14.09.2015 Views

BUITEMS

Research Journal - buitems

Research Journal - buitems

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>BUITEMS</strong><br />

Quality & Excellence in Education<br />

Rational Design of Retaining Walls<br />

y<br />

x<br />

δ<br />

Δ<br />

Δ<br />

H<br />

В<br />

Fig.2.2. the current cross section of wall.<br />

2.1):<br />

table:<br />

2.3. Internal Forces<br />

Since, considered the plane bending, there are bending moment and shear force at sections of element (Fig.<br />

q L 2<br />

2<br />

M (x ) =<br />

6<br />

Q(x ) = q 2L<br />

2<br />

g =<br />

q 1<br />

q<br />

2<br />

, x<br />

x 2 [ 3 g (1 - g ) x]<br />

+ , (2.5)<br />

x[ 2 g + (1- g ) x ],<br />

x<br />

= , γ, x ˛[0;1], L – height of wall;<br />

L<br />

M(ξ); Q(ξ) – bending moment and shear force.<br />

2.4. Terms of Rationalization.<br />

The height of section of wall H(ξ) will be searched from condition [3]:<br />

1-n<br />

1+<br />

n<br />

s + s<br />

2 + mt<br />

2 = R +<br />

red<br />

, (2.7)<br />

2 2<br />

where the parameters ν and m correspond to different criteria, and limit states are defined by the following<br />

Table 2.1<br />

№ criterion ν m<br />

(2.6)<br />

1 Galileo-Rankine 0 4<br />

2 Saint-Venant m * 4<br />

3 Coulomb 1 4<br />

R bt<br />

4 Mohr D = Δ 4<br />

R<br />

b<br />

5 Mises-Genk 1 3<br />

*) m – Poisson's ratio<br />

Сonsidering (2.2) (2.3) (2.4) (2.5) (2.6), normal and shear stresses are represented by the following<br />

dependencies:<br />

6M(<br />

x)<br />

s =<br />

j 2<br />

,<br />

B H ( x )<br />

(2.8)<br />

3Q(<br />

x ) h<br />

t = , and B(x) = w H(x) = const .<br />

2a<br />

B j H(<br />

x )<br />

(2.9)<br />

In addition to five criteria, presented in Table 2.1, criterion introduced in [2] is considered:<br />

e(x) = , (2.10)<br />

e u<br />

where е(ξ) –- the yield value of the potential strain energy density per unit length;<br />

[<br />

cu tu<br />

] 2 )eshu<br />

e u<br />

= 0,5c 2 e<br />

( c e<br />

+ 1)e -( c e<br />

- 1)e + (1 - c , (2.11)<br />

е и – the ultimate value of the potential strai energy density per unit length,<br />

c 2e -e -e<br />

e<br />

e - e<br />

2 1 3<br />

= - Lode-Nadai parameter,<br />

1<br />

3<br />

e<br />

110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!