24.09.2015 Views

Minimum Tillage Systems and environmenmtal aspects

Conventional tillage - Land-Impulse

Conventional tillage - Land-Impulse

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Minimum</strong> <strong>Tillage</strong> <strong>Systems</strong><br />

<strong>and</strong> <strong>environmenmtal</strong> <strong>aspects</strong><br />

Rosner,J. <strong>and</strong> E. Zwatz - Walter: Office of the Lower Austrian Provincial Government,<br />

Frauentorgasse 72, 3430 Tulln - Austria<br />

Klik,A., G. GTrümper <strong>and</strong> S. Strohmaeier: University of Agricultural Science, Department of<br />

Hydraulics <strong>and</strong> Rural Water Management, Muthgasse 18, 1190 Wien - Austria


Interrillerosion<br />

Perched water<br />

table<br />

in the depression


Tullnerfeld – Gollarn 2009


Direct drilling erosion control


SOLUTION <br />

Direct drilling without disc harrow in front of seeder<br />

No till drill into straw of winter wheat<br />

Yellow mustard + California bluebell – Phacelia as cover crops


10 th August 2010 Mr.Zaussinger- NoTill farmer for 11 years


Conventional tillage - neighbour<br />

29th August 2011 NoTill farm Zaussinger Lower Austria<br />

Lineseed + yellow mustard + oil radish + vetchling


Flowering vetchling


NoTill<br />

demonstration field<br />

Hollabrunn<br />

Lower Austroa<br />

Pioneer crop: : 2009 corn – disc harrow → Winterbarley - Mulchseed<br />

with Kuhn Speedliner September 2009<br />

Cover crop seeding July 29 th 2010 NoTill


Cover crops 2010 seed time 29 th July - NoTill


Cover crops 27 th September 2010 seed time 29th July


Nodule bacteria


70 t organic matter per ha<br />

November 2010<br />

27. September 2010


Corn planting<br />

April 2011<br />

Organic<br />

matter<br />

winds<br />

around<br />

the rotary<br />

clod<br />

breakers


Complete corn emergence


29th August 2011


Conventional tillage: same variety, same plant protection <strong>and</strong><br />

fertilizers<br />

shorter growing period


NoTill corn, drilled with Cross Slot


NoTill sugarbeet Lower Austria 2007


NoTill sugar beet 30 th August 2011


NoTill pumpkins


Per ha in the soil:<br />

25 t flora<br />

5 t fauna<br />

<br />

Corresponding<br />

6 livestock units


Johann Peck Andau<br />

NoTill


Cionventional<br />

tillage with plow<br />

NoTill


International tendencies in<br />

<strong>Tillage</strong><br />

•1989.............. 10 Mio ha No Till<br />

•2001............ 65 Mio. ha No Till<br />

•2002............ 68 Mio. ha No Till<br />

•2004............ 72 Mio. ha No Till<br />

•2006………. 90 Mio. ha No Till<br />

•2012……….>117 Mio. ha No Till<br />

•Countries:<br />

USA (25 Mio. ha), Canada (12 Mio. ha), Brasil,<br />

Argentina – Latin America > 60 Mio. ha,<br />

Australia (> 10 Mio. ha)<br />

More than 98 % of the No Till l<strong>and</strong> in these<br />

countries


Reasons for No Till<br />

•Lowering of production cost<br />

•Fewer passes – less work time less soil<br />

compaction<br />

•Increased productivity – cultivation of larger<br />

area possible<br />

•Reduction of fuel consumption<br />

( 250 l < 80 l/ha )<br />

•Lower machine use<br />

•Prevention of wind – water – tillage erosion<br />

•Increased humus content<br />

•Improved water retention<br />

•Better yield<br />

•Lower carbon dioxide release from the soil<br />

climate – <strong>and</strong> soil alliances


Field demonstration Lower Austria August 4 th 2009<br />

500 participants


Field demonstration Hollabrunn 2010


Field demonstration Seitenstetten<br />

August 17th 2011<br />

John Deere 750


Self made seed drill


NoTill Soybean in cornstraw Argentina 2010


NoTill corn<br />

Argentina 2010


occurrence<br />

F. Graminearum 30%<br />

F. Avenaceum 14%<br />

F. Poa 12%<br />

F. Tricinctum 2%<br />

F. Sporotrichoides < 1%<br />

F.Subglutinans 22%<br />

F. Proliferatum 12%<br />

F. Equiseti 1%<br />

Dry Rot<br />

Fusarium Sp.<br />

Conidiospores<br />

spread by<br />

raindrops <strong>and</strong><br />

wind<br />

Reproduction<br />

without<br />

symptoms<br />

Ascosores<br />

windspread<br />

Stubbles corn with<br />

Perithecies


volunteer barley Risk of barley yellow dwarf virus


Cover crop roller developed <strong>and</strong> constructed in Lower<br />

Austria (Hahnekamp, Rosner)<br />

instead of shredding lower fuel consumption <strong>and</strong> more capacity<br />

