among the values taken on<br />

by r. By a cup product, or cupp<strong>in</strong>g, <strong>of</strong> E1,...,E,~ <strong>in</strong>to H we<br />

mean that to each multil<strong>in</strong>ear map 8 E L(A1,..., A,, B) we have<br />

associated a multil<strong>in</strong>ear map<br />

8(p) = 8, = 8p,,...,p,~ 9 E~(A1) x ... x E~"(An) --~ HP(B)<br />

where p = Pl + " 9 9 + P,~, satisfy<strong>in</strong>g the follow<strong>in</strong>g conditions.<br />

Cup 1. The association 8 ~-+ 8(p) is a functor from the multil<strong>in</strong>-<br />

ear category 92 <strong>in</strong>to ~ for each (p) = (pl,---,p,)-<br />

Cup 2. Given exact sequences <strong>in</strong> 92,<br />

0 ---+ A~ ~ Ai ---+ A~' --+ 0<br />

0 ~ B' ---* B --+ B" --* 0<br />

and multil<strong>in</strong>ear maps f', f', f" <strong>in</strong> 9/mak<strong>in</strong>g the follow<strong>in</strong>g diagram<br />

commutative:<br />

Al x... xA~ x... xA, ---+ At x..- xA~ x... xA,<br />

then the diagram<br />

B' ~ B<br />

---+ A1X -<br />

--+ B"<br />

. . .-.<br />

.[ f"<br />

f,,<br />

E~I(A1) x...x E~I(A'/) x...x E~"(A.) ) HP(B '')<br />

E~(&) x... Ef'+~(A'J x-.. E~"(A,,) ~', H,+~(B')<br />

has character (- 1)Pl +.--+p,-1, which means<br />

s ,id) = (-1)P~++P'-~6 o s<br />

xA,<br />

The accumulation <strong>of</strong> <strong>in</strong>dices is <strong>in</strong>evitable if one wants to take all<br />

possibilities <strong>in</strong>to account. In practice, we mostly have to deal with<br />

the follow<strong>in</strong>g cases.


76<br />

First, let H be a cohomological functor. For each n _> 1 suppose<br />

given a cupp<strong>in</strong>g<br />

H 215<br />

(the product on the left occurr<strong>in</strong>g n times) such that for n = 1 the<br />

cupp<strong>in</strong>g is the identity. Then we say that H is a cohomological<br />

cup functor.<br />

Next, suppose we have only two factors, i.e. a cupp<strong>in</strong>g<br />

ExF--~H<br />

from two &functors <strong>in</strong>to another. Most <strong>of</strong> the time, <strong>in</strong>stead <strong>of</strong><br />

<strong>in</strong>dex<strong>in</strong>g the <strong>in</strong>duced maps by their degrees, we simply <strong>in</strong>dex them<br />

bya ,.<br />

If 92 is closed under the tensor product, then by Cup 1 a coho-<br />

mological cup functor is uniquely determ<strong>in</strong>ed by its values on the<br />

canonical bil<strong>in</strong>ear maps<br />

AxB---~A|<br />

Indeed, if f 9 A x B --+ C is bil<strong>in</strong>ear, one can factorize f through<br />

A|<br />

AxB ~174 ~~ C<br />

where 8 is bil<strong>in</strong>ear and T is a morphism <strong>in</strong> 92. Thus certa<strong>in</strong> theorems<br />

will be reduced to the study <strong>of</strong> the cupp<strong>in</strong>g on tensor products.<br />

Let E = (E p) and F = (Fq) be 5-functors with a cupp<strong>in</strong>g <strong>in</strong>to<br />

the 5-functor H = (Hr). Given a bil<strong>in</strong>ear map<br />

and two exact sequences<br />

AxB----~C<br />

0 > A' ~ A > A" ~ 0<br />

0 ~ C' , C , C" ~0<br />

such that the bil<strong>in</strong>ear map A x B ----* C <strong>in</strong>duces bil<strong>in</strong>ear maps<br />

A I x B ----* C I and A" x B ~ C',


IV. 1 77<br />

then we obta<strong>in</strong> a commutative diagram<br />

EP(A '') x Fq(B) , HP+q (C")<br />

Ep+I(A ') x Fq(B) = HP+q+I(C')<br />

and therefore we get the formula<br />

6(a"~)=(6a")fl with c~" E EP(A '') and ~EFq(B).<br />

Proposition 1.1. Let H be a cohomological cup functor on a<br />

multil<strong>in</strong>ear category 9.1. Then the product<br />

(a, fl) ~-~ (-1)Pq/3~ for a r HP(A),~ E Hq(B)<br />

also def<strong>in</strong>es a cupp<strong>in</strong>g H H ---* H, mak<strong>in</strong>g H <strong>in</strong>to another<br />

cohomoIogical cup functor, equal to the first one <strong>in</strong> dimension O.<br />

Pro<strong>of</strong>. Clear.<br />

Remark. S<strong>in</strong>ce we shall prove a uniqueness theorem below, the<br />

preced<strong>in</strong>g proposition will show that we have<br />

=<br />

Now we come to the question <strong>of</strong> uniqueness for cup products. It<br />

will be applied to the uniqueness <strong>of</strong> a cupp<strong>in</strong>g on a cohomological<br />

functor H given <strong>in</strong> one dimension. More precisely, let H be a<br />

cohomological cup functor on a multil<strong>in</strong>ear category 9/. When we<br />

speak <strong>of</strong> the cup functor <strong>in</strong> dimension 0, we mean the cupp<strong>in</strong>g<br />

H ~ ~ xH ~ ~<br />

which to each multil<strong>in</strong>ear map 0 : A1 "- An ~ B associates<br />

the multil<strong>in</strong>ear map<br />

00: H~ "" H~ ---* H~<br />

We note that to prove a uniqueness theorem, we only need to<br />

deal with two factors (i.e. bil<strong>in</strong>ear morphisms), because a cupp<strong>in</strong>g<br />

<strong>of</strong> several functors can be expressed <strong>in</strong> terms <strong>of</strong> cupp<strong>in</strong>gs <strong>of</strong> two<br />

functors, by associativity.<br />

6


78<br />

Theorem 1.2. Let 92 be an abelian multiI<strong>in</strong>ear category. Let<br />

E = (E~ 1) and H = (H~ ~) be two exact 6-f~nctors, and let<br />

F be a functor <strong>of</strong> 9~ <strong>in</strong>to a muItiI<strong>in</strong>ear category lB. Suppose E 1<br />

is erasable by (M, ~), that 9.1, f8 are closed under tensor products,<br />

and that for all A, B E 91 the sequence<br />

O --~ A | B ~A| MA | B ---+ XA | B ---+ O<br />

is exact. Suppose given a cupp<strong>in</strong>g E F ---+ H. Then we have<br />

a commutative diagram<br />

E~ F(B) ---+ H~ | B)<br />

i L id<br />

El(A) x F(B) ---, Hi(A| B)<br />

and the coboundary on the left is surjective.<br />

Pro<strong>of</strong>. Clear.<br />

Corollary 1.3. Hypotheses be<strong>in</strong>g as <strong>in</strong> the theorem, if two cup-<br />

p<strong>in</strong>gs E x F ~ H co<strong>in</strong>cide <strong>in</strong> dimension O, then they co<strong>in</strong>cide<br />

<strong>in</strong> dimension i.<br />

Pro<strong>of</strong>. For all a E El(A) there exists ~ E Z~ such that<br />

a = 6~, and by hypothesis we have for/3 E F(B),<br />

whence the corollary follows.<br />

= (6 )Z =<br />

Theorem 1.4. Let G be a group and let H be the cohomologicaI<br />

functor Ha from Chapter I, such that H~ = A G for A <strong>in</strong><br />

Mod(G). Then a cupp<strong>in</strong>g<br />

HxH---+H<br />

such that <strong>in</strong> dimension O, the cupp<strong>in</strong>g is <strong>in</strong>duced by the bil<strong>in</strong>ear<br />

map<br />

(a,b) ~ O(a,b) for O : Ax ---* C and a E AG, b E B c,


IV. 1 79<br />

is uniquely determ<strong>in</strong>ed by this condition.<br />

Pro<strong>of</strong>. This is just a special case <strong>of</strong> Theorem 1.2, s<strong>in</strong>ce <strong>in</strong> Chap-<br />

ter I we proved the existence <strong>of</strong> the eras<strong>in</strong>g functor (M, ~) necessary<br />

to prove uniqueness.<br />

We shall always consider the functor Ha as hav<strong>in</strong>g its struc-<br />

ture <strong>of</strong> cup functor as we have just def<strong>in</strong>ed it <strong>in</strong> Theorem 1.4. Its<br />

existence will be proved <strong>in</strong> the next section.<br />

If G is f<strong>in</strong>ite, then <strong>in</strong> the category Mod(G) we have an eras<strong>in</strong>g<br />

functor Me for the special cohomology functor He. So we now<br />

formulate the general situation.<br />

Let E = (E'),F = (F'), and H = (H r) be three exact ~-<br />

functors on a multil<strong>in</strong>ear category 9.1. We suppose given a cupp<strong>in</strong>g<br />

E x F ~ H. As <strong>in</strong> Chapter I, suppose given an eras<strong>in</strong>g functor<br />

M for E <strong>in</strong> dimensions > p0. We say that M is special if for each<br />

bil<strong>in</strong>ear map<br />

O:AxB-+C<br />

<strong>in</strong> 9.1, there exists bil<strong>in</strong>ear maps<br />

M(0):MA xB~Mc and X(O):XA xB~Xc<br />

such that the follow<strong>in</strong>g diagram is commutative:<br />

AxB ~ MA XB ~ XA XB<br />

o~ M(O)~ M(O)~<br />

C ~ Me ~ Xc<br />

Theorem 1.5 (right). Let E = (EP),F = (Fq) and H = (H r)<br />

be three exact ~-functors on a multil<strong>in</strong>ear category PJ. Suppose<br />

given a cupp<strong>in</strong>g E x F ---+ H. Let M be a special eras<strong>in</strong>g functor<br />

for E and for H <strong>in</strong> all dimensions. Then there is a commutative<br />

diagram associated with each bil<strong>in</strong>ear map 0: A B--+ C:<br />

EP(XA) X Fq(B) 9 HP+q(c)<br />

id b<br />

EP+I(A) x Fq(B) " HP+I"~I(C)


80<br />

and the vertical maps are isomorphisms.<br />

Pro<strong>of</strong>. Clear.<br />

Of course, we have the dual situation when M is a coeras<strong>in</strong>g<br />

functor for E <strong>in</strong> dimensions < p0. In this case, we say that M<br />

is special if for each 0 there exist bil<strong>in</strong>ear maps M(0) and Y(O)<br />

mak<strong>in</strong>g the follow<strong>in</strong>g diagram commutative:<br />

One then has:<br />

YA XB ) MA XB ) AxB<br />

Y(O) 1 M(O) 1 O[<br />

Ire ~ Mc ~ C<br />

Theorem 1.5 (left). Let E, F, H be three ezact &functors on<br />

a multil<strong>in</strong>ear category 91. Suppose given a cupp<strong>in</strong>g<br />

E x F ---* H. Let M be a special coeras<strong>in</strong>g functor for E and H<br />

<strong>in</strong> all dimensions. Then for each bil<strong>in</strong>ear map 0 : A x B ~ C<br />

we have a commutative diagram<br />

EP(A) x Fq(B) , HP+q(C)<br />

id id<br />

EP+q+I(YA) x Fq(B) * HP+q+I(C)<br />

and the vertical maps are isomorphisms.<br />

Corollary 1.6. Let E,F,H be as <strong>in</strong> the preced<strong>in</strong>g theorems,<br />

with values p = O, 1 (resp. O, -1); q = O; r = O, 1 (resp. O, -1).<br />

Let M be an eras<strong>in</strong>g functor (resp. coeras<strong>in</strong>g) for E and H. Sup-<br />

pose given two cupp<strong>in</strong>gs ExF ~ H which co<strong>in</strong>cide <strong>in</strong> dimension<br />

O. Then they co<strong>in</strong>cide <strong>in</strong> dimension 1 (resp. -1).<br />

We observe that the choice <strong>of</strong> <strong>in</strong>dices O, 1,-1 is arbitrary, and<br />

the corollary applies mutatis mutandis to p, p + 1, or p, p- 1 for E,<br />

q arbitrary for F, andp+q,p+q+l (resp. p+q,p+q-1) for H.<br />

Corollary 1.7. Let H be a cohomological functor on a multil<strong>in</strong>-<br />

ear category P.l. Suppose there exists a special eras<strong>in</strong>g and coeras-<br />

lug functor on H. Suppose there are two cup functor structures<br />

on H, co<strong>in</strong>cid<strong>in</strong>g <strong>in</strong> dimension O. Then these cupp<strong>in</strong>gs co<strong>in</strong>cide<br />

<strong>in</strong> all dimensions.


IV.1 81<br />

Proposition 1.8. Let G be a f<strong>in</strong>ite group and G' a subgroup.<br />

Let H be the cohomological functor on Mod(G) such that H(A) =<br />

H(G',A). Suppose given <strong>in</strong> addition an additional structure <strong>of</strong><br />

cup functor on H. Then the eras<strong>in</strong>g functor A ~ Ms(A) (and<br />

the similar coeras<strong>in</strong>g functor) are special.<br />

Pro<strong>of</strong>. Let 0 : A B ~ C be bil<strong>in</strong>ear. View<strong>in</strong>g MG as coeras<strong>in</strong>g,<br />

we have the commutative diagram<br />

_fG|174 , Z[G]|174 , Z|174<br />

l l 1<br />

zo| , z[a]| , z|<br />

where the vertical maps are def<strong>in</strong>ed by ~ | a ~ b ~-, ~ | ab. We<br />

have a similar diagram to the right for the eras<strong>in</strong>g functor.<br />

From the general theorems, we then obta<strong>in</strong>:<br />

Theorem 1.9. Let G be a group and H = Ha the ord<strong>in</strong>ary<br />

cohomologicaI functor on Mod(G). Then for each multiI<strong>in</strong>ear<br />

map A1 x ... Am ---+ B <strong>in</strong> Mod(G), if we def<strong>in</strong>e<br />

x(al)...>c(a,~)=~(al...a,~) for a, E A~,<br />

then we obta<strong>in</strong> a muItiI<strong>in</strong>ear functor, and a cupp<strong>in</strong>g<br />

H ~ ~ ~H ~<br />

A cup functor structure on H which is the above <strong>in</strong> dimension 0<br />

is uniquely determ<strong>in</strong>ed. The similar assertion holds when G is<br />

f<strong>in</strong>ite and H is replaced by the special functor H = Hc.<br />

As mentioned previously, existence will be proved <strong>in</strong> the next<br />

section. For the rest <strong>of</strong> this section, we let H denote the ord<strong>in</strong>ary<br />

or special cohomology functor on Mod(G), depend<strong>in</strong>g on whether<br />

G is arbitrary or f<strong>in</strong>ite.<br />

Corollary 1.10. Let G be a group and H the ord<strong>in</strong>ary or<br />

special functor if G is f<strong>in</strong>ite. Let A1, A2, A3, A12, A123 be G-<br />

modules. Suppose given multil<strong>in</strong>ear maps <strong>in</strong> Mod(G):<br />

A1 x A2 --* A12 AI~ A3 ---+ A123


82<br />

whose composite gives rise to a multil<strong>in</strong>ear map<br />

A1 x A2 x A3 --* A123.<br />

Let ai E HP~(Ai). Then we have associativity,<br />

=<br />

these cup products be<strong>in</strong>g taken relative to the multil<strong>in</strong>ear maps<br />

as above.<br />

Pro<strong>of</strong>. One first reduces the theorem to the case when<br />

A12 = A1 | and A123 = A1 @A2| The products on the<br />

right and on the left <strong>of</strong> the equation satisfy the axioms <strong>of</strong> a cup<br />

product, so we can apply the uniqueness theorem.<br />

Remark. More generally, to def<strong>in</strong>e a cup functor structure on a<br />

cohomological functor H on an abelian category <strong>of</strong> abelian groups<br />

92, closed under tensor products, it suffices to give a cupp<strong>in</strong>g for<br />

two factors, i.e. H x H ---* H. Once this is done, let<br />

We may then def<strong>in</strong>e<br />

al e H~l(A1),...,an e H~(An).<br />

~l...~n = (. 9 (~1~)~3). 9 9 ~),<br />

and one sees that this gives a structure <strong>of</strong> cup functor on H, us<strong>in</strong>g<br />

the universal property <strong>of</strong> the tensor product.<br />

Corollary 1.11. Let G be a group and H = HG the ord<strong>in</strong>ary<br />

cup functor, or the special one if G is f<strong>in</strong>ite. Let 8 : A B --+ C<br />

be bil<strong>in</strong>ear <strong>in</strong> Mod(G). Let a E A G, and let<br />

8~ : B ---* C be def<strong>in</strong>ed by 8~(b) = ab.<br />

Then Oa is a morphism <strong>in</strong> Mod(G). /f<br />

Hq(Oa) = 0~o : Ha(B) ---* nq(c)<br />

is the <strong>in</strong>duced homomorphism, then<br />

x(a)fl=0~.(fl) for /3EHq(B).<br />

Pro<strong>of</strong>. The first assertion is clear from the fact that a E A c<br />

implies r = aab. If q = 0 the second assertion amounts to the<br />

def<strong>in</strong>ition <strong>of</strong> the <strong>in</strong>duced mapp<strong>in</strong>g. For the other values <strong>of</strong> q, we<br />

apply the uniqueness theorem to the cupp<strong>in</strong>gs H ~ x H ---* H given<br />

either by the cup product or by the <strong>in</strong>duced homomorphism, to<br />

conclude the pro<strong>of</strong>.


IV.2 83<br />

Corollary 1.12. Suppose G f<strong>in</strong>ite and 0 : A x B --+ C bil<strong>in</strong>ear<br />

<strong>in</strong> Mod(G). Then for a 9 A ~ and b 9 Bsa we have<br />

J4(a) U n A I ~ A ~ A" ~ 0<br />

0 > B I > B > B" > 0<br />

0 > C' ~ C > C" >0


84<br />

Suppose given a bil<strong>in</strong>ear map A x B ---+ C <strong>in</strong> 92 such that<br />

A'B = O, AB' C C', A'B C C', A"B" C C".<br />

Then for a" E H~(A '') and ~" E H~(B '') we have<br />

6(a"UlS")=(6a")Uf' + (-1)'a" U (6,8").<br />

It is a pa<strong>in</strong> to write down <strong>in</strong> complete detail what amounts to a<br />

rout<strong>in</strong>e pro<strong>of</strong>. One has to comb<strong>in</strong>e the additive construction with<br />

multiplicative considerations on the product <strong>of</strong> two complexes, cf.<br />

for <strong>in</strong>stance Exercise 29 <strong>of</strong> Algebra, Chapter XX. More generally, we<br />

observe the follow<strong>in</strong>g general fact. Let 9/be a multil<strong>in</strong>ear abelian<br />

category and let Corn(92) be the abelian category <strong>of</strong> complexes <strong>in</strong> 92.<br />

Then we can make Corn(92) <strong>in</strong>to a multil<strong>in</strong>ear category as follows.<br />

Let K, L, M be three complexzes <strong>in</strong> 92. We def<strong>in</strong>e a bil<strong>in</strong>ear map<br />

to be a family <strong>of</strong> bil<strong>in</strong>ear maps<br />

satisfy<strong>in</strong>g the condition<br />

O:KxL---~M<br />

Sr,~ : K ~ x L ~ ---. M ~+~<br />

for x E K ~ and y E L ~. We have <strong>in</strong>dexed the coboundaries<br />

6M,6L, 6K accord<strong>in</strong>g to the complexes to which they belong. If<br />

we omit all <strong>in</strong>dices to simplify the notation, then the above condi-<br />

tion reads<br />

6(x 9 y) = 6x 9 y + (-1)~x 9 6y.<br />

Exercise 29 ioc. cit. reproduces this formula for the universal<br />

bil<strong>in</strong>ear map given by the tensor product. Then the cup product<br />

is <strong>in</strong>duced by a product on represent<strong>in</strong>g cocha<strong>in</strong>s <strong>in</strong> the cocha<strong>in</strong><br />

complex. We leave the details to the reader. As we shall see, <strong>in</strong><br />

practice, one can give explicit concrete formulas which allow direct<br />

verification.<br />

We shall now make the theorem explicit for the standard com-<br />

plex and Mod(G).


IV.2 85<br />

Lemma 2.2. Let G be a group and Y(G,A) the homogeneous<br />

standard complex for A E Mod(G). Let A B ~ C be bil<strong>in</strong>ear<br />

<strong>in</strong> Mod(G). For f C Y~(G,A) and g e Ys(G,A) def<strong>in</strong>e the<br />

product f g by the formula<br />

(fg)(cr0,..., at+l)---- f(ao,...,a~)g(cr~,...,cr~+s).<br />

Then this product satisfies the relation<br />

Pro<strong>of</strong>. Straightforward.<br />

6(f g) : (S f)g + (-1)~f(Sg).<br />

In terms <strong>of</strong> non-homogeneous cocha<strong>in</strong>s f, g <strong>in</strong> the non-homogeneous<br />

standard complex, the formula for the product is given by<br />

(fg)(al,...,ar+s) = f(~rl,... ,O'r)(~l,...,(Trg(O'r+l,...,O'r+s)).<br />

Theorem 2.3. Let G be a group and let HG be the ord<strong>in</strong>ary<br />

cohomological functor on Mod(G). Then the product def<strong>in</strong>ed<br />

<strong>in</strong> Lemma 2.2 <strong>in</strong>duces on Ha a structure <strong>of</strong> cup functor which<br />

satisfies the property <strong>of</strong> the three exact sequences. Furthermore<br />

<strong>in</strong> dimension O, we have<br />

~(ab) = x(a)x(b) for a E A G and b e B c.<br />

Pro<strong>of</strong>. This is simply a special case <strong>of</strong> Theorem 2.1, tak<strong>in</strong>g the<br />

lemma <strong>in</strong>to account, giv<strong>in</strong>g the explicit expression for the cupp<strong>in</strong>g<br />

<strong>in</strong> terms <strong>of</strong> cocha<strong>in</strong>s <strong>in</strong> the standard complex. The property <strong>of</strong><br />

the three exact sequences is immediate from the def<strong>in</strong>ition <strong>of</strong> the<br />

coboundary. Indeed, if we are given cocha<strong>in</strong>s f" and g" represent-<br />

<strong>in</strong>g a" and/~', their coboundaries are def<strong>in</strong>ed by tak<strong>in</strong>g cocha<strong>in</strong>s<br />

f,g <strong>in</strong> A,B respectively mapp<strong>in</strong>g on f",g', so that fg maps on<br />

f'g". The formula <strong>of</strong> the lemma implies the formula <strong>in</strong> the prop-<br />

erty <strong>of</strong> the three exact sequences.<br />

We have the analogous result for f<strong>in</strong>ite groups and the special<br />

functor.


86<br />

Lemma 2.4. Let G be a f<strong>in</strong>ite group. Let X be a complete,<br />

Z[G]-free, acyclic resolution <strong>of</strong> Z, with augmentation ~. Let d<br />

be the boundary operation <strong>in</strong> X and let<br />

d'=d| and d"= idx|<br />

be those <strong>in</strong>duced <strong>in</strong> X| Then there is a family <strong>of</strong> G-morphisms<br />

hr,s : Xr+s ~ X~ | Xs for - oo < r, s < oo,<br />

satisfy<strong>in</strong>g the follow<strong>in</strong>g conditions:<br />

(i) h~,~d = d'h,-+l,~ + d"h,-,s+l<br />

(ii) (~ | ~)h0,0 = ~.<br />

Pro<strong>of</strong>. Readers will f<strong>in</strong>d a pro<strong>of</strong> <strong>in</strong> Caxtan-Eilenberg [CaE].<br />

Theorem 2.5. Let G be a f<strong>in</strong>ite group and HG the special co-<br />

homology functor. Then there exists a unique structure <strong>of</strong> cup<br />

functor on Ha such that if 8 : A x B --+ C is bil<strong>in</strong>ear <strong>in</strong> Mod(G)<br />

then<br />

x(a)x(b) = x(ab) for a e AG, b e B G.<br />

Furthermore, this cupp<strong>in</strong>g satisfies the three exact sequences prop-<br />

erty.<br />

Pro<strong>of</strong>. Let A E Mod(G), and let X be the standard complex.<br />

Let Y(A) be the cocha<strong>in</strong> complex Homa(X, A). For<br />

f E Y'(A)= iomc(X~,A) and g E YS(A),<br />

we can def<strong>in</strong>e the product fg E Y~+~(A) by the composition <strong>of</strong><br />

canonical maps<br />

Zrws hr s f@g O'<br />

~ X~| , A| ----* C,<br />

where 8' is the morphism <strong>in</strong> Mod(G) <strong>in</strong>duced by 8, that is<br />

fg = 8'(f Q g)hr,~.<br />

One then verifies without difficulty the formula<br />

6(fg) = (Sf)g + (-1)~f(Sg),


IV.3 87<br />

and the rest <strong>of</strong> the pro<strong>of</strong> is as <strong>in</strong> Theorem 2.3.<br />

w Relations with subgroups<br />

We shall tabulate a list <strong>of</strong> commutativity relations for the cup<br />

product with a group and its subgroups.<br />

First we note that every multil<strong>in</strong>ear map 8 <strong>in</strong> Mod(G) <strong>in</strong>duces <strong>in</strong><br />

a natural way a multil<strong>in</strong>ear map 8' <strong>in</strong> Mod(G') for every subgroup<br />

G' <strong>of</strong> G. Set theoretically, it is just 8.<br />

Theorem 3.1. Let G be a group and 8 : A B ---+ C bil<strong>in</strong>ear <strong>in</strong><br />

Mod(G). Let G' be a subgroup <strong>of</strong> G. Let H denote the ord<strong>in</strong>ary<br />

cup functor, or the special cup functor if G is f<strong>in</strong>ite, except when<br />

we deal with <strong>in</strong>flation <strong>in</strong> which case H denotes only the ord<strong>in</strong>ary<br />

functor. Let the restriction res be from G to G'. Then:<br />

(1) res(a/~) = (res a)(res/3) for ~ e Hr(G,A) and ~ e H~(G,B).<br />

(2) tr((res a)/Y) = a(tr/3') for a E Hr(G,A) and/3' E HS(G',B),<br />

the transfer be<strong>in</strong>g taken from G' to G. Similarly,<br />

tr(a'(res fl))= (tr a')fl for a' C Hr(G',A) and fl E H*(G,B).<br />

(3) Let G l be normal <strong>in</strong> G. Then 8 <strong>in</strong>duces a bil<strong>in</strong>ear map<br />

A G' B G' ____+ C G'<br />

and for ~ C Hr(G/G',Aa'),fl e HS(G/G',B a') we have<br />

<strong>in</strong>f(afl) = (<strong>in</strong>f c~)(<strong>in</strong>f fl).<br />

Pro<strong>of</strong>. The formulas are immediate <strong>in</strong> dimension O, i.e. for<br />

r = s = O. In each case, the expressions on the left and on the right<br />

<strong>of</strong> the stated equality def<strong>in</strong>e separately a cupp<strong>in</strong>g <strong>of</strong> a cohomological<br />

functor <strong>in</strong>to another, co<strong>in</strong>cid<strong>in</strong>g <strong>in</strong> dimension O, and satisfy<strong>in</strong>g the<br />

conditions <strong>of</strong> the uniqueness theorem. The equalities are therefore<br />

valid <strong>in</strong> all dimensions. For example, <strong>in</strong> (1) we have two cupp<strong>in</strong>gs<br />

<strong>of</strong> HG HG -+ Ha, given by<br />

(a, fl) ~ res(afl) and (a, fl) ~ (res a)(res fl).


88<br />

In (3), we f<strong>in</strong>d first a cupp<strong>in</strong>g<br />

Ha~a, x Ha~a, ~ Ha<br />

to which we apply the uniqueness theorem on the right. We let<br />

the reader write out the details. For the <strong>in</strong>flation, we may write<br />

explicitly one <strong>of</strong> these cupp<strong>in</strong>gs:<br />

H(G/G',A a') x H(G/G',B a') cup H(a/a,,Ca,)--. H(a, Ca).<br />

w The triplets theorem<br />

We shall formulate for cup products the analogue <strong>of</strong> the triplets<br />

theorem. We shall reduce the pro<strong>of</strong> to the preced<strong>in</strong>g situation.<br />

Theorem 4.1. Let G be a f<strong>in</strong>ite group and 8 : A x B ---* C<br />

bil<strong>in</strong>ear <strong>in</strong> Mod(G). Fix c~ C HP(G,A) for some <strong>in</strong>dex p. For<br />

each subgroup G' <strong>of</strong> G let c~' = res~,(o~) be the restriction <strong>in</strong><br />

HP(G I, A). For each <strong>in</strong>teger s denote by<br />

c~: H~(G', B)--* H~(G ', C)<br />

the homomorphism /Y ~ a~/~ ~. Suppose there exists an <strong>in</strong>dex r<br />

such that C~r+ 11 is surjective, ~r is an isomorphism, and C~r+l ~ is<br />

<strong>in</strong>jective, for all subgroups G ~ <strong>of</strong> G. Then a~s is an isomorphism<br />

for all s.<br />

Pro<strong>of</strong>. Suppose first that r = 0. We then know by Corollary<br />

1.11 that o~8 is the homomorphism (8a). <strong>in</strong>duced by an element<br />

a C A a, where Oa : B ---* C is def<strong>in</strong>ed by b ~ 0(a,b) = ab. The<br />

theorem is therefore true if p = 0 by the ord<strong>in</strong>ary triplets theorem.<br />

We note that the <strong>in</strong>duced homomorphism is compatible with the<br />

restriction from G to G t.<br />

We then prove the theorem ill general by ascend<strong>in</strong>g and descend-<br />

<strong>in</strong>g <strong>in</strong>duction on p. For example, let us give the details <strong>in</strong> the case<br />

<strong>of</strong> descend<strong>in</strong>g <strong>in</strong>duction to the left. We have E = F = H. There<br />

exists ~ C Hr(G, XA) such that a = 54, where XA is the coker-<br />

nel <strong>in</strong> the dimension shift<strong>in</strong>g exact sequence as <strong>in</strong> Theorem 1.14 <strong>of</strong><br />

Chapter II. The restriction be<strong>in</strong>g a morphism <strong>of</strong> functors, we have<br />

~'8 = 54'8 for all s. It is clear that cd8 is an isomorphism (resp. is


IV.5 89<br />

<strong>in</strong>jective, resp. surjective) if and only if ~'8 is an isomorphism (resp.<br />

is <strong>in</strong>jective, resp. surjective). Thus we have an <strong>in</strong>ductive procedure<br />

to prove our assertion.<br />

w The cohomology r<strong>in</strong>g and duality<br />

Let A be a r<strong>in</strong>g and suppose that the group G acts on the ad-<br />

ditive group <strong>of</strong> A, i.e. that this additive group is <strong>in</strong> Mod(G). We<br />

say that A is a G-r<strong>in</strong>g if <strong>in</strong> addition we have<br />

o(ab) = (o'a)(ab) for all o" e a,a,b r A.<br />

Suppose A is a G-r<strong>in</strong>g. Then multiplication <strong>of</strong> n elements <strong>of</strong> A is<br />

a multil<strong>in</strong>ear map <strong>in</strong> the multil<strong>in</strong>ear category Mod(G).<br />

Let us denote by H(A) the direct sum<br />

H(A) = (~ HP(A),<br />

--Oo<br />

where H is the ord<strong>in</strong>ary functor on Mod(G), or special functor <strong>in</strong><br />

case G is f<strong>in</strong>ite. Then H(A) is a graded r<strong>in</strong>g, multiplication be<strong>in</strong>g<br />

first def<strong>in</strong>ed for homogeneous elements c~ C HP(A) and/3 E Hq(A)<br />

by the cup product, and then on direct sums by l<strong>in</strong>earity, that is<br />

We then say that H(A) is the cohomology r<strong>in</strong>g <strong>of</strong> A.<br />

One verifies at once that if A is a commutative r<strong>in</strong>g, then H(A)<br />

is anti-commutative, that is if a r HP(A) and/3 E Hq(A) then<br />

o~# = (-l)Pq#oz.<br />

S<strong>in</strong>ce by def<strong>in</strong>ition a r<strong>in</strong>g has a unit element, we have 1 E A a and<br />

x(1) is the unit element <strong>of</strong> H(A). Indeed, for fl E Ha(A) we have<br />

x(1)# = 0i,/3 -- #,


90<br />

because 01 : a ~ la = a is the identity.<br />

Let A be a G-r<strong>in</strong>g and B 9 Mod(G). Suppose that B is a left<br />

A-module, compatible with the action <strong>of</strong> G, that is the map<br />

AxB--*B<br />

def<strong>in</strong>ed by the action <strong>of</strong> A on B is bil<strong>in</strong>ear <strong>in</strong> the multil<strong>in</strong>ear cate-<br />

gory Mod(G). We then obta<strong>in</strong> a product<br />

HP(A) x Hq(B) ---+ H'+q(B)<br />

which we can extend by l<strong>in</strong>earity so as to make the direct sum<br />

H(B) = @ Hq(B) <strong>in</strong>to a graded H(A)-module. The unit element<br />

<strong>of</strong> H(A) acts as the identity on H(B) accord<strong>in</strong>g to the previous<br />

remarks.<br />

Let B, C 9 Mod(G). There is a natural map<br />

Hom(B,C) x B ~ C<br />

def<strong>in</strong>ed by (f, b) ~ f(b). This map is bil<strong>in</strong>ear <strong>in</strong> the multil<strong>in</strong>ear<br />

category Mod(G), because we have<br />

([a]f)(ab) = afa -lab = a(fb)<br />

for f 9 Horn(B, C) and b 9 B. Thus we obta<strong>in</strong> a product<br />

(%/3) ~ ~/3, for ~ 9 HP(Hom(B,C)) and /3 9 Hq(B).<br />

Theorem 5.1. Let<br />

0 ---* B' ~ B ---* B" -* 0<br />

be a short exact sequence <strong>in</strong> Mod(G), let C 9 Mod(G),<br />

suppose the Horn sequence<br />

is exact.<br />

loe have<br />

0 ~ Hom(B", C)--~ Hom(B,C)~ Hom(B', C')~ 0<br />

and<br />

Then for/3" C Hq-I(B ") and ~' 9 HP(Hom(B',C)),<br />

(~o')/3" + (-1)P~'(5r = 0.


