02.06.2017 Views

Topic 2

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TOPIC 2 : BOOLEAN<br />

OPERATIONS


Example of timing diagram


Logic Gates Symbols & Boolean<br />

Equation


Truth Table<br />

•<br />

A truth table is a mathematical table used in<br />

logic – specifically in connection with Boolean<br />

algebra, Boolean function and propositional<br />

calculus.<br />

•<br />

Practically, a truth table is composed of one<br />

column for each input variable (for example A<br />

and B) and A one B A.B final column for all of the<br />

possible<br />

0results 0 0of the logical operation that<br />

0 1 0<br />

Truth Table<br />

the table is meant to represent (for example A<br />

1 0 0<br />

AND B)<br />

1 1 1


Example 1:


Example 2:<br />

A<br />

D = A + B.C<br />

B.C<br />

Example 3:<br />

A + B<br />

D = (A + B).(A + C)<br />

A + C


Example 4:<br />

Example 5:


NAND gates equivalent in combinational logic gates<br />

Universal<br />

combinational<br />

gates<br />

A<br />

B<br />

C<br />

F<br />

NAND gates<br />

equivalent<br />

combinational<br />

gates<br />

A<br />

B<br />

F<br />

C<br />

F = (A+B).(A+B).C


Exercise:<br />

Boolean Expression =


Construct a Truth Table from Boolean Expression<br />

•<br />

Example: Output S(T+U) + TU<br />

•<br />

Solution:<br />

S T U T+U S(T+U) TU S(T+U) + TU<br />

0 0 0 0 0 0 0<br />

0 0 1 1 0 0 0<br />

0 1 0 1 0 0 0<br />

0 1 1 1 0 1 1<br />

1 0 0 0 0 0 0<br />

1 0 1 1 1 0 1<br />

1 1 0 1 1 0 1<br />

1 1 1 1 1 1 1


Construct a Combinational Logic Circuit from<br />

Boolean Expression:<br />

•<br />

Example: Y = AC + B + BC<br />

•<br />

Solution:


Construct a Boolean Expression from<br />

Combinational Logic Circuit:


Construct A Boolean expression from truth<br />

table<br />

A B C Y<br />

0 0 0 1<br />

0 0 1 0<br />

0 1 0 1<br />

0 1 1 1<br />

1 0 0 0<br />

1 0 1 0<br />

1 1 0 0<br />

1 1 1 1<br />

Answer:<br />

Boolean expression: (SUM OF<br />

PRODUCT – SOP)<br />

+ +


Boolean Law & DeMorgan’s Theorems<br />

Commutative<br />

Law<br />

Associative<br />

Law<br />

Distributive<br />

Law<br />

Consensus<br />

Theorem<br />

DeMorgan’s<br />

22<br />

X<br />

X<br />

9)<br />

1<br />

X<br />

X<br />

8)<br />

X<br />

X<br />

X<br />

7)<br />

1<br />

1<br />

X<br />

6)<br />

X<br />

0<br />

X<br />

5)<br />

0<br />

X<br />

X<br />

4)<br />

X<br />

X<br />

X<br />

3)<br />

X<br />

1<br />

X<br />

2)<br />

0<br />

0<br />

X<br />

1)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Y<br />

X<br />

Y<br />

X<br />

14B)<br />

Y<br />

X<br />

X Y<br />

14A)<br />

Y<br />

X<br />

XY<br />

X<br />

13D)<br />

Y<br />

X<br />

XY<br />

X<br />

13C)<br />

Y<br />

X<br />

XY<br />

X<br />

13B)<br />

Y<br />

X<br />

XY<br />

X<br />

13A)<br />

YZ<br />

YW<br />

XZ<br />

XW<br />

Z<br />

W<br />

Y<br />

X<br />

12B)<br />

XZ<br />

XY<br />

Z<br />

Y<br />

X<br />

12A)<br />

Z<br />

Y<br />

X<br />

Z<br />

Y<br />

X<br />

11B)<br />

Z<br />

XY<br />

YZ<br />

X<br />

11A)<br />

X<br />

Y<br />

Y<br />

X<br />

10B)<br />

X<br />

Y<br />

Y<br />

X<br />

10A)