Roller to squeeze cover crops in fall → reduction of water<br />

consumption


Soil erosion measurement sites Austria<br />

Pyhra<br />

N = 883mm, T = 8,6°C<br />

Pixendorf<br />

N = 768mm, T = 9,5°C<br />

N = 686mm, T = 8,1°


Sample divider<br />

Sedimentcollector<br />

3 % sampled – divided by tubes


Losses in differnet tillage practise<br />

1994 - 2011<br />

Klik et.al<br />

University of Agricultural Science Vienna<br />

Conventional<br />

<strong>Tillage</strong> mulchseed Direct drilling<br />

Soil loss t/ha 9.4 2.3 1.2<br />

reduction 75% 87%<br />

Corg - loss kg/ha 100.5 32.7 17.1<br />

reduction 67% 82%<br />

N - loss kg/ha 14.0 6.9 3.8<br />

reduction 51% 73%<br />

P - loss kg/ha 7.0 1.9 0.9<br />

reduction 73% 87%<br />

runoff in mm 25.3 21.9 18.0<br />

Herbicide loss<br />

% sprayed 2.20% 1.01% 0.6%<br />

reduction 55% 74%<br />

Herbicide loss<br />

im runoff 1,73% 0,87% 0,17%<br />

reduction 50% 90%<br />

Herbicide loss<br />

In sediment 3.09% 1.16% 1.99%<br />

reduction 62% 36%


Soil Loss water Erosion 1994 - 2011<br />

1,1<br />

Direct drillng - No<strong>Tillage</strong><br />

2,4<br />

Pixendorf(Tulln)<br />

Mistelbach<br />

<strong>Minimum</strong> tillage -<br />

Mulchseed<br />

3,5<br />

3,8<br />

14,3<br />

Conventional<br />

26<br />

0 10 20 30


Carbon Losses kg/ha/Year<br />

14<br />

Direct drillng - No<strong>Tillage</strong><br />

Direct seeding<br />

33<br />

18<br />

Pixendorf(Tulln)<br />

Mistelbach<br />

49<br />

Mulchseed<br />

<strong>Minimum</strong> tillage - Mulchseed<br />

49<br />

Conventional<br />

Seed<br />

132<br />

100,5<br />

Conventional<br />

0 20 40 60 291 80 100<br />

Organic Carbon Losst Corg kg/ha/year<br />

0 50 100 150 200 250 300


Runnof mm 2007<br />

Abfluss mm Tulln - Pixendorf 2007<br />

Kultur Körnermais<br />

erosion trial Tullnerfeld<br />

Directseedingt<br />

5<br />

runnoff mm 2007<br />

Mulchseest<br />

47<br />

conventional<br />

109<br />

0 20 40 60 80 100 120<br />

runnoff mm pro ha


unnoff mm/year<br />

26<br />

Direct drillng - No<strong>Tillage</strong><br />

6<br />

Pixendorf(Tulln) 2011 corn<br />

Mistelbach 2010 corn<br />

29<br />

<strong>Minimum</strong> tillage - Mulchseed<br />

19<br />

58<br />

Conventional<br />

19<br />

0 20 40 60


•Worldwide loss of 10 million ha arable<br />

l<strong>and</strong> by soil erosion<br />

•0.1 – 1 mm erosion per year<br />

tolerable……15 t/ha/year…..0.01 – 40<br />

mm in practice occure<br />

•Soil regeneration in Central Europe<br />

1t/ha/year<br />

•In Western Germany 20 – 50 mm soil<br />

layer eroded in the last 50 years yield<br />

reduction 10 – 20 %<br />

•World online January 24th 2011:<br />

millenium tool plow to the scrap metal


Yield in relative % 1994 – 2011 Mistelbach-<br />

Pyhra(St.Pölten)-Pixendorf(Tulln)<br />

Rosner, Zwatz, Bartmann, Spieß<br />