IV.5 91<br />

Pro<strong>of</strong>. We consider the three exact sequences:<br />

0 ---+ Hom(B", C) --~ Horn(B, C) --+ Hom(B', C) ---+ 0<br />

0 ---+ B' ~ B --+ B" ~ O.<br />

0 ---* C --+ C -+ 0 --+ 0,<br />

and a bil<strong>in</strong>ear map from M


92<br />

Theorem 5.3. Let G be f<strong>in</strong>ite, and H = HG the special func-<br />

tot. Suppose that for C fixed and B variable <strong>in</strong> Mod(G), and<br />

two fixed <strong>in</strong>tegers p0, qo the map hpo,q o is an isomorphism. Then<br />

hp,q is an isomorphism for all p, q such that p + q = Po + qo.<br />

Pro<strong>of</strong>. We are go<strong>in</strong>g to use dimension shift<strong>in</strong>g. We consider the<br />

exact sequence<br />

0 -~ I| ~ Z[G] @B ---, Z| = B ~ O,<br />

which we horn <strong>in</strong>to C. S<strong>in</strong>ce the sequence splits, we obta<strong>in</strong> an exact<br />

sequence<br />

0 ~ Horn(B, C) ~ Hom(Z[G] | B, C) --~ Hom(!| B, C) ---+ 0.<br />

Apply<strong>in</strong>g the diagram follow<strong>in</strong>g theorem 5.2, we f<strong>in</strong>d:<br />

HP(Hom(I| h~,~ ,<br />

,l<br />

H'+I (Horn(B, C))<br />

hp+l,q+t<br />

Hom(Hq (_r | B), HP+q(C))<br />

Hom(Hq-1 (B), HP+q(C) ).<br />

The vertical coboundaries axe isomorphisms because the middle<br />

object <strong>in</strong> the exact sequence is G-regular, and so annuls the coho-<br />

mology. This concludes the pro<strong>of</strong> go<strong>in</strong>g from p to p + 1. Go<strong>in</strong>g the<br />

other way, we use the other exact sequence<br />

B Z[a] O B -, :oB<br />

and we let the reader f<strong>in</strong>ish this side <strong>of</strong> the pro<strong>of</strong>.<br />

As an apphcation, we shall prove a duality theorem. Let B be<br />

an abehan group. As before, we def<strong>in</strong>e its dual group by /3 =<br />

Horn(B, Q/Z). It is the group <strong>of</strong> characters <strong>of</strong> f<strong>in</strong>ite order, which<br />

we consider as a discrete group. Its elements will be called simply<br />

characters. Let B E Mod(G). We consider B as an abelian group<br />

to get/~.<br />

We have an isomorphism<br />

~-~ 9 H-~(Q/Z) --~ (Q/Z)n


IV.5 93<br />

between H-I(Q/Z) and the elements <strong>of</strong> order n = (G: e) <strong>in</strong> Q/Z.<br />

In addition, we have a bil<strong>in</strong>ear map <strong>in</strong> Mod(G):<br />

/} B ~ Q/Z,<br />

and consequently a correspond<strong>in</strong>g bil<strong>in</strong>ear map <strong>of</strong> abelian groups<br />

H-q(/}) x Hq-I(B) ~ H-I(Q/Z).<br />

Theorem 5.4. Duality Theorem. The homomorphism<br />

H-q(/})--+ Hq-I(B) ^<br />

which to each 9o E U-q(B) associates the character fl ~ :~


94<br />

We extend g to a homomorphism <strong>of</strong> B <strong>in</strong>to Q/Z, denoted by the<br />

same letter. Then f = Sg, because<br />

(Sg)(b)-- Eo'go'-lb= Eg(T-lb--g (E o'-lb) ---gSb: f(b).<br />

This concludes the pro<strong>of</strong> <strong>of</strong> hte duality theorem.<br />

Consider the special case when B = Z. Then<br />

and we f<strong>in</strong>d:<br />

/} = 2 = Hom(Z, Q/Z)<br />

Corollary 5.5. n-q(Q/Z) ~ Hq-I(Z) ^<br />

Apply<strong>in</strong>g the coboundary homomorphism aris<strong>in</strong>g from the exact<br />

sequence<br />

0 -, z -, q -~ q/z -~ 0,<br />

we obta<strong>in</strong>:<br />

Corollary 5.6.<br />

H-p-I(Q/Z)<br />

The follow<strong>in</strong>g diagram is commutative:<br />

x HP(Z) , H-I(Q/Z)<br />

6 ] id 6<br />

H-P(Z) x HP(Z) 9 H~<br />

The vertical maps are isomorphisms, and thus<br />

H-P(Z) ~ HP(Z) ^.<br />

Pro<strong>of</strong>. S<strong>in</strong>ce Q is uniquely divisible by n, its cohomology groups<br />

are trivial, and hence the coboundaries are isomorphisms, so the<br />

corollary is clear.<br />

Corollary 5.7. Let M C Mod(G) be Z-free.<br />

commutative diagram:<br />

Then one has a<br />

HP-I(Hom(M,Q/Z)) x H-P(M) 9 H-I(Q/Z)<br />

HP(Hom(M, Z)) H-P(M) , H~<br />

id


IV.6 95<br />

where the vertical maps are isomorphisms. Thus we obta<strong>in</strong> a<br />

canonical isomorphism<br />

HP(Hom(M, Z)) ~ H-P(M) ^.<br />

Pro<strong>of</strong>. This is an immediate consequence <strong>of</strong> the fact that Q is<br />

G-regular (the identity is the trace <strong>of</strong> l/n), and so Horn(M, A) is<br />

also G-regular, and so annuls cohomology. The sequence<br />

0 --+ Hom(M, Z) ---+ Horn(M, Q) --+ Horn(M, Q/Z) ---+ 0<br />

is exact. We can then apply the def<strong>in</strong>ition <strong>of</strong> the cup functor to<br />

conclude the pro<strong>of</strong>.<br />

It will be convenient to use the follow<strong>in</strong>g term<strong>in</strong>ology. Suppose<br />

given a bil<strong>in</strong>ear map <strong>of</strong> f<strong>in</strong>ite abelian groups<br />

F' F --+ q/z.<br />

This <strong>in</strong>duces a homomorphism F' ---+ F ^. If F t ---+ F ^ is an isomor-<br />

phism, then we say that F r and F are <strong>in</strong> perfect duality under<br />

the bil<strong>in</strong>ear map. Each <strong>of</strong> Theorem 5.4, Corollary 5.5 arid Corol-<br />

lary 5.6 establish a perfect duality <strong>of</strong> cohomology groups <strong>in</strong> their<br />

conclusions, when B is, say, f<strong>in</strong>itely generated.<br />

w Periodicity<br />

In Chapter I, we saw that the cohomology <strong>of</strong> a f<strong>in</strong>ite cyclic group<br />

is periodic. We shall now give a general criterion for periodicity for<br />

an arbitrary f<strong>in</strong>ite group G. This section will not be used <strong>in</strong> what<br />

follows.<br />

Let r E Z be fixed. An element C E Hr(G, Z) will be said to be<br />

a maximal generator if ~" generates H~(G, Z) and if r is <strong>of</strong> f<strong>in</strong>ite<br />

order (G: e).<br />

Theorem 6.1. Let G be a f<strong>in</strong>ite group and ~ E Hr(G, Z). The<br />

follow<strong>in</strong>g properties are equivalent.<br />

MAX 1. ~ is a maximal generator.<br />

MAX 2. ( is <strong>of</strong> order (G : e).<br />

MAX 3. There exists an element ~--1 E H-r(G, Z)


96<br />

such that C-1C = 1.<br />

MAX 4. For all A E Mod(G), the map<br />

a ~ Ca <strong>of</strong> Hi(G,A) --* Hi+~(G,A)<br />

is an isomorphism for all i.<br />

Pro<strong>of</strong>. That MAX 1 implies MAX 2 is trivial.<br />

Assume MAX 2. Suppose r has order (G: e). S<strong>in</strong>ce H-~(Z) is<br />

dual to H"(Z) by Corollary 5.6, the existence <strong>of</strong> r follows from<br />

the def<strong>in</strong>ition <strong>of</strong> the dual group, so MAX 3 is satisfied.<br />

Assume MAX 3. The maps<br />

a ~ Ca for a 9 Hi(A) and/3 ~ ~-1/3 for/3 9 Hi+~(A)<br />

are <strong>in</strong>verse to each other, up to a power (-1) ~, and are therefore<br />

isomorphisms, thus prov<strong>in</strong>g MAX 4.<br />

Assume MAX 4. We take A = Z andi = 0 <strong>in</strong> the preced<strong>in</strong>g<br />

assertion, and we use the fact that H~ is cyclic <strong>of</strong> order (G : e).<br />

Then MAX 1 follows at once.<br />

The uniqueness <strong>of</strong> ~-1 <strong>in</strong> Theorem 6. I, satisfy<strong>in</strong>g condition MAX<br />

3, is clear, tak<strong>in</strong>g <strong>in</strong>to account that H-~(Z) is the dual group <strong>of</strong><br />

H~(Z).<br />

Proposition 6.2. Let C C H~(G,Z) be a maximal generator.<br />

Then so is ~-1. If C1 is a maximal generator <strong>of</strong> Hs(G, Z) for<br />

some s, then CC1 i~ a maximal generator.<br />

Pro<strong>of</strong>. The first assertion follows from MAX 3; the second from<br />

MAX 4.<br />

An <strong>in</strong>teger rn will be said to be a cohomology period <strong>of</strong> G<br />

if Hm(G, Z) conta<strong>in</strong>s a maximal generator, or <strong>in</strong> other words,<br />

Hm(G,Z) is cyclic <strong>of</strong> order (G : e). The anticommutativity <strong>of</strong><br />

the cup product shows that a period is even.<br />

Proposition 6.3. Suppose m is a cohomoIogy period <strong>of</strong> G. Let<br />

U be a subgroup <strong>of</strong> G and let ( C Hm(G,Z) be <strong>of</strong> order Ca: e).


IV.6 97<br />

Then resg(0 has order (U e) and a ohomoIogy period 4<br />

U.<br />

Pro<strong>of</strong>. S<strong>in</strong>ce<br />

trgresg(0 = (aU)r<br />

it follows that the order <strong>of</strong> the restriction <strong>of</strong> C to U is at least<br />

(U : e). S<strong>in</strong>ce it is at most equal to (U : e), it is a period.<br />

Proposition 6.4. Let Gp be a p-SyIow subgroup <strong>of</strong> G and let<br />

E H~(Gp, Z) be a maximal generator. Let n be a positive<br />

<strong>in</strong>teger such that<br />

k ~=1 mod(Gp:e)<br />

for all <strong>in</strong>tegers k prime to p. Then ['~ E Hnr(Gp, Z) is stable,<br />

i.e. ~r.((~) = ~'~ for all cr e G, and<br />

G'(cl<br />

has order (Gp :e).<br />

Pro<strong>of</strong>. S<strong>in</strong>ce (r, is an isomorphism, and s<strong>in</strong>ce the restriction <strong>of</strong> a<br />

maximal generator is a maximal generator, one concludes that the<br />

elements<br />

G [~]<br />

fl = resG~nGp[cq(~ n) and resGpnGp[~] o 0",(~ n) = A<br />

are both maximal generators <strong>in</strong> Hr(Gp a Gp[(r],Z). Hence there<br />

exists an <strong>in</strong>teger k prime to p such that one is equal to k times the<br />

other, i.e. kfl = ,\. Tak<strong>in</strong>g the n-th power we get<br />

k~fl~ = A ~"<br />

From the def<strong>in</strong>ition <strong>of</strong> n, with the fact that (Gp : e) kills/3 and A,<br />

and with the commutativity <strong>of</strong> the cup product and the <strong>in</strong>dicated<br />

operations, we f<strong>in</strong>d that [~ is stable. This be<strong>in</strong>g the case, we know<br />

from Proposition i.I0 <strong>of</strong> Chapter II that<br />

S<strong>in</strong>ce (G : Gp) is prime to p, it follows that the transfer followed by<br />

the restriction is <strong>in</strong>jective on the subgroup generated by ~n Thus<br />

the transfer is <strong>in</strong>jective on this subgroup. From this one sees that<br />

the period <strong>of</strong> this transfer is the same as that <strong>of</strong> ~n, whence the<br />

same as that <strong>of</strong> [, thus conclud<strong>in</strong>g the pro<strong>of</strong>.


98<br />

Corollary 6.5. Let G be a f<strong>in</strong>ite group. Then G admits a co-<br />

homological period > 0 if and only if each Sylow subgroup Gp<br />

has a period > O.<br />

Pro<strong>of</strong>. If G has a period > 0, the proposition shows that Gp also<br />

has one. Conversely, suppose that ~'~ E Hr(Gp, Z) is a maximal<br />

generator. Let<br />

c, =<br />

Then the order <strong>of</strong>


IV.7 99<br />

Then a~ is an isomorphism for all r E Z.<br />

Pro<strong>of</strong>. As <strong>in</strong> the ma<strong>in</strong> theorem on cohomological triviality (The-<br />

orem 3.1 <strong>of</strong> Chapter III, we have exact sequences<br />

0 ~ A ~ A I ) I , 0<br />

0 , A| ~ A'| ~ I| ) O.<br />

The exactness <strong>of</strong> the second sequence is due to the fact that the<br />

first one splits.<br />

In addition, A' | is cohomologically trivial. Let us put fl = 5~.<br />

Then<br />

ar(~) = a~ = (6~)~ = ~(~).<br />

If we now use the exact sequences<br />

0 , i , z[a] , z , 0<br />

0 ) I| , Z[G]| ) Z| , 0,<br />

we f<strong>in</strong>d<br />

The coboundaries 6 are isomorphisms, <strong>in</strong> one case because Z[G] |<br />

is G-regular, <strong>in</strong> the other case by the ma<strong>in</strong> theorem on cohomolo-<br />

gical triviality. To show that a~ is an isomorphism, it will suffice<br />

to show that ~ : A ~-~ ~A is an isomorphism. But this is clear be-<br />

cause it is the identity, as one sees by mak<strong>in</strong>g explicit the canonical<br />

isomorphism Z | M ~ M. This concludes the pro<strong>of</strong> <strong>of</strong> Theorem<br />

7.1.<br />

We can rewrite the commutative diagram aris<strong>in</strong>g from the the-<br />

orem <strong>in</strong> the follow<strong>in</strong>g manner.<br />

H~ H"(M) ~ H"(Z|<br />

Hi(I) x Hr(M) , Hr+I(I|<br />

H2(A) x Hr(M) , H~+2(A| M).


100<br />

The vertical maps 5 are isomorphisms, and the cup product on top<br />

corresponds to the bil<strong>in</strong>ear map Z M ~ Z | M = M, so the<br />

isomorphism <strong>in</strong>duced by ~r is the identity.<br />

If we take M = Z and r = -2, we f<strong>in</strong>d<br />

H2(A) H-2(Z)~ H~<br />

We know that H-2(Z) = G/G c and so we f<strong>in</strong>d an isomorphism<br />

c/a c .~ H~ = AG/SGA.<br />

We shall make this isomorphism more explicit below.<br />

We also obta<strong>in</strong> an analogous theorem by tak<strong>in</strong>g Horn <strong>in</strong>stead <strong>of</strong><br />

the tensor product, and by us<strong>in</strong>g the duality theorem.<br />

Theorem 7.2. Let G be a f<strong>in</strong>ite group, M E Mod(G) and Z-<br />

free, A E Mod(G) a class module. Then for all r C Z, the<br />

biI<strong>in</strong>ear map <strong>of</strong> the cup product<br />

Hr(G, Hom(M,A)) H2- (G,M) H (G,A)<br />

<strong>in</strong>duces an isomorphism<br />

H~(G, Hom(M,A)) ~ H2-~(G,M) A<br />

Pro<strong>of</strong>. We shift dimensions on A twice. S<strong>in</strong>ce A' and ZIG] are<br />

Z-free, it follows that the sequences<br />

0 , Hom(M,Z) ----* Hom(M,A') , Hom(M,_r) , 0<br />

0 , Hom(U,I) --- Hom(M,Z[G]) , Hom(M,Z) ----* 0<br />

are exact. By the def<strong>in</strong>ition <strong>of</strong> the cup product one f<strong>in</strong>ds commuta-<br />

tive diagrams as follows, where the vertical maps are isomorphisms.<br />

Hr-2(Hom(M,Z)) x H2-r(M) , H~<br />

H~-l(Hom(m,/)) x H2-~(M) , Hi(I)<br />

lid<br />

W(Hom(M,A)) H2- (M) ,


IV.8 101<br />

The bil<strong>in</strong>ear map on top is that <strong>of</strong> Corollary 5.7, and the theorem<br />

follows.<br />

Select<strong>in</strong>g M = Z we get for r = 0:<br />

H~ x H2(Z)--~ H2(A),<br />

this be<strong>in</strong>g compatible with the bil<strong>in</strong>ear map<br />

A@Z~A such that (a,n)~-+na.<br />

We know that 5 : Hi(Q/Z) ~ H2(Z) is an isomorphism, so we<br />

f<strong>in</strong>d the pair<strong>in</strong>g<br />

H~ x Hi(Q/Z) = (~ --, H2(G,A)<br />

which is a perfect duality s<strong>in</strong>ce G is f<strong>in</strong>ite. One can give an ex-<br />

plicit determ<strong>in</strong>ation <strong>of</strong> this duality <strong>in</strong> terms <strong>of</strong> standard cocycles<br />

as follows.<br />

Theorem 7.3. Let A be a class module <strong>in</strong> Mod(G). Then the<br />

perfect duality between H ~ and G is <strong>in</strong>duced by the follow<strong>in</strong>g<br />

pair<strong>in</strong>g. For a C A G and a character X : G ~ Q/Z, we get a<br />

2-cocycle<br />

a~,~- = [x'(a) + x'(v)- x'(av)]a,<br />

where X' is a lift<strong>in</strong>g <strong>of</strong> X <strong>in</strong> Q. The expression m brackets is<br />

a 2-cocycIe <strong>of</strong> G <strong>in</strong> Z. The cocycle (a~,~-) represents the class<br />

u @.<br />

Thus the perfect duality arises from a bil<strong>in</strong>ear map<br />

which we may write<br />

A a x G ~ H2(G,A)<br />

(a, x) ~ a U Sx,<br />

whose kernel on the left is SGA, and the kernel on the right is 0.<br />

w Explicit Nakayama maps<br />

Throughout this section we let G be a f<strong>in</strong>ite group.


102<br />

In Chapter I, w we had an isomorphism<br />

H-I(G, Z) -~ G/G c<br />

by means <strong>of</strong> a sequence <strong>of</strong> isomorphisms<br />

H-2(Z) ,,~ H-I(I) ~ I/I 2 ,~ C/C r<br />

If ~- C G, we denote by ~r the element <strong>of</strong> H-2(Z) correspond<strong>in</strong>g to<br />

the coset ~'G r <strong>in</strong> G/G c. So by def<strong>in</strong>ition<br />

r =<br />

where ~ is the coboundary associated to the exact sequence<br />

0 IG z[a] z 40.<br />

On the other hand, we now have a cup product<br />

H~(A) H-2(Z) ---, H~-2(A)<br />

for A E Mod(G), associated to the natural bil<strong>in</strong>ear map Z ---+ A.<br />

We are go<strong>in</strong>g to make this cup product explicit for r ~ 1, <strong>in</strong> terms <strong>of</strong><br />

cocha<strong>in</strong>s from the standard complex, and the description <strong>of</strong> H-2(Z)<br />

given above.<br />

To start, we give a special case <strong>of</strong> the cup product under dimen-<br />

sion shift<strong>in</strong>g. We consider as usual the exact sequence<br />

and its dual<br />

0 ~ 1 ~ ZIG]-~ Z ~ 0<br />

0 ~ Hom(Z,A) ---, Hom(Z[G],A) ~ Horn(I, A) ~ 0.<br />

We have a bil<strong>in</strong>ear map <strong>in</strong> Mod(G)<br />

Hom(Z[G],A) Z[G]-+ A given by (f,A) ~ f(A).


IV.8 103<br />

There results a pair<strong>in</strong>g <strong>of</strong> these two exact sequences <strong>in</strong>to the exact<br />

sequence<br />

0 -. A ---. A ----~ 0 --~ 0,<br />

to which one can apply the commutative diagram follow<strong>in</strong>g Theo-<br />

rem 5.1 to get:<br />

Proposition 8.1. The follow<strong>in</strong>g diagram has character -1:<br />

H~ x H-I.(I) , H-I(A)<br />

HI(Hom(Z,A)) H-2(Z) , H-'(A)<br />

On the other hand, we know that <strong>in</strong> dimension 0, the cup prod-<br />

uct is given by the <strong>in</strong>duced morphisms. By Corollary 1.12, we see<br />

that the cup product <strong>in</strong> the top l<strong>in</strong>e is given by the maps<br />

>c(f) Um(a-e)=m(f(cr-e)) for f 9<br />

We now pass to the general case.<br />

Theorem 8.2. Let a = a(crl,...,a~) be a standard cocha<strong>in</strong> <strong>in</strong><br />

c~(a, A) for r >= 1 For each ~ ~ a, de, he a map<br />

by the formulas:<br />

a~+a*~"<br />

Then for r >= 1 we have the relation<br />

<strong>of</strong> C"(G,A) ---+ C"-2(G,A)<br />

(u, ~-)(.) = c(~-) if r = I<br />

(a 9 T)(.) = E a(p, T) if r = 2<br />

pEG<br />

(a,~-)(o-~,...,~-,._~)= E a(o',,...,~,._~,p,r) if ,~ > 2.<br />

pGO<br />

(~a),~ = ~(~,T).<br />

If a is a cocycle represent<strong>in</strong>g an element a <strong>of</strong> Hr(G,A), then<br />

(a * ~') represents aU ~ 9 Hr-2(G,A).


104<br />

Pro<strong>of</strong>. Let us first give the pro<strong>of</strong> for r = 1 and 2. We let a = a(cr)<br />

be a 1-cocha<strong>in</strong>. We f<strong>in</strong>d<br />

((6a) 9 7-)(.) -= E(6a)(p, 7")<br />

P<br />

--= E(Pa(7-) -- a(pT-) + a(p))<br />

P<br />

= ~ ;a(7-)<br />

P<br />

= SG(a(7-))) - Sa((a * 7-)(.))<br />

= (~(a, 7-))(.),<br />

which proves the commutativity for r = 1.<br />

Next let r = 2 and let a(~, 7-) be a 2-cocha<strong>in</strong>. Then:<br />

((~a), 7-)(~)= ~(6a)(~, p, 7-.)<br />

P<br />

= ~(~a(p, 7-)- a(~p, 7-)+ a(~, pT-) - a(~, p))<br />

O<br />

= ~ ~a(p, 7-) - a(p, 7-)<br />

P<br />

= (o - ~)((a, 7-)(.))<br />

= (~(a, 7-))(~),<br />

which proves the commutativity relation for r = 2. For r > 2, the<br />

pro<strong>of</strong> is entirely similar and is left to the reader.<br />

From the commutativity relation, one obta<strong>in</strong>s an <strong>in</strong>duced homo-<br />

morphism on the cohomology groups, namely<br />

~-"H'(A) ~ H'-2(A) for r >__ 2.<br />

For r = 2, we have to note that if the cocha<strong>in</strong> a(~z) is a coboundary,<br />

that is<br />

a(~)=(~-e)b for some bEA,


IV.8 105<br />

then (a,r)(.) = (r- e)b is <strong>in</strong> IDA. Thus ~,- is a morphism<br />

<strong>of</strong> functors. It is also a &morphism, i.e. ~ commutes with the<br />

coboundary associated with a short exact sequence. S<strong>in</strong>ce<br />

is also a 5-morphism <strong>of</strong> H ~ to H r-2, to show that they are equal,<br />

it suffices to show that they co<strong>in</strong>cide for r = 1, because <strong>of</strong> the<br />

uniqueness theorem.<br />

Explicitly, we have to show that if a E H 1 (A) is represented by<br />

the cocycle a(a), then <strong>of</strong> tO r is represented by (a 9 r)(-), that is<br />

<strong>of</strong> U (~- = nK(a(v)) 6 H-I(A).<br />

If <strong>of</strong> 6 H2(A) is represented by a standard cocycle a(a, 7), then<br />

/or each ~ C C we have Ep a@, ~) C A% and<br />

Corollary 8.4. The duality between Hi(G, Q/Z) andH-2(G,Z)<br />

<strong>in</strong> the duality theorem is consistent with the identification <strong>of</strong><br />

HI(G,Q/Z) with G and <strong>of</strong> H-2(G,Z) with G/G c.<br />

The above corollary pursues the considerations <strong>of</strong> Theorem 1.17,<br />

Chapter II, <strong>in</strong> the context <strong>of</strong> the cup product. We also obta<strong>in</strong><br />

further commutativity relations <strong>in</strong> the next theorem.


106<br />

Proposition 8.5. Let U be a subgroup <strong>of</strong> G.<br />

(i) For T e U,A 9 Mod(G),a 9 Hr(G,A) we have<br />

trV(r U rest(a)) = r_ U (~.<br />

(ii) zf u i~ normal, m = (U : e), and o~ 9 Hr(a/U,A v) ~,ith<br />

r >= 2, then<br />

m . <strong>in</strong>~/~ (r U ~) = r U <strong>in</strong>~/~ (~).<br />

If r = 2, m. <strong>in</strong>~v/v is <strong>in</strong>duced by the maps<br />

B a ---+ mBa and mSuB ---+ SaB<br />

for B 9 Mod(G/U).<br />

Pro<strong>of</strong>. As to the first formula, s<strong>in</strong>ce the transfer corresponds<br />

to the map <strong>in</strong>duced by <strong>in</strong>clusion, we can apply directly the cup<br />

product formula from Theorem 3.1, that is<br />

tr(a U res(/3)) = tr(a) U/3.<br />

One can also use the Nakayama maps, as follows. For T fixed, we<br />

have two maps<br />

a~-+~rUa and a~-+trg(~rUresG(a))<br />

which are immediately verified to be 5-morphisms <strong>of</strong> the cohomo-<br />

logical functor Ha <strong>in</strong>to Ha with a shift <strong>of</strong> 2 dimensions. To show<br />

that they are equal, it will suffice to do so <strong>in</strong> dimension 2. We apply<br />

Nakayama's formula. We use a coset decomposition G = U ~u as<br />

usual. If f is a cocycle represent<strong>in</strong>g a, the first map corresponds<br />

to<br />

f ~ E f(p' 7).<br />

pea<br />

The second one is<br />

sG (E f(P'T)) = c,oeU<br />

E


IV.8 107<br />

Us<strong>in</strong>g the cocycle relation<br />

f(e,p) + f(ep, r) - f(e, pr) = ef(p, r),<br />

the desired equality falls out.<br />

This method with the Nakayama map can also be used to prove<br />

the second part <strong>of</strong> the proposition, with the lift<strong>in</strong>g morphism lif~G/U<br />

replac<strong>in</strong>g the <strong>in</strong>flation <strong>in</strong>g/U. One sees that m. lif~J v is a a-<br />

morphism <strong>of</strong> Ha/u to Ha on the category Mod(G/U), and it will<br />

suffice to show that the a-morphism.<br />

a~(~U li~/u(a) and a~m.li~/u((,Ua)<br />

co<strong>in</strong>cide <strong>in</strong> dimension 2. This follows by us<strong>in</strong>g the Nakayama maps<br />

as <strong>in</strong> the first case.<br />

If G is cyclic, then H-2(G, Z) has a maximal generator, <strong>of</strong> order<br />

(G : e), and -2 is a cohomological period. If a is a generator <strong>of</strong> G,<br />

then for all r E Z, the map<br />

H~(G,A) -+ H~-2(G,A) given by a ~-+ ~ U a<br />

is aaa isomorphism. Hence to compute the restriction, <strong>in</strong>flation,<br />

transfer, conjugation, we can use the commutativity formulas and<br />

the explicit formulas <strong>of</strong> Chapter II, w<br />

Corollary 8.6. Let G be cyclic and suppose (U : e) divides the<br />

order <strong>of</strong> G/U. Then the <strong>in</strong>flation<br />

is 0 for s > 3.<br />

<strong>in</strong>~/U- HS(G/U,A U) ---+ HS(G,A)<br />

Pro<strong>of</strong>. Write s = 2r or s = 2r+l with r > 1. Let cr be a<br />

generator <strong>of</strong> G. By Proposition 8.5, we f<strong>in</strong>d<br />

(~, U <strong>in</strong>f(a) = <strong>in</strong>:f((~ U a).<br />

But (~ U a has dimension s - 2. By <strong>in</strong>duction, its <strong>in</strong>flation is killed<br />

by (U : e) "-1 , from which the corollary follows.<br />

The last theorem <strong>of</strong> this section summarizes some cornmutativ-<br />

ities <strong>in</strong> the context <strong>of</strong> the cup product, extend<strong>in</strong>g the table from<br />

Chapter I, w


108<br />

Theorem 8.7. Let G be f<strong>in</strong>ite <strong>of</strong> order n. Let A E Mod(G) and<br />

a E H2(A) = H2(G,A). The follow<strong>in</strong>g diagram is commutative.<br />

H0(A) x H2(XZ) ' H2(A)<br />

lu~ Io~<br />

H (Z) . H~ = z/nz<br />

lid 16 16<br />

H-2(Z) x Hi(Q/Z) 9 H-I(Z/Z)<br />

a/a o x d . (z/z).<br />

The vertical maps are isomorphisms <strong>in</strong> the two lower levels. If<br />

A is a class module and a a fundamental element, i.e. a gen-<br />

erator <strong>of</strong> H2(A), then the cups with a on the first level are also<br />

isomorphisms.<br />

Pro<strong>of</strong>. The commutative on top comes from the fact that all<br />

elements have even dimension, and that one has commutativity <strong>of</strong><br />

the cup product for even dimension. The lower commutativities<br />

are an old story. If A is a class module, we know that cupp<strong>in</strong>g with<br />

gives an isomorphism, this be<strong>in</strong>g Tate's Theorem 7.1.<br />

Remark. Theorem 8.7 gives, <strong>in</strong> an abstract context, the reci-<br />

procity isomorphism <strong>of</strong> class field theory. If G is abelian, then<br />

G c = e and H~ = Aa/SGA is both isomorphic to G and dual<br />

to G. On one hand, it is isomorphic to G by cupp<strong>in</strong>g with a, and<br />

identify<strong>in</strong>g H-2(Z) with G. On the other hand, if X is a character<br />

<strong>of</strong> G, i.e. a cocycle <strong>of</strong> dimension 1 <strong>in</strong> Q/Z, then the cupp<strong>in</strong>g<br />

~(a) X ~X ~-~ x(a) U ~X<br />

gives the duality between AG/SGA and H 1 (Q/Z), the values be<strong>in</strong>g<br />

taken <strong>in</strong> H2(A). The diagram expressed the fact that the identifi-<br />

cation <strong>of</strong> H~ A) with G made <strong>in</strong> these two ways is consistent.


w Def<strong>in</strong>itions<br />

CHAPTER V<br />

Augmented Products<br />

In Tate's work a new cohomological operation was def<strong>in</strong>ed, satis-<br />

fy<strong>in</strong>g properties similar to those <strong>of</strong> the cup product, but especially<br />

adjusted to the applications to class field theory and to the duality<br />

<strong>of</strong> cohomology on connection with abelian varieties. As usual here,<br />

we give the general sett<strong>in</strong>g which requires no knowledge beyond<br />

the basic elementary theory we are carry<strong>in</strong>g out.<br />

Let 92 be an abelian bil<strong>in</strong>ear category, and let H, E, F be three<br />

5-functors on 92 with values <strong>in</strong> the same abelian category ~3. For<br />

each <strong>in</strong>tegers r, s such that H r, E s are def<strong>in</strong>ed, we suppose that<br />

F r+s+l is also def<strong>in</strong>ed. By a Tate product, we mean the data <strong>of</strong><br />

two exact sequences<br />

and two bil<strong>in</strong>ear maps<br />

O_._.,A'A+AJA"_.._,O<br />

0 ---, B' -L B j B" ~ 0<br />

A' B ---, C and A B' o C<br />

co<strong>in</strong>cid<strong>in</strong>g on A I B'. Such data, denoted by (A,B, C), form a<br />

category <strong>in</strong> the obvious sense. An augmented cupp<strong>in</strong>g<br />

H


110<br />

associates to each Tare product a bil<strong>in</strong>ear map<br />

U~u, : H"(A") x ES(B '') ~ Fr+~+l(c)<br />

satisfy<strong>in</strong>g the follow<strong>in</strong>g conditions.<br />

ACup 1. The association is functorial, <strong>in</strong> other words, if<br />

u : (A, B, C) ---* (A, B, C) is a morphism <strong>of</strong> a Tate product to<br />

another, then the diagram<br />

is commutative.<br />

Hr(A '') x E'(B") 9 F r+'+l<br />

~(u) lE(u) IF(u)<br />

H~(fit '') x e'(/~") 9 Fr+'+l(C)<br />

ACup 2. The augmented cupp<strong>in</strong>g satisfies the property <strong>of</strong> di-<br />

mension shift<strong>in</strong>g namely: Suppose given an exact and commutative<br />

diagram:<br />

0 0 0<br />

! 1 l<br />

0 ~ A' ~ A ~ A"<br />

0 ~ M' ~ M , M ~'<br />

1 1 l<br />

0 , X' , X ~ X"<br />

1 ! l<br />

0 0 0<br />

and two exact sequences<br />

O~ B'~ B---. B"~O<br />

0 ----* C' ---* Me ---* Xc ~ 0,<br />

~0<br />

~0<br />

~0


V.1 111<br />

as well as bil<strong>in</strong>ear maps<br />

A' xB---~C<br />

A x B' --~C<br />

X' x B--* Xc<br />

X x B' ---* Xc<br />

B' x B--~ Mc<br />

M x B'---+ Mc<br />

which are compatible <strong>in</strong> the obvious sense, left to the reader, and<br />

co<strong>in</strong>cide on A t x B' resp. M ' x B ~, resp. X' x B', then<br />

Hr(x,,) E'(B") -<br />

l,a i,<br />

H~+I(A '') x E'(B")- " F~+'+2(C)<br />

is commutative. Similarly, if we shift dimensions on E, then the<br />

similar diagram will have character -1.<br />

If H is erasable by an eras<strong>in</strong>g functor M which is exact, and<br />

whose c<strong>of</strong>unctor X is also exact, then we get a uniqueness theorem<br />

as <strong>in</strong> the previous situations.<br />

Thus the agreed cupp<strong>in</strong>g behaves like the cup product, but <strong>in</strong> a<br />

little more complicated way. All the relations concern<strong>in</strong>g restric-<br />

tion, transfer, etc. can be formulated for the augmented cupp<strong>in</strong>g,<br />

and are valid with similar pro<strong>of</strong>s, based as before on the uniqueness<br />

theorem. For example, we have:<br />

Proposition 1.1. Let G be a group. Suppose given on Ha an<br />

augmented product. Let U be a subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex. Given<br />

a Tate product (A, B, C), let<br />

and<br />

Then<br />

t!<br />

a 6 H~(G,A")<br />

/3" 6 H~(U,B").<br />

= trU/m'~<br />

U.og Z") G,- ,<br />

Pro<strong>of</strong>. Both sides <strong>of</strong> the above equality def<strong>in</strong>e an augmented<br />

cupp<strong>in</strong>g Ha Hu --* Ha, these cohomological functors be<strong>in</strong>g taken<br />

on the multil<strong>in</strong>ear category Mod(G). They co<strong>in</strong>cide <strong>in</strong> dimension<br />

(0, O) and 1, as one determ<strong>in</strong>es by an explicit computation, so the<br />

general uniqueness theorem applies.


