12.12.2012 Views

Marc Raimondo - CMI

Marc Raimondo - CMI

Marc Raimondo - CMI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Marc</strong> <strong>Raimondo</strong><br />

Luminy 12/08 – p.1


<strong>Marc</strong> at A.N.U.<br />

John Dedman Mathematical Sciences<br />

Building [27]<br />

John Dedman Mathematical Sciences Building, JD<br />

This building<br />

houses:<br />

•<br />

•<br />

•<br />

•<br />

Luminy 12/08 – p.2


The Annals of Statistics<br />

2004, Vol. 32, No. 5, 1781–1804<br />

DOI 10.1214/009053604000000391<br />

© Institute of Mathematical Statistics, 2004<br />

PERIODIC BOXCAR DECONVOLUTION AND DIOPHANTINE<br />

APPROXIMATION<br />

BY IAIN M. JOHNSTONE 1 AND MARC RAIMONDO 2<br />

Stanford University and University of Sydney<br />

We consider the nonparametric estimation of a periodic function that is<br />

observed in additive Gaussian white noise after convolution with a “boxcar,”<br />

the indicator function of an interval. This is an idealized model for the<br />

problem of recovery of noisy signals and images observed with “motion<br />

blur.” If the length of the boxcar is rational, then certain frequencies are<br />

irretreviably lost in the periodic model. We consider the rate of convergence<br />

of estimators when the length of the boxcar is irrational, using classical<br />

results on approximation of irrationals by continued fractions. A basic<br />

question of interest is whether the minimax rate of convergence is slower<br />

Luminy 12/08 – p.3


� Jan - Jun, 1999<br />

� postdoc<br />

� ’the bicycle’<br />

� Aug, 2001<br />

� Jan - Feb 2002<br />

� Oct - Nov 2003<br />

<strong>Marc</strong>’s visits to Stanford<br />

Luminy 12/08 – p.4


Effect of Ageing on Morphologic and Clinical<br />

Predictors of Prostate Cancer Progression<br />

Thomas A. Stamey, MD,* <strong>Marc</strong> <strong>Raimondo</strong>, PhD, †<br />

Cheryl M. Yemoto, BS,* John E. McNeal, MD,* and<br />

Iain M. Johnstone, PhD †<br />

*Department of Urology School of Medicine, Stanford University,<br />

Stanford, California, U.S.A.<br />

† Department of Statistics, Stanford University,<br />

Stanford, California, U.S.A.<br />

© 2000, Blackwell Science, Inc. 1095-5100/00/$15.00/0<br />

The Prostate Journal, Volume 2, Number 3, 2000 157–162 157<br />

Luminy 12/08 – p.5


J. R. Statist. Soc. B (2004)<br />

66, Part 3, pp. 547–573<br />

Wavelet deconvolution in a periodic setting<br />

Iain M. Johnstone,<br />

Stanford University, USA<br />

Gérard Kerkyacharian,<br />

Centre National de la Recherche Scientifique and Université de Paris X, France<br />

Dominique Picard<br />

Centre National de la Recherche Scientifique and Université de Paris VII, France<br />

and <strong>Marc</strong> <strong>Raimondo</strong><br />

University of Sydney, Australia<br />

[Read before The Royal Statistical Society at a meeting organized by the Research Section on<br />

‘Statistical approaches to inverse problems’ on Wednesday, December 10th, 2003, Professor<br />