<strong>Tillage</strong> method/ Yield kg<br />

per ha<br />

Mistelbach Pyhra Pixendorf<br />

Conventional<br />

Cultivator – plow<br />

No cover crop<br />

100 100 100<br />

Cultivator – Mulchseed –<br />

Cover Crop: yellow<br />

mustard, california<br />

bluebell, buckwheat, red<br />

clover, oil radish<br />

Cultivator – direct<br />

drilling<br />

Cover crop : 7 kg/ha<br />

California Bluebell, 3 kg/ha<br />

Yellow Mustard<br />

96 103 102<br />

90 111 105<br />

Cultivator – direct<br />

drilling<br />

89<br />

105<br />

96<br />

cover crop : 80 kg/ha<br />

winter rye<br />

Cultivator – direct<br />

drilling<br />

Cover crop :120 kg/ha<br />

summer barley<br />

97<br />

110<br />

112


CO2 – emission from soil respiration mesurement period 2007 - 2009<br />

(Trümper G. u. A.Klik)<br />

45<br />

40<br />

CO2-Freisetzung t/ha/Jahr<br />

t CO 2 /ha/a<br />

41,8<br />

Pixendorf<br />

TULLN<br />

37,3<br />

CT RT NT<br />

35<br />

32,5<br />

30<br />

30,6<br />

29,8<br />

27,9<br />

25<br />

24,8<br />

23,9<br />

24,9<br />

22,9<br />

24,1 23,8<br />

18,7<br />

21,6<br />

20<br />

17,5<br />

16,8<br />

18,6<br />

15<br />

14,7<br />

10<br />

5<br />

0<br />

2007 KM 2008 WW 2009 KM 2007 WiRaps 2008 WW 2009 SG<br />

2007 2008 2009<br />

Average Jahresmitteltemperatur temperature year (°C) 11,2 11,5 10,4<br />

Jahresniederschlag Annual rainfall (mm) 674,1 710,7 906,4


CO2-C-Freisetzung 2008<br />

(t ha -1 )<br />

CO2-C-Freisetzung 2007<br />

(t ha -1 )<br />

10<br />

8<br />

MW<br />

6<br />

4<br />

2<br />

0<br />

CT RT NT CT RT NT<br />

Pixendorf<br />

Tulln<br />

CO2 – C – respiration measurement period April – November<br />

2007 (up) <strong>and</strong> 2008 (down) with minimum – average – maximum<br />

value Tullnerfeld – Danube valley (Klik <strong>and</strong> Trümper)<br />

10<br />

8<br />

MW<br />

6<br />

4<br />

2<br />

0<br />

CT RT NT CT RT NT<br />

Pixendorf<br />

Tulln


Methane, lauging gas <strong>and</strong> Carbon doixide flux in<br />

closed chamber - non-steady-state through-flow<br />

chamber - June 9th 2008 Pixendorf (Klik et al.)<br />

150<br />

125<br />

115<br />

126<br />

140<br />

Biomass-C (mg 100 g -1 DM -1<br />

F CH4 ; F N2O (mg m -2 h -1 )<br />

F CO2 (g m -2 h -1 )<br />

1,0<br />

0,8<br />

0,74<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-0,015<br />

-0,024<br />

-0,022<br />

0,19<br />

0,17<br />

0,23<br />

0,43<br />

0,36<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-0,2<br />

Methane N 2 O nitrous oxide CO 2<br />

CT RT NT<br />

-0,2<br />

Biomass C mg/100g<br />

CT RT NT<br />

100<br />

92<br />

93<br />

91<br />

97<br />

75<br />

62<br />

59<br />

67 67<br />

62<br />

54<br />

74 72<br />

50<br />

25<br />

0<br />

Kirchberg Mistelbach Pixendorf Pyhra Tulln<br />

Microbial Biomass ( mg Biomass-C 100 g-1 dry matter-1 (DM) (Klik et al.)