112<br />

Proposition 1.2. For a" E H~(U, A) and/3" E Hs(U, B") and<br />

~r E G, we have<br />

~.(c~" u~.g ~") = ~.c~" u~.g ~.~".<br />

Similarly, if U is normal <strong>in</strong> G and o/' E H"(G/U, A"u),<br />

8" ~ Hs(a/V,B"U), we have for the <strong>in</strong>Za*ion<br />

<strong>in</strong>f(~" U ~~ Y') = <strong>in</strong>f(~") U aug <strong>in</strong>f(~")<br />

Of course, the above ~tatements hold for the special functor H.<br />

when G is f<strong>in</strong>ite, except when we deal with <strong>in</strong>flation.<br />

We make the augmented product more explicit <strong>in</strong> dimensions<br />

(-1, 0) and 0, as well as (0, 0) and 1, for the special functor He.<br />

Dimensions (-1, 0) and 0. We are given two exact sequences<br />

0--~A'~A jA''~0<br />

0 --, B' 2* B ~ B" ~ 0<br />

as well as a Tare product, that is bil<strong>in</strong>ear maps <strong>in</strong> Mod(G):<br />

A I xB~C and AxB I ~C<br />

co<strong>in</strong>cid<strong>in</strong>g on A I x B I. We then def<strong>in</strong>e the augmented product by<br />

x


V.3 113<br />

Theorem 2.1. Let 91 be a multil<strong>in</strong>ear abelian category, and<br />

suppose given an exact bil<strong>in</strong>ear functor A ~-+ Y(A) from 91 <strong>in</strong>to<br />

the bil<strong>in</strong>ear category <strong>of</strong> complexes <strong>in</strong> an abelian category ~.<br />

Then the correspond<strong>in</strong>g eohomological functor H on P.J has a<br />

structure <strong>of</strong> augmented cup functor, <strong>in</strong> the manner described be-<br />

low.<br />

Recall from Chapter IV, w that we already described how the<br />

category <strong>of</strong> complexes forms a bil<strong>in</strong>ear category. For the application<br />

to the augmented cup functor, suppose that (A,B, C) is a Tate<br />

product. We want to def<strong>in</strong>e a bil<strong>in</strong>ear map<br />

Hr(A '') x H~(B '') ---+ Hr+S+l(c).<br />

We do so by a bil<strong>in</strong>ear map def<strong>in</strong>ed on the cocha<strong>in</strong>s as follows. Let<br />

c~" and r be cohomology classes <strong>in</strong> H~(A '') and H*(B '') respec-<br />

tively, and let f",g" be representative cocha<strong>in</strong>s <strong>in</strong> Y~(A), Y*(B)<br />

respectively, so that jf = f" and jg = g". We view i as an <strong>in</strong>clu-<br />

sion, and we let<br />

h = S f .g + (-1)~ f .Sg ,<br />

the products on the right be<strong>in</strong>g the Tate product. Then we def<strong>in</strong>e<br />

o/' U~ug fl" to be the cohomology class <strong>of</strong> h.<br />

One verifies tediously that this class is <strong>in</strong>dependent <strong>of</strong> the choices<br />

made <strong>in</strong> its construction, and one also proves the dimension shift<strong>in</strong>g<br />

property, which is actually a pa<strong>in</strong>, which we do not carry out.<br />

w Some properties<br />

Theorem 3.1. Let the notation be as <strong>in</strong> Theorem 2.1 with a<br />

Tare product (A,B,C). Then the squares <strong>in</strong> the follow<strong>in</strong>g di-<br />

agram from left to right are commutative, resp. <strong>of</strong> character<br />

(-1) r, resp. commutative.<br />

H~(A ,) ---. H~(A) --~ H~(A,,) 6_~ H~+I(A ,)<br />

X X X X<br />

H'(B) *-- H'+I(B ') ~- H'(B") 0-- H'(B)<br />

u]. u~ iU~ug ~u<br />

H~+~+~(C) -~ H~+~+~(C) -~ H~+,+~(C) -~ H~+~+~(C)


114<br />

The morphisms on the bottom l<strong>in</strong>e are all the identity.<br />

Pro<strong>of</strong>. The result follows immediately from the def<strong>in</strong>ition <strong>of</strong> the<br />

cup and augmented cup <strong>in</strong> terms <strong>of</strong> cocha<strong>in</strong> representatives, both<br />

for the ord<strong>in</strong>ary cup and the augmented cup.<br />

The next property arose <strong>in</strong> Tate's application <strong>of</strong> cohomology<br />

theory to abelian varieties. See Chapter X.<br />

Theorem 3.2. Let the multil<strong>in</strong>ear categories be those <strong>of</strong> abelian<br />

groups. Let m be an <strong>in</strong>teger > 1, and suppose that the follow<strong>in</strong>g<br />

sequences are exact:<br />

0 ~ A"~ --, A" m A" --~ 0<br />

O ~ B~ ~ B" "~) B" ~ O.<br />

Given a Tate product (A, B, C), one can def<strong>in</strong>e a bil<strong>in</strong>ear map<br />

A2 B: c<br />

as follows. Let a" C A"~ and b" C B"~. Choose a E A and b C B<br />

such that ja = a" and jb = b". We def<strong>in</strong>e<br />

(a", b") = ma.b - a.rnb.<br />

Then the map (a',b")H (an,b H) is bil<strong>in</strong>ear.<br />

Pro<strong>of</strong>. Immediate from the def<strong>in</strong>itions and the hypothesis on a<br />

Tate product.<br />

Theorem 3.3. Let (A, B, C) be a Tate product <strong>in</strong> a multil<strong>in</strong>ear<br />

abeIian category <strong>of</strong> abelian groups. Notation as <strong>in</strong> Theorem 3.2,<br />

we have a diagram <strong>of</strong> character (--1)r-l:<br />

Hr(A~) , Hr(A '')<br />

X X<br />

H~+I(B~) , ~ H~(B ")<br />

gr+~+l(C) , Hr+S+a(C)<br />

id


V.8 115<br />

Note that the coboundary map <strong>in</strong> the middle is the one associ-<br />

ated with the exact sequence <strong>in</strong>volv<strong>in</strong>g B~ and B" <strong>in</strong> Theorem 3.2.<br />

The cup product on the left is the one obta<strong>in</strong>ed from the bil<strong>in</strong>ear<br />

map as <strong>in</strong> Theorem 3.2.


CHAPTER VI<br />

Spectral Sequences<br />

We recall some def<strong>in</strong>itions, but we assume that the reader knows<br />

the material <strong>of</strong> Algebra, Chapter XX, w on spectral sequences,<br />

their basic constructions and more elementary properties.<br />

w Def<strong>in</strong>itions<br />

Let 9/be an abelian category and A an object <strong>in</strong> 9/. A filtration<br />

<strong>of</strong> A consists <strong>in</strong> a sequence<br />

F=F ~ DF 1 DF 2 D...DF n DF n+l =0.<br />

If F is given with a differential (i.e. endomorphism) d such that<br />

d 2 = 0, we also assume that dF p C F p for all p = 0,... ,n, and<br />

one then calls F a filtered differential object. We def<strong>in</strong>e the<br />

graded object<br />

Gr(F)=OGrP(F ) where GrP(F)=FP/F p+I.<br />

p>o<br />

We may view Gr(F) as a complex, with a differential <strong>of</strong> degree 0<br />

<strong>in</strong>duced by d itself, and we have the homology H(GrPF).<br />

Filtered objects form an additive category, which is not neces-<br />

sarily abelian. The family Gr(A) def<strong>in</strong>es a covariant functor on the<br />

category <strong>of</strong> filtered objects.


VI.1 117<br />

A spectral sequence <strong>in</strong> A is a family E = (EPr 'q, E n) consist<strong>in</strong>g<br />

<strong>of</strong>:<br />

(1) Objects EPr ,q def<strong>in</strong>ed for <strong>in</strong>tegers p, q, r with r > 2.<br />

(2) Morphisms d~'q 9 E~,q ---* E~ +''q-~+l such that<br />

(3) Isomorphisms<br />

dp+r,q-r+l o c~ p'q = O.<br />

r --T<br />

_~,~"q 9 Ker(d~ 'q )/Im(d~ -~'q+~-I ) ~ ~+1<br />

(4) Filtered objects E '~ <strong>in</strong> A def<strong>in</strong>ed for each <strong>in</strong>teger n.<br />

We suppose that for each pair (p, q) we have d~'q = 0 and<br />

d~ -~'q+~-I = 0 for r sufficiently large. It follows that E~ 'q is <strong>in</strong>de-<br />

pendent <strong>of</strong> r for r sufficiently large, and one denotes this object by<br />

E~q. We assume <strong>in</strong> addition that for n fixed, FP(E ~) = E ~ for p<br />

sufficiently small, and is equal to 0 for p sufficiently large.<br />

F<strong>in</strong>ally, we suppose given:<br />

(5) Isomorphisms ~P,q 9 E~ q -+ GrP(EP+q).<br />

The family {E'~}, with filtration, is called the abutment <strong>of</strong> the<br />

spectral sequence E, and we also say that E abuts to {E n} or<br />

converges to {E'~}.<br />

By general pr<strong>in</strong>ciples concern<strong>in</strong>g structures def<strong>in</strong>ed by arrows,<br />

we know that spectral sequences <strong>in</strong> 92 form a category. Thus a<br />

morphism u : E --+ E' <strong>of</strong> a spectral sequence <strong>in</strong>to another consists<br />

<strong>in</strong> a system <strong>of</strong> morphisms.<br />

9 U P ~i~,P,q , __+ q ]:i~P,q and u '~ " E = ---+ E ''n.<br />

~r m<br />

compatible with the filtrations, and commut<strong>in</strong>g with the morphisms<br />

d~ ,q, ~,q and ~,q. Spectral sequences <strong>in</strong> P.l then form an additive<br />

category, but not an abelian category.<br />

A spectral functor is an additive functor on an abelian cate-<br />

gory, with values <strong>in</strong> a category <strong>of</strong> spectral sequences.<br />

We refer to Algebra, Chapter XX, w for constructions <strong>of</strong> spectral<br />

sequences by means <strong>of</strong> double complexes.


118<br />

A spectral sequence is called positive if EP~ 'q = 0 for p < 0 and<br />

q < O. This be<strong>in</strong>g the case, we get:<br />

E~ 'q ~ EP~; q for r > sup(p, q + 1)<br />

E n = 0 for n < 0<br />

Fm(E ~) = 0 if m > n<br />

Fro(E") = E n if m __< O.<br />

In what follows, we assume that all spectral sequences are positive.<br />

We have <strong>in</strong>clusions<br />

E n : F~ '~) D FI(E '~) D... D Fn(E '~) D F~+~(En): O.<br />

The isomorphisms<br />

~0,~: E0,~ --~ Gr0(E n) = FO(En)/FI(E TM) = E,~/FI(E,~)<br />

Z-,0. E-; 0 ___, Gr"(E '~) = F'~(E n)<br />

will be called the edge, or extreme, isomorphisms <strong>of</strong> the spectral<br />

sequence.<br />

Theorem 9.6 <strong>of</strong> Algebra, Chapter XX, shows how to obta<strong>in</strong> a<br />

spectral sequence from a composite <strong>of</strong> functors under certa<strong>in</strong> con-<br />

ditions, the Grothendieck spectral sequence. We do not repeat<br />

this result here, but we shall use it <strong>in</strong> the next section.<br />

w The Hochschild-Serre spectral sequence<br />

We now apply spectral sequence to the cohomology <strong>of</strong> groups.<br />

Let G be a group and Hc the cohomological functor on Mod(G).<br />

Let N be a normal subgroup <strong>of</strong> G. Then we have two functors:<br />

A ~-+ A N <strong>of</strong> Mod(G)<strong>in</strong>to Mod(G/N)<br />

B ~ B G/N <strong>of</strong> Mod(G/N) <strong>in</strong>to Grab (abelian groups).<br />

Compos<strong>in</strong>g these functors yields A ~-+ A c. Therefore, we obta<strong>in</strong><br />

the Grothendieck spectral sequence associated to a composite <strong>of</strong><br />

functors, such that for A E Mod(G):<br />

E~'q(A) = HP(G/N, Hq(N,A)),


vI.2 119<br />

with G/N act<strong>in</strong>g on Hq(N, A) by conjugation as we have seen <strong>in</strong><br />

Chapter II, w Furthermore, this spectral functor converges to<br />

E~(A)=H~(G,A).<br />

One now has to make explicit the edge homomorphisms. First<br />

we have an isomorphism<br />

~o,~. E~(A)---+ H~(G,A)/FI(H~(G,A)),<br />

where F 1 denotes the first term <strong>of</strong> the filtration. Furthermore<br />

E~ = H~(N,A) G/N<br />

and E~g~(A) is a subgroup <strong>of</strong> E2'~(A), tak<strong>in</strong>g <strong>in</strong>to account that<br />

the spectral sequence is positive. Hence the <strong>in</strong>verse <strong>of</strong> fl0,,~ yields<br />

a monomorphism <strong>of</strong> H~(G,A)/FI(H~(G,A)) <strong>in</strong>to H'~(N, d), and<br />

<strong>in</strong>duces a homomorphism<br />

H'~(G,A)-+H~(N,A).<br />

Proposition 2.1. This homomorphism <strong>in</strong>duced by the <strong>in</strong>verse<br />

<strong>of</strong> ~o,n is the restriction.<br />

Pro<strong>of</strong>. This is a rout<strong>in</strong>e tedious verification <strong>of</strong> the edge homo-<br />

morphism <strong>in</strong> dimension 0, left to the reader.<br />

In addition, we have an isomorphism<br />

9 ,0 A)),<br />

whose image is a subgroup <strong>of</strong> Hn(G, A). Dually to what we had<br />

previously, E~g~ is a factor group <strong>of</strong> E~'~ = H~(G/N, AN).<br />

Compos<strong>in</strong>g the canonical homomorphism com<strong>in</strong>g from the d~ '~ and<br />

f<strong>in</strong>,0 we f<strong>in</strong>d a homomorphism<br />

Hn(G/N,A N) --+ Hn(G,A).


120<br />

Proposition 2.2. This homomorphism is the <strong>in</strong>flation.<br />

Pro<strong>of</strong>. Aga<strong>in</strong> omitted.<br />

Besides the above edge homomorphisms, we can also make the<br />

spectral sequence more explicit, both <strong>in</strong> the lowest dimension and<br />

under other circumstances, as follows.<br />

Theorem 2.3. Let G be a group and N a normal subgroup.<br />

Then for A E Mod(G) we have an exact sequence:<br />

0---+ HI(G/N,A N) <strong>in</strong>f HI(G,A) res HI(N,A)C/N d2<br />

d2 H2(G/N, AN) <strong>in</strong>f H2(G,A).<br />

The homomorphism d2 <strong>in</strong> the above sequence is called the trans-<br />

gression, and is denoted by tg, so<br />

tg" HI(N,A) a/x -+ H2(G/N, AN).<br />

This map tg can be def<strong>in</strong>ed <strong>in</strong> higher dimensions under the follow-<br />

<strong>in</strong>g hypothesis.<br />

Theorem 2.4. If Hr(N,A) = 0 for 1


VI.3 121<br />

Theorem 2.5. Suppose Hr(N, A) = 0 for r > O. Then<br />

p,o . HP(G/N,A N) --~ HP(G,A )<br />

~2<br />

is an isomorphism for all p >= O.<br />

The hypothesis <strong>in</strong> Theorem 2.5 means that all po<strong>in</strong>ts <strong>of</strong> the spec-<br />

tral sequence are 0 except those <strong>of</strong> the bottom l<strong>in</strong>e. Furthermore:<br />

Theorem 2.6. Suppose that Hr(N, A) = 0 for r > 1. Then we<br />

have an <strong>in</strong>f<strong>in</strong>ite exact sequence:<br />

0 --* HI(G/N,H~ --~ HI(G,A) --* H~ --*<br />

d2<br />

--. H2(G/N,H~ --~ H2(G,A) --. HI(G/N,HI(N,A)) --.<br />

d2<br />

--~ HS(G/N,H~ --. H3(G,A) --. H2(G/N,HI(N,A)) --.<br />

The hypothesis <strong>in</strong> Theorem 2.6 means that all the po<strong>in</strong>ts <strong>of</strong> the<br />

spectral sequence are 0 except those <strong>of</strong> the two bottom l<strong>in</strong>es.<br />

w Spectral sequences and cup products<br />

In this section we state two theorems where cup products occur<br />

with<strong>in</strong> spectral sequences. We deal with the multil<strong>in</strong>ear category<br />

Mod(G), a normal subgroup N <strong>of</strong> G, and the Hochschild-Serre<br />

spectral sequence.<br />

Theorem 3.1. The spectral sequence is a cup functor (<strong>in</strong> two<br />

dimensions) <strong>in</strong> the follow<strong>in</strong>g sense. To each bil<strong>in</strong>ear map<br />

AxB---*C<br />

there is a cupp<strong>in</strong>g determ<strong>in</strong>ed functorially<br />

E~'q(A) x E~"q'(B) ~ E,'+P"q+q' (C)<br />

such that for a C E~'q(A) and/3 e E~ ''q'(B) we have<br />

d,-(o~ 9 #/) = (d,~o~). ~ + (-1)P+qo~ 9 (d,.~).


122<br />

If we denote by U the usual cup product, then for r = 2<br />

The cupp<strong>in</strong>g is <strong>in</strong>duced by the bil<strong>in</strong>ear map<br />

Hq(N,A) Hq'(N,B) ---* g q+q' (N,C).<br />

F<strong>in</strong>ally, suppose G is a f<strong>in</strong>ite group, and B 6 Mod(G). We have<br />

an exact sequence with arrows po<strong>in</strong>t<strong>in</strong>g to the left:<br />

c~,n N N <strong>in</strong>c<br />

O+---Ba/SG/NBN~ BGr B /IG/NB ( BNG/N/IG/NBN+---O,<br />

or <strong>in</strong> other words<br />

Oe---H~ G/N,BN)(----H~ G,B)+--Ho( G /N,BN)+--H-I( G/N,BN)+---O<br />

This exact sequence is dual to the <strong>in</strong>flation-restriction sequence, <strong>in</strong><br />

the follow<strong>in</strong>g sense.<br />

Theorem 3.2. Let G be a group, U a normal subgroup <strong>of</strong> fi-<br />

nite <strong>in</strong>dex, and (A,B,C) a Tate product <strong>in</strong> Mod(G). Suppose<br />

that (A U,B U, C U) is also a Tare product. Then the follow<strong>in</strong>g<br />

diagram is commutative:<br />

HI(G/U,A,,U) iM H'(G,A") ':~, HI(U,A '')<br />

X X X<br />

0 < HO(GIU, B,,U) < r HO(G,B,) ( s~ Ho(U,B,, )<br />

H2(G/U,C U) , H2(C,C) , H2(U,C).<br />

<strong>in</strong>f tr<br />

The two horizontal sequences on top are exact.


CHAPTER VII<br />

<strong>Groups</strong> <strong>of</strong> Galois Type<br />

(Unpublished article <strong>of</strong> Tate)<br />

w Def<strong>in</strong>itions and elementary properties<br />

We consider here a new category <strong>of</strong> groups and a cohomological<br />

functor, obta<strong>in</strong>ed as limits from f<strong>in</strong>ite groups.<br />

A topological group G will be said to be <strong>of</strong> Galois type if it<br />

is compact, and if the normal open subgroups form a fund~.mental<br />

system <strong>of</strong> neighborhoods <strong>of</strong> the identity e. S<strong>in</strong>ce such a group is<br />

compact, it follows that every open subgroup is <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong><br />

G, and is therefore closed.<br />

Let S be a closed subgroup <strong>of</strong> G (no other subgroups will ever<br />

be considered). Then S is the <strong>in</strong>tersection <strong>of</strong> the open subgroups<br />

U conta<strong>in</strong><strong>in</strong>g S. Indeed, if r E G and a ~ S, we can f<strong>in</strong>d an open<br />

normal subgroup U <strong>of</strong> G such that Ucr does not <strong>in</strong>tersect S, and<br />

so US = SU does not conta<strong>in</strong> c~. But US is open and conta<strong>in</strong>s S,<br />

whence the assertion.<br />

We observe that every closed subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex is also<br />

open.Warn<strong>in</strong>g: There may exist subgroups <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex which are<br />

not open or closed, for <strong>in</strong>stance if we take for G the <strong>in</strong>vertible power<br />

series over a f<strong>in</strong>ite field with p elements, with the usual topology <strong>of</strong><br />

formal power series. The factor group G/G p is a vector space over


124<br />

Fp, one can choose an <strong>in</strong>termediate subgroup <strong>of</strong> <strong>in</strong>dex p which is<br />

not open.<br />

Examples <strong>of</strong> groups <strong>of</strong> Galois type come from Galois groups <strong>of</strong><br />

<strong>in</strong>f<strong>in</strong>ite extensions <strong>in</strong> field theory, p-adic <strong>in</strong>tegers, etc.<br />

<strong>Groups</strong> <strong>of</strong> Galois type form a category, the morphisms be<strong>in</strong>g<br />

the cont<strong>in</strong>uous homomorphisms. This category is stable under the<br />

follow<strong>in</strong>g operations:<br />

1. Tak<strong>in</strong>g factor groups by closed normal subgroups.<br />

2. Products.<br />

3. Tak<strong>in</strong>g closed subgroups.<br />

4. Inverse limits (which follows from conditions 2 and 3).<br />

F<strong>in</strong>ite groups are <strong>of</strong> Galois type, and consequently every <strong>in</strong>verse<br />

limit <strong>of</strong> f<strong>in</strong>ite groups is <strong>of</strong> Galois type. Conversely, every group <strong>of</strong><br />

Galois type is the <strong>in</strong>verse limit <strong>of</strong> its factor groups G/U taken over<br />

all open normal subgroups. Thus one <strong>of</strong>ten says that a Group <strong>of</strong><br />

Galois type is pr<strong>of</strong><strong>in</strong>ite.<br />

The follow<strong>in</strong>g result will allow us to choose coset representatives<br />

as <strong>in</strong> the theory <strong>of</strong> discrete groups, which is needed to make the<br />

cohomology <strong>of</strong> f<strong>in</strong>ite groups go over formally to the groups <strong>of</strong> Galois<br />

type.<br />

Proposition 1.1. Let G be <strong>of</strong> Galoia type, and let S be a closed<br />

subgroup <strong>of</strong> G. Then there exists a cont<strong>in</strong>uous section<br />

G/S --, G,<br />

i.e. one can choose representatives <strong>of</strong> left coseta <strong>of</strong> S <strong>in</strong> G <strong>in</strong> a<br />

cont<strong>in</strong>uous way.<br />

Pro<strong>of</strong>. Consider pairs (T, f) formed by a closed subgroup T and<br />

a cont<strong>in</strong>uous map f : G/S ---, G/T such that for all x E G the<br />

coset f(xS) = yT is conta<strong>in</strong>ed <strong>in</strong> xS. We def<strong>in</strong>e a partial order by<br />

putt<strong>in</strong>g (T,F)


VII. 1 12~<br />

the maps fi. The <strong>in</strong>tersection Afi(zS) taken over all <strong>in</strong>dices i is<br />

therefore not empty. Let y be an element <strong>of</strong> this <strong>in</strong>tersection. Then<br />

by def<strong>in</strong>ition, yTi = fi(zS) for all i, and hence yT C fi(zS) for all<br />

i. We def<strong>in</strong>e f(zS) = yT. Then f(zS) C zS.<br />

The projective limit <strong>of</strong> the homogeneous spaces G/Ti is then<br />

canonically isomorphic to G/T, as one verifies immediately by the<br />

compactness <strong>of</strong> the objects <strong>in</strong>volved. Hence the cont<strong>in</strong>uous sections<br />

G/S ~ G/Ti which are compatible can be lifted to a cont<strong>in</strong>uous<br />

section G/S ~ G/T. By Zorn's lemma, we may suppose G/T<br />

is maximal, <strong>in</strong> other words, T is m<strong>in</strong>imal. We have to show that<br />

r~e.<br />

In other words, with the subgroup S given as at the beg<strong>in</strong>n<strong>in</strong>g,<br />

if S # e it will sumce to f<strong>in</strong>d T :~ S and T open <strong>in</strong> S, closed <strong>in</strong> G,<br />

such that we can f<strong>in</strong>d a section G/S ~ S/T. Let U be a normal<br />

open <strong>in</strong> G, UVIS# S, and put UVIS= T. IfG =[.JziUSis a<br />

coset decomposition, then the map<br />

xiuS~xiuT for uE U<br />

gives the desired section. This concludes the pro<strong>of</strong> <strong>of</strong> Proposition<br />

1.1.<br />

We shall now extend to closed subgroups <strong>of</strong> groups <strong>of</strong> Galois<br />

type the notion <strong>of</strong> <strong>in</strong>dex. By a supernatural number, we mean<br />

a formal product<br />

II pnp<br />

taken over all primes p, the exponents np be<strong>in</strong>g <strong>in</strong>tegers _>_ 0 or oe.<br />

One multiplies such products by add<strong>in</strong>g the exponents, and they<br />

are ordered by divisibility <strong>in</strong> the obvious manner. The sup and <strong>in</strong>f<br />

<strong>of</strong> an arbitrary family <strong>of</strong> such products exist <strong>in</strong> the obvious way. If<br />

S is a closed subgroup <strong>of</strong> G, then we def<strong>in</strong>e the <strong>in</strong>dex (G : S) to<br />

be equal to the supernatural number<br />

(G 9 S) = 1.c.m. (G : V),<br />

V<br />

the least common multiple 1.c.m. be<strong>in</strong>g taken over open subgroups<br />

V conta<strong>in</strong><strong>in</strong>g S. Then one sees that (G : S) is a natural number if<br />

and only if S is open. One also has:


126<br />

Proposition 1.2. Let T C S C G be closed subgroups <strong>of</strong> G.<br />

Then<br />

(a: s)(s: T)= (a: T).<br />

If (Si) is a decreas<strong>in</strong>g family <strong>of</strong> closed subgroups <strong>of</strong> G, then<br />

(a:nsi)=lcm.(a:s,)<br />

i<br />

Pro@ Let us prove the first assertion. Let m, n be <strong>in</strong>tegers => 1<br />

such that m divides (G : S) and n divides (S : T). We can f<strong>in</strong>d<br />

two open subgroups U, V <strong>of</strong> G such that U D S, V D T, m divides<br />

(a: U) and n divides (S: V N S). We have<br />

(a: s n V) = (a: U)(U: U n Y).<br />

But there is an <strong>in</strong>jection S/(V N S) --~ U/(U N V) <strong>of</strong> homogeneous<br />

spaces. By def<strong>in</strong>ition, one sees that rnn divides (G : T), and it<br />

follows that<br />

(G:S)(S:T) divides (G:T).<br />

One shows the converse divisibility by observ<strong>in</strong>g that if U D T is<br />

open, then<br />

(a: u) = (a: us)(us: u) and (US :U) = (S: s o u),<br />

whence (G : T) divides the product. This proves the first assertion<br />

<strong>of</strong> Proposition 1.2. The second assertion is proved by apply<strong>in</strong>g the<br />

first.<br />

Let p be a fixed prime number. We say that G is a p-group<br />

if (G : e) is a power <strong>of</strong> p, which is equivalent to say<strong>in</strong>g that G is<br />

the <strong>in</strong>verse limit <strong>of</strong> f<strong>in</strong>ite p-groups. We say that S is a Sylow p<br />

-subgroup <strong>of</strong> G if S is a p-group and (G : S) is prime to p.<br />

Proposition 1.3. Let G be a group <strong>of</strong> Galois type and p a<br />

prime number. Then G has a p-Sylow subgroup, and any two<br />

such subgroups are conjugate. Every closed p-subgroup S <strong>of</strong> G<br />

is conta<strong>in</strong>ed <strong>in</strong> a p-Sylow subgroup.<br />

Pro<strong>of</strong>. Consider the family <strong>of</strong> closed subgroups T <strong>of</strong> G conta<strong>in</strong>-<br />

<strong>in</strong>g S and such that (G : T) is prime to p. It is partially ordered by<br />

descend<strong>in</strong>g <strong>in</strong>clusion, and it is actually <strong>in</strong>ductively ordered s<strong>in</strong>ce


VII. 1 127<br />

the <strong>in</strong>tersection <strong>of</strong> a totally ordered family <strong>of</strong> such subgroups con-<br />

ta<strong>in</strong>s 5' and has <strong>in</strong>dex prime to p by Proposition 1.2. Hence the<br />

family conta<strong>in</strong>s a m<strong>in</strong>imal element, say T. Then T is a p-group.<br />

Otherwise, there would exist an open normal subgroup U <strong>of</strong> G such<br />

that (T : T n U) is not a p-power. Tak<strong>in</strong>g a Sylow subgroup <strong>of</strong> the<br />

f<strong>in</strong>ite group T/(T n U) = TU/U, for a prime number ~ p, once<br />

can f<strong>in</strong>d an open subgroup V<strong>of</strong> GH such that (T : T N V) is prime<br />

to p, and hence (5' : 5"NV) is also prime top. S<strong>in</strong>ce 5' is ap-<br />

group, one must have 5' = 5' N V, <strong>in</strong> other words V D S, and hence<br />

also T O V D 5'. This contradicts the m<strong>in</strong>imality <strong>of</strong> T, and shows<br />

that T is a p-group <strong>of</strong> <strong>in</strong>dex prime to p, <strong>in</strong> other words, a p-Sylow<br />

subgroup.<br />

Next let 5'1,5'2 be two p-Sylow subgroups <strong>of</strong> G. Let 5'l(U) be<br />

the image <strong>of</strong> 5' under the canonical homomorphism G --+ G/U for<br />

U open normal <strong>in</strong> G. Then<br />

(G/U: 5"iN~U) divides (G: 5'lU),<br />

and is therefore prime to p. Hence 5'l(U) is a Sylow subgroup <strong>of</strong><br />

G/U. Hence there exists an element a C G such that S2(U) is<br />

conjugate to SI(U) by a(U). Let Fu be the set <strong>of</strong> such a. It is a<br />

closed subset, and the <strong>in</strong>tersection <strong>of</strong> a f<strong>in</strong>ite number <strong>of</strong> Fu is not<br />

empty, aga<strong>in</strong> because the conjugacy theorem is known for f<strong>in</strong>ite<br />

groups. Let cr be <strong>in</strong> the <strong>in</strong>tersection <strong>of</strong> all Fu. Then 5"~ and 5'2<br />

have the same image by all homomorphisms G ~ G/U for U open<br />

normal <strong>in</strong> G, whence they are equal, thus prov<strong>in</strong>g the theorem.<br />

Next, we consider a new category <strong>of</strong> modules, to take <strong>in</strong>to ac-<br />

count the topology on a group <strong>of</strong> Galois type G. Let A C Mod(G)<br />

be an ord<strong>in</strong>ary G-module. Let<br />

Ao = U AU'<br />

the union be<strong>in</strong>g taken over all normal open subgroups U. Then A0<br />

is a G-submodule <strong>of</strong> A and (A0)0 = A0. We denote by Galm(G)<br />

the category <strong>of</strong> G-modules A such that A = A0, and call it the<br />

category <strong>of</strong> Galois modules. Note that if we give A the discrete<br />

topology, then Galm(G) is the subcategory <strong>of</strong> G-modules such that<br />

G operates cont<strong>in</strong>uously, the orbit <strong>of</strong> each element be<strong>in</strong>g f<strong>in</strong>ite, and<br />

the isotropy group be<strong>in</strong>g open. The morphisms <strong>in</strong> Galm(G) are<br />

the ord<strong>in</strong>ary G-homomorphisms, and we still write HomG(A,B)<br />

for A, B C Galm(G). Note that Galm(G) is an abelian category


128<br />

(the kernel and cokernel <strong>of</strong> a homomorphism <strong>of</strong> Galois modules are<br />

aga<strong>in</strong> Galois modules).<br />

Let A e Galm(G) and B 9 Mod(G). Then<br />

Homa(A,B) : Homa(A, Bo )<br />

because the image <strong>of</strong> A by a G-homomorphism is automatically<br />

conta<strong>in</strong>ed <strong>in</strong> B0. From this we get the existence <strong>of</strong> enough <strong>in</strong>jectives<br />

<strong>in</strong> Galm(G), as follows:<br />

Proposition 1.4. Let G be <strong>of</strong> Galois type. If B C Mod(G)<br />

is <strong>in</strong>jective <strong>in</strong> Mod(G), then Bo is <strong>in</strong>jective <strong>in</strong> Galm(a). /f<br />

A C Galm(G), then there ezists an <strong>in</strong>jective M C Galm(a) and<br />

a monomorphism u : A ---+ M.<br />

Thus we can def<strong>in</strong>e the derived functor <strong>of</strong> A ~-* A a <strong>in</strong> Galm(G),<br />

and we denote this functor aga<strong>in</strong> by Ha, so<br />

as before.<br />

H~ : H~(A)= A a<br />

Proposition 1.5. Let G be <strong>of</strong> Galois type and N a closed nor-<br />

mal subgroup <strong>of</strong> G. Let A C Galm(G). If A is <strong>in</strong>jective <strong>in</strong><br />

Galm(G), then A N is <strong>in</strong>jective <strong>in</strong> Galm(G/N).<br />

Pro<strong>of</strong>. If B C Galm(G/N), we may consider B as an object <strong>of</strong><br />

Galm(G), and we obviously have<br />

Homc(B,A) = Homa/N(B,A N)<br />

because the image <strong>of</strong> B by a G-homomorphism is automatically<br />

conta<strong>in</strong>ed <strong>in</strong> A N. Consider<strong>in</strong>g these Horn as functors <strong>of</strong> objects B<br />

<strong>in</strong> Galm(G/N), we see at once that the functor on the right <strong>of</strong> the<br />

equality is exact if and only if the functor on the left is exact.<br />

w <strong>Cohomology</strong><br />

(a) Existence and uniqueness. One can def<strong>in</strong>e the cohomol-<br />

ogy by means <strong>of</strong> the standard complex. For A C Galm(G), let us


VII.2 129<br />

p ut:<br />

C"(G,A) =0 if r=0<br />

C~ = A<br />

C~(G,A) = groups <strong>of</strong> maps f'G"~A (fort >0),<br />

We def<strong>in</strong>e the coboundary<br />

cont<strong>in</strong>uous for the discrete topology on A.<br />

8~.C~(G,A)----~C~+I(G,A)<br />

by the usual formula as <strong>in</strong> Chapter I, and one sees that C(G, A) is<br />

a complex. Furthermore:<br />

Proposition 2.1. The functor A ~ C(G, A) is an exact func-<br />

tot <strong>of</strong> Galm(G) <strong>in</strong>to the category <strong>of</strong> complexes <strong>of</strong> abelian groups.<br />

Pro<strong>of</strong>. Let<br />

0 --+ A' --, A --+ A" ~ 0<br />

be an exact sequence <strong>in</strong> Galm(G). Then the correspond<strong>in</strong>g se-<br />

quence <strong>of</strong> standard complexes is also exact, the surjectivity on the<br />

right be<strong>in</strong>g due to the fact that modules have the discrete topology,<br />

and that every cont<strong>in</strong>uous map f : G ~ -. A" can therefore be lifted<br />

to a cont<strong>in</strong>uous map <strong>of</strong> G" <strong>in</strong>to A.<br />

By Proposition 1.5, we therefore obta<strong>in</strong> a &functor def<strong>in</strong>ed <strong>in</strong><br />

all degrees r E Z and 0 for r < 0, such that <strong>in</strong> dimension 0 this<br />

functor is A ~-~ A a. We are go<strong>in</strong>g to see that this functor vanishes<br />

on <strong>in</strong>jectives for r > 0, and hence by the uniqueness theory, that<br />

this 8-functor is isomorphic to the derived functor <strong>of</strong> A ~ A a,<br />

which we denoted by He.<br />

Theorem 2.2. Let G be a group <strong>of</strong> Galois type. Then the co-<br />

homoIogical functor Ha on Galm(G) is such that:<br />

Hr(G,A) = O for r > O.<br />

H~ = A c.<br />

H~(G,A) = 0 if A is <strong>in</strong>jective, r>O.<br />

Pro<strong>of</strong>. Let f(c~l,...,cr~) be a standard cocycle with r _>_ 1.<br />

There exists a normal open subgroup U such that f depends only


130<br />

on cosets <strong>of</strong> U. Let A be <strong>in</strong>jective <strong>in</strong> Galm(G). There exists an<br />

open normal subgroup V <strong>of</strong> G such that all the values <strong>of</strong> f are<br />

<strong>in</strong> A v because f takes on only a f<strong>in</strong>ite number <strong>of</strong> values. Let<br />

W = U N V. Then f is the <strong>in</strong>flation <strong>of</strong> a cocycle f <strong>of</strong> G/W <strong>in</strong> A W.<br />

By Proposition 1.5, we know that A W is <strong>in</strong>jective <strong>in</strong> Mod(G/W).<br />

Hence fi = 6~ with a cocha<strong>in</strong> ~ <strong>of</strong> G/W <strong>in</strong> A W, and so f = 5g if g is<br />

the <strong>in</strong>flation <strong>of</strong> G to G. Moreover, g is a cont<strong>in</strong>uous cochMn, and so<br />

we have shown that f is a coboundary, hence that H~(G, A) = O.<br />

In addition, the above argument also shows:<br />

Theorem 2.3. Let G be a group <strong>of</strong> Galois type and<br />

A E Galm(G). Then<br />

Hr(G,A) ,~ dir limH~(G/U, AU),<br />

the direct limit dir lim be<strong>in</strong>g taken over all open normal sub-<br />

groups U <strong>of</strong> G, with respect to <strong>in</strong>flation. Furthermore, Hr(G, A)<br />

zs a torsion group for r > O.<br />

Thus we see that we can consider our cohomological functor -FIG<br />

<strong>in</strong> three ways: the derived functor, the limit <strong>of</strong> cohomology groups<br />

<strong>of</strong> f<strong>in</strong>ite groups, and the homology <strong>of</strong> the standard complex.<br />

For the general term<strong>in</strong>ology <strong>of</strong> direct and <strong>in</strong>verse limits, cf. Al-<br />

gebra, Chapter III, w and also Exercises 16 - 26. We return to<br />

such limits <strong>in</strong> (c) below.<br />

Remark. Let G be a group <strong>of</strong> Galois type, and let C Galm(G).<br />

If G acts trivially on A, then similar to a previous remark, we have<br />

HI(G,A) = cont hom(G,A),<br />

i.e. HI(G, A) consists <strong>of</strong> the cont<strong>in</strong>uous homomorphism <strong>of</strong> G <strong>in</strong>to<br />

A. One sees this immediately from the standard cocycles, which<br />

are characterized by the condition<br />

f(a)+f(r)=f(ar)<br />

<strong>in</strong> the case <strong>of</strong> trivial action. In particular, take A = Fp. Then as<br />

<strong>in</strong> the discrete case, we have:<br />

Let G be a p-group <strong>of</strong> Galois type. If HI(G, Fp) = 0 then G = e,<br />

i.e. G is trivial.