J. T. Kent in the Chair ]<br />

Luminy 12/08 – p.6


<strong>Marc</strong> <strong>Raimondo</strong> Memorial Session:<br />

–<br />

Null distributions for largest eigenvalues in<br />

multivariate analysis<br />

Iain Johnstone, Statistics, Stanford<br />

imj@stanford.edu<br />

Luminy, December 16, 2008<br />

Luminy 12/08 – p.7


Theme<br />

� Many problems of classical multivariate statistics involve<br />

eigenvalues x1 > x2 > ... > xp<br />

� Asymptotics in p ⇒ useful information, [even p small]<br />

� Illustrate for null distributions for x1<br />

Luminy 12/08 – p.8


Theme<br />

� Many problems of classical multivariate statistics involve<br />

eigenvalues x1 > x2 > ... > xp<br />

� Asymptotics in p ⇒ useful information, [even p small]<br />

� Illustrate for null distributions for x1<br />

Example: (multiple) Regression.<br />

y = X β + ǫ<br />

n×p n×q q×p n×p<br />

ǫ ∼ N(0,In ⊗ Ip).<br />

Tests of H0 : β = 0 use roots of det[A + xi(A + B)] = 0.<br />

A = SSH = ˆ β T X T X ˆ β “Hypothesis”<br />

B = SSE = y T (I − PX)y “Error”<br />

Luminy 12/08 – p.9


A ∼ Wp(n1,I)<br />

B ∼ Wp(n2,I)<br />

Double Wishart Setting<br />

Common feature: roots := (xi) p<br />

i=1<br />

Single Wishart<br />

� Principal Component analysis<br />

� Factor analysis<br />

� Multidimensional scaling<br />

2 independent Wisharts, p ≤ n1,n2<br />

“null hypothesis” setting<br />

det[x(A + B) − A] = 0<br />

of generalized eigenproblem:<br />

Double Wishart<br />

� Canonical correlation analysis<br />

� Multivariate Analysis of Variance<br />

(MANOVA)<br />

� Multivarate regression analysis<br />

� Discriminant analysis<br />

� Tests of equality of covariance matrices<br />

Luminy 12/08 – p.10


Joint density of eigenvalues<br />

Single Wishart: det[A − xiI] = 0.<br />

Double Wishart: det[A − xi(A + B)] = 0.<br />

In each case, (Fisher, Girshick, Hsu, Mood, Roy, (1939)):<br />

f(x1,...,xp) = c �<br />

w 1/2 (xi) �<br />

(xi−xj) x1 ≥ ... ≥ xp<br />

i<br />

i


I. Setting<br />

Outline<br />

1. Single & Double Wishart, examples<br />

II. Largest Eigenvalue: Limiting Law (H0)<br />

1. Gaussian<br />

2. Laguerre/Single W.<br />

3. Jacobi/Double W.<br />

III. Largest Eigenvalue: Concentration<br />

1. Single W.<br />

2. Double W.<br />

Luminy 12/08 – p.12


Symmetric Gaussian matrices<br />

A – symmetric N × N matrix drawn from (GOE)<br />

f(A) = c exp{− 1<br />

2 tr(AT A)}.<br />

[for GUE: complex Hermitian]. Largest eigenvalue:<br />

Centering and scaling constants:<br />

θN = λmax(A)<br />

µN = √ 2N, σN = 2 −1/2 N −1/6<br />

Tracy-Widom limit: TW (1994, 1996) For β = 1, 2, 4 (R, C, Q),<br />

θN − µN<br />

σN<br />

D<br />

⇒ Fβ.<br />

Luminy 12/08 – p.13


Tracy-Widom distributions (1994,96)<br />

-4 -2 0 2 4<br />

F2(s) = e − R ∞<br />

s (x−s)2 q(x)dx<br />

F1(s) 2 = F2(s)e − R ∞<br />

s q(x)dx .<br />

q ′′ = sq + 2q 3<br />

(Painlevé II)<br />

q(s) ∼ Ai(s) as s → ∞<br />

Right tail decay: 1 − Fβ(s) ≈ e−(2/3)s3/2 .<br />

Rate of convergence: First order N −1/3 , Choup (2006,07)<br />

“Second-order”: J + Ma (2008) For β = 1, 2, with µN = √ 2N+1,<br />

|P {λmax(A) ≤ µN + σNs} − Fβ(s)| ≤ CN −2/3 e −s/2 .<br />

Luminy 12/08 – p.14


f(x)<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Approximations at N = 2<br />

Density Plot: n =2<br />

simulated percentiles<br />

TW1<br />

empirical 6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

Probability Plot: n =2<br />

0<br />

−8 −6 −4 −2 0 2 4 −66 −4 −2 0 2 4 6<br />

x<br />

TW percentiles<br />

– Better approximation in right tail : location of turning point of<br />

Airy function<br />

Luminy 12/08 – p.15


f(x)<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Approximations at N = 10<br />

