06.12.2012 Views

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

Effect of Hub Motor Mass on Stability and Comfort ... - Protean Electric

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

surface. A more in-depth study is required to ascertain the full<br />

effect the added mass has <strong>on</strong> the h<strong>and</strong>ling <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle.<br />

F. Force Analysis<br />

St<strong>and</strong>ard vehicle wheels are rigid structures able to<br />

absorb high shock <strong>and</strong> vibrati<strong>on</strong> forces. By using hub motors a<br />

critical system is placed within the wheels <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle. It is<br />

important to determine the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the forces exerted <strong>on</strong><br />

the unsprung mass. If these forces are too high <strong>and</strong> are<br />

transferred through the motor, it could lead to quicker wearing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents or even damage to the motor. The forces are<br />

calculated for both single <strong>and</strong> multiple bump road inputs.<br />

Table III <strong>and</strong> IV gives the maximum forces for these cases.<br />

TABLE III<br />

MAXIMUM FORCE EXERTED ON UNSPRUNG MASS (SINGLE BUMP)<br />

Speed St<strong>and</strong>ard <str<strong>on</strong>g>Hub</str<strong>on</strong>g> Driven<br />

5 km/h 1215 N 1984 N<br />

50 km/h 4525 N 4800 N<br />

100 km/h 7475 N 7680 N<br />

TABLE III<br />

MAXIMUM FORCE EXERTED ON UNSPRUNG MASS (MULTI BUMP)<br />

Speed<br />

St<strong>and</strong>ard <str<strong>on</strong>g>Hub</str<strong>on</strong>g> driven<br />

Initial Mag. Freq. Initial Mag. Freq.<br />

5 km/h 1219N 1550N 15.3 Hz 1970N 1775 N 14.3 Hz<br />

50 km/h 4630N 3450N 166.7Hz 5880N 3460N 166.7Hz<br />

100 km/h 8860N 6250N 333.3Hz 8830N 6200N 333.3 Hz<br />

The unsprung mass receives an initial shock force when the<br />

tire hits the first <str<strong>on</strong>g>of</str<strong>on</strong>g> the bumps. This initial force has the same<br />

magnitude as for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a single bump. After the initial<br />

force, the unsprung mass experiences the vibrati<strong>on</strong>s caused by<br />

traveling across the series <str<strong>on</strong>g>of</str<strong>on</strong>g> bumps. Although the oscillati<strong>on</strong>s<br />

in displacement decrease with an increase in speed, it can be<br />

seen that the force increases with the increase in speed.<br />

At this stage it can not be decided whether the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

force analysis is within limits. The force exerted <strong>on</strong> the<br />

unsprung mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the hub driven vehicle is not remarkably<br />

higher than that experienced by the st<strong>and</strong>ard vehicle. The <strong>on</strong>ly<br />

way to determine whether or not these results are acceptable is<br />

to investigate the physical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the hub motor. Finite<br />

element strength analysis can determine if the wheel structure<br />

<strong>and</strong> motor can withst<strong>and</strong> the shock <strong>and</strong> vibrati<strong>on</strong> forces.<br />

VI. FUTURE WORK<br />

The work described in this paper is the first step in studying<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the added mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a hub motor <strong>on</strong> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a vehicle’s suspensi<strong>on</strong> system. As menti<strong>on</strong>ed in a previous<br />

secti<strong>on</strong>, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong>s <strong>on</strong> the structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the hub motor can not be found from the system simulati<strong>on</strong><br />

results. A full strength analysis is to be d<strong>on</strong>e through the use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite element s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.<br />

It is important to verify the simulati<strong>on</strong> results with the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

practical experiments. An experimental test setup has been<br />

devised where a vehicle is modified by adding mass to its<br />

wheels. This is d<strong>on</strong>e by attaching a weight to the axel <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

vehicle. This weight represents the added hub motor. The<br />

vehicle can be driven over different road surfaces at different<br />

speeds. The vehicle is still powered by an internal combusti<strong>on</strong><br />

engine. Measurement can be taken <strong>and</strong> even h<strong>and</strong>ling test can<br />

be d<strong>on</strong>e before any hub motor is attached. Fig. 11 shows the<br />

weight attached to the vehicle’s axel <strong>and</strong> the rim assembly.<br />

Fig. 11 Axel weight representing the hub motor mass.<br />

V. CONCLUSIONS<br />

The simulati<strong>on</strong> results show that the displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sprung <strong>and</strong> unsprung mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the hub driven vehicle does not<br />

differ much from that <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<strong>and</strong>ard vehicle. The vibrati<strong>on</strong>s<br />

experienced by the sprung mass <strong>and</strong> thus by the occupants <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the vehicle does not decrease the comfort <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle with<br />

the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hub motor.<br />

Natural frequency calculati<strong>on</strong>s show that the natural<br />

frequency for the hub driven vehicle fall within the acceptable<br />

frequency ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> driver comfort <strong>and</strong> safety. The hub driven<br />

vehicle shows increased variati<strong>on</strong> in natural frequency caused<br />

by payload variati<strong>on</strong>s. The study has shown that the<br />

suspensi<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> a st<strong>and</strong>ard vehicle can be used for a hub<br />

driven vehicle without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> comfort <strong>and</strong> safety. It is<br />

possible to improve the comfort <str<strong>on</strong>g>of</str<strong>on</strong>g> the vehicle by designing<br />

the suspensi<strong>on</strong> system to match the mass distributi<strong>on</strong>.<br />

It is the opini<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the authors that hub motors can be used<br />

successfully as propulsi<strong>on</strong> for electric or hybrid electric<br />

vehicles.<br />

REFERENCES<br />

[1] W.E. Misselhorn, “Verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hardware-in-loop as a valid testing<br />

method for suspensi<strong>on</strong> development,” Masters Degree dissertati<strong>on</strong>, 2005,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pretoria, South Africa.<br />

[2] R.Q. Riley, “Automobile ride, h<strong>and</strong>ling <strong>and</strong> suspensi<strong>on</strong> design with<br />

implicati<strong>on</strong>s for low mass vehicles,” Copyright 1999-2005, Robert Q.<br />

Riley Enterprises.<br />

[3] D.J. Inman, Engineering Vibrati<strong>on</strong>, 2 nd ed., Publisher, 2001, pp.243-358.<br />

[4] A. Kader, A. Dobos, <strong>and</strong> M. Cullinan, “Speed bump <strong>and</strong> automotive<br />

suspensi<strong>on</strong> analysis,” Linear Physics Laboratory Experiment 4, 2004.<br />

[5] “Certificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road friendly suspensi<strong>on</strong> systems,” Australian<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport <strong>and</strong> Regi<strong>on</strong>al Services, July 2004.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!