VII.2 131<br />

Indeed, if G # e, then one can f<strong>in</strong>d an open subgroup U such<br />

that G/U is a f<strong>in</strong>ite p-group -# e, and then one can f<strong>in</strong>d a non-trivial<br />

homomorpkism A : G/U ---+ Fp which, composed with the canonical<br />

homomorphism G ~ G/U would give rise to a non-trivial element<br />

<strong>of</strong> H 1 (G, Fp).<br />

(b) Chang<strong>in</strong>g the group. The theory concern<strong>in</strong>g changes <strong>of</strong><br />

groups is done as <strong>in</strong> the discrete case. Let A : G ~ ~ G be a<br />

cont<strong>in</strong>uous homomorphism <strong>of</strong> a group <strong>of</strong> Galois type <strong>in</strong>to another.<br />

Then A gives rise to an exact functor<br />

r Galm(G) ~ Calm(G'),<br />

mean<strong>in</strong>g that every object A C Galm(G) may be viewed as a Galois<br />

modute <strong>of</strong> G t. If<br />

T: A--.. A I<br />

is a morphism <strong>in</strong> Galm(G'), with A e Galm(G),A' e Galm(G'),<br />

with the abuse <strong>of</strong> notation writ<strong>in</strong>g A <strong>in</strong>stead <strong>of</strong> O:,(A), the pair<br />

(A, ~) determ<strong>in</strong>es a homomorphism<br />

Hr(A, ~2) = (A,~). : H"(G,A) ~ H"(G',A'),<br />

functorially, exactly as for discrete groups.<br />

One can also see this homomorphism explicitly on the standard<br />

complex, because we obta<strong>in</strong> a morphism <strong>of</strong> complexes<br />

C(A,r : C(G,A) ~ C(G',A')<br />

which maps a cont<strong>in</strong>uous cocha<strong>in</strong> f on the cocha<strong>in</strong> c 2 o f o A r.<br />

In particular, we have the <strong>in</strong>flation, lift<strong>in</strong>g, restriction and con-<br />

jugation:<br />

<strong>in</strong>f: H"(G/N,A N) ~ H"(G,A)<br />

lif: H"(G/N,B) --* H"(G,B)<br />

res: H"(G,A) ~ H"(S,A)<br />

cr.: H"(S,A)---+ H"(S~,o'-IA),<br />

for N closed normal <strong>in</strong> G, S closed <strong>in</strong> G and ~ E G.


132<br />

All the commutativity relations <strong>of</strong> Chapter II are valid <strong>in</strong> the<br />

present case, and we shall always refer to the correspond<strong>in</strong>g result<br />

<strong>in</strong> Chapter II when we want to apply the result to groups <strong>of</strong> Galois<br />

type.<br />

For U open but not necessarily normal <strong>in</strong> G, we also have the<br />

transfer<br />

tr: H~(U,A) ---+ Hr(G,A)<br />

with A C Galm(G). All the results <strong>of</strong> Chapter II, w for the transfer<br />

also apply <strong>in</strong> the present case, because the pro<strong>of</strong>s rely only on the<br />

uniqueness theorem, the determ<strong>in</strong>ation <strong>of</strong> the morphism <strong>in</strong> dimen-<br />

sion 0, and the fact that <strong>in</strong>jectives erase the cohomology functor <strong>in</strong><br />

dimension > 0.<br />

(c) Limits. We have already seen <strong>in</strong> a naive way that our<br />

cohomology functor on Galm(G) is a limit. We can state a more<br />

general result as follows.<br />

Theorem 2.4. Let (Gi, s and (Ai, r be an <strong>in</strong>verse directed<br />

family <strong>of</strong> groups <strong>of</strong> Galois type, and a directed system <strong>of</strong> abelian<br />

groups respectively, on the same set <strong>of</strong> <strong>in</strong>dices. Suppose that<br />

for each i, we have Ai E Galm(Gi) and that for i


VII.2 133<br />

and takes on only a f<strong>in</strong>ite number <strong>of</strong> values. These values are all<br />

represented <strong>in</strong> some A~. Hence there exists an open normal sub-<br />

group Ui <strong>of</strong> Gi such that /\ll(Ui) C U, and we can construct a<br />

cocha<strong>in</strong> fi " G[ --~ Ai whose image <strong>in</strong> Cr(G,A) is f. Similarly,<br />

we f<strong>in</strong>d that if the image <strong>of</strong> fi <strong>in</strong> C~(G, A) is O, then its image<br />

<strong>in</strong> C"(Gj,Aj) is also 0 for some j > i,j sufficiently large. So the<br />

theorem follows.<br />

We apply the preced<strong>in</strong>g theorem <strong>in</strong> various cases, <strong>of</strong> which the<br />

most important axe:<br />

(a) When the Gi are all factor groups G/U with U open normal<br />

<strong>in</strong> G, the homomorphisms ~ij then be<strong>in</strong>g surjective.<br />

(b) When the G~ range over all open subgroups conta<strong>in</strong><strong>in</strong>g a<br />

closed subgroup S, the homomorphisms s then be<strong>in</strong>g <strong>in</strong>clusions.<br />

Both cases are covered by the next lemma.<br />

Lemma 2.5. Let G be <strong>of</strong> Galois type, and let (Gi) be a family<br />

<strong>of</strong> closed subgroups, Ni a closed normal subgroup <strong>of</strong> Gi, <strong>in</strong>dexed<br />

by a directed set {i}, and such that Nj C Ni and Gj C Gi when<br />

i


134<br />

the limit be<strong>in</strong>g taken with respect to the canonical homomor-<br />

phisms.<br />

Pro<strong>of</strong>. Immediate, because<br />

AN = U A Ni = dir lira A Ni<br />

because by hypothesis A E Galm(G).<br />

Corollary 2.8. Let G be <strong>of</strong> Galois type and A E Galm(G).<br />

Then<br />

H~(G,A) =dir lira H~(G,E)<br />

where the limit is taken with respect to the <strong>in</strong>clusion morphisms<br />

E C A, for all submoduIes E <strong>of</strong> A f<strong>in</strong>itely generated over Z.<br />

Pro<strong>of</strong>. By the def<strong>in</strong>ition <strong>of</strong> the cont<strong>in</strong>uous operation <strong>of</strong> G on A,<br />

we know that A is the union <strong>of</strong> G-submodules f<strong>in</strong>itely generated<br />

over Z, so we can apply the theorem.<br />

Thus we see that the cohomology group H~(G, A) are limits <strong>of</strong><br />

cohomology groups <strong>of</strong> f<strong>in</strong>ite groups, act<strong>in</strong>g on f<strong>in</strong>itely generated<br />

modules over Z. We have already seen that these are torsion mod-<br />

ules for r > 0.<br />

Corollary 2.9. Let rn be an <strong>in</strong>teger > O, and A E Galm(G).<br />

Suppose<br />

rn d : A--+ A<br />

is an automorphism, <strong>in</strong> other words that A is uniquely divisible<br />

by m. Then the period <strong>of</strong> an element <strong>of</strong> H~(G, A) for r > 0 is an<br />

<strong>in</strong>teger prime to m. If mA is an automorphism for all positive<br />

<strong>in</strong>tegers m, then H~(G, A) = 0 for all r > O.<br />

(d) The eras<strong>in</strong>g functor, and <strong>in</strong>duced representations.<br />

We are go<strong>in</strong>g to def<strong>in</strong>e an eras<strong>in</strong>g functor Mc on Galm(G) similar<br />

to the one we def<strong>in</strong>ed on Mod(G) when G is discrete.<br />

Let S' be a closed subgroup <strong>of</strong> G, which we suppose <strong>of</strong> Galois<br />

type. Let B E Galm(S) and let Mg(B) be the set <strong>of</strong> all cont<strong>in</strong>uous<br />

maps g : G ~ B (B discrete) satisfy<strong>in</strong>g the relation<br />

= for s, a.


VII.2 135<br />

Addition is def<strong>in</strong>ed <strong>in</strong> IvIS(B) as usual, i.e. by add<strong>in</strong>g values <strong>in</strong> B.<br />

We def<strong>in</strong>e an action <strong>of</strong> G by the formula<br />

(rg)(z) = g(x~) for r,z e G.<br />

Because <strong>of</strong> the uniform cont<strong>in</strong>uity, one verifies at once that<br />

MaS(B) E Galm(a).<br />

Tak<strong>in</strong>g <strong>in</strong>to account the existence <strong>of</strong> a cont<strong>in</strong>uous section <strong>of</strong> G/S<br />

<strong>in</strong> G <strong>in</strong> Proposition 1.1, one sees that:<br />

MS(B) is isomorphic to the G~,Iois module <strong>of</strong> all cont<strong>in</strong>uous<br />

maps G/S --+ G.<br />

Thus we f<strong>in</strong>d results similar to those <strong>of</strong> Chapter II, which we<br />

summarize <strong>in</strong> a proposition.<br />

Proposition 2.10. Notations as above, M~ is a covariant, ad-<br />

ditive exact functor from Galm(S) <strong>in</strong>to Galm(G). The bifunc-<br />

tors<br />

Homa(d, MSa(B)) and Homs(d,B)<br />

on Galm(G) x Galm(S) are isomorphic. If B is <strong>in</strong>jective <strong>in</strong><br />

Galm(S), then MSG(B) is <strong>in</strong>iective with Ga.lm(G).<br />

The pro<strong>of</strong> is the same as <strong>in</strong> Chapter II, <strong>in</strong> hght <strong>of</strong> the condition<br />

<strong>of</strong> uniform cont<strong>in</strong>uity and the lemma on the existence <strong>of</strong> a cross<br />

section.<br />

Theorem 2.11. Let G be <strong>of</strong> Galois type, and S a closed sub-<br />

group. Then the <strong>in</strong>clusion S C G is compatible with the homo-<br />

morphism<br />

g ~ g(e) <strong>of</strong> Mg(B) --+ B,<br />

giv<strong>in</strong>g rise to an isomorphism <strong>of</strong> functors<br />

Ha o M~ ,~ Hs.<br />

rn particular, if S = e, then H r (G, Ms(B)) = 0 for r > O.<br />

Pro<strong>of</strong>. Identical to the pro<strong>of</strong> when G is discrete. For the last<br />

assertion, when S = e, we put Ma = M~.<br />

In particular, we obta<strong>in</strong> an eras<strong>in</strong>g functor MG =/VI~ as <strong>in</strong> the<br />

discrete case. For A E Galm(G), we have an exact sequence<br />

0---+ A ~A Ma(A)---+ X(A)---+ O,


136<br />

where CA is def<strong>in</strong>ed by the formula gA(a) : ga and g~(c~) = o'a for<br />

~rEG.<br />

As <strong>in</strong> the discrete case, the above exact sequence splits.<br />

Corollary 2.12. Let G be <strong>of</strong> Galois type, S a closed subgroup,<br />

and B 6 Galm(S). Then Hr(S, Mg(B)) = 0 for r > O.<br />

Pro<strong>of</strong>. When S = G, this is a special case <strong>of</strong> the theorem, tak<strong>in</strong>g<br />

S = e. If V ranges over the family <strong>of</strong> open subgroups conta<strong>in</strong><strong>in</strong>g<br />

S, then we use the fact <strong>of</strong> Corollary 2.6 that<br />

H~(S,A)=dir lim Hr(V,A).<br />

It will therefore suffice to prove the result when S = V is open. But<br />

<strong>in</strong> this case, Ms(B) is isomorphic <strong>in</strong> Galm(V) to a f<strong>in</strong>ite product<br />

<strong>of</strong> M~(B), and one can apply the preced<strong>in</strong>g result.<br />

Corollary 2.13. Let A E Galm(G) be <strong>in</strong>jective. Then<br />

H~(S, A) = 0 for all closed subgroups S <strong>of</strong> G and r > O.<br />

Pro<strong>of</strong>. In the eras<strong>in</strong>g sequence with gA, we see that A is a direct<br />

factor <strong>of</strong> MG(A), so we can apply Corollary 2.12.<br />

(e) Cup products. The theory <strong>of</strong> cup products can be de-<br />

veloped exactly as <strong>in</strong> the case when G is discrete. S<strong>in</strong>ce existence<br />

was proved previously with the standard complex, us<strong>in</strong>g general<br />

theorems on abelian categories, we can do the same th<strong>in</strong>g <strong>in</strong> the<br />

present case. In addition, we observe that<br />

Galm(G) is closed under tak<strong>in</strong>g the tensor product,<br />

as one sees immediately, so that tensor products can be used to<br />

factorize multit<strong>in</strong>ear maps. Thus Galm(G) can be def<strong>in</strong>ed to be a<br />

multil<strong>in</strong>ear category. If A1,... ,An, B are <strong>in</strong> Galm(G), then we<br />

def<strong>in</strong>e f : A1 x ... x AN --* B to be <strong>in</strong> L(A1,... ,An,B) if f is<br />

multil<strong>in</strong>ear <strong>in</strong> Mod(Z), and<br />

f(cral,... ,aan)=crf(al,...,an) for all aeG,<br />

exactly as <strong>in</strong> the case where G is discrete.<br />

We thus obta<strong>in</strong> the existence and uniqueness <strong>of</strong> the cup product,<br />

which satisfies the property <strong>of</strong> the three exact sequences as <strong>in</strong> the


VII.2 137<br />

discrete case. Aga<strong>in</strong>, we have the same relations <strong>of</strong> commutativity<br />

concern<strong>in</strong>g the transfer, restriction, <strong>in</strong>flation and conjugation.<br />

(f) Spectral sequence. The results concern<strong>in</strong>g spectral se-<br />

quences apply without change, tak<strong>in</strong>g <strong>in</strong>to account the uniform con-<br />

t<strong>in</strong>uity <strong>of</strong> cocha<strong>in</strong>s. We have a functor F : Galm(G) --+ Galm(G/N)<br />

for a closed normal subgroup N, def<strong>in</strong>ed by A ~ A N. The group<br />

<strong>of</strong> Galois type G/N acts on H~(N, A) by conjugation, and one has:<br />

Proposition 2.14. If N is closed normal <strong>in</strong> G, then H~(N, A)<br />

is <strong>in</strong> Galm(G/N) for d E Galm(G).<br />

Pro<strong>of</strong>. If ~ E N, from the def<strong>in</strong>ition <strong>of</strong> c%, we know that ~r, = id.<br />

We have to show that for all cr E Hr(N, A) there exists an open<br />

subgroup U such that ~,a = a for all ~r E U. But by shift<strong>in</strong>g<br />

dimensions, there exist exact sequences and coboundaries fl,... 6~<br />

such that<br />

a = fl,... ,f,-a0 with s0 E H~ for some B E Galm(G).<br />

One merely uses the eras<strong>in</strong>g functor r times. We have<br />

and we apply the result <strong>in</strong> dimension 0, which is clear <strong>in</strong> this case<br />

s<strong>in</strong>ce a, denotes the cont<strong>in</strong>uous operation <strong>of</strong> cr E S'.<br />

S<strong>in</strong>ce the functor A ~ A N transforms an <strong>in</strong>jective module to an<br />

<strong>in</strong>jective module, one obta<strong>in</strong>s the spectral sequence <strong>of</strong> the compos-<br />

ite <strong>of</strong> derived functors. The explicit computations for the restric-<br />

tion, <strong>in</strong>flation and the edge homomorphisms rema<strong>in</strong> valid <strong>in</strong> the<br />

present case.<br />

(g) Sylow subgroups. As a further application <strong>of</strong> the fact that<br />

the cohomology <strong>of</strong> Galois type groups is a limit <strong>of</strong> cohomology <strong>of</strong><br />

f<strong>in</strong>ite groups, we f<strong>in</strong>d:<br />

Proposition 2.15. Let G be <strong>of</strong> Galois type, and A E Galm(G).<br />

Let S be a closed subgroup <strong>of</strong> G. If (G: S) is prime to a prime<br />

number p, then the restriction<br />

res : Hr(G,A) H (S,A)<br />

<strong>in</strong>duces an <strong>in</strong>jection on H~ ( G, A, p).<br />

Pro<strong>of</strong>. If S is an open subgroup V <strong>in</strong> G, then we have the<br />

transfer and restriction formula<br />

tro res(a) = (G: V)a,


138<br />

which proves our assertion. The general case follows, tak<strong>in</strong>g <strong>in</strong>to<br />

account that<br />

H~(S,A)=dir lira H~(V,A)<br />

for V open conta<strong>in</strong><strong>in</strong>g S.<br />

w Cohomological dimension.<br />

Let G be a group <strong>of</strong> Galois type. We denote by Galmtor(G) the<br />

abelian category whose objects are the objects A <strong>of</strong> Galm(G) which<br />

are torsion modules, i.e. for each a 9 A there is an <strong>in</strong>teger n 7 ~ 0<br />

such that na = O. Given A 9 Galm(G), we denote by Ator the<br />

submodule <strong>of</strong> torsion elements. Similarly for a prime p, we let Ap,<br />

denote the kernel <strong>of</strong> p~ <strong>in</strong> A, and Ap~ is the union <strong>of</strong> all Ap- for<br />

all positive <strong>in</strong>tegers n. We call Ap~ the submodule <strong>of</strong> p-primary<br />

elements. As usual for an <strong>in</strong>teger m, we let Am be the kernel <strong>of</strong><br />

mA, SO<br />

Ator = U Am and Ap~ = U Ap,<br />

the first union be<strong>in</strong>g taken for m 9 Z, rn > 0 and the second for<br />

n>O.<br />

The subcategory <strong>of</strong> elements A 9 Galm(G) such that A = Ap~<br />

(i.e. A is p-primary) will be denoted by Galmp(G).<br />

Let n be an <strong>in</strong>teger > 0. We def<strong>in</strong>e the notion <strong>of</strong> cohomo-<br />

logical dimension, abbreviated cd, and strict cohomological<br />

dimension, abbreviated scd, as follows.<br />

cd(a)= n<br />

E Galmtor(G)<br />

only if H~(G,A,p) = 0 for all r > n<br />

9 Galmtor (G)<br />

only if H~(G, A) = 0 for all r > n<br />

9 Galm(a)<br />

if and only if H"(G,A,p) = 0 for r > n<br />

and A E Galm(G).<br />

We note that cohomological dimension is def<strong>in</strong>ed via torsion<br />

modules, and the strict cohomological dimension is def<strong>in</strong>ed by<br />

means <strong>of</strong> arbitrary modules (<strong>in</strong> Galm(G), <strong>of</strong> course).


VII.3 139<br />

S<strong>in</strong>ce<br />

one sees that<br />

H~(G,A)=GH~(G,A,p)<br />

p<br />

cd(G) = sup cdp(G) and scd(G) = sup scdp(G).<br />

p p<br />

For all A E Gaimtor(G) we have A = UAp~, the direct sum<br />

be<strong>in</strong>g taken over all primes p. Hence<br />

Hr(a,a)<br />

To determ<strong>in</strong>e cdp(G), it will suffice to consider H"(G, Afo ), be-<br />

cause if we let A' be the p-complementary module<br />

(p)<br />

A(p) ' = U Am with m prime to p,<br />

then Alp ) is uniquely determ<strong>in</strong>ed by pn for all <strong>in</strong>tegers n > 0,<br />

so pn <strong>in</strong>duces an automorphism <strong>of</strong> H~(G,A[p)) for r > 0, and<br />

H ~ (G, A' (p)) is a torsion group. Hence Hr(G, A(p)) does not conta<strong>in</strong><br />

any element whose torsion is a power <strong>of</strong> p, and we f<strong>in</strong>d:<br />

Proposition 3.1. Let A E Galmtor(G). Then the homomor-<br />

phism<br />

Hr(G,A, ~ ) ~ Hr(G,A,p)<br />

<strong>in</strong>duced by the <strong>in</strong>clusion Ap~ C A is an isomorphism for all r.<br />

Corollary 3.2. In the def<strong>in</strong>ition <strong>of</strong> cdp( G), one can replace the<br />

condition A E Gaimtor(G) by A E Gaimp(G).<br />

We are go<strong>in</strong>g to see that the strict dimension can differ only by<br />

I from the other dimension.<br />

Proposition 3.3. Let G be <strong>of</strong> GaIois type, and p prime. Then<br />

cdp(G) _-< scdp(G) _-< cdp(G) + 1,


140<br />

and the same <strong>in</strong>equalities hold omitt<strong>in</strong>g the <strong>in</strong>dez p.<br />

Pro<strong>of</strong>. The first <strong>in</strong>equality is trivial. For the second, consider<br />

the exact sequence<br />

0 ---* pA 2_~ A --, A/pA --* 0<br />

O ---~ A p ---~ A J p A -* O<br />

and the correspond<strong>in</strong>g cohomology exact sequences<br />

Hr+l(pA) i. Hr+I(A ) --+ H~+I(A/pA)<br />

H~+l(dp)---, H~+I(A) J'~ H~+l(d/pd).<br />

We assume that c@(G) < n and r > n. S<strong>in</strong>ce ij = p, we f<strong>in</strong>d i,j, =<br />

p,. We have g~+l(Ap) = 0 by def<strong>in</strong>ition, and also H~+I(A/pA) =<br />

0. One then sees that j, is bijective and i, is surjective. Hence p,<br />

is surjective, i.e. H~(A) is divisible by p, and hence by an arbitrary<br />

power <strong>of</strong> p. The elements <strong>of</strong> H~(G, A, p) be<strong>in</strong>g p-primary, it follows<br />

that H ~+l (G, A, p) = 0. This proves the proposition.<br />

For the next result, we need a lemma on the eras<strong>in</strong>g functor M s.<br />

Lemma 3.4. Let G be <strong>of</strong> Galois type, and S a closed sub-<br />

group. Let B 9 Galmto,(S) (resp. Galmp(S)). Then MS(B)<br />

is <strong>in</strong> Galmto,(S) (resp. Galmp(a)). If, <strong>in</strong> addition B is f<strong>in</strong>itely<br />

generated over Z, and S is open, then MS(B) is f<strong>in</strong>itely gener-<br />

ated over Z.<br />

Pro<strong>of</strong>. Immediate from the def<strong>in</strong>itions.<br />

Proposition 3.5. Let S be a closed subgroup <strong>of</strong> H.<br />

cd, __< cd,(G) and scdp(S) =< scdp(G),<br />

and equality holds if ( G : S) is prime to p.<br />

Then<br />

Pro<strong>of</strong>. By Theorem 2.11, we know that Hr(G, MS(B)) ~ H~(S,B)<br />

for all B C Galm(S). The assertions are then immediate conse-<br />

quences <strong>of</strong> the def<strong>in</strong>itions, together with the fact that (G : S) prime<br />

to p implies that the restriction is an <strong>in</strong>jection on the p-primary<br />

part <strong>of</strong> cohomology (Proposition 2.15).<br />

As a special case, we f<strong>in</strong>d:


VII.3 141<br />

Corollary 3.6. Let Gp be a p-Sylow subgroup <strong>of</strong> G. Then<br />

cdp(G) = cdp(Gp) = cd(Gp),<br />

and similarly with scd <strong>in</strong>stead <strong>of</strong> cd. Furthermore,<br />

cd(G) = sup cd(G,) and scd(G) = sup scd(Gp).<br />

p p<br />

We now study the cohomological dimension, and leave aside the<br />

strict dimension. First, we have a criterion <strong>in</strong> terms <strong>of</strong> a category<br />

<strong>of</strong> submodules, easily described.<br />

Proposition 3.7. We have cdp(G)


142<br />

Theorem 3.9. Let G = Gp be a p-group <strong>of</strong> GaIois type. Then<br />

cd(G)


VII.4 143<br />

Proposition 3.12. Let G be <strong>of</strong> Galois type, and let S be a<br />

cloned subgroup <strong>of</strong> G. If ordT(G. S) is f<strong>in</strong>ite and cdT(G) < 0%<br />

then cdT(S) = c@(G).<br />

Pro<strong>of</strong>. Let S T be a p-Sylow subgroup <strong>of</strong> S, and similarly G T a<br />

p-Sylow subgroup <strong>of</strong> G conta<strong>in</strong><strong>in</strong>g S T. Then<br />

OrdT(Gp : ST)+ OrdT(G : GT)= ordT(G 9 Sp)<br />

= ordp(G" S) + OrdT(S" S T)<br />

Hence ordp(G T 9 ST) = ordT(G 9 S). This reduces the pro<strong>of</strong> to the<br />

case when G is a p-group, and S is open <strong>in</strong> G. Suppose<br />

Then by Lemma 3.11,<br />

n = cd(G) < co.<br />

H"(S,F,) = Hn(G, Mg(Fp)) # O,<br />

because MS(Fp) has p(a:s) elements. This concludes the pro<strong>of</strong>.<br />

Corollary 3.13. If 0 < ordp(a 9 e) < 0% then cdp(a) = co.<br />

In fact, if G is a f<strong>in</strong>ite p-group, then Hr(G, Fp) # 0 for all<br />

r>0.<br />

From this corollary, one sees the cohomological dimension is <strong>in</strong>-<br />

terest<strong>in</strong>g only for <strong>in</strong>f<strong>in</strong>ite groups. We shall give below examples <strong>of</strong><br />

Galois groups with f<strong>in</strong>ite cohomological dimension.<br />

w Cohomological dimension __< 1.<br />

Let us first remark that if G is a group <strong>of</strong> Galois type with<br />

scdp(G) =< 1, then scdp(G) = 0 and hence every p-Sylow subgroup<br />

Gp <strong>of</strong> G is trivial. Indeed, we have by hypothesis<br />

0 = H2(Gp,Z) ~ HI(Gp,Q/Z) = cont hom(Gp, Q/Z)<br />

from the exact sequence with Z, Q and Q/Z. That Q is uniquely<br />

divisible by every <strong>in</strong>teger # 0 implies that its cohomology is 0 <strong>in</strong><br />

dimensions > O. At the end <strong>of</strong> the preced<strong>in</strong>g section, we saw that<br />

if Gp # e then we can f<strong>in</strong>d a non-trivial cont<strong>in</strong>uous homomorphism


144<br />

<strong>of</strong> Gp <strong>in</strong>to Fp, which can be naturally imbedded <strong>in</strong> Q/Z, and one<br />

sees therefore that Gp = e, thus prov<strong>in</strong>g our assertion.<br />

We then consider the condition cdp(G) = 1. We shall see that<br />

this condition characterizes certa<strong>in</strong> topologically free groups.<br />

We def<strong>in</strong>e a group <strong>of</strong> Galois type to be p-extensive if and only<br />

if for every f<strong>in</strong>ite group F and each abelian p-subgroup E normal<br />

<strong>in</strong> F, and every cont<strong>in</strong>uous homomorphism f : G ~ F/E, there<br />

exists a cont<strong>in</strong>uous homomorphism f : G ---* F which makes the<br />

follow<strong>in</strong>g diagram commutative:<br />

G<br />

f<br />

F<br />

9 E/E<br />

Proposition 4.1. We have cdp(G) __< 1 if and only if G is<br />

p-extensive.<br />

Pro<strong>of</strong>. Suppose first that cdp(G) __< 1. We are given F, E, f as<br />

above. As usual, we may consider E as an F/E-module, the op-<br />

eration be<strong>in</strong>g that <strong>of</strong> conjugation. Consequently, E is <strong>in</strong> Galm(G)<br />

via f, namely for a C G and x C E we def<strong>in</strong>e<br />

ax = f(a)x.<br />

For each a C F/E, let u~ be a representative <strong>in</strong> F. Put<br />

--1<br />

Ca, r = ?.taU~-~o. r .<br />

Then (ea,~-)is a 2-cocycle <strong>in</strong> C2(F/E,E), and consequently (cf(a),i(,-))<br />

is a 2-cocycle <strong>in</strong> C2(G, E). By hypothesis, there exists a cont<strong>in</strong>uous<br />

map a ~-~ a~ <strong>of</strong> G <strong>in</strong> E such that<br />

We def<strong>in</strong>e ](a) by<br />

ef(a),f(r) = a~,r/aaaar.<br />

f(a) = a~u1(~ ).


VII.4 145<br />

From the def<strong>in</strong>ition <strong>of</strong> the action <strong>of</strong> G on E, we have<br />

Thus we f<strong>in</strong>d<br />

-1<br />

o'a : uf(~)auf(~).<br />

f(o')f(a) = aauf(z)arufo. ) = a~a~uf(z)ui(r)<br />

r<br />

= a~,a~ ef(~),f(~-)ui(~. )<br />

: ao.ruf(o.r)<br />

= f(~77"),<br />

which shows that fi is a homomorphism. It is cont<strong>in</strong>uous because<br />

(a~)is a cont<strong>in</strong>uous cocha<strong>in</strong>, and cr ~ f(a) is cont<strong>in</strong>uous. Further-<br />

more, it is clear that f is a lift<strong>in</strong>g <strong>of</strong> f, i.e. that the diagram as <strong>in</strong><br />

the def<strong>in</strong>ition <strong>of</strong> p-extensive is commutative.<br />

Conversely, let E C Galmtor(G) be <strong>of</strong> f<strong>in</strong>ite order, equal to a p-<br />

power, and let a E H2(G, E). We have to prove that a = 0. S<strong>in</strong>ce<br />

E is f<strong>in</strong>ite, there exists an open normal subgroup U such that U<br />

leaves E fixed, i.e. E = E v, and E is therefore a G/U-module.<br />

Tak<strong>in</strong>g a smaller open subgroup <strong>of</strong> U if necessary, we can suppose<br />

without loss <strong>of</strong> generality that a comes from the <strong>in</strong>flation <strong>of</strong> an<br />

element <strong>in</strong> H2(G/U,E), i.e. there exists a0 E H2(G/U,E) such<br />

9 ~G/UI<br />

that a = mIc


146<br />

by the <strong>in</strong>verse image <strong>of</strong> f(G) <strong>in</strong> F/E). However, we cannot require<br />

that f is surjective. For <strong>in</strong>stance, let G be the Galois group <strong>of</strong><br />

the separable closure <strong>of</strong> a field k. Then F/E is the Galois group<br />

<strong>of</strong> a f<strong>in</strong>ite extension K/k, and the problem <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g f surjective<br />

amounts to f<strong>in</strong>d<strong>in</strong>g a f<strong>in</strong>ite Galois extension L D K D k such that F<br />

is its Galois group, a problem considered for example by Iwasawa,<br />

Annls <strong>of</strong> Math. 1953.<br />

We shall now extend the extension property to the situation<br />

when we can take F, E to be <strong>of</strong> Galois type.<br />

Proposition 4.2. Let G be <strong>of</strong> Galois type and p-extensive.<br />

Then the p-extension property concern<strong>in</strong>g (G, f, F, F/ E) is valid<br />

when F is <strong>of</strong> Galois type (rather than f<strong>in</strong>ite), and E is a closed<br />

normal p-subgroup.<br />

Pro<strong>of</strong>. We suppose first that E is f<strong>in</strong>ite abelian normal <strong>in</strong> F.<br />

There exists an open normal subgroup U such that U O E = e. Let<br />

fl : G ~ F/EU be the composite <strong>of</strong> f : G --+ F/E with the canon-<br />

ical homomorphism F/E ~ F/EU. We can lift fl to a cont<strong>in</strong>uous<br />

homomorphism fl : G ~ F/U by p-extensivity for F1 = F/U and<br />

El = EU/(U N E), and f~. We have a homomorphism<br />

(f, fl) : G --~ (F/E) x (FLU),<br />

and the canonical map i : F ~ (F/E) x(F/U) is an <strong>in</strong>jection s<strong>in</strong>ce<br />

U A E = e. The image <strong>of</strong> G under (f, fl ) is conta<strong>in</strong>ed <strong>in</strong> the image<br />

<strong>of</strong> i because f and fl lift 5. Hence f = (f, fl ) : G ---* F solves the<br />

extension problem <strong>in</strong> the present case.<br />

We can now deal with the general case. We want to lift<br />

f : G --~ F/E. We consider all pairs (E',f') where E' is a closed<br />

subgroup <strong>of</strong> E normal <strong>in</strong> F, and fr : G ~ FIE ~ lifts f. By Zorn's<br />

lemma, there is a maximal pair, which we denote also by (E, f).<br />

We have to show that E = e. IrE # e, then there exists a non<br />

trivial element 8 E HI(E, Fp). This character vanishes on an open<br />

subgroup V, and has therefore only a f<strong>in</strong>ite number <strong>of</strong> conjugates<br />

by elements <strong>of</strong> F, i.e. it is a Galois module <strong>of</strong> F/E. Let E1 be<br />

the <strong>in</strong>tersection <strong>of</strong> the kernel <strong>of</strong> 8 and all its conjugates. Then<br />

E1 is a closed subgroup <strong>of</strong> E, normal <strong>in</strong> F, and by the first part<br />

<strong>of</strong> the pro<strong>of</strong> we can lift f to fl : G ~ F/E1, which contradicts<br />

the hypothesis that (E, f) is maximal, and concludes the pro<strong>of</strong> <strong>of</strong><br />

Proposition 4.2.