Density Plot: n =10<br />

simulated percentiles<br />

TW1<br />

empirical 6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

Probability Plot: n =10<br />

0<br />

−8 −6 −4 −2 0 2 4 −66 −4 −2 0 2 4 6<br />

x<br />

TW percentiles<br />

Luminy 12/08 – p.16


I. Setting<br />

Outline<br />

1. Single & Double Wishart, examples<br />

II. Largest Eigenvalue: Limiting Law (H0)<br />

1. Gaussian<br />

2. Laguerre/Single W.<br />

3. Jacobi/Double W.<br />

III. Largest Eigenvalue: Concentration<br />

1. Single W.<br />

2. Double W.<br />

Luminy 12/08 – p.17


Tracy Widom Limits<br />

Theorem For {real, complex}, {single, double } Wishart matrices,<br />

if n/p → γ, [or (n1/p,n2/p) → (γ1,γ2),] then<br />

P {n ˆ ℓ1 ≤ µnp + σnps|H0} → Fβ(s)<br />

– “universality” in RMT (Deift, 06 ICM)<br />

Single Wishart: β = 2 (Johansson, 00), β = 1 (J, 01)<br />

“Microarray case” (El Karoui, 03) β = 1, 2,<br />

n,p → ∞, n/p → 0, ∞.<br />

Non Gaussian: (Soshnikov, 02, 06; S. + Fyodorov, 06)<br />

� subGaussian: n − p = O(p 1/3 ) ⇒ TW limit<br />

� heavy tails (e.g. Cauchy) ⇒ Poisson process limit<br />

Luminy 12/08 – p.18


Second order accuracy<br />

For {real, complex}, {single, double } Wishart matrices, if<br />

n/p → γ, [or (n1/p,n2/p) → (γ1,γ2),] then<br />

|P {n ˆ ℓ1 ≤ µnp + σnps|H0} − Fβ(s)| ≤ Ce −cs p −2/3 .<br />

Single Wishart Complex: El Karoui (2006).<br />

Real: Ma (2008)<br />

µnp =<br />

σnp =<br />

��<br />

n−1 2 +<br />

��<br />

n−1 2 +<br />

�<br />

�<br />

p− 1<br />

2<br />

p− 1<br />

2<br />

� 2<br />

� � 1<br />

√n− 1<br />

2<br />

+ 1<br />

√ p− 1<br />

2<br />

� 1/3<br />

.<br />

Luminy 12/08 – p.19


Beyond the “Null Hypothesis”<br />

Classical RMT ensembles (e.g. Wp(n,I))<br />

↔ “null hypothesis”, symmetry, no structure.<br />

For Wp(n, Σ): For what conditions on Σ does<br />

Some answers:<br />

P { ˆ ℓ1 ≤ µnp(Σ) + σnp(Σ)s} → Fβ(s) ??<br />

� sufficiently many ℓk(Σ) accumulate near ℓ1(Σ) (C)<br />

El Karoui, 2007<br />

� small number of (not too!) isolated ℓi(Σ)<br />

Baik-Ben Arous-Peché, 2005, Baik-Silverstein 2006, Paul 2007<br />

Harding (2008, Economics Letters)<br />

Luminy 12/08 – p.20


I. Setting<br />

Outline<br />

1. Single & Double Wishart, examples<br />

II. Largest Eigenvalue: Limiting Law (H0)<br />

1. Gaussian<br />

2. Laguerre/Single W.<br />

3. Jacobi/Double W.<br />

III. Largest Eigenvalue: Concentration<br />

1. Single W.<br />

2. Double W.<br />

Luminy 12/08 – p.21


Roy’s Greatest Root Test: Package Output<br />

SAS: (From Gledhill et. al.: NOAA Fisheries Reef Fish Video Surveys.)<br />

Table 18. Multivariate statistics and F approximations for the CANDISC<br />

procedure ran with all mincount and habitat data.<br />

S=5 M=2 N=48.5<br />

Statistic Value F Value Num DF Den DF Pr > F<br />