Organic Carbon t/ha in soil 0 – 30 cm<br />

(Trümper G. u. A.Klik)<br />

Corg_0-30 cm (t ha -1 )<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

89,2 89,6<br />

CT RT NT<br />

74,5<br />

77,1<br />

66,3<br />

65,1 66,8<br />

60,4 62,8<br />

Pixendorf Tulln Kirchberg am Walde<br />

CT


% SAS<br />

Pixendorf – Danube valley<br />

Aggregatte stability<br />

30,00<br />

25,00<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

Conventional tillagell mulchseed NoTill<br />

Aggregate stability (SAS) Pixendorf - Tullnerfeld<br />

n = 9<br />

Better load carrying capacity of the soil<br />

less soil compaction with traffic, no<br />

plowpan better water infiltration<br />

during storm events…….


Results <strong>Tillage</strong> trials Lower Austria 1999 - 2010<br />

<strong>Tillage</strong> method Yield %<br />

conventional<br />

Net profit<br />

Conventional <strong>Tillage</strong><br />

Cultivator-Plow-<br />

Seedbedpreparation<br />

Reduced - Chisel Plow<br />

2 x<br />

<strong>Minimum</strong> <strong>Tillage</strong> (Disc<br />

Harrow 1x)<br />

100 100<br />

99 109<br />

98 113<br />

No Till NT 90 113<br />

no till<br />

90<br />

113<br />

minimum tillage<br />

98<br />

113<br />

net profit<br />

reduced tillage<br />

99<br />

109<br />

yield %<br />

conventional<br />

conventional tillage<br />

100<br />

100<br />

0 20 40 60 80 100 120


Tests of CO 2 emission by cultivation#<br />

Clay soil Tulln 2008<br />

CT RT NT<br />

Fuel consumption(l/ha) 57 28 6,2<br />

Working time(min/ha) 125,5 57 15<br />

CO 2 Emissionfactor 3,15:<br />

70,00<br />

60,00<br />

180,76 kg CO 2 /ha 89,36 kg CO 2 /ha 19,50 kg CO 2 /ha<br />

seeding(rotary cultivator+seed drill 3 m)<br />

CT und RT; NT:Väderstad 3 m)<br />

50,00<br />

40,00<br />

19,46<br />

Plow 4 plowshare, 1,52<br />

m)<br />

Disc harrow (3 m)<br />

30,00<br />

20,00<br />

32,19<br />

23,78<br />

10,00<br />

0,00<br />

5,74<br />

4,59<br />

6,19<br />

CT RT NT


fuel consumption <strong>and</strong> CO 2 -emission kg/ha 2008 - 2010<br />

140<br />

139<br />

120<br />

100<br />

fuel consumption<br />

carbon emission<br />

80<br />

60<br />

63<br />

44<br />

40<br />

20<br />

20<br />

22<br />

7<br />

0<br />

conventional<br />

cultivator -<br />

plow<br />

reduced tillage<br />

- cultivator -<br />

mulchseed<br />

No <strong>Tillage</strong> -<br />

direct seeding


Conclusion<br />

•Mulch –<strong>and</strong> direct –seeding systems are fully developed <strong>and</strong><br />

go well in practice.<br />

•The economical benefits must not ignore the nutrient –<br />

pesticide <strong>and</strong> soil movement (erosion).<br />

•Cereal – maize crop rotation needs a shallow mulch of crop<br />

residuals for a fast decomposition as a phytosanitary need<br />

(Fusarium Mycotoxines)<br />

•After harvest the growth of volunteer cereals has to be<br />

interrupted, they st<strong>and</strong> for a green bridge for plant diseases<br />

like barley yellow dwarf virus or Fusarium sp. <strong>and</strong> pests like<br />

aphids as a vector for the virus.<br />

•An immediately seeding of cover crops after harvest for a<br />

good development of the green manure.<br />

•Reduction of soil erosion is a requirement <strong>and</strong> possible<br />

•Reduction of CO 2 – emission is significant<br />

•Increase of microbial biomass<br />

•Increase of organic Carbon in the soil<br />

•A reduction of the costs is possible <strong>and</strong> necessary.<br />

•A prescription is not possible <strong>and</strong> depends from the crop<br />

rotation <strong>and</strong> natural situation.


“Es ist nicht die kräftigere Art die<br />

überlebt, auch nicht die<br />

intelligenteste, sondern die, die am<br />

schnellsten auf Änderungen<br />

reagiert”<br />

Charles Darwin<br />

It is not the strongest<br />

species which survives,<br />

also not the most<br />

intelligemt one, but that<br />

which reacts fastest to<br />

changes.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!