VII.4 147<br />

Next, we connect cohomological dimension with free groups. We<br />

fix a prime p.<br />

Let X be a set and Fo(X) the free group generated by X <strong>in</strong> the<br />

ord<strong>in</strong>ary mean<strong>in</strong>g <strong>of</strong> the word (d. Algebra, Chapter I, w We<br />

consider the family <strong>of</strong> normal subgroups U C X such that:<br />

(i) U conta<strong>in</strong>s all but a f<strong>in</strong>ite number <strong>of</strong> elements <strong>of</strong> X.<br />

(ii) U has <strong>in</strong>dex a power <strong>of</strong> p <strong>in</strong> Fo(X).<br />

We let Fp(X) be the <strong>in</strong>verse limit<br />

Fp(X) = <strong>in</strong>v lira Fo/U<br />

taken over all such subgroups U. We call Fp(X) the pr<strong>of</strong><strong>in</strong>ite free<br />

p-group generated by X. Thus Fp(X) is a group <strong>of</strong> Galois type.<br />

Let G be a group <strong>of</strong> Galois type and G o the <strong>in</strong>tersection <strong>of</strong><br />

all the kernels <strong>of</strong> cont<strong>in</strong>uous homomorphisms ~ : G ---. Fp, i.e.<br />

E H](G, Fp). Then HI(G, Fv) is the character group <strong>of</strong> G/G ~<br />

The converse is also true by Pontrjag<strong>in</strong> duality.<br />

By def<strong>in</strong>ition, if P is a f<strong>in</strong>ite p-group, then the cont<strong>in</strong>uous ho-<br />

momorphisms f : Fp(X) --~ P are <strong>in</strong> bijection with the maps<br />

f0 : X ---* P Such that fo(x) = e for all but a f<strong>in</strong>ite number <strong>of</strong><br />

x e X. Hence gl(Fp(X),Fp) is a vector space over Fp, <strong>of</strong> f<strong>in</strong>ite<br />

dimension equal to the card<strong>in</strong>ality <strong>of</strong> X, and hav<strong>in</strong>g a basis which<br />

can be identified with the elements <strong>of</strong> X.<br />

Furthermore, we see that Fp(X) is p-extensive, and that<br />

cd Fp(Z) =


148<br />

Theorem 4.4. Let G be a p-group <strong>of</strong> Galois type. Then there<br />

exists a proj~nite #ee p-group, Fp(X) and a cont<strong>in</strong>uous homo-<br />

morphism<br />

O : Fp(X) --+ G<br />

such that the <strong>in</strong>duced homomorphism<br />

Hi(G, Fp)---, HI(Fp(X),F,)<br />

is an isomorphism. The map 0 is then surjective. If cd(G) __< 1,<br />

then ~ is an isomorphism.<br />

Pro<strong>of</strong>. From the preced<strong>in</strong>g discussion, to obta<strong>in</strong> an isomorphism<br />

HI(G, Fp) --~ HI(Fp(X),Fp)<br />

it suffices to take for X a basis <strong>of</strong> HI(G, Fp) and to form Fp(X).<br />

By duality, we obta<strong>in</strong> an isomorphism<br />

whence a homomorphism<br />

S<strong>in</strong>ce Fp(X) is p-extensive,<br />

tative diagram<br />

F (X)/Fp(X) ~ a/a ~<br />

g: Fp(x) a/a ~<br />

we can lift g to G, to get the commu-<br />

G(x)_ -~<br />

g<br />

G<br />

G/G ~<br />

and 9 is surjective by the lemma. Suppose f<strong>in</strong>ally that cd(G) __< 1,<br />

and let N be the kernel <strong>of</strong> g. Then we obta<strong>in</strong> an exact sequence<br />

O---~HI(G,Fp) <strong>in</strong>f)Hl(Fp(X),Fp) ~')HI(N,Fp)G--+H2(G,Fp)=O.<br />

We have H2(G, Fp) = 0 by the assumption cd(G) __< 1. The <strong>in</strong>fla-<br />

tion is an isomorphism, and hence Hi(N, Fp) a = 0. By Lemma<br />

3.8, we f<strong>in</strong>d HI(N, Fp) = 0, i.e. N has only the trivial character,<br />

whence N = e, thus prov<strong>in</strong>g the theorem.


VII.5 149<br />

Corollary 4.5. Let G be a p-group <strong>of</strong> Galois type. Then the<br />

follow<strong>in</strong>g conditions are equivalent:<br />

G is pr<strong>of</strong><strong>in</strong>ite free;<br />

G is p-extensive;<br />

cd(G) __< 1.<br />

We end this section with a discussion <strong>of</strong> the condition cd(G) =< 1<br />

for factor groups. Let G be <strong>of</strong> Galois type. Let T be the <strong>in</strong>ter-<br />

section <strong>of</strong> all subgroups <strong>of</strong> G which are the kernels <strong>of</strong> cont<strong>in</strong>uous<br />

homomorphisms <strong>of</strong> G <strong>in</strong>to p-groups <strong>of</strong> Galois type. Then G/T is a<br />

p-group which we denote by G(p), and which we call the maximal<br />

p-quotient <strong>of</strong> G. One can also characterize T by the condition<br />

that it is a closed normal subgroup satisfy<strong>in</strong>g:<br />

(a) (G" T)is a p-power.<br />

(b) HI(T,F;) = 0.<br />

The characterization is immediate.<br />

Proposition 4.6. Let G be a group <strong>of</strong> Galois type. Then<br />

cdp(a) < 1 implies cdpG(p) < 1.<br />

Pro<strong>of</strong>. Consider the exact sequence<br />

O--'+H 1 (G/T, Fv) --"+H 1 (G,Fv) ---+H 1 (T, Fv)G/T ___~H2(G/T,Fv) --"+0,<br />

with a 0 on the right because <strong>of</strong> the assumption cdp(G) =< 1.<br />

By the characterization <strong>of</strong> T we have HI(T, Fp) = 0, whence<br />

H2(G/T, Fp) = 0 which suffices to prove the proposition by Theo-<br />

rem 3.9.<br />

In the Galois theory, G(p) is the Galois group <strong>of</strong> the maximal<br />

p-extension <strong>of</strong> the ground field, and G is the Galois group <strong>of</strong> the<br />

algebraic closure. Cf. w below for applications to this context.<br />

w The tower theorem<br />

In many cases, one gets <strong>in</strong>formation on a group G be consider<strong>in</strong>g<br />

a normal subgroup N and the factor group G/N. We do this for<br />

eohomological dimension, and we shall f<strong>in</strong>d<br />

ca(c) __< ca(N) + ca(a/x),


150<br />

and similar with cdp <strong>in</strong>stead <strong>of</strong> cd. We use the spectral sequence<br />

with<br />

E2'~=H~(G/N, HS(N,A)) converg<strong>in</strong>g to H(G,A)<br />

for A E Galm(G). There is a filtration <strong>of</strong> Hn(a,A) such that<br />

the successive quotients are isomorphic to F, ~'' for r + s = n, and<br />

_~F, ~'s is a subgroup <strong>of</strong> a factor group <strong>of</strong> ~2 ~'~ 9 Hence H'~(G, A) = 0<br />

whenever H"(G/N,H~(N,A)) = 0, which occurs <strong>in</strong> the follow<strong>in</strong>g<br />

cases:<br />

r > cd(G/N) and<br />

r > sca(G/N) and<br />

s > cd(N) and<br />

s > sea(N) and<br />

From this we f<strong>in</strong>d the theorem:<br />

s > 0 or A E Galmtor(G);<br />

s arbitrary;<br />

A E GaAmtor(G);<br />

A E Galm(G).<br />

Theorem 5.1. Let G be <strong>of</strong> Galois type and N a closed normal<br />

subgroup. Then for all primes p,<br />

cdp(G) =< cdp(G/N) + c@(N),<br />

and similarly with cd <strong>in</strong>stead <strong>of</strong> cdp.<br />

As an application, suppose that G/N is topologically cyclic, and<br />

c@(N) =< 1. Then cdp(G) __< 2. This happens <strong>in</strong> the follow<strong>in</strong>g<br />

cases: G is the Galois group <strong>of</strong> the algebraic closure <strong>of</strong> a totally<br />

imag<strong>in</strong>ary number field, or a p-adic field. Indeed, <strong>in</strong> each case,<br />

one can construct a cyclic extension (maximM unramified <strong>in</strong> the<br />

local case, cyctotomic <strong>in</strong> the global case), which decomposes G <strong>in</strong>to<br />

a subgroup N and factor G/N as above. In the next sections, we<br />

shall give a criterion with the Brauer group to show that cd(N) =< 1<br />

for suitable N.<br />

w Galois groups over a field<br />

Let k be a field and k~ its separable closure. Let<br />

ak = Gal(zc / )


VII.6 151<br />

be the Galois group. If K is a Galois extension <strong>of</strong> k, we let GK/k be<br />

its Galois group. Then GK is normal <strong>in</strong> Gk and the factor group<br />

Gk/GK is GK/k. All these groups are <strong>of</strong> Galois type, with the<br />

Krull topology.<br />

We shall use constantly Hilbert's Theorem 90, that for the mul-<br />

tiplicative group K*, we have<br />

HI(Gh-/k,K *) = O.<br />

Note that K* C Galm(GK/k). In the additive case, with the addi-<br />

tive group K +,<br />

H"(GK/k,K +)=0 for all r >0.<br />

One sees this reduction to the case when K is f<strong>in</strong>ite Galois over k,<br />

so there is a normal basis show<strong>in</strong>g that K + is semilocal with local<br />

group reduced to e, whence the cohomology is trivial <strong>in</strong> dimension<br />

>0.<br />

Next, we give a result <strong>in</strong> characteristic p.<br />

Theorem 6.1. Let k have characteristic p > 0 and let k(p) be<br />

the maximal p-extension with Galois group G(p) over k. Then<br />

cd G(p)


152<br />

By the remarks made at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> this section, we get from<br />

the exact cohomology sequence that H2(a(p), Fp) = o, and hence<br />

by the criterion <strong>of</strong> Theorem 3.9 that cd G(p) _


VII.6 153<br />

Theorem 6.4. Let k be a field and p prime ~ char k. Let n be<br />

an <strong>in</strong>teger > O. Then cdv(Gk )


154<br />

(By def<strong>in</strong>ition, tr deg is the transcendence degree.)<br />

Pro<strong>of</strong>. If <strong>in</strong> a tower K D K1 D k the assertion is true for K/K1<br />

and for K1/k, then it is true for K/k. We are therefore reduced<br />

to the cases when either K/k is algebraic, <strong>in</strong> which case GK is a<br />

closed subgroup <strong>of</strong> Gk, and the assertion is trivial; or when K is a<br />

pure transcendental extension K = k(x), <strong>in</strong> which case we have a<br />

field diagram as follows.<br />

T T<br />

k , k ~<br />

G~<br />

By Tsen's theorem and the corollary <strong>of</strong> Theorem 6.3, we know that<br />

cd(Gk,(z)) ~ 1. The tower theorem shows that<br />

thus prov<strong>in</strong>g the theorem.<br />

cd(Gk(.)) =< cd(ak) + 1,<br />

Theorem 6.7. In the preced<strong>in</strong>g theorem, there is equality if<br />

cdp(Gk) < oo (p r char k) and K is f<strong>in</strong>itely generated over k.<br />

Pro<strong>of</strong>. The assertion is aga<strong>in</strong> transitive <strong>in</strong> towers, and we are<br />

reduced either to the case <strong>of</strong> a f<strong>in</strong>ite algebraic extension, when we<br />

can apply Proposition 3.12, or to K = k(x) purely transcendental.<br />

For this last case, we need a lemma.<br />

Lemma 6.8. Let G be <strong>of</strong> Galois type, T a closed normal sub-<br />

group such that cdp(T) =< 1. If cdp(G/T)


vii.6 155<br />

whence the lemma follows.<br />

Com<strong>in</strong>g back to the theorem, put<br />

G =Gk(,) and T = Gk(,),lk,(,).<br />

We refer to the diagram for Theorem 6.6. We may replace k be<br />

its extension correspond<strong>in</strong>g to a Sylow subgroup <strong>of</strong> Gk, that is we<br />

may suppose that Gk is a p-group. We have Gk = G/T. Let us<br />

now take A = Fp <strong>in</strong> the lemma. Suppose<br />

n = cdp(G/T) < oc.<br />

We must show that Hn+i(G, A) # 0. By the lemma, this amounts<br />

to show<strong>in</strong>g that Hn(G/T, HI(T, Fp)) # 0. S<strong>in</strong>ce the p-th roots <strong>of</strong><br />

unity are <strong>in</strong> k (p # char k), Kummer theory shows that<br />

HI(T, Fp) = cont holn(T, Fp)<br />

is G/T-isomorphic to ks(z)*/ks(x) *p. The unique factorization <strong>in</strong><br />

ks(x) shows that this group conta<strong>in</strong>s a subgroup G-isomorphic to<br />

Fp. On the other hand, this group is a direct sum <strong>of</strong> its orbits<br />

under G/T, and one <strong>of</strong> these orbits is Fp. Hence H n+l (G, Fp) # 0<br />

as was to be shown.<br />

The theorem we have just proved, and which occurs here at the<br />

end <strong>of</strong> the theory, historically arose at its beg<strong>in</strong>n<strong>in</strong>g. Its conjecture<br />

and the sketch <strong>of</strong> its pro<strong>of</strong> are due to Grothendieck.


CHAPTER VIII<br />

w Morphisms <strong>of</strong> extensions<br />

Group Extensions<br />

Let G be a group and A an abelian group, both written mul-<br />

tiplicatively. An extension <strong>of</strong> A by G is an exact sequence <strong>of</strong><br />

groups<br />

We can then def<strong>in</strong>e an action <strong>of</strong> G on A. If we identify A as<br />

a subgroup <strong>of</strong> U, then U acts on A by conjugation. S<strong>in</strong>ce A is<br />

assumed commutative, it follows that elements <strong>of</strong> A act trivially,<br />

so U/A = G acts on A.<br />

For each cr E G and a E A we select a.,1 element ua E U such<br />

that ju,, = or, and we put<br />

Each element <strong>of</strong> U can be written uniquely <strong>in</strong> the form<br />

u = au,7 with a E G and a E A.<br />

Then there exist elements a~,,- E A such that<br />

UO.U r ~ atr,TUo-r,<br />

and (a.,,-) is a 2-cocycle <strong>of</strong> G <strong>in</strong> A. A different choice <strong>of</strong> u,,<br />

would give rise to another cocycle, differ<strong>in</strong>g from the first one by


VIII. 1 157<br />

a coboundary. Hence the cohomology class a <strong>of</strong> these cocycles is<br />

a well def<strong>in</strong>ed element <strong>of</strong> H2(G, A), determ<strong>in</strong>ed by the extension,<br />

i.e. by the exact sequence.<br />

Conversely, suppose given an element a 6 H2(G,A) with G<br />

given, and A abelian <strong>in</strong> :VIod(G). Let (a~,~) be a cocycle represent-<br />

<strong>in</strong>g a. We can then def<strong>in</strong>e an extension <strong>of</strong> A by G as follows. We<br />

let U be the set <strong>of</strong> pairs (a, or) with a 6 A and cr E G. ~vVe def<strong>in</strong>e<br />

multiplication <strong>in</strong> U by<br />

(a, cr)( b, r) = (aaba~,,-, or).<br />

One verifies that U is a group, whose unit element is (a,,~, -1 e). The<br />

existence <strong>of</strong> the <strong>in</strong>verse <strong>of</strong> (a, #) is determ<strong>in</strong>ed at once from the<br />

def<strong>in</strong>ition <strong>of</strong> multiplication. Def<strong>in</strong><strong>in</strong>g j (a, ~) = ~r gives a homomorphism<br />

<strong>of</strong> U onto G, whose kernel is isomorphic to A, under the<br />

correspondence<br />

a ~---* (aa;~,e).<br />

Thus we get a group extension <strong>of</strong> A by G.<br />

Extensions <strong>of</strong> groups form a category, the morphisms be<strong>in</strong>g<br />

triplets <strong>of</strong> homomorphisms (f, F, ~) which make the follow<strong>in</strong>g dia-<br />

gram commutative:<br />

0 >A )U >G )0<br />

0 )B ,V ,H ,0<br />

We have the general notion <strong>of</strong> isomorphism <strong>in</strong> this category, but we<br />

look at the restricted notion <strong>of</strong> extensions U, U' <strong>of</strong> A by G (so the<br />

same A and G). Two such extensions will be said to be isomorphic<br />

if there exists an isomorphism F : U ~ U' mak<strong>in</strong>g the follow<strong>in</strong>g<br />

diagram commutative:<br />

A- ~ U ,G<br />

d I<br />

A >U' )G<br />

Isomorphism classes <strong>of</strong> extensions thus form a category, the mor-<br />

phisms be<strong>in</strong>g given by isomorphisms F as above.


158<br />

Let (G, A) be a pair consist<strong>in</strong>g <strong>of</strong> a group G and a G-module A.<br />

We denote by E(G, A) the isomorphism classes <strong>of</strong> extensions <strong>of</strong> A<br />

by G. For G fixed, A ~ E(G, A) is a functor on Mod(a). We may<br />

summarize the discussion<br />

Theorem 1.1. On the category Mod(G), the functors<br />

H2(G,A) and E(G,A) are isomorphic, by the bijection estab-<br />

lished at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the section.<br />

Next, we state a general result provid<strong>in</strong>g the existence <strong>of</strong> the<br />

homomorphism F when pairs <strong>of</strong> homomorphisms (r f) are given,<br />

from a pair (G, A) to a pair (G', A').<br />

Theorem 1.2. Let G ~ U/A and G' ..~ U'/A' be two exten-<br />

sions. Suppose given two homomorphisms<br />

~2 : G----~ G' and f " A ---+ A'.<br />

There exists a homomorphism F" U ~ U' mak<strong>in</strong>g the diagram<br />

commutative:<br />

A i ,U j ,G<br />

if and only if:<br />

A' , U' ) G'<br />

i' j'<br />

(1) f is a G-homomorphism, with G act<strong>in</strong>g on A ~ via T.<br />

(2) f.a = ~*a, where a,a ~ are the cohomology classes <strong>of</strong> the<br />

two extensons respectively, and f.,~* are the morphisms<br />

<strong>in</strong>duced by the morphisms <strong>of</strong> pairs<br />

(id, f) : (G,A) --+ (G,A') and (c2,id)" (G',A') ~ (G,A').<br />

Pro<strong>of</strong>. We beg<strong>in</strong> by show<strong>in</strong>g that the conditions are necessary.<br />

Without loss <strong>of</strong> generality, we let i be an <strong>in</strong>clusion. Let (u~) and<br />

(u~,) be representatives <strong>of</strong> a and e~ respectively <strong>in</strong> G and G'. For<br />

u = au~ <strong>in</strong> U we f<strong>in</strong>d<br />

F(u) = F(au~)= F(a)F(u~)= f(a)F(u~).


VIII. 1 159<br />

One sees that F is uniquely determ<strong>in</strong>ed by the data F(u~).<br />

have<br />

I<br />

jF(u~) = r = ~o" = j'u~,,.<br />

Hence there exist elements c~ E A' such that<br />

: Ccr t~tocr.<br />

It follows that F is uniquely determ<strong>in</strong>ed by the data (c~), which is<br />

a cocha<strong>in</strong> <strong>of</strong> G <strong>in</strong> A'. S<strong>in</strong>ce F is a homomorphism, we must have<br />

These conditions imply:<br />

F(u( au- 1) = F(uo.)f(a)f(uo.) -1<br />

(I) f(oa)=~fla(fa) for aEA and o'EG.<br />

(ii) fa., =<br />

for the cocycles (a~,~-) and (b~,,~,) associated to the representatives<br />

(u~) and (u'). By def<strong>in</strong>ition, these two conditions express precisely<br />

the conditions (1) and (2) <strong>of</strong> the theorem. Conversely, one verifies<br />

that these conditions are sufficient by def<strong>in</strong><strong>in</strong>g<br />

This concludes the pro<strong>of</strong>.<br />

F(au~) = f(a)c~u~.<br />

We also want to describe more precisely the possible F <strong>in</strong> an<br />

isomorphism class <strong>of</strong> extensions <strong>of</strong> A by G. We work more generally<br />

with the situation <strong>of</strong> Theorem 1.2. Let f, ~ be fixed and let<br />

F1, F2 " U ~ U'<br />

be homomorphisms which make the diagram <strong>of</strong> Theorem 1.2 com-<br />

mutative. We say that F1 is equivalent to F2 if they differ by an<br />

<strong>in</strong>ner automorphism <strong>of</strong> U' com<strong>in</strong>g from an element <strong>of</strong> A', that is<br />

there exists a' E A' such that<br />

Fl(u) = a'F2(u)a '-1 for all u E U.<br />

This equivalence is the weakest one can hope for.<br />

We


160<br />

Theorem 1.3. Let f,~ be given as <strong>in</strong> Theorem 1.2. Then<br />

the equivalence classes <strong>of</strong> homomorphisms F as <strong>in</strong> this theorem<br />

form a pr<strong>in</strong>cipal homogeneous space <strong>of</strong> HI(G,A'). The action<br />

<strong>of</strong> HI(G,A ') on this space is def<strong>in</strong>ed as follows. Let (u~) be rep-<br />

resentatives <strong>of</strong> G <strong>in</strong> U, and (z~) a 1-cocycIe <strong>of</strong> G <strong>in</strong> A'. Then<br />

(zF)(aua) = f(a)zaF(ua).<br />

Pro<strong>of</strong>. The straightforward pro<strong>of</strong> is left to the reader.<br />

Corollary 1.4. If HI(G,A r) = O, then two homomorphisms<br />

F1, F2 : U ---* U I which make the diagram <strong>of</strong> Theorem 1.2 com-<br />

mutative are equivalent.<br />

w Commutators and transfer <strong>in</strong> an extension.<br />

Let G be a f<strong>in</strong>ite group and A E Mod(G). We shall write A<br />

multiplicatively, and so we replace the trace by the norm N = NG.<br />

We consider an extension <strong>of</strong> A by G,<br />

O---,AJ-~EJG--~O,<br />

and we suppose without loss <strong>of</strong> generality that i is an <strong>in</strong>clusion.<br />

We fix a family <strong>of</strong> representatives (u,) <strong>of</strong> G <strong>in</strong> E, giv<strong>in</strong>g rise to the<br />

cocycle (a~,,-) as <strong>in</strong> the preced<strong>in</strong>g section. Its class is denoted by<br />

a. We let E r be the commutator subgroup <strong>of</strong> E. The notations<br />

will rema<strong>in</strong> fixed throughout this section.<br />

Proposition 2.1. The image <strong>of</strong> the transfer<br />

Tr : E/E ~ ~ A<br />

is conta<strong>in</strong>ed <strong>in</strong> A G, and one has:<br />

(1) Tr(aE c) = 11 uaau-~ 1 = Na(a) for a E A.<br />

erEG<br />

(2) Wr(u~ Ec) = 11 u~u~u~-I = YI a~,~ (the Nakayama map).<br />

aEG aEG<br />

Pro<strong>of</strong>. These formulas are immediate consequences <strong>of</strong> the defi-<br />

nition <strong>of</strong> the transfer.


VIII.2 161<br />

Proposition 2.2. One ha~ IcA C E ~ @ A C AN. For the cup<br />

product relative to the pair<strong>in</strong>g Z x A ---* A, we have<br />

a U H-a(G, Z) = ma((E ~ @ A)/IGA).<br />

Pro<strong>of</strong>. We have at once aa/a = uaaujla -1 6 E ~ @ A. The<br />

other stated <strong>in</strong>clusion can be seen from the fact that tr is trivial<br />

on E r and apply<strong>in</strong>g Proposition 2.1. Now for the statement about<br />

the cup product, recall that a subgroup <strong>of</strong> an abelian group is<br />

determ<strong>in</strong>ed by the group <strong>of</strong> characters f : A ---+ Q/Z vanish<strong>in</strong>g on<br />

the subgroup. A character f : A ---+ Q/Z vanishes on E ~ @ A if and<br />

only if we can extend f to a character <strong>of</strong> E/E% because<br />

A/(EC@A) cE/E c.<br />

The extension <strong>of</strong> a character can be formulated <strong>in</strong> terms <strong>of</strong> a com-<br />

mutative diagram such as those we considered previously, and <strong>of</strong><br />

the existence <strong>of</strong> a map F, namely:<br />

A ) E ) G<br />

Q/z , Q/z , 0<br />

The existence <strong>of</strong> F is equivalent to the conditions:<br />

(a) f is a G-homomorphism.<br />

(b) = 0.<br />

From the def<strong>in</strong>ition <strong>of</strong> the cup product, we have a commutative<br />

diagram:<br />

H-3(Z) x H2(Q/Z) ---+ H-I(Q/Z)=(Q/Z)N<br />

idl ft ~f*<br />

H-3(Z) x I-I2(a) --~ H-I(A)=AN/1GA.<br />

The duality theorem asserts that H-a(Z) is dual to H2(Q/Z). In<br />

addition, the effect <strong>of</strong> f, on H-I(A) is <strong>in</strong>duced by f on AN/IaA.<br />

Suppose that f is a character <strong>of</strong> A vanish<strong>in</strong>g on AN. Then<br />

f,(a U H-a(A)) = 0, and so f,(a) U H-a(Z) = 0.


162<br />

S<strong>in</strong>ce H-3(Z) is the character group <strong>of</strong> H2(Q/Z), we conclude that<br />

f.(ol) = 0. The converse is proved <strong>in</strong> a similar way. This concludes<br />

the pro<strong>of</strong> <strong>of</strong> Proposition 2.2.<br />

In addition, Proposition 1.1 also gives:<br />

Theorem 2.3. Let<br />

O~A~E~G~O<br />

be an eztension, and a 6 H2(G,A) its cohomology class. Then<br />

the follow<strong>in</strong>g diagram is commutative:<br />

0 :A/E ~nA i E/EC<br />

0 ' NA " A G<br />

= G/G c = H-2(G,Z) 9 0<br />

" H~ A) ' 0<br />

where N,i,j are the homomorphisms <strong>in</strong>duced by the norm, the<br />

<strong>in</strong>clusion, and j respectively; and a-2 denotes the cup product<br />

with a on H-2(G, Z).<br />

Pro<strong>of</strong>. The left square is commutative because <strong>of</strong> the formula<br />

for the norm <strong>in</strong> Proposition 2.1(1). The transfer maps E/E c <strong>in</strong>to<br />

A a by Proposition 2.1. The right square is commutative because<br />

the Nakayama map is an explicit determ<strong>in</strong>ation <strong>of</strong> the cup product,<br />

and we can apply Proposition 2.1(2).<br />

The next two corollaries are especially important <strong>in</strong> the applica-<br />

tion to class modules and class formations as <strong>in</strong> Chapter IX. They<br />

give conditions under which the transfer is an isomorphism.<br />

Corollary 2.4. Let E/A = G be an extension with correspond-<br />

<strong>in</strong>g cohomology class a 6 H2(G,A). With the three homomor-<br />

phisms<br />

Tr : E/E ~ ~ A a<br />

a-3: H-3(G,Z) ~ H-I(G,A)<br />

a-2: H-2(G, Z) ---* H~ A)<br />

we get an exact sequence<br />

0 --* H-I(G,A)/Im a-3 ~ Ker Tr ~ Ker a-2 --~ 0


viii.3 163<br />

and an isomorphism<br />

0 ~ Aa/Im Tr --~ H~ ~-2 ~ O.<br />

Pro<strong>of</strong>. Chas<strong>in</strong>g around diagrams.<br />

Corollary 2.5. If ~-2 and ~-3 are isomorphism,, then the<br />

transfer on AG /NA is an isomorphism <strong>in</strong> Theorem 2.3.<br />

The situation <strong>of</strong> Corollary 2.5 is realized for class modules or<br />

class formations <strong>in</strong> Chapter IX.<br />

w The deflation<br />

Let G be a group and A E Mod(G), written multiplicatively.<br />

Let EG be an extension <strong>of</strong> A by G. Let N be a normal subgroup<br />

<strong>of</strong> G and EN = j-I(N), so we have two exact sequences:<br />

O -.+ A --., E G J G ---, O<br />

O---+ A--+ E N---+ N---+ O.<br />

Then EN is an extension <strong>of</strong> A by N, and if ~ E H2(G, A) is the<br />

cohomology class <strong>of</strong> Ea then res~(~) is the cohomology class <strong>of</strong><br />

EN.<br />

One sees that EN is normal <strong>in</strong> Ec, and <strong>in</strong> fact EG/EN ,,~ G/N.<br />

We obta<strong>in</strong> an exact sequence<br />

0 --+ EN --+ Ea ~ G/N --* O.<br />

S<strong>in</strong>ce EN is not necessaily commutative, we factor by E~v to get<br />

the exact sequence<br />

0 ~ EN/E~N --* EG/E~N --* G/N ---* 0<br />

giv<strong>in</strong>g an extension <strong>of</strong> EN/E~ by G/N, called the factor exten-<br />

sion correspond<strong>in</strong>g to the normal subgroup N <strong>of</strong> G. The group


164<br />

lattice is as follows.<br />

A<br />

/<br />

EN.<br />

/\<br />

\ /<br />

A N<br />

\<br />

This factor extension corresponds to a cohomology class/3 <strong>in</strong><br />

H2(G/N, EN/E~). We can take the transfer<br />

EG<br />

Tr: EN/ECN ~ A N ,<br />

which is a G/N-homomorphism, the operation <strong>of</strong> G/N on EN/E~<br />

be<strong>in</strong>g compatible with that <strong>of</strong> E~/E~. Consequently, there is a<br />

<strong>in</strong>duced homomorphism<br />

Tr," H~(G/N,E N /E~N) ---+ H~(G/N, AN).<br />

The image <strong>of</strong> Tr,(/~) depends only on a. Hence we get a map<br />

def" H2(G,A) --* H2(G/N,A N) such that a ~ Tr,(/~).<br />

We call this map the deflation. It may not be a homomorphism,<br />

but we shall see that for G f<strong>in</strong>ite, it is. First:<br />

Theorem 3.1. Let S be a subgroup <strong>of</strong> a f<strong>in</strong>ite group G. Fix<br />

right coset representatives <strong>of</strong> S <strong>in</strong> G, and for a 6 G let ~ be<br />

the representative <strong>of</strong> Sa. Let A 6 Mod(G) and let (aa,T) be a<br />

2-cocycle <strong>of</strong> G <strong>in</strong> A. Let EG be the extension <strong>of</strong> A by S obta<strong>in</strong>ed<br />

from the restriction <strong>of</strong> this cocycle to S. Let (ua) be representa-<br />

tives <strong>of</strong> G <strong>in</strong> EG. Let 7(a, T) = GTaT 1. Then<br />

Es -I<br />

TrA (ueueu~'v) = H aP,7"<br />

pES<br />

Pro<strong>of</strong>. This comes directly from the formulas <strong>of</strong> Theorem 2.1.<br />

e


VIII.3 165<br />

Corollary 3.2. Let G be a f<strong>in</strong>ite group, N normal <strong>in</strong> G.<br />

A E Mod(G). Then on H2(G,A), we have<br />

<strong>in</strong>f~c/Nodeg/N =(N" e).<br />

Pro<strong>of</strong>. One computes with the explicit formulas on cocycles.<br />

Note that the group A be<strong>in</strong>g written multiplicatively, the expression<br />

(N 9 e) on the right is really the map a ~ a (N:*) for a E H2(G, A).<br />

Theorem 3.3. Let G be a f<strong>in</strong>ite group and N a normal sub-<br />

group. Then the deflation is a homomorphism. If a r H2(G, A)<br />

is represented by the cocycle (a~,~), then def(a) is represented<br />

by the cocycle<br />

pEN pEN<br />

H --1<br />

a~ pj-ap,aa p,-5-- ~.<br />

pEN<br />

As <strong>in</strong> Theorem 3.1, ~ denotes a fixed coset representative <strong>of</strong> the<br />

coset N a, and "), = ~a--Y -1 = 7(a, T).<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is done by an explicit computation, us<strong>in</strong>g the<br />

explicit formula for the transfer <strong>in</strong> Theorem 3.1. The fact that the<br />

deflation is a homomorphism is then apparent from the expression<br />

on the right side <strong>of</strong> the equality. One also sees from this right<br />

expression that the expression on the left is well def<strong>in</strong>ed. The<br />

details are left to the reader.<br />

Let


w Def<strong>in</strong>itions<br />

CHAPTER IX<br />

Class Formations<br />

Let G be a group <strong>of</strong> Gedois type, with a fundamental system<br />

<strong>of</strong> open neighborhoods <strong>of</strong> e consist<strong>in</strong>g <strong>of</strong> open subgroups <strong>of</strong> f<strong>in</strong>ite<br />

<strong>in</strong>dex U, V, .... Let A E Gedm(G) be a Galois module. We then<br />

say that the pair (G, A) is a class formation if it satisfies the<br />

follow<strong>in</strong>g two axioms:<br />

CF 1. For each open subgroup V <strong>of</strong> G one has HI(V,A) = O.<br />

Because <strong>of</strong> the <strong>in</strong>flation-restriction exact sequence <strong>in</strong> dimension 1,<br />

this axiom is equivalent to the condition that for all open subgroups<br />

U, V with U normal <strong>in</strong> V, we have<br />

HI(V/U, AU)=o.<br />

Example. If k is a field and K is a Galois extension <strong>of</strong> k with<br />

Galois group G, then (G, K*) satisfies the axiom CF 1.<br />

By CF 1, it follows that the <strong>in</strong>flation-restriction sequence is<br />

exact <strong>in</strong> dimension 2, and hence that the <strong>in</strong>flations<br />

<strong>in</strong>f: H2(V/U,A U) ---+ H2(V,A)<br />

are monomorphisms for V open, U open and normal <strong>in</strong> V. We<br />

may therefore consider H2(V,A) as the union <strong>of</strong> the subgroups


IX.1 167<br />

H2(V/U, Au). It is by def<strong>in</strong>ition the Brauer group <strong>in</strong> the preced-<br />

<strong>in</strong>g example. The second axiom reads:<br />

CF 2. For each open subgroup V <strong>of</strong> G we are given an embed-<br />

d<strong>in</strong>g<br />

<strong>in</strong>vy: H2(V, A) ---+ Q/Z denoted a ~ <strong>in</strong>vv(a),<br />

called the <strong>in</strong>variant, satisfy<strong>in</strong>g two conditions:<br />

(a) If U C V are open and U is normal <strong>in</strong> V, <strong>of</strong> <strong>in</strong>dex n <strong>in</strong><br />

V, then <strong>in</strong>vv maps H2(V/U,A U) onto the subgroup (Q/Z),<br />

consist<strong>in</strong>g <strong>of</strong> the elements <strong>of</strong> order n <strong>in</strong> Q/Z.<br />

(b) If U C V are open subgroups with U <strong>of</strong> <strong>in</strong>dex n <strong>in</strong> V, then<br />

<strong>in</strong>vy o res V = n.<strong>in</strong>vv.<br />

We note that if (G : e) is divisible by every positive <strong>in</strong>teger m, then<br />

<strong>in</strong>va maps H2(G,A) onto Q/Z, i.e.<br />

<strong>in</strong>vG: H2(G,A) ---+ Q/Z<br />

is an isomorphism. This is the case <strong>in</strong> both local and global class<br />

field theory over number fields:<br />

In the local case, A is the multiplicative group <strong>of</strong> the algebraic<br />

closure <strong>of</strong> a p-adic field, and G is the Galois group.<br />

In the global case, A is the direct limit <strong>of</strong> the groups <strong>of</strong> idele<br />

classes. On the other hand, if G is f<strong>in</strong>ite, then <strong>of</strong> course <strong>in</strong>va maps<br />

H2(G,A) only on (Q/Z),, with n = (G: e).<br />

Let G be f<strong>in</strong>ite, and (G, A) a class formation. Then A is a class<br />

module. But for a class formation, we are given an additional<br />

structure, namely the specific fundamental elements a C H 2 (G, A)<br />

whose <strong>in</strong>variant is 1/n (rood Z).<br />

Let (G, A) be a class formation and U C V open subgroups with<br />

U normal <strong>in</strong> Y. The element a e H2(V/U,A U) C H2(V,A), whose<br />

V-<strong>in</strong>variant <strong>in</strong>vy((~) is 1/(V : U), will be called the fundamental<br />

class <strong>of</strong> H2(V/U, Au), or by abuse <strong>of</strong> language, <strong>of</strong> V/U.


