06.12.2012 Views

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Frequency (Hz)<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0 100 200 300 400 500 600 700<br />

St<strong>and</strong>ard<br />

<str<strong>on</strong>g>Hub</str<strong>on</strong>g>-driven<br />

Payload (kg)<br />

Fig. 3 Dominant natural frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ard <strong>and</strong> hub driven vehicles.<br />

VI. SIMULATION<br />

A. Simulati<strong>on</strong> Model<br />

The dynamic equati<strong>on</strong>s are implemented as a block<br />

diagram in MatLab /Simulink. This was d<strong>on</strong>e using st<strong>and</strong>ard<br />

Simulink blocks. All c<strong>on</strong>stants are imported into the model<br />

from a pre-created M-file. Fig. 4 gives the Simulink block<br />

diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. It can be seen that the wheel hop<br />

phenomen<strong>on</strong> was included in the model.<br />

Fig. 4 Simulink model <str<strong>on</strong>g>of</str<strong>on</strong>g> mass-suspensi<strong>on</strong> system<br />

B. Equilibrium Points<br />

The simulati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4 takes static deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the suspensi<strong>on</strong> <strong>and</strong> tire into account. This is physically<br />

observed as suspensi<strong>on</strong> <strong>and</strong> tire sag. Both masses will thus<br />

have a negative displacement at equilibrium. Some models<br />

compensate for this by either adding pre-stress forces to the<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle or removing the weight from the model.<br />

As the investigati<strong>on</strong> is to determine what effect the changes in<br />

mass has <strong>on</strong> the system, no static deflecti<strong>on</strong> compensati<strong>on</strong><br />

should be d<strong>on</strong>e. With static deflecti<strong>on</strong> in mind, it is important<br />

to allow the simulati<strong>on</strong> to reach equilibrium before any road<br />

input is given.<br />

The static deflecti<strong>on</strong> points <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong> were verified by<br />

comparing them with that <str<strong>on</strong>g>of</str<strong>on</strong>g> an actual vehicle. This is also<br />

d<strong>on</strong>e to verify the suspensi<strong>on</strong> c<strong>on</strong>stants used. The actual<br />

vehicle used has a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 1100 kg. The simulati<strong>on</strong><br />

parameters were changed to match these values. The<br />

simulati<strong>on</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> the static deflecti<strong>on</strong> points compare well<br />

with that <str<strong>on</strong>g>of</str<strong>on</strong>g> the actual vehicle.<br />

B. Road Surface Input<br />

Three types <str<strong>on</strong>g>of</str<strong>on</strong>g> inputs are used to investigate the<br />

suspensi<strong>on</strong> system’s resp<strong>on</strong>se to changing road surface<br />

c<strong>on</strong>diti<strong>on</strong>. Again the hub driven vehicle is compared to a<br />

st<strong>and</strong>ard vehicle. The three road inputs used are a step input, a<br />

single bump <strong>and</strong> multiple or harm<strong>on</strong>ic bumps. This is d<strong>on</strong>e at<br />

different vehicle speeds namely 5 <strong>and</strong> 50 km/h. Simulati<strong>on</strong>s<br />

are d<strong>on</strong>e at other speeds, but at these speeds two enough<br />

informati<strong>on</strong> is obtained. The vehicle’s speed needs to be taken<br />

into account because <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that a faster vehicle has a<br />

shorter bump crossing time. The frequency comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

bump increases as the crossing time become shorter. Fig. 5<br />

shows the crossing time at the simulated speeds.<br />

Height (mm)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0<br />

4.61<br />

9.21<br />

13.8<br />

18.4<br />

23<br />

27.6<br />

32.2<br />

36.8<br />

41.4<br />

46.1<br />

50.7<br />

55.3<br />

59.9<br />

64.5<br />

Time (ms)<br />

Fig. 5 Bump crossing at 5 <strong>and</strong> 50 km/h<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00<br />

0.45<br />

0.91<br />

1.36<br />

1.82<br />

2.27<br />

2.72<br />

3.18<br />

3.63<br />

4.09<br />

4.54<br />

4.99<br />

5.45<br />

5.90<br />

6.36<br />

C. Drop Test<br />

The drop test is a st<strong>and</strong>ard test d<strong>on</strong>e <strong>on</strong> physical vehicles<br />

to measure suspensi<strong>on</strong> damping as well as oscillati<strong>on</strong><br />

frequencies. For simulati<strong>on</strong> purposes the drop test can be d<strong>on</strong>e<br />

using a step input to the system. The st<strong>and</strong>ard step height is<br />

0.08m [5]. In practical tests the vehicle is either be driven <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

a 0.08 m high ledge or dropped from a height <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.08m.<br />

From Fig. 6 it can be seen that the hub driven vehicle’s sprung<br />

mass displacement is less negative than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<strong>and</strong>ard<br />

vehicle. The suspensi<strong>on</strong> system exerts less force <strong>on</strong> the sprung<br />

mass due to the decreased weight. Less force means less<br />

suspensi<strong>on</strong> compressi<strong>on</strong>.<br />

Displacement (mm)<br />

st<strong>and</strong>ard hub driven<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

-140<br />

-160<br />

-180<br />

2.5 2.7 3.0 3.2 3.5 3.7 3.9 4.2 4.4 4.7 4.9<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

st<strong>and</strong>ard hub driven<br />

-60<br />

2.5 2.7 3.0 3.2 3.5 3.7 3.9 4.2 4.4 4.7 4.9<br />

Time (s)<br />

Fig. 6 Sprung <strong>and</strong> unsprung mass step resp<strong>on</strong>se<br />

No major differences were found from Fig. 6 in the<br />

displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<strong>and</strong>ard <strong>and</strong> hub driven vehicles’<br />

unsprung mass. The <strong>on</strong>ly occurrence worth noting is the peak<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the first oscillati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hub driven vehicle’s unsprung<br />

mass displacement. This peak could compress the tire to such<br />

an extent, especially low pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile tires, as to cause damage to<br />

the wheel rim.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!