Wilks' Lambda 0.58109196 1.15 50 454.87 0.2325<br />

Pillai's Trace 0.50115530 1.15 50 515 0.2342<br />

Hotelling-Lawley Trace 0.59036501 1.15 50 305.82 0.2355<br />

Roy's Greatest Root 0.26759820 2.76 10 103 0.0047<br />

NOTE: F Statistic for Roy's Greatest Root is an upper bound.<br />

R: (car, heplots packages, Fox et. al.)<br />

Multivariate Tests:<br />

Df test stat approx F num Df den Df Pr(>F)<br />

Pillai 5.0000 0.417938 1.845226 15.0000 171.0000 0.0320861 *<br />

Wilks 5.0000 0.623582 1.893613 15.0000 152.2322 0.0276949 *<br />

Hotelling-Lawley 5.0000 0.538651 1.927175 15.0000 161.0000 0.0239619 *<br />

Roy<br />

---<br />

5.0000 0.384649 4.384997 5.0000 57.0000 0.0019053 **<br />

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1<br />

Luminy 12/08 – p.22


The Tracy-Widom approximation<br />

Let W = logit(x1) = log(x1/(1 − x1)).<br />

Result: [IMJ] As p ∝ n1,n2 → ∞, (and with O(p −2/3 ) error):<br />

In other words:<br />

Percentiles fα:<br />

f.90 = 0.4501<br />

f.95 = 0.9793<br />

f.99 = 2.0234<br />

W − µp<br />

σp<br />

D<br />

⇒ W∞ ∼ F1.<br />

x1 ≈ eµ+σW∞<br />

. µ+σW∞ 1 + e<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

-4 -2 2 4<br />

Luminy 12/08 – p.23


Centering and Scaling Constants<br />

� set N = n1 + n2 − 1<br />

� define γ, φ from<br />

sin 2 (γ/2) = (p − 1<br />

2 )/N, sin2 (φ/2) = (n1 − 1<br />

2 )/N<br />

� Then µ and σ are given by<br />

�<br />

φ + γ<br />

�<br />

µp = 2 log tan , σ<br />

2<br />

3 p<br />

= 16<br />

N 2<br />

� (given a table of F1), straightforward to code:<br />

papptw, qapptw, rapptw.<br />

1<br />

sin 2 (φ + γ) sin φ sin γ .<br />

Luminy 12/08 – p.24


Accuracy of approximate α th percentile<br />

Approximate percentile using Tracy-Widom percentile fα:<br />

xα = x TW<br />

α (p,n1,n2) = e µp+fασp /(1 + e µp+fασp ).<br />

William Chen’s tables: (2003, 2004a, 2002, 2004b) ⇒ can compare<br />

� ’Exact’ xα(p,n1,n2) with<br />

� T-W approx x TW<br />

α (p,n1,n2).<br />

Relative error: r = (x TW<br />

α /xα) − 1.<br />

Tracy-Widom based on p → ∞, but try p = 2 as n1,n2 vary<br />

Luminy 12/08 – p.25


θ α<br />

log 10 n<br />

1<br />

0.5<br />

TW<br />

Exact<br />

p = 2 at 95th percentile<br />

n = 2<br />

n = 5<br />

n = 10<br />

n = 20<br />

n = 40<br />

n = 100<br />

n = 500<br />

0<br />

0 5 10 15<br />

m<br />

3<br />

0.070.08<br />

2<br />

1<br />

0.06<br />

0.02<br />

0.05<br />

0.04<br />

0.03<br />

TW<br />

Contours of relative error r = (θ /θα )−1<br />

α<br />

0.01<br />

0.03<br />

0.02<br />

0.02<br />

0.02<br />

0.01 0.01<br />

0<br />

0 5 10 15<br />

m<br />

Luminy 12/08 – p.26


θ α<br />

log 10 n<br />

1<br />

0.5<br />

p = 4 at 90th percentile<br />

n = 2<br />

n = 5<br />

n = 10<br />

