06.12.2012 Views

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The two forces Fv <strong>and</strong> Fs, which are the forces acting <strong>on</strong> the<br />

sprung <strong>and</strong> unsprung mass respectively can be found through<br />

inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1. The dynamic equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the system<br />

become:<br />

= −K<br />

S ( z − y)<br />

− BS<br />

( z − y)<br />

− M g<br />

(3)<br />

= K ( z − y)<br />

+ B ( z − y)<br />

− K ( y − x)<br />

− B ( y − x)<br />

− M g (4)<br />

MV z<br />

V<br />

M S y S<br />

S<br />

T<br />

T<br />

S<br />

C. Wheel Hop<br />

A very real phenomen<strong>on</strong> is that <str<strong>on</strong>g>of</str<strong>on</strong>g> the tire losing c<strong>on</strong>tact<br />

with the road surface, also known as “wheel hop”. This<br />

phenomen<strong>on</strong> needs to be taken into account as it could happen<br />

during the simulati<strong>on</strong>s that the tire looses c<strong>on</strong>tact with the<br />

road due to either fast changing road c<strong>on</strong>diti<strong>on</strong>s or the<br />

instability <str<strong>on</strong>g>of</str<strong>on</strong>g> the suspensi<strong>on</strong> system.<br />

The last point <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact between the tire <strong>and</strong> the road surface<br />

occurs when the unsprung mass <strong>and</strong> the road surface is<br />

equally displaced from their respective origins i.e. y-x=0. The<br />

force due to the tire spring <strong>and</strong> damper are <strong>on</strong>ly exerted when<br />

the wheel is in c<strong>on</strong>tact with the road surface. Incorporating<br />

wheel hop into the dynamic equati<strong>on</strong>s, (4) becomes:<br />

= K S ( z − y)<br />

+ BS<br />

( z − y)<br />

− KT<br />

( y − x)<br />

− BS<br />

( y − x)<br />

− M g (5)<br />

if ( y − x)<br />

≤ 0<br />

= K S ( z − y)<br />

+ BS<br />

( z − y)<br />

− M g<br />

(6)<br />

if ( y − x)<br />

≥ 0<br />

M S y<br />

S<br />

M S y<br />

S<br />

The wheel hop phenomen<strong>on</strong> adds a n<strong>on</strong>-linearity to the<br />

system. It has been decided that it can be neglected during the<br />

frequency analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the system, but not for the simulati<strong>on</strong>s.<br />

It will have little or no effect <strong>on</strong> the frequency resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

system. It adds complexity to the analysis with little increase<br />

in the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the results.<br />

D. Vehicle Parameters<br />

Two vehicles are compared in the study. One is a<br />

st<strong>and</strong>ard vehicle <strong>and</strong> the other a vehicle with a hub motor<br />

place in the rear wheels. The same total mass i.e. sprung <strong>and</strong><br />

unsprung mass combined, is used for both vehicles. A total<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 1500 kg was chosen. This is the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a fully laden<br />

vehicle (vehicle mass, passengers <strong>and</strong> payload). All c<strong>on</strong>stants<br />

used, such as damping <strong>and</strong> spring coefficients, are kept the<br />

same for both vehicles. Table I gives a list <str<strong>on</strong>g>of</str<strong>on</strong>g> all the c<strong>on</strong>stants<br />

used.<br />

TABLE I<br />

VEHICLE PARAMETERS<br />

St<strong>and</strong>ard Vehicle <str<strong>on</strong>g>Hub</str<strong>on</strong>g> Driven Vehicle<br />

Total Model Total Model<br />

Total <str<strong>on</strong>g>Mass</str<strong>on</strong>g> (kg) 1500 375 1500 375<br />

Sprung mass (kg) 1340 335 1100 275<br />

Unsprung mass (kg) 160 40 400 100<br />

Ks (N/m) 36 000 36 000 36 000 36 000<br />

Bs (Ns/m) 3000 3000 3000 3000<br />

Kt (N/m) 110 000 110 000 110 000 110 000<br />

Bt (Ns/m) 200 200 200 200<br />

The st<strong>and</strong>ard vehicle will serve as the c<strong>on</strong>trol for the<br />

investigati<strong>on</strong> <strong>and</strong> the hub driven vehicle as the experiment. As<br />

the simulati<strong>on</strong> uses the quarter vehicle suspensi<strong>on</strong> model, all<br />

masses are a quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> the real values.<br />

III. FREQUENCY ANALYSIS<br />

A. Bode-plot Analysis<br />

It is important to verify that the suspensi<strong>on</strong> system <strong>and</strong><br />

the vehicle are, through system frequency resp<strong>on</strong>se analysis,<br />

stabile under changing road surface c<strong>on</strong>diti<strong>on</strong>s. The simplest<br />

method to investigate the frequency resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the system is<br />

through a Bode-plot analysis. This can easily be d<strong>on</strong>e with the<br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware like MatLab.<br />

The transfer functi<strong>on</strong> is required to obtain the Bode-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

system. The transfer functi<strong>on</strong> can be mathematically derived<br />

from the dynamic equati<strong>on</strong>s or extracted from the linear model<br />

using MatLab. From MatLab the transfer functi<strong>on</strong> for the<br />

st<strong>and</strong>ard vehicle system is given as<br />

( s)<br />

G ST<br />

3<br />

2<br />

8.<br />

527e<br />

−14s<br />

+ 4.<br />

093e<br />

−12s<br />

+ 2.<br />

463e4s<br />

+ 2.<br />

955e5<br />

= (7)<br />

4<br />

3 2<br />

s + 88.<br />

96s<br />

+ 3802s<br />

+ 2.<br />

516e4s<br />

+ 2.<br />

955e5<br />

<strong>and</strong> the hub driven vehicle system as<br />

( s)<br />

G HD<br />

3<br />

6.<br />

395e<br />

−14s<br />

+ 3.<br />

638e<br />

−12s<br />

+ 1.<br />

2e4s<br />

+ 1.<br />

44e5<br />

= (8)<br />

4<br />

3 2<br />

s + 42.<br />

91s<br />

+ 1613s<br />

+ 1.<br />

226e4s<br />

+ 1.<br />

44e5<br />

The transfer functi<strong>on</strong> can give an indicati<strong>on</strong> <strong>on</strong> the stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the system. Both transfer functi<strong>on</strong>s have higher order poles<br />

than zeros. It can be seen that the sec<strong>on</strong>d <strong>and</strong> third order zeros<br />

are small in comparis<strong>on</strong> with the rest. These are good<br />

indicators that a system is stable. The Bode-plot will give an<br />

even better indicati<strong>on</strong> <strong>on</strong> the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the system.<br />

Fig. 2 Bode-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ard <strong>and</strong> hub driven vehicle.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!