20.06.2016 Views

NTN - Cylindrical and Tapered Roller Bearings

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Engineering Section<br />

The<br />

These<br />

values<br />

thrust<br />

of X<br />

reactions<br />

<strong>and</strong> Y are<br />

are<br />

determined<br />

a critical<br />

using<br />

part<br />

Table<br />

of the<br />

2:<br />

Equivalent Radial Load equations for tapered roller<br />

bearings. TABLE 2<br />

Two Row Mounting - Identical Series<br />

R<br />

R A<br />

R B<br />

(F a<br />

) A<br />

F a<br />

The general AFBMA equation for the equivalent radial<br />

load<br />

Bearing<br />

e e<br />

is:<br />

F r F r<br />

Config.<br />

P = X F r<br />

+ Y YF a<br />

X Y (31)<br />

F a<br />

Single 1.00 0.00 0.40 Y<br />

where P = Equivalent radial load<br />

2<br />

Double 1.00 Y 1<br />

0.67 Y 2<br />

F r<br />

= Applied radial load<br />

Values for e, Y 1<br />

, <strong>and</strong> Y 2<br />

are listed in the tapered roller<br />

bearing dimension F a<br />

= Applied tables. thrust load<br />

In the calculation<br />

X = Radial<br />

of the<br />

load<br />

equivalent<br />

factor<br />

radial load for<br />

a tapered roller bearing, the algebraic sum of all<br />

external thrust Y = Thrust loads load <strong>and</strong> factor the thrust reactions of<br />

the bearings must be considered. All factors are<br />

automatically In the calculation included of the in equivalent the Equivalent radial Radial load Load for a<br />

formulas tapered bearing, shown in the Table algebraic 3 through sum of 5. all Note, external when thrust the<br />

calculated loads <strong>and</strong> the Equivalent thrust reactions Radial of Load the bearings is less than must the be<br />

applied considered. radial All load, factors the are radial automatically load alone included is used in the to<br />

estimate Equivalent the Radial bearing Load life. formulas shown in Table II. Note,<br />

when the calculated Equivalent Radial Load is less than<br />

the applied radial load, the radial load alone is used to<br />

estimate the bearing life.<br />

A<br />

Thrust<br />

Condition<br />

R<br />

Fa 0.<br />

6<br />

A<br />

Y<br />

Fa 0 6<br />

A<br />

Y<br />

R<br />

B<br />

Equivalent<br />

Radial Load<br />

P<br />

2 0.83 Y F<br />

A A a A<br />

A<br />

R<br />

P<br />

2 0.83 Y F<br />

B<br />

-<br />

A aA<br />

. R<br />

A A aA<br />

A<br />

TABLE 4<br />

R<br />

<br />

P 0.4R Y F<br />

P 0<br />

Two Row Mounting - Dissimilar Series<br />

B<br />

R A<br />

R B<br />

(F a<br />

) A<br />

TABLE II<br />

Equivalent EQUIVALENT Radial RADIAL Load LOAD Formulas FORMULAS<br />

SINGLE ROW MOUNTING<br />

Single Row Mounting<br />

A<br />

B<br />

TABLE 5<br />

0.47R<br />

KA<br />

0.5R<br />

Y<br />

A<br />

0.47R<br />

KA<br />

0.5R<br />

Y<br />

A<br />

A<br />

R A<br />

Thrust<br />

Condition<br />

Thrust<br />

Condition<br />

A<br />

0.47RB<br />

F<br />

<br />

A<br />

A<br />

A<br />

a A<br />

KB<br />

0.5R<br />

B<br />

F<br />

<br />

Y<br />

B<br />

a A<br />

0.47RB<br />

Fa<br />

<br />

KB<br />

0.5R<br />

B<br />

F<br />

<br />

Y<br />

B<br />

A<br />

a A<br />

(F a<br />

) A<br />

R B<br />

TABLE 3 Equivalent<br />

Radial<br />

Equivalent<br />

Load<br />

Radial Load<br />

00.50R . 47R<br />

B<br />

PA 0.<br />

40RA KY A<br />

Fa<br />

<br />

YK<br />

B<br />

0 . 5.<br />

R<br />

BB<br />

P 0.<br />

4 R<br />

<br />

Y<br />

F<br />

<br />

B<br />

PA B<br />

RB<br />

AA AA<br />

<br />

<br />

PB<br />

RB<br />

PA<br />

RA<br />

00.50R P<br />

47 B<br />

A<br />

<br />

B<br />

0R<br />

. 40 A RB KY B<br />

<br />

<br />

0 . 5<br />

PB 0.<br />

4 R<br />

BB<br />

Y<br />

BB<br />

<br />

<br />

<br />

Thrust<br />

Condition<br />

A<br />

R<br />

+ Fa 0.<br />

6<br />

A<br />

Y A<br />

Y B<br />

A<br />

Y<br />

Y<br />

A<br />

B<br />

PB<br />

-<br />

Y<br />

+ A<br />

Y<br />

B<br />

R<br />

<br />

F<br />

a 0 6<br />

PA 0.<br />

4R Y<br />

A Fa A<br />

A<br />

YA<br />

PB<br />

0<br />

<br />

(F a ) A<br />

<br />

<br />

<br />

a aAA<br />

<br />

Y<br />

BB<br />

<br />

. R <br />

A<br />

– (FF<br />

a ) A<br />

KY <br />

<br />

. R A <br />

AA–<br />

F<br />

a a<br />

<br />

AA<br />

<br />

Y<br />

AA<br />

<br />

. P<br />

Equivalent<br />

Radial Load<br />

Where: where<br />

R = Total radial load—lbs.<br />

R A<br />

= Radial load, brg. A—lbs.<br />

R B<br />

= Radial load, brg. B—lbs.<br />

(F a<br />

) A<br />

= External thrust on brg. A*—lbs.<br />

KY A = Factor Axial load K brg. factor A brg. A<br />

KY B = Factor Axial load K brg. factor B brg. B<br />

P A<br />

= Equivalent radial load, brg. A—lbs.<br />

P B<br />

= Equivalent radial load, brg. B—lbs.<br />

<br />

Y<br />

<br />

K K R 1.67 Y F<br />

B<br />

<br />

Y A a A<br />

K K R 1.67 Y F<br />

<br />

a A<br />

<br />

<br />

<br />

* When there are no external thrust loads F a<br />

= 0 in equations above.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!