n = 20<br />

n = 40<br />

0<br />

0 5<br />

n = 100<br />

n = 500<br />

10<br />

TW<br />

Exact<br />

15<br />

m<br />

3<br />

2<br />

1<br />

0.018<br />

0.016<br />

TW<br />

90th %tile, S=4, Contours of relative error r = (θ /θα )−1<br />

α<br />

0.01<br />

0.012 0.012<br />

0.014<br />

0.012<br />

0.008<br />

0.006<br />

0.004<br />

0.01<br />

0.01<br />

0.008<br />

0.008<br />

0.008<br />

0.006 0.006<br />

0.004 0.004<br />

0.002<br />

0<br />

0 5 10 15<br />

m<br />

Luminy 12/08 – p.27


Summary (for Part II)<br />

T-W approximation to null distribution of Roy’s largest root:<br />

� Conventional percentiles: generally accurate to < 10%<br />

relative error<br />

� [Rough p−value assessments: qualitatively o.k. over many<br />

orders of magnitude]<br />

� Similar O(N −2/3 ) approximations for Wishart and Gaussian.<br />

Recommend: Tracy-Widom approximation replace F − lower<br />

bound in default package printouts<br />

Luminy 12/08 – p.28


I. Setting<br />

Outline<br />

1. Single & Double Wishart, examples<br />

II. Largest Eigenvalue: Limiting Law (H0)<br />

1. Gaussian<br />

2. Laguerre/Single W.<br />

3. Jacobi/Double W.<br />

III. Largest Eigenvalue: Concentration<br />

1. Single W.<br />

2. Double W.<br />

Luminy 12/08 – p.29


Wishart: Concentration for l1<br />

A ∼ Wp(n,I), A = X T X X ∼ N(0,In ⊗ Ip)<br />

Theorem (e.g. Davidson-Szarek, 2001) With l1(A) = σ 2 1(X),<br />

and<br />

P {σ1(X) > Eσ1(X) + √ nt} ≤ e −nt2 /2 ,<br />

Eσ1(X) ≤ √ n + √ p.<br />

from Standard Result: If X ∼ Nm(0,I) and f : R m → R is<br />

Lipschitz-1 (implied by |∇f| ≤ 1), then<br />

P {f(X) > Ef(X) + s} ≤ e −s2 /2 .<br />

Luminy 12/08 – p.30


‘Small’ vs. ‘Large’ Deviations<br />

Rescale X ∼ N(0,In ⊗ Ip)/ √ n so that Eσ1(X) ≈ 1 + √ γ.<br />

Tracy-Widom limit suggests for t ≈ sn −2/3 ,<br />

P {σ1 ≥ Eσ1 + ct} ≈ e −(2/3)nt3/2<br />

.<br />

Lipschitz concentration of measure ⇒ ∀t > 0<br />

P {σ1 ≥ Eσ1 + t} ≤ e −nt2 /2 .<br />

� Not optimal (though simple) for ‘small’ deviations t ≪ 1<br />

� Effective for ’large’ deviations t > 1<br />

(recent: Majumdar-Vargassola)<br />

Luminy 12/08 – p.31


Motivations:<br />

� analog of Davidson-Szarek<br />

Double Wishart<br />

� arises in Candes-Tao sparse linear regression, Y = Aβ + ǫ,<br />

restricted orthogonality constants θS,S ′, and analogs γS,S ′:<br />

〈ATv,AT ′v′ 〉 ≤ θS,S ′�v��v′ � (≤ γS,S ′�ATv��AT ′v′ �).<br />

Use CCA form: X ∼ N(0,In ⊗ Ip) ⊥ Y ∼ N(0,In ⊗ Iq)<br />

Rp,q;n(X,Y ) = max{Corr(Xu,Y v) : �u� = �v� = 1}<br />

Luminy 12/08 – p.32


Rmax as singular value<br />

Use SVD: X = UXDXV T X , Y = UY DY V T<br />

Y<br />

⇒ R(X,Y ) = σ1(U T XUY ), with<br />

UX ∈ Vn,p – Stiefel manifold of orthonormal p−frames, etc<br />

Claim (provisional!)<br />