Simplify The Boolean Expression:<br />

Example of simplification


Boolean Law Example


Boolean Law<br />

example


DeMorgan Shortcut<br />

BREAK THE LINE, CHANGE THE SIGN<br />

Break the LINE over the two variables,<br />

and change the SIGN directly under the line.<br />

A<br />

B<br />

<br />

A<br />

<br />

B<br />

For Theorem #14A, break the line, and<br />

change the AND function to an OR function.<br />

Be sure to keep the lines over the variables.<br />

A<br />

B<br />

<br />

A<br />

B<br />

For Theorem #14B, break the line, and<br />

change the OR function to an AND function.<br />

Be sure to keep the lines over the variables.<br />

26


DeMorgan’s: Example #1<br />

Example<br />

Simplify the following Boolean expression and note the<br />

Boolean or DeMorgan’s theorem used at each step. Put<br />

the answer in SOP form.<br />

Solution<br />

F<br />

1<br />

F<br />

1<br />

F<br />

1<br />

F<br />

1<br />

F<br />

1<br />

(X Y) (Y<br />

<br />

(X Y) <br />

(X Y)<br />

(X Y)<br />

<br />

XY<br />

<br />

YZ<br />

(Y<br />

F<br />

<br />

1<br />

Z)<br />

Z)<br />

(Y Z)<br />

(Y Z)<br />

(X Y) (Y<br />

<br />

Z)<br />

; Theorem #14A<br />

; Theorem #9 & #14B<br />

; Theorem #9<br />

; Rewritten without AND symbols<br />

and parentheses<br />

27


DeMorgan’s: Example #2<br />

So, where would such an odd Boolean expression come from? Take a<br />

look at the VERY poorly designed logic circuit shown below. If you were<br />

to analyze this circuit to determine the output function F2, you would<br />

obtain the results shown.<br />

X<br />

Y<br />

XY<br />

X<br />

XY<br />

( X <br />

Z)(XY)<br />

F 2<br />

(X Z)(XY)<br />

Z<br />

X Z<br />

Example<br />

Simplify the output function F2. Be sure to note the Boolean or<br />

28


DeMorgan’s: Example #2<br />

Solution<br />

F<br />

2<br />

<br />

(X<br />

<br />

Z)(XY)<br />

F<br />

2<br />

<br />

(X<br />

<br />

Z)<br />

<br />

(XY)<br />

; Theorem #14A<br />

F<br />

2<br />

<br />

(X<br />

<br />

Z)<br />

<br />

(XY)<br />

; Theorem #9<br />

F<br />

2<br />

<br />

(X Z)<br />

<br />

(XY)<br />

; Theorem #14B<br />

F<br />

F<br />

2<br />

2<br />

<br />

<br />

(X Z) (XY)<br />

X Z X Y<br />

; Theorem #9<br />

; Rewritten without AND symbols<br />

29


SUM OF PRODUCT (SOP)


Logic Expression from Truth table<br />

•<br />

SUM Of PRODUCT


PRODUCT OF SUM (POS)<br />

POS<br />

POS


CONVERSION OF SOP POS TERM<br />

Take as an example the truth table of a three-variable function as shown below.<br />

Three variables, each of which can take the values 0 or 1, yields eight possible<br />

combinations of values for which the function may be true. These eight<br />

combinations are listed in ascending binary order and the equivalent decimal value is<br />

also shown in the table.<br />

The function has a value 1 for the<br />

combinations shown, therefore:


CONVERSION OF SOP POS TERM


Examples of function in Boolean<br />

•<br />

Consider the function:<br />

•<br />

In binary form:<br />

f(A, B, C, D) = ∑ (0101, 1011, 1100, 0000,<br />

1010, 0111)<br />

•<br />

In decimal form:<br />

f(A, B, C, D) = ∑ (5, 11, 12, 0, 10, 7)


KARNAUGH MAP (K-MAP)<br />

•<br />

A Karnaugh Map is a grid-like representation<br />

of a truth table.<br />

•<br />

It is really just another way of presenting a<br />

truth table, but the mode of presentation<br />

gives more insight.<br />

•<br />

A Karnaugh map has zero and one entries at<br />

different positions.<br />

•<br />

Each position in a grid corresponds to a truth<br />

table entry.