168<br />

Proposition 1.1. Let U C V C W be three open subgroups <strong>of</strong><br />

G, with U normal <strong>in</strong> W. If a is the fundamental class <strong>of</strong> W/U<br />

then resW(a) is the fundamental class <strong>of</strong> V/U.<br />

Pro<strong>of</strong>. This is immediate from CF 2(b).<br />

Corollary 1.2. Let (G,A) be a class formation.<br />

(i) Let V be an open subgroup <strong>of</strong> G. Then (If, A) is a class<br />

formation, and the restriction<br />

res: H2(G,A) --+ H2(V,A)<br />

is surjective.<br />

(ii) Let N be a closed normal subgroup. Then (G/N,A N) is a<br />

class formation, if we def<strong>in</strong>e the <strong>in</strong>variant <strong>of</strong> an element<br />

<strong>in</strong> H2(VN/N,A N) to be the <strong>in</strong>variant <strong>of</strong> its <strong>in</strong>flation <strong>in</strong><br />

H2(VN, A).<br />

Pro<strong>of</strong>. Immediate.<br />

Proposition 1.3. Let (G, A) be a class formation and let V be<br />

an open subgroup <strong>of</strong> G. Then:<br />

(i) The transfer preserves <strong>in</strong>variants, that is for a E H2(V, A)<br />

we have<br />

<strong>in</strong>vG trY(a) = <strong>in</strong>vv(a).<br />

(ii) Conjugation preserves <strong>in</strong>variants, that is for a 6 H2(V, A)<br />

we have<br />

<strong>in</strong>vv[a] (a, a) = <strong>in</strong>vv(a)<br />

Pro<strong>of</strong>. S<strong>in</strong>ce the restriction is surjective, the first assertion fol-<br />

lows at once from CF 2 and the formula<br />

tr o res=(G'V).<br />

As for the second, we recall that or. is the identity on H2(G, A).<br />

Hence<br />

<strong>in</strong>vv[#] o #, o res G = <strong>in</strong>vv[#lresG[# l o ~,<br />

= (G" V[a])<strong>in</strong>va o ~r,<br />

= (G: V)<strong>in</strong>va<br />

= <strong>in</strong>vyres~y .


IX.1 169<br />

S<strong>in</strong>ce the restriction is surjective, the proposition follows.<br />

Theorem 1.4. Let G be a f<strong>in</strong>ite group and (G,A) a class for-<br />

mation. Let a be the fundamental element <strong>of</strong> H2(G,A). Then<br />

the cup product<br />

a~: H~(G, Z) ---. H~+2(G, A)<br />

is an isomorphism for all r 6 Z.<br />

Pro<strong>of</strong>. For each subgroup G' <strong>of</strong> G let a' be the retriction to<br />

G', and let ar ' the cup product taken on the G'-cohomology. By<br />

the triplets theorem, it will suffice to prove that ar ' satisfies the<br />

hypotheses <strong>of</strong> this theorem <strong>in</strong> three successive dimensions, which<br />

we choose to be dimensions -1, 0, and +1.<br />

For r = -1, we have Hi(G, A) = 0 so a'l is surjective.<br />

For r = 0, we note that H~ has order (G' : e) which is<br />

the same order as H2(G ', A). We have trivially<br />

which shows that a~ is an isomorphism.<br />

For r = 1, we simply note that Hi(G, Z) = 0 s<strong>in</strong>ce G is f<strong>in</strong>ite<br />

and the action on Z is trivial. This concludes the pro<strong>of</strong> <strong>of</strong> the<br />

theorem.<br />

Next we make explicit some commutativity relations for restric-<br />

tion, transfer, <strong>in</strong>flation and conjugation relative to the natural iso-<br />

morphism <strong>of</strong> Hr(G, A) with Hr-2(G, Z), cupp<strong>in</strong>g with a.<br />

Proposition 1.5. Let G be a f<strong>in</strong>ite group and (G,A) a class<br />

formation, let a 6 H2(G,A) be a fundamental element and a'<br />

its restriction to G' for a subgroup G' <strong>of</strong> G. Then for each pair<br />

<strong>of</strong> vertical arrows po<strong>in</strong>t<strong>in</strong>g <strong>in</strong> the same direction, the follow<strong>in</strong>g<br />

diagram is commutative.<br />

w(a, z)<br />

res I tr<br />

H~(a ', Z)<br />

Ot r<br />

o'r<br />

=<br />

H~+2(G, A)<br />

res I tr<br />

'~ Hr+2(G', A)


170<br />

Pro<strong>of</strong>. This is just a special case <strong>of</strong> the general commutativity<br />

relations.<br />

Proposition 1.6. Let G be a f<strong>in</strong>ite group and (G,A) a class<br />

formation. Let U be normal <strong>in</strong> G. Let a E H2(G,A) be the<br />

fundamental element, and 6~ the fundamental element for G/U.<br />

Then the follow<strong>in</strong>g diagram is commutative for r >= O.<br />

H (G/U,Z ) e,, H +2(G/U, AU)<br />

l l;~<br />

H"(C, Z) ) Hr+2(G,A)<br />

Pro<strong>of</strong>. This is just a special case <strong>of</strong> the rule<br />

<strong>in</strong>f(a U ~3 ) = <strong>in</strong>f(a) U <strong>in</strong>f(~).<br />

We have to observe that we deal with the ord<strong>in</strong>ary functor H <strong>in</strong><br />

dimension r >= 0, differ<strong>in</strong>g from the special one only <strong>in</strong> dimension<br />

0, because the <strong>in</strong>flation is def<strong>in</strong>ed only <strong>in</strong> this case. The left ho-<br />

momorphism is (U : e)<strong>in</strong>f for the <strong>in</strong>flation, given by the <strong>in</strong>clusion.<br />

Indeed,we have<br />

(a: e) = (a: U)(U: e),<br />

so <strong>in</strong>f(~) = (U" e)a, and we can apply the above rule.<br />

F<strong>in</strong>ally, we consider some isomorphisms <strong>of</strong> class formations. Let<br />

(G,A) and (G',A') be class formations. An isomorphism<br />

(A,f):(G',A')--~(G,A)<br />

consists <strong>of</strong> a pair isomorphism A : G --* G' and f 9 A' --~ A such<br />

that<br />

<strong>in</strong>va(A, f).(a')= <strong>in</strong>vv,(a') for a' e H2(G',A').<br />

From such an isomorphism, we obta<strong>in</strong> a commutative diagram for<br />

U normal <strong>in</strong> V (subgroups <strong>of</strong> G):<br />

Hr(V/U,Z) ~" , Hr+2(V/U,A U)<br />

H"(AV/AU, Z) ) H"+2(AV/AU, A '>'v)


IX.2 171<br />

where a, a' denote the fundamental elements <strong>in</strong> their respective<br />

H 2 .<br />

Conjugation is a special case, made explicit <strong>in</strong> the next propo-<br />

sition.<br />

Proposition 1.7. Let (G, A) be a class formation, and U C V<br />

two open subgroups with U normal <strong>in</strong> V. Let r E G and<br />

the fundamental element <strong>in</strong> H2(V/U, AU). Then the follow<strong>in</strong>g<br />

diagram is commutative.<br />

H~(V/U,Z)<br />

nr(V[,]/U[,l,Z)<br />

w The reciprocity homomorphism<br />

Olr<br />

, Hr+~(V/U, A u)<br />

l ~.<br />

, H~+2(V[~'I/U[r],AU[d).<br />

We return to Theorem 8.7 <strong>of</strong> Chapter IV, but with the additional<br />

structure <strong>of</strong> the class formation. From that theorem, we know<br />

that if (G, A) is a class formation and G is f<strong>in</strong>ite, then G/G e is<br />

isomorphic to Aa/SGA = H~ The isomorphism can be<br />

realized <strong>in</strong> two ways. First, directly, and second by duMity. Here<br />

we start with the duality. We have a bil<strong>in</strong>ear map<br />

given by<br />

A a x G. ~ H2(G,A)<br />

(a, x) ~ ~(a) u 6x.<br />

Follow<strong>in</strong>g this with the <strong>in</strong>variant, we obta<strong>in</strong> a bil<strong>in</strong>ear map<br />

(a,x) ~ <strong>in</strong>vv(~(a) U6x) <strong>of</strong> A a G ~ Q/Z,<br />

whose kernel on the left is SaA and whose kernel on the right is<br />

trivial. Hence AG/SaA ~ G/G c, both groups be<strong>in</strong>g dual to G. We


172<br />

recall the commutative diagram:<br />

H~ x H2(Z)<br />

Uc~<br />

H-2(Z)<br />

1<br />

H-2(Z)<br />

1<br />

G/G ~<br />

H2(Z)<br />

6<br />

x HI(Q/Z)<br />

. H~(A)<br />

1~ ~<br />

, H~<br />

~-~(q/z)<br />

x 4 . (q/z).<br />

which we apply to the fundamental cocycle ~ E H2(G,A), with<br />

n = (G: e) and <strong>in</strong>vc(~) = 1/n. We have<br />

~(1) U a = c~ and <strong>in</strong>va(x(1) U c~) = <strong>in</strong>vG(c~) = 1In.<br />

Thus us<strong>in</strong>g the <strong>in</strong>variant from a class formation, at a f<strong>in</strong>ite level,<br />

we obta<strong>in</strong> the follow<strong>in</strong>g fundamental result.<br />

Theorem 2.1. Let G be a f<strong>in</strong>ite group and (G, A) a class for-<br />

mation. For a E A c let ~ be the element <strong>of</strong> GIG c correspond<strong>in</strong>g<br />

to a under the above isomorphism. Then for all characters X <strong>of</strong><br />

G we have<br />

x( o) = <strong>in</strong>vc(, (a) u<br />

An element a E G is equal to a~ if and only if for all characters<br />

X,<br />

X(a) = <strong>in</strong>va(>c(a) U 8X).<br />

The map a ~-* aa <strong>in</strong>duces an isomorphism AG/SGA ,~ G/G ~.<br />

The element aa <strong>in</strong> the theorem will also be denoted by (a, G).<br />

Let now G be <strong>of</strong> Galois type and let (G, A) be a class formation.<br />

Then we have a bil<strong>in</strong>ear map<br />

H~ x Hi(G, Q/Z) --~ H2(G,A),i.e.A a x G ---, H2(G,A)


IX.2 173<br />

with the ord<strong>in</strong>ary functor H ~ by the formula<br />

(a, X) ~ a U 6X,<br />

where we identify a character X with the correspond<strong>in</strong>g element <strong>of</strong><br />

Hi(G, Q/Z), and we identify H~ with A a. S<strong>in</strong>ce <strong>in</strong>flation<br />

commutes with the cup product, we see that if U is normal open<br />

<strong>in</strong> G, then the follow<strong>in</strong>g diagram is commutative:<br />

H~ A) Hi(G, Q/Z) 9 H2(G, A)<br />

<strong>in</strong>f <strong>in</strong>f <strong>in</strong>f<br />

HO(G/U,A U) x HX(G/U,Q/Z) " H2(G/U, AU)<br />

The <strong>in</strong>flation on the far left is simple the <strong>in</strong>clusion A U C A, and<br />

the <strong>in</strong>flation <strong>in</strong> the middle is that <strong>of</strong> characters.<br />

In particular, to each element a C A c" we obta<strong>in</strong> a character <strong>of</strong><br />

Hi(G, Q/Z) given by<br />

X ~ <strong>in</strong>va(a U 5X).<br />

We consider Hi(G, Q/Z) as a discrete group. Its character group is<br />

G/Gr accord<strong>in</strong>g to Pontrjag<strong>in</strong> duality between discrete and com-<br />

pact groups, but G c now denotes the closure <strong>of</strong> the commutator<br />

group. Thus we obta<strong>in</strong> a homomorphism<br />

reca : A a ---, G/G c<br />

which we call the reciprocity homomorphism, characterized by<br />

the property that for U open normal <strong>in</strong> G, and a E A c we have<br />

recG/u(a) = (a, G/U) = (a, G/Gcu).<br />

Similarly, we may replace U be any normal closed subgroup <strong>of</strong> G.<br />

This is called the consistency <strong>of</strong> the reciprocity mapp<strong>in</strong>g. As<br />

when G is f<strong>in</strong>ite, we denote<br />

reca(a) = (a, C).<br />

The next theorem is merely a formal summary <strong>of</strong> what precedes<br />

for f<strong>in</strong>ite factor groups, and the consistency.


174<br />

Theorem 2.2. Let G be a group <strong>of</strong> Galois type and (G,A) a<br />

class formation. Then there exists a unique homomorphism<br />

recG : A G --+ GIG c denoted a ~-* (a,G)<br />

satisfy<strong>in</strong>g the property<br />

for all characters X <strong>of</strong> G.<br />

<strong>in</strong>va(a U 5X) = x(a, G)<br />

Recall that if ~ : G1 ---+ G2 is a group homomorphism, then<br />

<strong>in</strong>duces a homomorphism<br />

This also holds for a cont<strong>in</strong>uous homomorphism <strong>of</strong> groups <strong>of</strong> Galois<br />

type, where G c denotes the closure <strong>of</strong> the commutator group.<br />

The next theorem summarizes the formalism <strong>of</strong> class formation<br />

theory and the reciprocity mapp<strong>in</strong>g.<br />

Theorem 2.3. Let G be a group <strong>of</strong> Galois type and (G,A) a<br />

class formation.<br />

(i) If a C A a and S is a closed normal subgroup with factor<br />

group ~ : G ---* G/S, then recG/S = Ac o recG, that is<br />

(a, G/T) = At(a, G).<br />

(ii) Let V be an open subgroup <strong>of</strong> G. Then recv = Tray o reco,<br />

that is for a E A Q,<br />

(a, V) = Tray(a, G).<br />

(iii) Aga<strong>in</strong> let V be an open subgroup <strong>of</strong> G and let ~ : V --* G<br />

be the <strong>in</strong>clusion. Then recG o S y = s o recy, that is for<br />

a C AV~<br />

(SV(a),G)= ~C(a,V).<br />

(iv) Let V be an open subgroup <strong>of</strong> G and a C A v. Let7 C G.<br />

Then<br />

(Ta, Vr)=(a,V) T.


IX.2 175<br />

These properties are called respectively consistency, transfer,<br />

translation, and conjugation for the reciprocity mapp<strong>in</strong>g.<br />

Pro<strong>of</strong>. The consistency property is just the commutativity <strong>of</strong><br />

<strong>in</strong>flation and cup product. We already used it when we def<strong>in</strong>ed the<br />

symbol (a, G) for G <strong>of</strong> Galois type. The other properties are proved<br />

by reduc<strong>in</strong>g them to the case when G is f<strong>in</strong>ite. For <strong>in</strong>stance, let<br />

us consider (ii). To show that two elements <strong>of</strong> V/V c are equal, it<br />

suffices to prove that for every character X : V ~ Q/Z the values<br />

<strong>of</strong> X on these two elements are equal. To do this, there exists an<br />

open normal subgroup U <strong>of</strong> G with U C V such that x(U) = 0.<br />

Let G = G/U. Then the follow<strong>in</strong>g diagram is commutative:<br />

G/GC T, , V/VC x , Q/Z<br />

1 1 l<br />

ala ~ > VlV c , Q/Z<br />

Tr X<br />

the vertical maps be<strong>in</strong>g canonical. Furthermore, by consistency,<br />

we have<br />

(a,G)U=(a,G/U)=(a,G).<br />

This reduces the property to the f<strong>in</strong>ite case G.<br />

But when G is f<strong>in</strong>ite, then we can also write<br />

(a, C) = o-


176<br />

where as previously U C V is normal <strong>in</strong> G and G = G/U, V = V/U.<br />

This reduces the property to the case when G is f<strong>in</strong>ite. In this case,<br />

let<br />

:,~ : v/v ~ __, a/a ~<br />

be the homomorphism <strong>in</strong>duced by <strong>in</strong>clusion. Let a be the funda-<br />

mental class <strong>of</strong> (G,A). Then rest(a) = a' is the fundamental class<br />

<strong>of</strong> (V, A). The transfer and cup product are related by the formula<br />

tr(~ u o~') = r u o,.<br />

But the transfer amounts to the trace on H~ = A v, so the<br />

assertion is proved.<br />

The fourth property is just a transport <strong>of</strong> structure for alge-<br />

braically def<strong>in</strong>ed notions and relations.<br />

We state one more property somewhat different from the others.<br />

Theorem 2.4. Limitation Theorem. Let G be <strong>of</strong> Galois<br />

type, V an open subgroup, and (G,A) a class formation. Then<br />

the image <strong>of</strong> SV(A V) by the reciprocity mapp<strong>in</strong>g reca is con-<br />

ta<strong>in</strong>ed <strong>in</strong> VGr ~, and we have an isomorphism <strong>in</strong>duced by<br />

recG, namely<br />

reca:Aa/SVA v ~-~ G/VG ~.<br />

Pro<strong>of</strong>. The first assertion is Property (iii) <strong>of</strong> Theorem 2.3. Con-<br />

versely, s<strong>in</strong>ce V is open, we may assume without loss <strong>of</strong> general-<br />

ity that G is f<strong>in</strong>ite. In this case, there exists b E A u such that<br />

he(b,V) = (a,G). By this same Property (iii), this is equal to<br />

(S~(b), G). But we know that the kernel <strong>of</strong> reca is equal to SaA.<br />

Hence a and SV(b) are congruent mod SG(A). S<strong>in</strong>ce<br />

we have proved the theorem.<br />

Sa(A) C sV(A),<br />

Corollary 2.5. Let G be f<strong>in</strong>ite and (G,A) a class formation.<br />

Let a' = a/a c and A' = A ~~ Then S~(A) = S~,(A') and<br />

reca,reca, are equal, their kernels be<strong>in</strong>g Sa(A).<br />

Note that G t = G/G c can be written G ~b, and can be viewed as<br />

the maximal abelian quotient <strong>of</strong> G <strong>in</strong> Corollary 2.5. The corollary<br />

shows that the <strong>in</strong>formation <strong>in</strong> the reciprocity mapp<strong>in</strong>g is entirely<br />

concerned with this maximal abelian quotient.


IX.2 177<br />

Theorem 2.6. Let G be abelian <strong>of</strong> Galois type. Let (G,A)<br />

be a class formation. Then the open subgroups V <strong>of</strong> G are <strong>in</strong><br />

bijection with the subgroups <strong>of</strong> A <strong>of</strong> the form SV(AV), called the<br />

trace group. If we denote this subgroup by Bv, and U is an<br />

open subgroup <strong>of</strong> G, then U C V if and only if Bv C Bu, and<br />

Buv = Bu N Bv. If <strong>in</strong> addition B is a subgroup <strong>of</strong> A a such<br />

that B D Bv for some open subgroup V <strong>of</strong> G, then there exists<br />

U open subgroup <strong>of</strong> G such that B = Bu.<br />

Pro@ All the assertions are special cases <strong>of</strong> what has previously<br />

been proved, except possibly for the last one. But for this one, one<br />

may suppose G f<strong>in</strong>ite and consider (G/V,A v) <strong>in</strong>stead <strong>of</strong> (G,A).<br />

We let U = reca(B), and we f<strong>in</strong>d an isomorphism B/SG(A) ..~ U,<br />

to which we apply Theorem 2.4 to conclude the pro<strong>of</strong>.<br />

A subgroup B <strong>of</strong> A a will be called admissible if there exists<br />

V open subgroup <strong>of</strong> G such that B = SBV(Aa). We then write<br />

B = By. The next reuslt is an immediate consequence <strong>of</strong> Theorem<br />

2.6 and the basic properties <strong>of</strong> the reciprocity map.<br />

Corollary 2.7. Let G be a group <strong>of</strong> Galois type and (G,A)<br />

a class formation. Let B C A c be admissible, B = Bu, and<br />

suppose U normal, G/U abelian. Let V be an open subgroup <strong>of</strong><br />

G and put<br />

C = (sV)-I(B),<br />

so C is a subgroup <strong>of</strong> A u. Then C is admissible for the class<br />

formation (V,A), and C corresponds to the subgroup U n V <strong>of</strong><br />

V.<br />

In the next section, we discuss <strong>in</strong> greater detail the relations<br />

between class formations and group extensions. However, we can<br />

already formulate the theorem <strong>of</strong> Shafarevich-Weil. Note that if G<br />

is <strong>of</strong> Galois type and U is open normal <strong>in</strong> G, then U/U ~ is a Galois<br />

module for G, or <strong>in</strong> other words, U ~ is normal <strong>in</strong> G. Consequently,<br />

G/U acts on U/U c, and we obta<strong>in</strong> a group extension<br />

(1) O--,U/UC~G/U c ~G/U --,0.<br />

If <strong>in</strong> addition (G, A) is a class formation, then the reciprocity map-<br />

p<strong>in</strong>g<br />

recg : A g ~ U/U c<br />

is a G/U-homomorphism.


178<br />

Theorem 2.8 (Shafarevich-Weil). Let G be <strong>of</strong> Galois type,<br />

U open normal <strong>in</strong> G, and (G, A) a class formation. Then<br />

recu. : H2(G/U,A U) ~ H2(G/U,U/U ~)<br />

maps the fundamental class on the class <strong>of</strong> the group extension<br />

(1). There exists a family <strong>of</strong> coset representatives (~)~a <strong>of</strong> U<br />

<strong>in</strong> G such that if aa,e is a cocycle represent<strong>in</strong>g a, then<br />

(a~,e, U) = o'rcrT- 1UC.<br />

Pro<strong>of</strong>. Let V C U be open normal <strong>in</strong> G. Ultimately, we let V<br />

tend to e. By the deflation operation <strong>of</strong> Chapter VIII, Theorem<br />

3.2, there exists a cocycle ba,e represent<strong>in</strong>g the fundamental class<br />

<strong>of</strong> H2(G/V, A V) and representatives a <strong>of</strong> U/V such that<br />

(2) ae,e:Su/y(b*,e/bT(a,~),~--e) II bp,7(a,,-),<br />

peV/V<br />

where 7(a, T) : aT-a'r -1. Therefore, we f<strong>in</strong>d<br />

(aa,eU/V) = avery 1VUC.<br />

We take a limit over V as follows, let C1,... , Cm be the cosets<br />

<strong>of</strong> U <strong>in</strong> G. They are closed and compact. The product space<br />

(C1,... ,Cm) is compact. If al,... ,am are representatives <strong>of</strong> U/V<br />

satisfy<strong>in</strong>g (2), then any representatives <strong>of</strong> the cosets #1 V,... , #m V<br />

will also satisfy (2). The subset (#iV,... ~,,~ V) is closed <strong>in</strong><br />

(C1,... , Cm). From the consistency <strong>of</strong> the reciprocity map, these<br />

subsets have the f<strong>in</strong>ite <strong>in</strong>tersection property. Hence their <strong>in</strong>tersec-<br />

tion taken over all V is not empty, and there exists representatives<br />

<strong>of</strong> the cosets <strong>of</strong> U <strong>in</strong> G which all give the same a,,e. The theorem<br />

is now clear.<br />

w Well groups<br />

Let G be a group <strong>of</strong> Galois type and (G, A) a class formation.<br />

At the end <strong>of</strong> the preced<strong>in</strong>g section, we saw the exact sequence<br />

0 c/u c a/uc a/u


IX.3 179<br />

for every open subgroup U normal <strong>in</strong> G. Furthermore, U/U ~ is iso-<br />

morphic to the factor group AU/sU(A). We now seek an extension<br />

X <strong>of</strong> A v by G/U and a commutative diagram<br />

0 ~ A ~' , X , G/U , 0<br />

o , uiu c , alU , alU , o<br />

satisfy<strong>in</strong>g various properties made explicit below. The problem will<br />

be solved <strong>in</strong> the follow<strong>in</strong>g discussion.<br />

We start first with the f<strong>in</strong>ite case, so let G be f<strong>in</strong>ite. By a Well<br />

group for (G,A) we mean a triple (E,g, {fv}), consist<strong>in</strong>g <strong>of</strong> a<br />

group E and a surjective homomorphism<br />

E 9-~G-.-~O<br />

(so a group extension) such that, if we put Eu = g-l(U) for U an<br />

open subgroup <strong>of</strong> G (and so E = EG), then fu is an isomorphism<br />

fu " A v --~ Eu/E~.<br />

These data are assumed to satisfy four axioms:<br />

W 1. For each pair <strong>of</strong> open subgroups U C V <strong>of</strong> G, the follow<strong>in</strong>g<br />

diagram is commutative:<br />

A v "f~ ~ Eu/E~<br />

<strong>in</strong>c T T Tr<br />

A v , Ev/E~,<br />

Iv<br />

W 2. For x E EG and every open subgroup U <strong>of</strong> G, the diagram<br />

is commutative:<br />

nU fv ~ Eu/E~<br />

1 1<br />

AuM , Eu[~]/E~M<br />

fV[~l<br />

The verticM isomorphisms are the natural ones aris<strong>in</strong>g<br />

from x.


180<br />

Let U C V be open subgroups <strong>of</strong> G, and U normal <strong>in</strong> V. Then<br />

we have a canonical isomorphism<br />

and an exact sequence<br />

Ev/Eu ~ V/U<br />

(3) 0 ~ Eu/E~] ~ Ev/E~] ---+ V/U ---, O.<br />

Then V/U acts on Eu/E~r and W 2 guarantees that fu is a G/U-<br />

isomorphism. This be<strong>in</strong>g the case we can formulate the third ax-<br />

iom.<br />

W 3. Let fu. : H2(V/U,A U) ~ H2(V/U, Eu/E~]) be the <strong>in</strong>-<br />

duced homomorphism. Then the image <strong>of</strong> the fundamental<br />

class <strong>of</strong> (V/U, A U) is the class correspond<strong>in</strong>g to the group<br />

extension def<strong>in</strong>ed by the exact sequence (3).<br />

F<strong>in</strong>ally we have a separation condition.<br />

W 4. One has E c = e, <strong>in</strong> other words the map f~ 9 A ~ E~ is an<br />

isomorphism.<br />

Theorem 3.1. Let a be a f<strong>in</strong>ite group and (G, A) a class for-<br />

mation. Then there exists a Well group for (G,A). Its unique-<br />

ness will be described <strong>in</strong> the subsequent theorem.<br />

Pro@ Let Ea be an extension <strong>of</strong> A by G,<br />

O ---~ A----~ E c ~ G---* O<br />

correspond<strong>in</strong>g to the fundamental class <strong>in</strong> H2(G, A). This exten-<br />

sion is uniquely determ<strong>in</strong>ed up to <strong>in</strong>ner automorphisms by elements<br />

<strong>of</strong> A, because H 1 (G, A) is trivial (Corollary 1.4 <strong>of</strong> Chapter VIII),<br />

and we have an isomorphism<br />

so W 4 is satisfied.<br />

f~:A---+E~,<br />

For each U C G, we let Eu = g-l(U), the extreme cases be<strong>in</strong>g<br />

given by A and EG. Thus we have an exact sequence<br />

O -* A --+ E u --~ U --* O


IX.3 181<br />

<strong>of</strong> subextension, and its class <strong>in</strong> H2(U, A) is the restriction <strong>of</strong> the<br />

fundamental class, i.e. it is a fundamental class for (U, A).<br />

Consequently, if U is normal <strong>in</strong> G, we may form the factor ex-<br />

tension<br />

0 ---+ Eu/E~ ~ Ea/E~ ~ G/U ~ O.<br />

By Corollary 2.5 <strong>of</strong> Chapter VIII, we know that the transfer<br />

Tr" Eu/E~ ~ A U<br />

is an isomorphism, and one sees at once that it is a G/U-isomorphism.<br />

Its <strong>in</strong>verse gives us the desired map<br />

fu " A U ~ Eu/E~.<br />

It is now easy to verify that the objects (Ea,g, {fu}) as def<strong>in</strong>ed<br />

above form a Weil group. The Axioms W 1~ W 2, W 4 are<br />

immediate, tak<strong>in</strong>g <strong>in</strong>to account the transitivity <strong>of</strong> the transfer and<br />

its functoriality. For W 3, we have to consider the deflation. In<br />

light <strong>of</strong> the "functorial" def<strong>in</strong>ition <strong>of</strong> Ec, one may suppose that<br />

V = G <strong>in</strong> axiom W 3. If a is the fundamental class <strong>in</strong> H2(G, A),<br />

then (U : e)a is the <strong>in</strong>flation <strong>of</strong> the fundamental class <strong>in</strong> (G/U, Au).<br />

By Corollary 3.2 <strong>of</strong> Chapter VIII, one sees that the deflation <strong>of</strong> the<br />

fundamental class <strong>of</strong> (G,A) to (G/U,A U) is the fundamental class<br />

<strong>of</strong> (G/U, AU). S<strong>in</strong>ce fg is the <strong>in</strong>verse <strong>of</strong> the transfer, one sees from<br />

the def<strong>in</strong>ition <strong>of</strong> the deflation that axiom W 3 is satisfied. This<br />

concludes the pro<strong>of</strong> <strong>of</strong> existence.<br />

We now consider the uniqueness <strong>of</strong> a Weil group. Suppose G<br />

f<strong>in</strong>ite, and let (G, A) be a class formation, let (E, g, { f~: }) be two<br />

Weil groups. An isomorphism ~ <strong>of</strong> the first on the second is a<br />

group isomorphism<br />

~ :E----~ E'<br />

satisfy<strong>in</strong>g the follow<strong>in</strong>g conditions:<br />

ISOW 1. The diagram is commutative:<br />

E g ~ G<br />

I id<br />

E ! ~ G.


182<br />

From ISOW 1 we see that ~(Eu) = E~u for all open subgroups U,<br />

whence an isomorphism<br />

The second condition then reads:<br />

ISOW 2. The diagram<br />

9 Eu/Eb ~ Eu/Et ' g.<br />

A U fv , Eu/E b<br />

id I 2~~<br />

]opt / i~Tlc<br />

A U ) J..~u/~_,U<br />

Ib<br />

is commutative for all open subgroups U <strong>of</strong> G.<br />

Theorem 3.2. Let G be a f<strong>in</strong>ite group. Two Well groups as-<br />

sociated to a class formation (G,A) are isomorphic. Such an<br />

isomorphism is uniquely determ<strong>in</strong>ed up to an <strong>in</strong>ner automor-<br />

phism <strong>of</strong> E ~ by elements <strong>of</strong> E'~.<br />

Pro<strong>of</strong>. Let ~ be an isomorphism9 The follow<strong>in</strong>g diagram is<br />

commutative by def<strong>in</strong>ition.<br />

0 >A A )Er ~ E ,G<br />

0 , A ~ ,E e ' , E' ,G<br />

f' e<br />

Conversely, we claim that any homomorphism ~ which makes this<br />

diagram commutative is an isomorphism <strong>of</strong> Well groups. Indeed,<br />

the exactness <strong>of</strong> the sequences shows that ~ is a group isomorphism<br />

<strong>of</strong> E on E r, and ~(Eu) = E b for all subgroups U <strong>of</strong> G. Hence qp<br />

<strong>in</strong>duces an isomorphism<br />

! C<br />

: Eu/Eb --, Ev/E,v.<br />

0<br />

~0.


IX.3 183<br />

We consider the cube:<br />

A u -...<<br />

<strong>in</strong>c<br />

id Eu / E~]<br />

A v 1b~ul <strong>in</strong>c<br />

i tr Eu/Ev<br />

, A<br />

--....<br />

* Ee<br />

. E"<br />

Tr'<br />

The top and bottom squares are commutative by ISOW 1.<br />

The back square is clearly commutative. The front face is commu-<br />

tative because the transfer is functorial. The square on the right<br />

is commutative because <strong>of</strong> the commutative diagram <strong>in</strong> Theorem<br />

3.2. Hence the left square is commutative because the horizontal<br />

morphisms are <strong>in</strong>jective.<br />

Thus the study <strong>of</strong> a Weil isomorphism is reduced to the study <strong>of</strong><br />

<strong>in</strong> the diagram. Such ~ always exists s<strong>in</strong>ce the group extensions<br />

have the same cohomology class. Uniqueness follows from the fact<br />

that Hi(G, A) = O, us<strong>in</strong>g Theorem 1.3 <strong>of</strong> Chapter VIII, which was<br />

put there for the present purpose.<br />

We already know that a class formation gives rise to others by re-<br />

striction or deflation with respect to a normal subgroup. Similarly,<br />

a Weil group for (G, A) gives rise to Weil groups at <strong>in</strong>termediate<br />

levels as follows.<br />

Theorem 3.3. Let (G, A) be a class formation, and suppose G<br />

f<strong>in</strong>ite. Let ( EG, gG, F~) be the correspond<strong>in</strong>g Well group, where<br />

~e is the family <strong>of</strong> isomorphisms {fu} for subgroups U <strong>of</strong> G.<br />

Let V be a subgroup <strong>of</strong> G. Let<br />

Ev = g~l(V) and gv = restriction <strong>of</strong> gG to V;<br />

~v = subfamily <strong>of</strong> ~c consist<strong>in</strong>g <strong>of</strong> those fv such that<br />

UcV.<br />

Then:<br />

(i) (Ev, gv, ~v) is a Well group associated to (V, A).<br />

(ii) IfV is normal <strong>in</strong> G, then (EG/E~,gG,~G) is a Well group<br />

associated with (G/V, AV), the family ~G consist<strong>in</strong>g <strong>of</strong> the<br />

isomorphism<br />

fv" A v ---* Eu/E5 "~ (Eu/E~)/(ES/E~),<br />

where U ranges over the subgroups <strong>of</strong> G conta<strong>in</strong><strong>in</strong>g V.