P {σ1 ≥ Eσ1 + t} ≤ e −(n−2)t2 /8 .<br />

⇒ other double Wishart cases (regression, MANOVA, etc).<br />

Luminy 12/08 – p.33


Concentration for Riemannian manifolds<br />

Theorem (Ledoux, 1992) Assume:<br />

(1. manifold) (X,g) compact, connected, smooth Riemannian<br />

manifold, dimension ≥ 2<br />

(2. volume) dµ normalized Riemannian volume element<br />

(3. Lipschitz) F 1−Lipschitz on X, i.e. |∇F | ≤ 1<br />

(4. curvature) c(X) = inf{Ric(∇f, ∇f) : |∇f| = 1}<br />

Then<br />

µ{F ≥<br />

�<br />

Ricci curvature<br />

Fdµ + t} ≤ e −ct2 /2 .<br />

Need to interpret (1) - (4) for F = σ1(U T X UY ) = R(X,Y ).<br />

Luminy 12/08 – p.34


<strong>Marc</strong> <strong>Raimondo</strong><br />

The Talented Student Program:<br />

an integrated learning solution<br />

Hugh Miller and <strong>Marc</strong> <strong>Raimondo</strong>,<br />

School of Mathematics and Statistics<br />

Luminy 12/08 – p.35


References<br />

THANK YOU!<br />

IMJ, “High Dimensional Statistical Inference and Random Matrices”, Proc<br />

ICM 2006, Vol 1, 307–333.<br />

IMJ, “Multivariate Analysis and Jacobi Ensembles: Largest eigenvalue,<br />

Tracy-Widom Limits and Rates of Convergence”, arXiv:0803.3408, Ann.<br />

Statist. in press.<br />

Webpage: www-stat.stanford.edu/˜imj<br />

Luminy 12/08 – p.36


Determinant representation:<br />

Correlation function:<br />

SN,2(x,y) =<br />

Unitary Case<br />

P {max xj ≤ x0} = det(I − SN,2χ0).<br />

N−1 �<br />

k=0<br />

= 1<br />

� ∞<br />

2<br />

0<br />

Hermite polynomials (normalized):<br />

�<br />

φk(x)φk(y), χ0 = I (x0,∞)<br />

φ(x + z)ψ(y + z) + ψ(x + z)φ(y + z)dz.<br />

φk(x) = cke −x2 /2 Hk(x), φ(x) = (2N) 1/4 φN(x),<br />

φk(x)φl(x)e −x2<br />

dx = δkl, ψ(x) = (2N) 1/4 φN−1(x).<br />

Luminy 12/08 – p.37


Rescaling and convergence to Airy function<br />

Centred and scaled (weighted) polynomials<br />

φτ(s) = (2N) 1/4 φN(uN + τNs),<br />

ψτ(s) = (2N) 1/4 φN−1(uN−1 + τNs)<br />

both satisfy differential equation<br />

w ′′ N(s) = s(1 + O(N −1 ))wN(s).<br />

Liouville-Green theory shows convergence to Airy A(s), solving<br />

with O(N −2/3 ) rate:<br />

A ′′ (s) = sA(s),<br />

|φτ(s) − A(s)| ≤ CN −2/3 e −s/2 .<br />

Luminy 12/08 – p.38


After rescaling:<br />

Sτ(s,t) = 1<br />

2<br />

Unitary Case - Convergence<br />

P {λmax ≤ µ + sσ} = det(I − Sτ),<br />

� ∞<br />

Limit: Tracy-Widom F2:<br />

0<br />

φτ(s + w)ψτ(t + w) + ψτ(s + w)φτ(t + w)dw<br />

F2(s) = det(I − SA)<br />

SA(s,t) =<br />

� ∞<br />

0<br />

A(s + w)A(t + w)dw<br />

Bound �Sτ − SA�1 using convergence of φτ,ψτ to A at O(N −2/3 ):<br />

|det(I − Sτ) − det(I − SA)| ≤ �Sτ − SA�1 · exp(�Sτ � + �SA� + 1)<br />

Luminy 12/08 – p.39


Orthogonal Case<br />

P { max<br />

1≤j≤N+1 xj ≤ x0} = � det(I − KN+1χ0),<br />

⎛ ⎞ ⎛ ⎞<br />

I<br />