184<br />

Pro<strong>of</strong>. Clear from the def<strong>in</strong>itions.<br />

The possibility <strong>of</strong> hav<strong>in</strong>g Weil groups associated with factor<br />

groups <strong>in</strong> a consistent way will allows us to take an <strong>in</strong>verse limit.<br />

Before do<strong>in</strong>g so, we first show that the reciprocity maps are <strong>in</strong>duced<br />

by the isomorphisms fu <strong>of</strong> the Well group.<br />

Theorem 3.4. Let G be a f<strong>in</strong>ite group and (G, A) a class for-<br />

mation. Let (E~,g,~) be an associated Weil group. Let V be a<br />

subgroup <strong>of</strong> G. Then the follow<strong>in</strong>g diagram i8 commutative.<br />

A v fv , Ev/E~<br />

l li.c<br />

A G ) EG/E b<br />

la<br />

Pro<strong>of</strong>. S<strong>in</strong>ce we have not assumed that V is normal <strong>in</strong> G, we<br />

have to reduce the oro<strong>of</strong> to this special case by means <strong>of</strong> a cube:<br />

<strong>in</strong>c<br />

A v ' A<br />

Ea/Eb ' Ee/E<br />

The vertical arrow Scv on the back face is def<strong>in</strong>ed by means <strong>of</strong><br />

representatives <strong>of</strong> cosets <strong>of</strong> V <strong>in</strong> G. The front vertical arrow S' is<br />

def<strong>in</strong>ed to make the right face commutative. In other words, we lift<br />

these representatives <strong>in</strong> EG be means <strong>of</strong> 9 -1. Thus if G = U aiV<br />

we choose ui 6 Ec such that<br />

and we def<strong>in</strong>e<br />

g(~ri) = ui<br />

g'(x) = H x"'(mod E~).<br />

i<br />

We note that Ea = U uiEv, <strong>in</strong> other words that the ui represent<br />

the cosets <strong>of</strong> Ev <strong>in</strong> Ea. Then the front face is commutative, that<br />

is<br />

S'(Tr'(u)) = Tr(<strong>in</strong>c,(u)) for u 6 Ev/E~,<br />

r


IX.3 185<br />

immediately from the def<strong>in</strong>ition <strong>of</strong> the transfer. It then follows that<br />

the left face is commutative, thus f<strong>in</strong>ish<strong>in</strong>g the pro<strong>of</strong>.<br />

Corollary 3.5. Let G be f<strong>in</strong>ite and (G,A) a class formation.<br />

Let (EG,g,~) be an associated Well group. If U C V are sub-<br />

groups <strong>of</strong> G, then fu and fv <strong>in</strong>duce isomorphism~:<br />

A V/SU(A U) ,~ Ev/EuE~/ and (sU)-l(e) ~ (Eu N E~,)E~.<br />

If U is normal <strong>in</strong> V, then the first isomorphism i8 the reciprocity<br />

mapp<strong>in</strong>g, tak<strong>in</strong>g <strong>in</strong>to account the isomorphism Ew/Eu .~ V/U.<br />

Note that Corollary 3.5 is essentially the same result as Theorem<br />

2.8. The pro<strong>of</strong> <strong>of</strong> Corollary 3.5 is done by explicit<strong>in</strong>g the transfer <strong>in</strong><br />

terms Of the Nakayama map, and the details are left to the reader.<br />

In practice, <strong>in</strong> the context <strong>of</strong> class field ~heory, the group A has<br />

a topology (idele classes globally or multiplicative group <strong>of</strong> a local<br />

field locally). We shall now sketch the procedure which axiomatizes<br />

this topology, and allows us to take an <strong>in</strong>verse limit <strong>of</strong> Weft groups.<br />

Let G be a group <strong>of</strong> Galois type and A E Galm(G). We say that<br />

A is a topological Galois module if the follow<strong>in</strong>g conditions are<br />

satisfied:<br />

TOP 1. Each A U (for U open subgoup <strong>of</strong> G) is a topological<br />

group, and if U C V, the topology <strong>of</strong> A v is <strong>in</strong>duced by the<br />

topology <strong>of</strong> A U.<br />

TOP 2. The group G acts cont<strong>in</strong>uously on A and for each o- E G,<br />

the natural map A v ---. A U[~'] is a topological isomorphism.<br />

Note that if U C V, it follows that the trace S U 9 A U --+ A v is<br />

cont<strong>in</strong>uous.<br />

Let G be <strong>of</strong> GMois type and A E Galm(G) topological. If (G, A)<br />

is a class formation, we then say it is a topological class forma-<br />

tion. By a Well group associated to such a topological class<br />

formation, we mean a triplet (Ec, g, 5) consist<strong>in</strong>g <strong>of</strong> a topological<br />

group Ea, a morphism g : Ec --+ G <strong>in</strong> the category <strong>of</strong> topological<br />

groups (i.e. a cont<strong>in</strong>uous homomorphism) whose image is dense <strong>in</strong><br />

G (so that for each open subgroups V D U with U normal <strong>in</strong> G we<br />

have an isomorphism Ew/Eu ~ V/U), and a family <strong>of</strong> topological<br />

isomorphisms<br />

fv " Au ~ Eu/E b


186<br />

(where E L is the closure <strong>of</strong> the commutator group), satisfy<strong>in</strong>g the<br />

follow<strong>in</strong>g four axioms.<br />

WT 1. For each pair <strong>of</strong> open subgroups U C V <strong>of</strong> G, the follow-<br />

<strong>in</strong>g diagram is commutative:<br />

A U .:v > Eu/E~<br />

<strong>in</strong>c<br />

A v > Ev/E~<br />

Iv<br />

Note that the transfer on the right makes sense, because it ex-<br />

tends cont<strong>in</strong>uously to the closure <strong>of</strong> the commutator subgroups.<br />

WT 2. Let x C Ea be such that a = g(x). Then for all open<br />

subgroups U <strong>of</strong> G the follow<strong>in</strong>g diagram is commutative:<br />

A U Iv<br />

, Eu/E~<br />

A u['] > Eur~l/ E U[z] ~<br />

L J-fu[~]<br />

WT 3. If U C V are open subgroups <strong>of</strong> G with U normal <strong>in</strong> V,<br />

then the class <strong>of</strong> the extension<br />

0 --+ A v ,~ Eu/E~ -~ Ev/E~ ---', Ev/Eu ~ V/U --', 0<br />

is the fundamental class <strong>of</strong> H2(V/U, AU).<br />

WT 4. The <strong>in</strong>tersection N E~ taken over all open subgroups U<br />

<strong>of</strong> G is the unit element e <strong>of</strong> G.<br />

To prove the existence <strong>of</strong> a topological Weft group, we shall need<br />

two sufficient conditions as follows.<br />

WT 5. The trace S U 9 A U --~ A V is an open morphism for each<br />

pair <strong>of</strong> open subgroups U C V <strong>of</strong> G.


IX.3 187<br />

WT 6. The factor group AU/A V is compact.<br />

Then there exists a topological Weil group associated to the<br />

formation.<br />

Theorem 3.6. Let G be a group <strong>of</strong> Galois type, A C Galm(G),<br />

and (G,A) a topological class formation satisfy<strong>in</strong>g WT 5 and<br />

WT 6.<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is essentialy rout<strong>in</strong>e, except for the follow<strong>in</strong>g<br />

remarks. In the uniqueness theorem for Weil groups when G is<br />

f<strong>in</strong>ite, we know that the isomorphism ~ is determ<strong>in</strong>ed only up to<br />

an <strong>in</strong>ner automorphism by an element <strong>of</strong> A = E,. When we want<br />

to take an <strong>in</strong>verse limit, we need to f<strong>in</strong>d a compatible system <strong>of</strong><br />

Well groups for each open U, so the topological A v <strong>in</strong>tervene at<br />

this po<strong>in</strong>t. The compactness hypothesis is sufficient to allow us to<br />

f<strong>in</strong>d a coherent system <strong>of</strong> Weil groups for pairs (G/U, A U) when U<br />

ranges over the family <strong>of</strong> open normal subgroups <strong>of</strong> G. The details<br />

are now left to the reader.


CHAPTER X<br />

Applications <strong>of</strong> Galois <strong>Cohomology</strong><br />

<strong>in</strong> Algebraic Geometry<br />

by<br />

John Tate<br />

Notes by<br />

<strong>Serge</strong> <strong>Lang</strong><br />

1959<br />

Let k be a field and Gk the Galois group <strong>of</strong> its algebraic closure<br />

(or separable closure). It is compact, totally disconnected, and<br />

<strong>in</strong>verse limit <strong>of</strong> its factor groups by normal open subgroups which<br />

axe <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex, and axe the Galois groups <strong>of</strong> f<strong>in</strong>ite extension.<br />

We use the category <strong>of</strong> Galois modules (discrete topology on A,<br />

cont<strong>in</strong>uous operation by G) and a cohomological functor Ha such<br />

that H(G, A) is the limit <strong>of</strong> H(G/U, A U) where U is open normal<br />

<strong>in</strong> G.<br />

The Galois modules Galm(G) conta<strong>in</strong>s the subcategory <strong>of</strong> the<br />

torsion (for Z) modules GMmtor(G). RecM1 that G has cohomo-<br />

logical dimension _ n and all<br />

A E GMmtor(G), mad that G has strict cohomological dimen-


X.1 189<br />

sion < n if HT(G,A) = 0 for r > n and all A C Galm(G).<br />

We shall use the tower theorem that if N is a closed normal<br />

subgroup <strong>of</strong> G, then ca(a) _< cd(a/N)+cd(N), as <strong>in</strong> Chapter VII,<br />

Theorem 5.1. If a field k has trivial Brauer group, i.e.<br />

H2(GE,fF) = 0 (all E/k f<strong>in</strong>ite)<br />

where ft = k8 (separable closure) then cd(Gk) _< 1. By def<strong>in</strong>ition,<br />

a p-adic field is a f<strong>in</strong>ite extension <strong>of</strong> Qp. The maximal unramified<br />

extension <strong>of</strong> a p-adic field is cyclic and thus <strong>of</strong> cd _< 1. Hence:<br />

If k is a p-adic field, then cd(Gk) _< 2.<br />

This will be strengthened later to scd(Gk) _< 2 (Theorem 2.3).<br />

w Torsion-free modules<br />

We use pr<strong>in</strong>cipally the dual <strong>of</strong> Nakayama, namely: Let G be<br />

a f<strong>in</strong>ite group, (G, A) a class formation, and M f<strong>in</strong>itely generated<br />

torsion free (over Z, and so Z-free). Then<br />

Hr(G, Hom(M,A)) x H2-T(G,M)---* H2(G,A)<br />

is a dual pair<strong>in</strong>g, (i.e. puts the two groups <strong>in</strong> exact duality).<br />

We suppose k is p-adic, and let ft be its algebraic closure. We<br />

know Gk has ed(Gk) _< 2 by the tower theorem. We shall eventually<br />

show scd(ak) _< 2.<br />

Let X = Horn(M, ft*). Then X is isomorphic to a product <strong>of</strong><br />

f~* as Z-modules, their number be<strong>in</strong>g the rank <strong>of</strong> M, and we can<br />

def<strong>in</strong>e the operation <strong>of</strong> Gb on X <strong>in</strong> the natural manner, so that<br />

X C Galm(Gk).<br />

By the existence theorem <strong>of</strong> local class field theory for L rang<strong>in</strong>g<br />

over the f<strong>in</strong>ite extensions <strong>of</strong> k, the groups<br />

NL/kXL<br />

are c<strong>of</strong><strong>in</strong>al with the groups nXk, if we write XL = X GL and simi-<br />

larly ML = M aL 9 This is clear s<strong>in</strong>ce there exists a f<strong>in</strong>ite extension<br />

K <strong>of</strong> k which we may take Galois, such that M aK = M. Then for<br />

L D K, our statement is merely local class field theory's existence


190<br />

theorem, and then we use the norm NL/K to conclude the pro<strong>of</strong><br />

(transitivity <strong>of</strong> the norm).<br />

We shall keep K fixed with the property that MK = M. We<br />

wish to analyze the cohomology <strong>of</strong> X and M with respect to Gk.<br />

Proposition 1.1. Hr(Gk,X) = 0 for r > 2.<br />

Pro<strong>of</strong>. X is divisible and we use cd _< 2, with the exact sequence<br />

0 ~ Xto r ---+ X ~ X/Xto r ---+ O,<br />

where Xtor is the torsion part <strong>of</strong> X.<br />

Theorem 1.2. Induced by the pair<strong>in</strong>g<br />

we have the pair<strong>in</strong>gs<br />

X x M---~ ft*<br />

P0. H2(Gk,X) H~ --, g2(ak, f~ *) = Q/Z<br />

P1. HI(Gk,X) x HI(Gk,M) --~ Q/Z<br />

P2. H~ H2(Gk,M) --~ Q/Z<br />

In P0, H2(ak,X)= M~ = by def<strong>in</strong>ition Hom(Mk, Q/Z).<br />

In P1, the two groups are f<strong>in</strong>ite, and the pair<strong>in</strong>g is dual.<br />

In P2, H2(Gk,M) is the torsion submodule <strong>of</strong> Hom(Xk, Q/Z),<br />

i.e.<br />

H2(Gk,M) X ^ .<br />

=( k)tor<br />

Pro<strong>of</strong>. The pair<strong>in</strong>g <strong>in</strong> each case is <strong>in</strong>duced by <strong>in</strong>flation <strong>in</strong> a<br />

f<strong>in</strong>ite layer L D K D k. In P0, the right hand kernel wil be the<br />

<strong>in</strong>tersection <strong>of</strong> NL/kML taken for all L D K, and this is merely<br />

[L : K]NK/kMK which shr<strong>in</strong>ks to 0. The kernel on the left is<br />

obviously 0.<br />

In P1, the <strong>in</strong>flation-restriction sequence together with Hilbert's<br />

Theorem 90 shows that<br />

<strong>in</strong>f: HI(GK/k,XK) ---, HI(GL/k,XL)<br />

is an isomorphism, and the trivial action <strong>of</strong> GL/K on M shows<br />

similarly that<br />

<strong>in</strong>f : H 1 (aKIk, M) --, H l(Gglk, M)


X.2 191<br />

is an ismorphism. It follows that both groups are f<strong>in</strong>ite, and the<br />

duality <strong>in</strong> the limit is merely the duality <strong>in</strong> any f<strong>in</strong>ite layer L D K.<br />

In P3, we dualize the argument <strong>of</strong> P0, and note that<br />

He(Gk, M) will produce characters on Xk which are <strong>of</strong> f<strong>in</strong>ite pe-<br />

riod, i.e., which are trivial on some nXk for some <strong>in</strong>teger n. Oth-<br />

erwise, noth<strong>in</strong>g is changed from the formalism <strong>of</strong> P0.<br />

w F<strong>in</strong>ite modules<br />

The field k is aga<strong>in</strong> p-adic and we let A be a f<strong>in</strong>ite abelian group<br />

<strong>in</strong> Galm(Gk). Let B = Hom(A, f~*). Then A and B have the same<br />

order, and B E Galm(Gk). S<strong>in</strong>ce f~* conta<strong>in</strong>s all roots <strong>of</strong> unity,<br />

B = A, and A =/) once an identification between these roots <strong>of</strong><br />

unity and Q/Z has been made.<br />

Let M be f<strong>in</strong>itely generated torsion free and <strong>in</strong> Gaim(Gk) such<br />

that we have an exact sequence <strong>in</strong> Gaim(Gk):<br />

O----, N----~ M--~ A---. O.<br />

S<strong>in</strong>ce f~* is divisible, i.e. <strong>in</strong>jective, we have an exact sequence<br />

O,-Y~--X~--B.--O<br />

where X = Horn(M, f~* ) and Y = Horn(N, f~*).<br />

By the theory <strong>of</strong> cup products, we shall have two dual sequences<br />

(B) Hi(B)~ Hi(x)~ Hi(Y)---* H2(B)---* H2(X)-+ H2(Y)<br />

(A) Hi(A) ~ Hi(M) --- Hi(N) ~- H~ ~ H~ ~ H~<br />

with H : Hck. If one applies Hom(., Q/Z) to sequence (A) we<br />

obta<strong>in</strong> a morphism <strong>of</strong> sequence (B) <strong>in</strong>%o Hom((A), Q/Z). The 5-<br />

lemma gives:<br />

Theorem 2.1. The cup product <strong>in</strong>duced by A x B ---* f~* gives<br />

an exact duality<br />

H2(Gk,B) x H~ --~ H2(G fF).


192<br />

Theorem 2.2. With A aga<strong>in</strong> f<strong>in</strong>ite <strong>in</strong> Galm(Gk) and B =<br />

Horn(A, ~*) the cup product<br />

HI(Gk,A) x HI(Gk,B) --+ H2(Gk,~ *)<br />

give8 an exact duality between the H 1, both <strong>of</strong> which are f<strong>in</strong>ite<br />

groups.<br />

Pro<strong>of</strong>. Let us first show they are f<strong>in</strong>ite groups. By the <strong>in</strong>flation-<br />

restriction sequence, it suffices to show that for L f<strong>in</strong>ite over k and<br />

suitably large, HI(GL,A) is f<strong>in</strong>ite. Take L such that GL operates<br />

trivially on A. Then HI(GL,A) =cont Hom(GL,A) and it is<br />

known from local class field theory or otherwise, that GL/G~ G~L is<br />

f<strong>in</strong>ite.<br />

(s)<br />

(A)<br />

Now we have two sequences<br />

H~ --+ H~ ~ H~ Hi(B)--+ Hi(x)--+ Hi(Y)<br />

H2(A) +- H2(M)+- H2(N)+- Hi(A) +- Hi(M)+- Hi(N).<br />

We get a morphism from sequence (A) <strong>in</strong>to the torsion part <strong>of</strong><br />

Hom((B), Q/Z)), and the 5-1emma gives the desired result.<br />

Next let n be a large <strong>in</strong>teger, and let us look at the sequences<br />

above with A = M/nM and N = M. We have the left part <strong>of</strong> our<br />

sequences<br />

0--+ H~ H~<br />

H3(M) +- H3(M)+-- H2(A)+- H2(M)<br />

I contend that H2(M) ---+ H2(A) is surjective, because every char-<br />

acter <strong>of</strong> H~ is the restriction <strong>of</strong> some character <strong>of</strong> H~ s<strong>in</strong>ce<br />

Bk N nXk = 0 for n large. Hence the map<br />

n: H3(M) --+ H3(M)<br />

is <strong>in</strong>jective for all n large, and s<strong>in</strong>ce we deal with torsion groups,<br />

they must be 0. This is true for every M torsion free f<strong>in</strong>itely<br />

generated, <strong>in</strong> Galm(Gk). Look<strong>in</strong>g at the exact sequence factor<strong>in</strong>g<br />

out the torsion part, and us<strong>in</strong>g cd _< 2, we see that <strong>in</strong> fact:


X.2 193<br />

Theorem 2.3. We have scd(Gk) < 2, i.e. H r =0.fort >3<br />

-- Gk --<br />

and any object <strong>in</strong> Galm(Gk).<br />

We let X be the (multiplicative) Euler characteristic, cf. Algebra,<br />

Chapter XX, w<br />

Theorem 2.4. Let k be p-adic, and A f<strong>in</strong>ite Gk Galois module.<br />

Let B = Hom(d, fl*). Then x(Gk,A)= IIAIIk.<br />

Pro@ The Euler characteristic X is multiplicative, so can as-<br />

sume A simple, and thus a vector space over Z/gZ for some prime<br />

g. We let AK = A OK. For each Galois K/k, either Ak = 0 or<br />

Ak = A by simplicity.<br />

Case 1. Ak = A, so Gk operates trivially, so order <strong>of</strong> A is prime<br />

~. Then<br />

h ~ h l=(k*'k*t), h2(A)=h~<br />

So the formula checks.<br />

Case 2. Bk = B. The situation is dual, and checks also.<br />

Case 3. Ak = 0 and Bk = 0. Then<br />

X(Gk,A) = 1/hl(Gk,A).<br />

Let K be maximal tamely ramified over k. Then GK is a p-<br />

group. If AK = 0 = A aK then f # p (otherwise GK must operate<br />

trivially). Hence HI(GK,A) = 0. The <strong>in</strong>flation restriction se-<br />

quence <strong>of</strong> Gk, GK and GI~'/k shows H 1 (Gk, A) = 0, so we are done.<br />

Assume now AK # O, so AK = A. Let L0 be the smallest<br />

field conta<strong>in</strong><strong>in</strong>g k such that ALo = A. Then L0 is normal over k,<br />

and cannot conta<strong>in</strong> a subgroup <strong>of</strong> ~-power order, otherwise stuff<br />

left fixed would be a submodule # 0, so all <strong>of</strong> A, contradict<strong>in</strong>g L0<br />

smallest. In particular, the ramification <strong>in</strong>dex <strong>of</strong> Lo/k is prime to<br />

Adjo<strong>in</strong> ~-th roots <strong>of</strong> unity to L0 to get L. Then L has the same<br />

properties, and <strong>in</strong> particular, the ramification <strong>in</strong>dex <strong>of</strong> L/k is prime<br />

to *.


194<br />

Let T be the <strong>in</strong>ertia field. Then the order <strong>of</strong> GL/T is prime to ~.<br />

L<br />

T<br />

I GL/T<br />

I GT/k<br />

GL/T<br />

Hence Hr(GL/T,A) = 0 for all r > O. By spectral sequence, we<br />

conclude Hr(GL/k,AL) = Hr(GT/k,AT) all r > O. But GT/k is<br />

cyclic, AT is f<strong>in</strong>ite, hence HI(GL/k,AL) and H2(GL/k,AL) have<br />

the same number <strong>of</strong> elements. In the exact sequence<br />

O------+HI(GL/k ,AL)------+HI(Gk ,A)-'-+HI(GL ,A)GL/k --+H2(GL/k ,A)"-+O<br />

we get 0 on the right, because H2(Gk, A) is dual to<br />

H~ B) = Bk = 0. We can replace H2(GL/k, A) by HI(GL/k, A)<br />

as far as the number <strong>of</strong> elements is concerned, and then the hexagon<br />

theorem <strong>of</strong> the Herbrand quotient shows<br />

hl(Gk, A) = order HI(GL, A) aL/k .<br />

S<strong>in</strong>ce GL operates trivially on A, the H 1 is simply the horns <strong>of</strong> GL<br />

<strong>in</strong>to A, and thus we have to compute the order <strong>of</strong><br />

HOmaL/k (GL, A).<br />

Such horns have to vanish on G t and on the commutator group,<br />

so if we let G2 be the abelianized group, then * *t<br />

GL/G n . But this is<br />

Gn/k-isomorphic to L*/L *t, by local class field theory. So we have<br />

to compute the order <strong>of</strong><br />

HOmaL/k (L*/L *t, A).<br />

If ~ # p, then L*/L *t is GL/k-isomorphic to Z/gZ #t where #t<br />

is the group <strong>of</strong> t-th roots <strong>of</strong> unity. Also, GL/k has trivial action


X.3 195<br />

on Z/eZ.<br />

HOmGL/k<br />

So no horn can come from that s<strong>in</strong>ce Ak = 0.<br />

<strong>of</strong> #~, if f is such, then for all ~ ff GL/k,<br />

f(a() = ~f(().<br />

As for<br />

But a( = (" for some y, so a = f(() generates a submodule <strong>of</strong><br />

order g, which must be all <strong>of</strong> A, so its <strong>in</strong>verse gives an element <strong>of</strong><br />

Bk, contradict<strong>in</strong>g Ba = 0. Hence all Go/k-horns are 0, so Q.E.D.<br />

If g = p, we must show the number <strong>of</strong> such homs is 1/HAIIk. But<br />

accord<strong>in</strong>g to Iwasawa,<br />

L*/L *p = Z/pZ x #p x Zp(GL/k) m.<br />

Us<strong>in</strong>g some standard facts <strong>of</strong> modular representations, we are done.<br />

w The 'rate pair<strong>in</strong>g<br />

Let V be a complete normal variety def<strong>in</strong>ed over a field k such<br />

that any f<strong>in</strong>ite set <strong>of</strong> po<strong>in</strong>ts can be represented on an afs k-<br />

open subset <strong>of</strong> V. We denote by A = A(V) its Albanese variety,<br />

def<strong>in</strong>ed over k, and by B = B(V) its Picard variety also def<strong>in</strong>ed over<br />

k. Let D~(V) and De(V) be the groups <strong>of</strong> divisors algebraically<br />

equivalent to 0, resp. l<strong>in</strong>early equivalent to 0. We have the Picard<br />

group D~(V)/D~(V) and an isomorphism between this group and<br />

B, <strong>in</strong>duced by a Po<strong>in</strong>car6 divisor D on the product V x B, and<br />

rational over k.<br />

For each f<strong>in</strong>ite set <strong>of</strong> simple po<strong>in</strong>ts S on V we denote by Pics(V)<br />

the factor group n ~,a,s/L,~, /n(1) s where Da,s consists <strong>of</strong> divisors alge-<br />

braically equivalent to 0 whose support does not meet S, and r)(1)<br />

~'t,S<br />

is the subgroup <strong>of</strong> Da,s consist<strong>in</strong>g <strong>of</strong> the divisors <strong>of</strong> functions f<br />

such that f(P) = 1 for all po<strong>in</strong>ts P <strong>in</strong> S. Then there are canonical<br />

surjective homomorphisms<br />

whenever S' D S.<br />

Pics,(V) ~ Pics(V)--+ Pic(V)<br />

Actually we may work rationally over a f<strong>in</strong>ite extension K <strong>of</strong> k<br />

which <strong>in</strong> the applications will be Galois, and with obvious def<strong>in</strong>i-<br />

tions, we form<br />

n <strong>in</strong>(I)<br />

Pics, K(V) = L'~,S,t~'/L'~,S, Is-


196<br />

the <strong>in</strong>dex K <strong>in</strong>dicat<strong>in</strong>g rationality over K.<br />

We may form the <strong>in</strong>verse limit <strong>in</strong>v liras Pics, K(V). For our<br />

purposes we assume merely that we have a group Ca,K together<br />

with a coherent set <strong>of</strong> surjective homomorphisms<br />

cps " Ca,K ~ Pics, K(V)<br />

thus def<strong>in</strong><strong>in</strong>g a homomorphism ~ (their limit) whose kernel is de-<br />

noted by UK. We have therefore the exact sequence<br />

(1) o --, u/*. co,K B(K) -+ o.<br />

We assume throughout that a divisor class (for all our equiva-<br />

lences) which is fixed under all elements <strong>of</strong> G/,- conta<strong>in</strong>s a divisor<br />

rational over K. Similarly, we shall assume throughout that the<br />

sequence<br />

(2) 0 --+ Z~,K --~ Zo,K --~ A(K) -+ 0<br />

is exact, (where Z0 are the 0-cycles <strong>of</strong> degree 0, and Z~ is the kernel<br />

<strong>of</strong> Albanese), for each f<strong>in</strong>ite extension K <strong>of</strong> k.<br />

Relative to our exact sequences, we shall now def<strong>in</strong>e a Tate pair-<br />

<strong>in</strong>g.<br />

S<strong>in</strong>ce Ca,K is essentially a projective limit, we shall use the exact<br />

sequence<br />

rll /n(1)<br />

0 --* ~_,~,s,/*./~s,/*. ---* Pies,/,- j B(k) --* 0<br />

because if o e~ D S, then we have a commutative and exact diagram<br />

In( 1 )<br />

0 ' DI,S,,K/~.,e,S,,/*- , Pies,,/*" ~ B(k) , 0<br />

$ ; lid<br />

D /n(1)<br />

0 ) ~,S,K/L,~,S,I~ ~ Pics, K ~ B(k) ~ 0<br />

Now we wish to def<strong>in</strong>e a pair<strong>in</strong>g<br />

0<br />

Zo,K x UK ~ K*.


X.3 197<br />

Let u E UK, and a E ZO,K. Write<br />

a = E nQQ<br />

where the Q are dist<strong>in</strong>ct algebraic po<strong>in</strong>ts. Let S be a f<strong>in</strong>ite set <strong>of</strong><br />

po<strong>in</strong>ts conta<strong>in</strong><strong>in</strong>g all those <strong>of</strong> a, and rational over K. Then u has<br />

a representative <strong>in</strong> Pics, K and a further representative function fs<br />

def<strong>in</strong>ed over K, and def<strong>in</strong>ed at all po<strong>in</strong>ts <strong>of</strong> a. We def<strong>in</strong>e<br />

-1 : fs(~) = [I fs(Q) "q"<br />

It is easily seen that (a, u> -1 does not depend on the choice <strong>of</strong> S<br />

and fs subject to the above conditions. It is then clear that this is<br />

a bil<strong>in</strong>eax pair<strong>in</strong>g.<br />

We def<strong>in</strong>e a further pair<strong>in</strong>g<br />

Z.,K x C~, K -+ K*<br />

D "D (1) Let<br />

a~ follows. Let 7 E C~,K, so 7 : 5mTs,Ts E ~,S,K/


198<br />

and we have a Tate pair<strong>in</strong>g:<br />

(a, 7} [tD(b) -Xs](a) K*<br />

= D(a,b) E<br />

where b E Zo(B) maps on the po<strong>in</strong>t b E B, the same po<strong>in</strong>t as<br />

7 E Ca(V), S is a f<strong>in</strong>ite set <strong>of</strong> po<strong>in</strong>ts conta<strong>in</strong><strong>in</strong>g supp(a), Xs rep-<br />

resents 7s, and<br />

(ll,@ = fs(ll) -1<br />

where fs is a function represent<strong>in</strong>g u. We take S' so large that<br />

everyth<strong>in</strong>g is def<strong>in</strong>ed.<br />

Proposition 3.1. The <strong>in</strong>duced bil<strong>in</strong>ear map on (A,,~,Bm) co-<br />

<strong>in</strong>cides with em(a,b), i.e. with tn(mb, a)/n(ma, b).<br />

Pro<strong>of</strong>. Clear. We are us<strong>in</strong>g [La 57] and [La 59], Chapter VI.<br />

The above statements refer to the Tate augmented product <strong>of</strong><br />

Chapter V. The augmented product exists whenever one is given<br />

two exact sequences<br />

0 --~ A' ~ A :-~ A" --+ 0<br />

0 --+B' --+B J-~ B" --,0<br />

an object C, two pair<strong>in</strong>gs A x B' ~ C and A' x B --~ C which<br />

agree on A' x B'. Such an abstract situation <strong>in</strong>duces an augmented<br />

product<br />

H~(A '') x HS(B '') 2& Hr+s+l(c)<br />

which may be def<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> cocycles as follows. If f" and<br />

g" are cocycles <strong>in</strong> A" and B" respectively, their augmented cup is<br />

represented by the cocycle<br />

6fUg+(-1) dim IfU6g<br />

where jf = f" and jg = g", i.e. f and g are cocha<strong>in</strong>s <strong>of</strong> A and B<br />

respectively pulled back from f" and g".<br />

In dimensions (0, 1), the most important for what follows, we<br />

may make the Tate pair<strong>in</strong>g explicit <strong>in</strong> the follow<strong>in</strong>g manner. Let<br />

(b~) be a 1-cocycle represent<strong>in</strong>g an element/3 E HI(Gt(/k,B(K))


X.4 199<br />

and let a E A(K) represent c~ C H~ Let a C Zo,k(V)<br />

belong to a, and let b~ be <strong>in</strong> ZO,K(B) and such that S(b~) = b~.<br />

Let D be a Po<strong>in</strong>car~ divisor on V B whose support does not<br />

meet a b~ for any a. Then it is easily verified that putt<strong>in</strong>g<br />

b = b~ + crbT -- b~-, the cocycle<br />

represents a U~ug j3.<br />

tD(b, a)<br />

w The (0, 1) duality for abelian varieties<br />

We assume for the rest <strong>of</strong> this section that k is p-adic.<br />

Theorem 4.1. The augmented product <strong>of</strong> the Tats pair<strong>in</strong>g de-<br />

scribed <strong>in</strong> Section 3 <strong>in</strong>duces a duality between H~ and<br />

HI(Gk,B), with values <strong>in</strong> g2(Gk,~)= Q/Z.<br />

Pro<strong>of</strong>. Accord<strong>in</strong>g to the general theory <strong>of</strong> the augmented cup-<br />

p<strong>in</strong>g, we have for each <strong>in</strong>teger m > 0,<br />

0 ---+ A(k)/mA(k) ~ HI(Gk,Am) ---. HI(Gk,A)m ---+ 0<br />

0 ---+ (HI(Gk,B)m) ^ --+ HI(Gk,Bm) ^ ---. (B(k)/rnB(k)) ^ ---* 0<br />

a morphism <strong>of</strong> the first sequence <strong>in</strong>to the second. S<strong>in</strong>ce the pair<strong>in</strong>g<br />

between Am and Bm is an exact duality, so is the pair<strong>in</strong>g between<br />

their H 1 by Theorem 2.1. We wish to prove the end vertical arrows<br />

are isomorphisms, and for this we count. We have:<br />

(A(k) : mA(k))


200<br />

Theorem 4.2. We have H2(Gk,B) = O.<br />

abelian varieties, better than scd < 2.)<br />

Pro<strong>of</strong>. We have an exact sequence<br />

(This is special for<br />

0---+ HI(B)/mHI(B)--, H2(Bm)---+ H2(Bm)~ H2(B)m --* O.<br />

But H2(Bm) is dual to H~ and <strong>in</strong> particular has the same<br />

number <strong>of</strong> elements. Also, Hi(B) be<strong>in</strong>g dual to H~ we see<br />

that HI(B)/mHI(B) is dual to H~ = A(k)m, which is also<br />

H~ Hence the two terms on the left have the same number<br />

<strong>of</strong> elements, s<strong>in</strong>ce H2(B)m = 0 for all m, so 0 s<strong>in</strong>ce it is torsion<br />

group.<br />

Now we have the duality for H 1 , H ~ <strong>in</strong> f<strong>in</strong>ite layers.<br />

Theorem 4.3. Let K/k be f<strong>in</strong>ite Galois with group G = GK/k.<br />

Then the pair<strong>in</strong>g<br />

is a duality.<br />

H~ x HI(G,B(K)) ~ H2(G,K *)<br />

Pro<strong>of</strong>. This follows from the abstract fact that restriction is<br />

dual to the transfer valid for any Tate pair<strong>in</strong>g and the <strong>in</strong>duced<br />

augmented cupp<strong>in</strong>g.<br />

If one uses the <strong>in</strong>flation-restriction sequence, together with the<br />

commutativity derived abstractly for d2, and Theorem 4.2, we get<br />

the follow<strong>in</strong>g -4- commutative diagram, putt<strong>in</strong>g U = GK, and<br />

G = GK/k,<br />

U~.ug tr<br />

HX(U,A) a/u X (BU)G/u * H2(U,~*)G/Lr * H2(G,fl *)<br />

H~(a/V,A u) X HI(a/U,B u) , g~(a/u,a "v) 9 H2(a,a ")<br />

U~g <strong>in</strong>f<br />

Identify<strong>in</strong>g H2(G, fl*) with q/z we get the duality between H 2<br />

and H -1 :


X.5 201<br />

Identify<strong>in</strong>g H2(G, ~2") with Q/Z we get the duality between H 2<br />

and H -1"<br />

Theorem 4.4. If K/k is a f<strong>in</strong>ite Galois extension with group<br />

G, then the augmented cupp<strong>in</strong>g<br />

H2(G,A(K)) x H-I(G,B(K)) ---* H2(G,K *)<br />

is a perfect duality.<br />

w The full duality<br />

We wish to show how the follow<strong>in</strong>g theorem essentially follows<br />

from the (0, 1) duality without any further use <strong>of</strong> arithmetic, only<br />

from abstract commutative diagrams.<br />

Theorem 5.1. Let k be a p-adic field, A and B an abelian<br />

variety and its Picard variety def<strong>in</strong>ed over k, and consider the<br />

Tate pair<strong>in</strong>g described <strong>in</strong> w Then the augmented cupp<strong>in</strong>g<br />

HI-"(GK/k,A(K)) x H"(GK/k,B(K)) ---* H2(GK/k,K *)<br />

puts the two groups (which are f<strong>in</strong>ite) <strong>in</strong> ezact duality.<br />

(Of course, the right hand H 2 is (Q/Z)n, where n = (GK/k : e).)<br />

As usual, the A means Horn <strong>in</strong>to Q/Z.<br />

Put GK = U and G = Gk. We have a compact discrete duality<br />

A U !-/I(u, B) --+ H2(U,~ *) = Q/Z<br />

and we know from this that A U is isomorphic to Hi(U, B) A<br />

G/U-module. Hence the commutative diagram say for r ~ 3:<br />

H~-'(G/U,H~(U,B) ^) H'-2(a/U,H~(U,B)) ~_. H-~(G/U,Q/Z)<br />

H~-'(G/U,A ~) x H~-2(G/U,H~(U,S)) --- H-t(a/U,Q/Z).<br />

U<br />

as a<br />

The top l<strong>in</strong>e comes from the cup product duality theorem, and the<br />

arrow on the left is am ismorphism, as described above.


202<br />

Of course, we have H-I(G/U, Q/Z) = (Q/Z),, if n is the order<br />

<strong>of</strong> G/U. Note a/so that the Q/Z <strong>in</strong> the lower right stands for<br />

H2(U, Q*), because <strong>of</strong> the <strong>in</strong>variant isomorphism.<br />

Now from the spectral sequence and Theorem 4.2 to the effect<br />

that H 2 <strong>of</strong> an abelian variety is trivial over a p-adic field, we get<br />

an isomorphism<br />

d2 " H"-2(G/U, HI(U,B))---* H"(G/U,H~<br />

and we use another abstract diagram:<br />

HI-~(G/U,A ~r) H"-2(G/U, HI(U,B)) ~<br />

id~ d21<br />

H-t(G/U, H2(U,~2*))<br />

Hz-"(G/U,A u) H"(G/U,H~ ,<br />

U~ug<br />

FI2(G/U,n "u)<br />

In order to complete it to a commutative one, we complete the top<br />

l<strong>in</strong>e and the bottom one respectively as follows:<br />

I'I-~(G/U,H=(U, ~*) --" H2(U,n*)G/U ~ H2(G, ~2.)<br />

lnc<br />

9 ,t d"<br />

H2(G/U,12 "u) [nf )'H2(G,~ *)<br />

and s<strong>in</strong>ce the transfer and <strong>in</strong>flation perserve <strong>in</strong>variants, we see that<br />

our duality has been reduced as advertised.<br />

We observe that we have the ord<strong>in</strong>ary cup on the top l<strong>in</strong>e and<br />

the augmented cup on the bottom. The top one is relative to the<br />

A U, H I (U, B) duality, derived previously.<br />

w The Brauer group<br />

We cont<strong>in</strong>ue to work with a variety V def<strong>in</strong>ed over a p-adic field<br />

k. We assume V complete, non-s<strong>in</strong>gular <strong>in</strong> codimension 1, and such<br />

that any f<strong>in</strong>ite set <strong>of</strong> po<strong>in</strong>ts can be represented on an ~.fl~ne k-open<br />

subset <strong>of</strong> V.<br />

We let G = Gk and all cohomology groups <strong>in</strong> this section will<br />

be taken relative to G. We observe that the function field ~(V)<br />

has group G over k(V), and we wish to look at its cohomology.