KN+1(x,y) = ⎝<br />

ǫ1<br />

−∂2<br />

0 0<br />

⎠SN+1,1(x,y) − ⎝ ⎠<br />

T<br />

ǫ(x − y) 0<br />

∂2 ↔ ∂/∂y<br />

ǫ1 ↔ convolution in x with ǫ(x) = 1<br />

2 sgn(x)<br />

T ↔ transpose x,y<br />

Key identity relates orthogonal at N + 1 to unitary at N :<br />

SN+1,1(x,y) = SN,2(x,y) + 1<br />

2 φ(x)ǫψ(y).<br />

Luminy 12/08 – p.40


Orthogonal Case - Convergence<br />

P { max<br />

1≤j≤N+1 xj ≤ x0} = � det(I − KN+1χ0),<br />

F1(s) = � ⎛<br />

det(I − KGOE)<br />

⎞<br />

I<br />

Kτ(s,t) = ⎝<br />

ǫ1<br />

−∂2<br />

⎠(SN,2,τ(s,t) +<br />

T<br />

1<br />

2φτ(s)ǫψτ(t)) ⎛ ⎞<br />

⎛ ⎞<br />

0 0<br />

− ⎝ ⎠<br />

ǫ(x − y) 0<br />

I<br />

KGOE(s,t) = ⎝<br />

ǫ1<br />

−∂2<br />

⎠(SA(s,t) +<br />

T<br />

1<br />

⎛ ⎞<br />

2A(s)ǫA(t)) 0 0<br />

− ⎝ ⎠.<br />

ǫ(x − y) 0<br />

where O(N −1/3 ) terms cancel:<br />

Sτ(s,t) = SA(s,t) − ∆NA(s)A(t) + O(N −2/3 ),<br />

1<br />

2 φτ(s)ǫψτ(t) = 1<br />

2 A(s)(ǫA)(t) + ∆NA(s)A(t) + O(N −2/3 ).<br />

Luminy 12/08 – p.41


Accuracy of approximate p−values<br />

Multivariate Tests:<br />

Df test stat approx F num Df den Df Pr(>F)<br />

Pillai 5.00 0.6658 3.5369 15.00 186.00 2.309e-05 ***<br />

Wilks 5.00 0.4418 3.8118 15.00 166.03 8.275e-06 ***<br />

Hotelling-Lawley 5.00 1.0309 4.0321 15.00 176.00 2.787e-06 ***<br />

Roy<br />

---<br />

5.00 0.7574 9.3924 5.00 62.00 1.062e-06 ***<br />

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1<br />

� ’Exact’ percentile: from Koev’s qmaxeigjacobi<br />

� Tracy-Widom p−value (using table of F1):<br />

pTW(xα) = 1 − F1((logit(xα) − µ)/σ),<br />

� p− value derived from F distribution lower bound:<br />

pF(xα) = 1 − Fn1,n2(n2x/(n1(1 − x))),<br />

Luminy 12/08 – p.42


Tail p−values: s = 2 variables<br />

F bound gives wrong order of magnitude;<br />

Tracy-Widom gives qualitatively correct p−value assessment.<br />

S = 2, M = −0.5, N = 2<br />

Largest Root Exact Tracy-Widom F<br />

0.663 0.1 0.119 0.0223<br />

0.737 0.05 0.066 0.00933<br />

0.850 0.01 0.0169 0.00131<br />

0.881 0.005 0.00927 0.000573<br />

0.931 0.001 0.00222 8.49e-005<br />

0.968 0.0001 0.000251 5.65e-006<br />

0.985 1e-005 2.38e-005 3.81e-007<br />

0.993 1e-006 1.89e-006 2.58e-008<br />

Luminy 12/08 – p.43


s = 6 variables<br />

F bound wrong by many orders of magnitude;<br />

Tracy-Widom gives qualitatively correct p−value assessment.<br />

S = 6, M = 5, N = 10<br />

Largest Root Exact Tracy-Widom F<br />

0.757 0.1 0.108 0.000117<br />

0.781 0.05 0.0557 3.63e-005<br />

0.823 0.01 0.0119 2.99e-006<br />

0.837 0.005 0.00606 1.08e-006<br />

0.864 0.001 0.00125 1.1e-007<br />

0.894 0.0001 0.000125 4.75e-009<br />

0.917 1e-005 1.17e-005 2.25e-010<br />

0.934 1e-006 1.03e-006 1.13e-011<br />

Luminy 12/08 – p.44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!