X.6 203<br />

By Hilbert's Theorem 90 it is trivial <strong>in</strong> dimension 1, and hence we<br />

look at it <strong>in</strong> dimension 2: It is noth<strong>in</strong>g but that part <strong>of</strong> the Brauer<br />

group over k(V) which is split by a constant field extension. We<br />

make the follow<strong>in</strong>g assumptions.<br />

Assumption 1. There exists a O-cycle on V rational over k<br />

and <strong>of</strong> degree 1.<br />

Assumption 2. Let NS denote the N6ron-Severi group <strong>of</strong> V<br />

(it is f<strong>in</strong>itely generated). Then the natural map<br />

Div(V) a~ ---* NS a~ = NSk<br />

<strong>of</strong> divisors rational over k <strong>in</strong>to that part <strong>of</strong> N6ron-Severi which<br />

is fixed under Gk is surjective, i.e. every class rational over k<br />

has a representative divisor rational over k.<br />

These assumptions can be translated <strong>in</strong>to cohomology, and it is<br />

actually <strong>in</strong> this latter form that we shall use them. This is done as<br />

follows.<br />

To.beg<strong>in</strong> with, note that Assumption 1 guarantees that there<br />

is a canonical map <strong>of</strong> V <strong>in</strong>to its Albanese variety def<strong>in</strong>ed over k<br />

(use the cycle to get an orig<strong>in</strong> on the pr<strong>in</strong>cipal homogeneous space<br />

<strong>of</strong> Albanese). Hence by pull-back from Albanese, given a rational<br />

po<strong>in</strong>t b on the Picard variety, there is a divisor X E D~(V) rational<br />

over k such that CI(X) = b. In other words, the map<br />

D,(V) C. B(k)<br />

is surjective. Now consider the exact sequence<br />

H~ H~ ~ gl(D~) --, HI(Div(V)).<br />

Then Div(V) Ck is a direct sum over Z <strong>of</strong> groups generated by the<br />

irreducible divisors, and putt<strong>in</strong>g together a divisor and its conju-<br />

gates, we get<br />

Div(V/G = O G z z<br />

xE~<br />

where ~ ranges over the prime rational divisors <strong>of</strong> V over k and<br />

X ranges over its algebraic components. Now the <strong>in</strong>side sum is<br />

semilocal, and by semilocal theory we get HI(GK, Z) where K =<br />

kx is the smallest field <strong>of</strong> def<strong>in</strong>ition <strong>of</strong> X. This is 0 because GK is<br />

<strong>of</strong> Galois type and the cohomology comes from f<strong>in</strong>ite th<strong>in</strong>gs. Thus:


204<br />

Proposition 6.1. HI(Div(V)) = O.<br />

From this, one sees that our Assumption 1 is equivalent with<br />

the condition Hi(D=) = O.<br />

Now look<strong>in</strong>g at the other sequence<br />

H~ H~ Hi(Dr)--+ HI(D,)<br />

we see that Assumption 2 is equivalent to H 1 (De) = O. Thus:<br />

Assumptions 1 and 2 are equivalent with<br />

HI(D~) = 0 and HI(Dt) = O.<br />

Now we have two exact sequences<br />

0 . Hi(B) . H2(Dl) , H2(Da) 9 0<br />

l<br />

0<br />

1<br />

and from them we get a surjective map<br />

~" H2(fl(V) *) ---, H2(D=)--+ O.<br />

We def<strong>in</strong>e H~(~(V)*) to be its kernel, and call it the unramified<br />

part <strong>of</strong> the Srauer group H2(~(V)*). In view <strong>of</strong> the exact cross we<br />

get a map<br />

H2(~(V) *) ~ Hi(B).


X.6 205<br />

Thus<br />

H2(f~(V)*)/H~(a(V) *) ,~ H2(Da)<br />

H2(a(V)*)/H2(a ) ~ Hi(B) ~-, Char(A(k))<br />

H2(fl *) ~ O/Z = Char(Z)<br />

where Char means cont<strong>in</strong>uous character (or here equivalently char-<br />

acter <strong>of</strong> f<strong>in</strong>ite order, or torsion part <strong>of</strong> .4(k) = Hom(A(k), Q/Z)).<br />

This gives us a good description <strong>of</strong> our Brauer group, relative to<br />

the filtration<br />

2 9 H 2<br />

g2(f~(V) *) D H,~(a(Y) ) D (a*) D O.<br />

We wish to give a more concrete description <strong>of</strong> Hu 2 above, mak<strong>in</strong>g<br />

explicit its connection with the Tate pair<strong>in</strong>g. Relative to the<br />

sequence<br />

0 ~ A(k)~ Zk/Zo,,k ~ Z ~ 0<br />

and tak<strong>in</strong>g characters Char, we shall get a commutatiove exact<br />

diagram as follows:<br />

0 * Char(Z) , Char(Zk/Z~,.k) , Char(A(k)) , 0<br />

0 . H~(fl ") . H2(fI(V) ") ,, HI(B) . 0<br />

The two end arrows are as we have just described them, and are<br />

isomorphisms. We must now def<strong>in</strong>e the middle arrow and prove<br />

commutativity.<br />

Let v C H2~(Q(V)*). For each prime rational 0-cycle p <strong>of</strong> V<br />

over k we shall def<strong>in</strong>e its reduction mod p,v o C H2(f~ *) and then<br />

a character Zk/Z~,,k by the formula<br />

whenever a is a rational O-cycle,<br />

Ov(a) = E up <strong>in</strong>v(vp)<br />

P<br />

o=Evp.p, vpEZ.<br />

We shall prove that 8v vanished on the kernel <strong>of</strong> Albanese, whence<br />

the character, and then we shall prove commutativity.


206<br />

Def<strong>in</strong>ition <strong>of</strong> vp. Let (f~,T) be a representative cocycle. By<br />

def<strong>in</strong>ition it splits <strong>in</strong> Da, so that there is a divisor X~ C Da such<br />

that<br />

(f~,~) = X~ + ~X~ - X~.<br />

For each a, choose a function g~ such that X~ = (g~) at p. Put<br />

!<br />

then (f~,r) = 0 at p, i.e. f'~,~, is a unit at p. We now put<br />

aa,T : H f~,~(P)'<br />

PCp<br />

where {P} ranges over the algebraic po<strong>in</strong>ts <strong>in</strong>to which p splits. We<br />

contend that (aa,~-) is a cocycle, and that its class does not depend<br />

on the choices made dur<strong>in</strong>g its construction.<br />

Let (f*,~.) be another representative cocycle which is a unit at<br />

p, and obta<strong>in</strong>ed by the same process. Then<br />

f* = f' . 5g<br />

with (5g)r = g~,g]/g~- a unit at p. Hence tak<strong>in</strong>g divisors,<br />

+ (gT) - = o<br />

at all po<strong>in</strong>ts <strong>in</strong> supp(p). Let this support be S, and let Div S<br />

be the group <strong>of</strong> divisors pass<strong>in</strong>g through some po<strong>in</strong>t <strong>of</strong> p. Then<br />

Hl(Div S) = 0 by the same argument as <strong>in</strong> Proposition 6.1 (semilo-<br />

cal and Hi(Z) = 0) and hence tak<strong>in</strong>g the image <strong>of</strong> (gr <strong>in</strong> Div s<br />

we conclude that there exists a divisor X E Div s such that (gr =<br />

aX - X. Let h be a function such that X = (h) at p. Replace gr<br />

by g~,h 1-~. Then still f* = f' 9 5g and now gr is a unit at p, for all<br />

~. From this we get<br />

H (f*/f')~,~(P) = H (hg).,T(P)<br />

PEP PEp<br />

from which we see that it is the boundary <strong>of</strong> the 1-cocha<strong>in</strong><br />

H g~(P)"<br />

PEP


X.6 207<br />

Thus we have proved our reduction mapp<strong>in</strong>g<br />

well def<strong>in</strong>ed.<br />

73 e--+ Up<br />

Now the image <strong>of</strong> v <strong>in</strong> H ~ (B) is by def<strong>in</strong>ition reprsented by the<br />

cocycle CI(X~) : b~ (notation as <strong>in</strong> the above paragraph) and if<br />

a r Zo,k then<br />

0v(.) = is(a) Uaug/3<br />

where/3 is represented by the cocycle (b~).<br />

Thus 0v vanishes on the kernel <strong>of</strong> Albanese, and the right side<br />

<strong>of</strong> our diagam is commutative.<br />

As for the left side, given w E H2(~*), represented by a cocycle<br />

(c~,~), then wp is represented by<br />

where m = deg(p). Then<br />

C~ T ~ C~rT<br />

II m<br />

PEp<br />

O~(a) = Z(deg p)up<strong>in</strong>v(co)<br />

P<br />

= deg(a), <strong>in</strong>v(w)<br />

whence commutativity. This concludes the pro<strong>of</strong> <strong>of</strong> the follow<strong>in</strong>g<br />

theorem.<br />

Theorem 6.2. There is an isomorphism<br />

H 2 (a(V) * ) Char(Z/Z~)k<br />

under the mapp<strong>in</strong>g Ov and the diagram<br />

0 ------+ Char(Z) ~ Char(Z/Z.)k -----~ Char(A(k)) ~ 0<br />

T t T<br />

0 ~ H2(f~ *) ~ H2(a(V) *) , H~(B) ----* 0<br />

which is exact and commutative.<br />

We conclude this section with a description <strong>of</strong> H2(Da) also <strong>in</strong><br />

terms <strong>of</strong> characters.


208<br />

We have the exact sequence<br />

and hence<br />

0 ---* D~ ---. Div --~ NS ~ 0<br />

0--~ HI(NS)--+ H2(D~)~ H2(Div)~ H2(NS)~ 0<br />

the last 0 by scd _< 2.<br />

Now H2(Div) is easy to describe s<strong>in</strong>ce Div is essentially a direct<br />

sum. In fact,<br />

Divk =@@Z'X<br />

xE~<br />

where the sum is taken over all prime rational divisors ~ over k and<br />

all algebraic components X <strong>in</strong> ~. Us<strong>in</strong>g the semilocal theory, we<br />

get<br />

H2(Div) = @ H2(Gk, 'Z) = @HI(Gk, 'Q/Z)<br />

= G Char(k?)<br />

where k~ is the smallest field <strong>of</strong> def<strong>in</strong>ition <strong>of</strong> an algebraic po<strong>in</strong>t X<br />

<strong>in</strong> ~ and Gk~ is the Galois group over k~. Thus we see that our H 2<br />

is a direct sum <strong>of</strong> character groups.<br />

The Case <strong>of</strong> Curves. If we assume that V has dimension 1,<br />

i.e. is a non s<strong>in</strong>gular curve, then this result simplifies considerably<br />

s<strong>in</strong>ce NS = Z is <strong>in</strong>f<strong>in</strong>ite cyclic, and we have also<br />

We have<br />

NS = N& = (NS) G~ .<br />

Hx(~vS) = O, H~(NS) = H~(Z) = Char(k*)<br />

and we get the commutative diagram<br />

0 , H2(D~,) , H2(Div) , H2(Z) ,0<br />

o , @~ Char(k?) , @ Char(kj) , Char(k*) ,0


X.6 209<br />

where the @0 on the left means those elements whose sum gives<br />

0. The morphism on the lower right is given by the restriction <strong>of</strong><br />

a character from k~ to k* and the sum mapp<strong>in</strong>g. Thus an element<br />

<strong>of</strong> H2(Div)is given by a vector <strong>of</strong> characters (Xv,p) where p ranges<br />

over the prime rational cycles <strong>of</strong> V, i.e. the ~ s<strong>in</strong>ce cycles and<br />

divisors co<strong>in</strong>cide.<br />

We observe also that by Tsen's theorem, H2(f~(V)*) is the full<br />

Brauer group over k(V) s<strong>in</strong>ce ft(Y) does not admit any division<br />

algebras <strong>of</strong> f<strong>in</strong>ite rank over itself.<br />

F<strong>in</strong>ally, we have slightly better <strong>in</strong>formation on H 2"<br />

Proposition 6.3. If V is a curve, then<br />

2 * 2<br />

Hu(ft(V) )= NH,(ft(V)*)<br />

where H~ consists <strong>of</strong> those cohomology classes hav<strong>in</strong>g a cocycIe<br />

representative (f~,~) <strong>in</strong> the units at p.<br />

We leave the pro<strong>of</strong> as an exercise to the reader.<br />

We shall discuss ideles for arbitrary varieties <strong>in</strong> the next section.<br />

Here, for curves, we take the usual def<strong>in</strong>ition, and we then have the<br />

same theorem as <strong>in</strong> class field theory.<br />

Proposition 6.4. Let V be a curve, and for each p let k(V)p<br />

be the completion at the prime rational cycle p. Let Br(k(V))<br />

be the Brauer group over k(Y), i.e. g2(Gk, k(Y)8) where k(Y)8<br />

is the separable (= algebraic) closure <strong>of</strong> k(Y), and similarly for<br />

Br(k(V),). Then the map<br />

is <strong>in</strong>jective.<br />

Br(k(V)) -~ H Br(k(V)p)<br />

One can give a pro<strong>of</strong> based on the preced<strong>in</strong>g discussion or by<br />

prov<strong>in</strong>g that Hi(Ca) = O, just as <strong>in</strong> class field theory. We leave<br />

the details to the reader.<br />

P<br />

P


210<br />

w Ideles and idele classes<br />

Let k be a field and V a complete normal variety def<strong>in</strong>ed over<br />

k and such that any f<strong>in</strong>ite set <strong>of</strong> po<strong>in</strong>ts can be represented on an<br />

aff<strong>in</strong>e k-open subset. By a cycle, we shall always mean a 0-cycle.<br />

For each prime rational cycle p over k on V we have the <strong>in</strong>tegers<br />

0p, the units Up and maximal ideal nap <strong>in</strong> k(V).<br />

There are several candidates to play the role <strong>of</strong> ideles, and we<br />

shall describe here what would be a factor group <strong>of</strong> the classical<br />

ideles <strong>in</strong> the case <strong>of</strong> curves. We let<br />

Fp = k(V)*/(1 + nap).<br />

Then we let Ik be the subgroup <strong>of</strong> the Cartesian product <strong>of</strong> all the<br />

Fp consist<strong>in</strong>g <strong>of</strong> the vectors<br />

f=(... ,fp,...) fpcFp<br />

such that there exists a divisor X, rational over k, such that<br />

X = (fp) at p for all p.<br />

(In the case <strong>of</strong> curves, this means unit almost everywhere.) We call<br />

this divisor X (obviously unique) the divisor associated with<br />

the idele f, and write X = (f).<br />

We have two subgroups Ia,k and Ie,k consist<strong>in</strong>g <strong>of</strong> the ideles<br />

whose divisor is algebraically equivalent to 0 and l<strong>in</strong>early equivalent<br />

to 0 respectively.<br />

S<strong>in</strong>ce every divisor is l<strong>in</strong>early equivalent to 0 at a simple po<strong>in</strong>t,<br />

we have an exact sequence<br />

0-~ 5,k ~ I~,k ~ B(k)~ 0<br />

where B is the Picard variety <strong>of</strong> V, def<strong>in</strong>ed over k.<br />

As usual, we have an imbedd<strong>in</strong>g<br />

K(V)* c Ik<br />

on the diagonal: if f C k(V)*, then f maps on (... , f, f, f,... ) (<strong>of</strong><br />

course <strong>in</strong> the vector, it is the class <strong>of</strong> f rood 1 + nap).


X.7 211<br />

We recall our Picard groups Pies(V) associated with a f<strong>in</strong>ite set<br />

<strong>of</strong> po<strong>in</strong>ts <strong>of</strong> V and here we assume that S is a f<strong>in</strong>ite set <strong>of</strong> prime rational<br />

cycles. We have Pics, k(V) = Da,s,k(V)/D~l),k where D~,s,k<br />

consists <strong>of</strong> the divisors on V algebraically equivalent to 0, not pass<strong>in</strong>g<br />

through any po<strong>in</strong>t <strong>of</strong> S, and rational over k, and n(1) ~'t,S,k consists<br />

<strong>of</strong> those which are l<strong>in</strong>arly equivalent to O, belong<strong>in</strong>g to a function<br />

which takes the value 1 at all po<strong>in</strong>ts <strong>of</strong> S, and is def<strong>in</strong>ed over k.<br />

We contend that we have a surjective map<br />

Ws : Ia,k ~ Pics, k<br />

for each S as follows. Given f <strong>in</strong> I~,k there exists f C k(V)* such<br />

that we can write<br />

f = f fs with f'= 1 E Fp<br />

for all p E S. This is easily proved by mov<strong>in</strong>g the divisor <strong>of</strong> f by a<br />

l<strong>in</strong>ear equivalence, and then us<strong>in</strong>g the Ch<strong>in</strong>ese rema<strong>in</strong>der theorem<br />

<strong>in</strong> an aff<strong>in</strong>e r<strong>in</strong>g <strong>of</strong> an aff<strong>in</strong>e open subset <strong>of</strong> V. We then put<br />

~s(f) = Cls((f'))<br />

where Cls is the equivalence class mod r}(1) Our collection <strong>of</strong><br />

"'t,S,k"<br />

maps qPs is obviously consistent, and thus we can def<strong>in</strong>e a mapp<strong>in</strong>g<br />

9 Ia,k ~ lim Pics, k(V).<br />

For our purposes here, we denote by Ca,k the image <strong>of</strong> qp <strong>in</strong> the<br />

limit and call it the group <strong>of</strong> idele classes. This is all right:<br />

Contention. The kernel <strong>of</strong> ~ is k(V)*.<br />

Pro@ If f is <strong>in</strong> the kernel, then for all S there exists a function<br />

fs such that<br />

f = fsfs<br />

where fs is 1 <strong>in</strong> S, and (fs) = O. All fs have the same divisor,<br />

namely (f). Look<strong>in</strong>g at one prime p <strong>in</strong> S, we see that all fs are<br />

equal to the same function f, and we see that f is simply the<br />

function f.


212<br />

We have the unit ideles I~,k consist<strong>in</strong>g <strong>of</strong> those ideles whose<br />

divisor is 0, the idele classes Ck = Ik/K(V)*, and also the obvious<br />

subgroups <strong>of</strong> idele classes:<br />

ca,k = h,k/k(V)*<br />

C..~ = k(V)*I..~/k(V)* = Z~.,/k*.<br />

We keep work<strong>in</strong>g under Assumptions 1 and 2, <strong>of</strong> course. In that<br />

case, if K is a f<strong>in</strong>ite Galois extension <strong>of</strong> k, we have the two funda-<br />

mental exact sequences<br />

(i)<br />

(2)<br />

0 ---* Z~,K --~ ZO,K ---* A(K) ~ 0<br />

o ---, C~,l,- ~ co,K ---, B(K) -~ o<br />

<strong>in</strong> the category <strong>of</strong> GK/k-mpodules. For the limit, with respect to<br />

f~ one will <strong>of</strong> course take the <strong>in</strong>jectve limit over all K.<br />

From the def<strong>in</strong>ition, we see that<br />

= II k(p),<br />

p/k<br />

where k(p) is the residue class field <strong>of</strong> the prime rational cycle p<br />

over k, i.e. k(p) = op/r%.<br />

If K/k is f<strong>in</strong>ite Galois, then we write<br />

z ,K = II k(v)*<br />

WK<br />

where gl ranges over the prime rational cycles over K.<br />

w Idele class cohomology<br />

Aside from the fundamental sequences (1) and (2), we have three<br />

sequences.<br />

0 ---* ZO,K ~ ZK ~ Z ~ 0<br />

0 ~ K* ~ I,,,~: ~ Cu,K ~ 0<br />

0---~0 ----~ K * --* K * ----~ 0


X.8 213<br />

and pair<strong>in</strong>gs giv<strong>in</strong>g rise to cup products:<br />

ZK I~,,K ~ K*<br />

def<strong>in</strong>ed <strong>in</strong> the obvious manner: Given f E I~,,g and a cycle<br />

the pair<strong>in</strong>g is<br />

It <strong>in</strong>duces pair<strong>in</strong>gs<br />

a= Evp .p,<br />

(a,f) = H f~P.<br />

Zo,K C.,K --+ K*<br />

Z K* --* K*<br />

ZO,K K* ~ 0<br />

and we get an exact commutative diagram from the cup product<br />

H~(K *) . Hr(/.) 9 H~(c~) ,.<br />

H2-r(Z) ^ . H~-~(Z) ^ . H~-~(zo) ^ .<br />

tak<strong>in</strong>g <strong>in</strong>to account that<br />

H2(Gtc/k,K*) = (Q/Z)n<br />

H'+I(K *)<br />

HI-~(Z) ^<br />

where n = (G 9 e) the cup products tak<strong>in</strong>g their values <strong>in</strong> this H 2.<br />

Here, as <strong>in</strong> the next diagram, H is taken with respect to GK/k, we<br />

omit the <strong>in</strong>dex K on the modules, and r C Z so H = HCK/k is the<br />

special functor.<br />

From the exact sequence <strong>in</strong> the last section, we get<br />

Hr-I(B) . Hr(c.) . Hr(c.) ~ H'(B) ~ H~+I(c.)<br />

H2-~(A) ^ ,. H2-~(Z)o) ^ ~.. H2-'(z~) ^ ~H~-'(A) ^ , H~-'(Zo) ^<br />

and ~4 is <strong>in</strong>duced by the augmented cup, the others by the cup.


214<br />

Theorem 8.1. All ~ are isomorphisms.<br />

Pro<strong>of</strong>. We proceed stepwise.<br />

991 is an isomorphism by Tate's theorem.<br />

9~ by a semilocal analysis and aga<strong>in</strong> by Tate's theorem.<br />

9~3 by the 5-1emma and the result for ~1 and 9~2.<br />

9~4 by the augmented cup duality already done.<br />

~ by the 5-1emma and the result for 9~3 and 9~4.<br />

So that's it.<br />

Corollary 8.2. HI(GI~-/k, Ca,K) = O.<br />

Pro<strong>of</strong>. It is dual to HI(z~) which is 0 s<strong>in</strong>ce we assumed the<br />

existence <strong>of</strong> a rational cycle <strong>of</strong> degree 1.<br />

In the case <strong>of</strong> a curve, if we had worked with the true ideles<br />

JK <strong>in</strong>stead <strong>of</strong> our truncated ones [K, we would also have obta<strong>in</strong>ed<br />

(essentially <strong>in</strong> the same way) the above corollary. Thus from the<br />

sequence<br />

0 ~ K(V)* ---* Ja,K ~ Ca,~: ~ 0<br />

we would get exactly<br />

0--+ H2(K(V) *) ---. H2(Ja,K)<br />

thus recover<strong>in</strong>g the fact that an element <strong>of</strong> the Brauer group which<br />

splits locally everywhere splits globally (H 2 is taken with GK/k).<br />

Furthermore, the curves exhibit one more duality, a self duality,<br />

<strong>of</strong> our group Fp. This is a local question. We take k a p-adic field,<br />

K a f<strong>in</strong>ite extension, Galois with group GK/k, and consider the<br />

power series k((t)) and K((t)). We let F be our local group<br />

F = K((t))*/(1 + m)<br />

where m is the maximal ideal. Then 1 + m is uniquely divisible,<br />

and so its cohomology is trivial. Hence<br />

We have the exact sequence<br />

Hr(GK/k,K((t)) *) : Hr(GK/k,F).<br />

0 ---* K* ---~ F ---* Z ---* 0


X.8<br />

and a pair<strong>in</strong>g<br />

def<strong>in</strong>ed by<br />

which <strong>in</strong>duces a pair<strong>in</strong>g<br />

K((t))* K((t))* K*<br />

(f,g) --~ (--1) ~ ~176176 '<br />

FxF---* K*.<br />

Now we get the commutative diagram<br />

0 ~ Hr(K *) ~ Hr(F) ~ H*(Z) ----* 0<br />

; i l<br />

0 ~ H2-*(Z A) ---* H2-~(F) ^ ~ H2-~(t(A) ~ 0<br />

and by the five lemma, together with Tate's theorem,<br />

the middle arrow is an isomorphism. Hence<br />

by the cup product.<br />

H~(F) is dual to H2-T(F)<br />

215<br />

we see that


[ArT 67]<br />

[CaE 56]<br />

[Gr 59]<br />

[Ho 50a]<br />

[Ho 50b]<br />

[HoN 52]<br />

[HoS 53]<br />

[Ka 55a]<br />

lEa 555]<br />

[Ka 63]<br />

Bibliography<br />

E. ARTIN and J. TATE, Class Field Theory, Benjam<strong>in</strong><br />

1967; Addison Wesley, 1991<br />

H. CARTAN and S. EILENBERG, Homological Algebra,<br />

Pr<strong>in</strong>ceton Univ. Press 1956<br />

A. GROTHENDIECK, Sur quelques po<strong>in</strong>ts d'alg~bre ho-<br />

mologique, Tohoku Math. Y. 9 (1957) pp. 119-221<br />

G. HOCHSCHILD, Local class field thoery, Ann.Math. 51<br />

No. 2 (1950) pp. 331-347<br />

G. HOCHSCHILD, Note on Art<strong>in</strong>'s reciprocity law, Ann.<br />

Math. 52 No. 3 (1950) pp. 694-701<br />

G. HOCHSCHILD and T. NAKAYAMA, <strong>Cohomology</strong> <strong>in</strong><br />

class field theory, Ann.Math. 55 No. 2 (1952) pp. 348-366<br />

G. HOCHSCHILD and J.-P. SERRE, <strong>Cohomology</strong> <strong>of</strong> group<br />

extensions, Trans. AMS 74 (1953) pp. 110-134<br />

Y. KAWADA, Class formations, Duke Math. J. 22 (1955)<br />

pp. 165-178<br />

Y. KAWADA, Class formations III, Y. Math. Soc. Japan 7<br />

(1955) pp. 453-490<br />

Y. KAWADA, <strong>Cohomology</strong> <strong>of</strong> group extensions, J. Fac.<br />

Sci. Univ. Tokyo 9 (1963) pp. 417-431


218<br />

[Ka 69]<br />

[KaS 56]<br />

[KaT 55]<br />

[La 57]<br />

[La 59]<br />

[La 66]<br />

[La 71/93]<br />

[Mi S6]<br />

[Na 36]<br />

[Na 43]<br />

[Na 41]<br />

[Na 52]<br />

[Na 53]<br />

[Se 73/94]<br />

[Sh 46]<br />

Y. KAWADA, Class formations, Proc. Syrup. Pure Math.<br />

2O AMS, 1969<br />

Y. KAWADA and I. SATAKE, Class formations II, Y. Fac.<br />

Sci. Univ. Tokyo 7 (1956) pp. 353-389<br />

Y. KAWADA and J. TATE, On the Galois cohomology <strong>of</strong><br />

unramified extensions <strong>of</strong> function fields <strong>in</strong> one variable, Am.<br />

J. Math. 77 No. 2 (1955)pp. 197-217<br />

S. LANG, Divisors and endomorphisms on abelian varieties,<br />

Amer. Y. Math. 80 No. 3 (1958) pp. 761-777<br />

S. LANG, AbeIian Varieties, Interscience, 1959; Spr<strong>in</strong>ger<br />

Verlag, 1983<br />

S. LANG, Rapport sur la cohomologie des groupes, Ben-<br />

jam<strong>in</strong> 1966<br />

S. LANG, Algebra, Addison-Wesley 1971, 3rd edn. 1993<br />

J. MILNE, Arithmetic Duality Theorems, Academic Press,<br />

Boston, 1986<br />

T. NAKAYAMA, Uber die Beziehungen zwischen den Fak-<br />

torensystemen und der Normklassengruppe e<strong>in</strong>es galoiss-<br />

chen Erweiterungskhrpers, Math. Ann. 112 (1936) pp.<br />

85-91<br />

T. NAKAYAMA, A theorem on the norm group <strong>of</strong> a f<strong>in</strong>ite<br />

extension field, Yap. J. Math. 18 (1943) pp. 877-885<br />

T. NAKAYAMA, Factor system approach ot the isomor-<br />

phism and reciprocity theorems, Y. Math. Soc. Japan 3<br />

No. 1 (1941) pp. 52-58<br />

T. NAKAYAMA, Idele class factor sets and class field the-<br />

ory, Ann. Math. 55 No. 1 (1952) pp. 73-84<br />

T. NAKAYAMA, Note on 3-factor sets, Kodai Math. Rep.<br />

3 (1949) pp. 11-14<br />

J.-P. SERRE, Cohomologie Galoisienne, Benjam<strong>in</strong> 1973,<br />

Fifth edition, Lecture Notes <strong>in</strong> Mathematics No. 5, Spr<strong>in</strong>ger<br />

Verlag 1994<br />

I. SHAFAREVICH, On Galois groups <strong>of</strong> p-adic fields, Dokl.<br />

Akad. Nauk SSSR 53 No. 1 (1946) pp. 15-16 (see also<br />

Collected Papers, Spr<strong>in</strong>ger Verlag 1989, p. 5)


219<br />

[Ta 52] J. TATE, The higher dimensional cohomology groups <strong>of</strong><br />

class field theory, Ann. Math. 56 No. 2 (1952) pp. 294-27<br />

[Ta 62] J. TATE, Duality theorems <strong>in</strong> Galois cohomology over num-<br />

ber fields, Proc. Int. Congress Math. Stockholm (1962) pp.<br />

288-295<br />

[Ta 66] J. TATE, The cohomology groups <strong>of</strong> tori <strong>in</strong> f<strong>in</strong>ite Galois<br />

extensions <strong>of</strong> number fields, Nagoya Math. Y. 27 (1966)<br />

pp. 709-719<br />

[We 51] A. WEIL, Sur la th6orie du corps de classe, Y. Math. Soc.<br />

Japan 3 (1951) pp. 1-35<br />

Complementary References<br />

A. ADEM and R.J. MILGRAM, <strong>Cohomology</strong> <strong>of</strong> F<strong>in</strong>ite Group~,<br />

Spr<strong>in</strong>ger-Verlag 1994<br />

K. BROWN, <strong>Cohomology</strong> <strong>of</strong> <strong>Groups</strong>, Spr<strong>in</strong>ger-Verlag 1982<br />

S. LANG, Algebraic Number Theory, Addison-Wesley 1970; Spr<strong>in</strong>ger-<br />

Verlag 1986, 2nd edn. 1994<br />

S. MAC LANE, Homology, Spr<strong>in</strong>ger-Verlag 1963, 4th pr<strong>in</strong>t<strong>in</strong>g 1995


Table <strong>of</strong> Notation<br />

Ap~ : Elements <strong>of</strong> A annihilated by a power <strong>of</strong> p<br />

A~, : If ~ is a homomorphism, kernel <strong>of</strong> ~0 <strong>in</strong> A<br />

.A: Ham(A, Q/Z)<br />

A a : Elements <strong>of</strong> A fixed by G<br />

Am : Kernel <strong>of</strong> the homomorphism m A :: A --* A such that a ~ rna<br />

cd : Cohomological dimension<br />

Fv: Z/pZ<br />

G: Character group, Ham(G, Q/Z)<br />

xa : Natural homomorphism <strong>of</strong> A G onto H~ A) or H~ A)<br />

n


222<br />

MG(A) : Functions (sometimes cont<strong>in</strong>uous) from G <strong>in</strong>to A<br />

Ma : Z[G] | A<br />

M s : Induced functions<br />

Mod(G) : Abelian category <strong>of</strong> G-modules<br />

Mod(Z) : Abelian category <strong>of</strong> abelian groups<br />

scd: Strict cohomological dimension<br />

SG : The relative trace, from a subgroup U <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex, to G<br />

Sa : The trace, for a f<strong>in</strong>ite group G<br />

Tr : Transfer <strong>of</strong> group theory<br />

tr : Transfer <strong>of</strong> cohomology<br />

Z[G] : Group r<strong>in</strong>g


Index<br />

Abutment <strong>of</strong> spectral sequence 117<br />

Admissible subgroup 177<br />

Augmentation 10, 27<br />

Augmented cupp<strong>in</strong>g 109, 198<br />

Bil<strong>in</strong>ear map <strong>of</strong> complexes 84<br />

Brauer group 167, 202, 209<br />

Category <strong>of</strong> modules 10<br />

Characters 28<br />

Class formation 166<br />

Class module 71<br />

Coeras<strong>in</strong>g functor 5<br />

C<strong>of</strong>unctor 4<br />

Cohomological cup funetor 76<br />

Cohomological dimension 138<br />

Cohomological period 96<br />

<strong>Cohomology</strong> r<strong>in</strong>g 89<br />

Complete resolution 23<br />

Conjugation 41,174<br />

Consistency 173<br />

Cup functor 76


224<br />

Cup product 75<br />

Cyclic groups 32<br />

Deflation, def 164<br />

Delta-functor 3<br />

Double cosets 58<br />

Duality theorems 93, 190, 192, 199<br />

Edge isomorphisms 118<br />

Equivalent extensions 159<br />

Erasable 4<br />

Eras<strong>in</strong>g functor 4, 15, 134<br />

Extension <strong>of</strong> groups 156<br />

Extreme isomorphisms 118<br />

Factor extension 163<br />

Factor sets 28<br />

Filtered object 116<br />

Filtration 116<br />

Fundamental class 71,167<br />

G-module 10<br />

G-morphism 11<br />

G-regular 17<br />

Galm(G) 127<br />

Galmp(G) 138<br />

Galmtor(G) 138<br />

Galois group 151,195<br />

Galois module 127<br />

Galois type 123<br />

Grab 11<br />

Herbrand lemma 35<br />

Herbrand quotient 35<br />

Hochschild-Serre spectral sequence 118


HomG(A, B) 11<br />

Homogeneous standard complex 27<br />

Idele 210<br />

Idele classes 211<br />

Induced representation 52, 134<br />

Inflation <strong>in</strong>f~/c' 40<br />

Invariant <strong>in</strong>vc 167<br />

Lift<strong>in</strong>g morphism 38<br />

Limitation theoreem 176<br />

Local component 55<br />

Maximal generator 95<br />

Maximal p-quotient 149<br />

Ma(A) 13, 19<br />

Mod(G) I0<br />

Mod(R) lo<br />

MS(B) 52<br />

Morphism <strong>of</strong> pairs 38<br />

Multil<strong>in</strong>ear category 73<br />

Nakayama maps 101<br />

Periodicity 95<br />

p-extensive group 144<br />

p-group 50, 126<br />

Positive spectral sequence 118<br />

Pr<strong>of</strong><strong>in</strong>ite group 124, 147<br />

Projective 17<br />

Reciprocity law 198<br />

Reciprocity mapp<strong>in</strong>g 173<br />

Regular 17<br />

Restriction res~ 39<br />

Semilocal 71<br />

225


226<br />

Shafarevich-Weil theorem 177<br />

Spectral functor 117<br />

Splitt<strong>in</strong>g functor 5<br />

Splitt<strong>in</strong>g module 70<br />

Standard complex 26, 27<br />

Strict cohomological dimension 138, 193<br />

Supernatural number 125<br />

Sylow group 50, 126, 137<br />

Tate pair<strong>in</strong>g 195<br />

Tare product 109<br />

Tate theorems 23, 70, 98<br />

Tensor product 21<br />

Topological class formation 185<br />

Topological Galois module 185<br />

Trace 12, 15<br />

Transfer <strong>of</strong> cohomology tra 43<br />

Transfer <strong>of</strong> group theory Tra 48, 160, 174<br />

Transgression tg 120<br />

Translation 46, 174<br />

Triplet theorem 68, 88<br />

Triplet theorem for cup products 88<br />

Tw<strong>in</strong> theorem 65<br />

Uniqueness theorems 5, 6<br />

Unramified Brauer group 204<br />

Weil group 179, 185

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!