Here's an example taken from the voting circuit presented in the lesson on<br />

Minterms. The truth table is shown first. The Karnaugh Map for this truth<br />

table is shown after the truth table.<br />

Truth Table<br />

K-Map<br />

representing


K-Map Condition:<br />

(i) 2 variables : Use 22 mapping condition (use either 1 only)<br />

A B F<br />

0 0 a<br />

A\B 0 1<br />

B\A 0 1<br />

0 1 b<br />

1 0 c<br />

0 a b<br />

1 c d<br />

Or<br />

0 a c<br />

1 b d<br />

1 1 d<br />

Truth table<br />

K-Map


K-Map Condition:<br />

(ii) 3 variables : Use 23 mapping condition (use either 1 only)<br />

A B C F<br />

0 0 0 a<br />

0 0 1 b<br />

0 1 0 c<br />

0 1 1 d<br />

1 0 0 e<br />

1 0 1 f<br />

1 1 0 g<br />

1 1 1 h<br />

Truth table<br />

(i)<br />

AB\C 0 1<br />

00 a b<br />

01 c d<br />

11 g h<br />

10 e f<br />

A\BC 00 01 11 10<br />

0 a b d c<br />

1 e f h g<br />

(iii)<br />

(ii)<br />

K-Map<br />

BC\A 0 1<br />

00 a e<br />

01 b f<br />

11 d h<br />

10 c g<br />

C\AB 00 01 11 10<br />

0 a c g e<br />

1 b d h f<br />

(iv)


A B C D F<br />

0 0 0 0 a<br />

0 0 0 1 b<br />

0 0 1 0 c<br />

0 0 1 1 d<br />

0 1 0 0 e<br />

0 1 0 1 f<br />

0 1 1 0 g<br />

0 1 1 1 h<br />

1 0 0 0 i<br />

1 0 0 1 j<br />

1 0 1 0 k<br />

1 0 1 1 l<br />

1 1 0 0 m<br />

1 1 0 1 n<br />

1 1 1 0 o<br />

1 1 1 1 p<br />

Truth table<br />

K-Map Condition:<br />

(iii) 4 variables : Use 24 mapping condition<br />

(use either 1 only)<br />

(i)<br />

CD<br />

AB\<br />

00 01 11 10<br />

00 a b d c<br />

01 e f h g<br />

11 m n p o<br />

10 i j l k<br />

AB<br />

CD\<br />

K-Map<br />

(ii)<br />

00 01 11 10<br />

00 a e m i<br />

01 b f n j<br />

11 d h p l<br />

10 c g o k


K-Map Looping Rules<br />

v<br />

The Karnaugh map uses the following rules for the<br />

simplification of expressions by grouping together<br />

adjacent cells containing ones.<br />

1. Groups may not include any cell containing a zero<br />

2. Groups may be horizontal or vertical, but not diagonal.


3. Groups must contain 1, 2, 4, 8, or in general 2n cells.<br />

That is if n = 1, a group will contain two 1's since 21 = 2.<br />

If n = 2, a group will contain four 1's since 22 = 4.<br />

4. Each group should be as large as possible.


5. Groups may overlap.<br />

6. Each cell containing a one must be in at least one group.


7. Groups may wrap around the table. The leftmost cell in a row may be grouped with<br />

the rightmost cell and the top cell in a column may be grouped with the bottom cell.<br />

8. There should be as few groups as possible, as long as this does not contradict<br />

any of the previous rules.


K-Map looping example:<br />

Example 1 Example 2


K-Map solution from truth table<br />

A B C F<br />

0 0 0 1<br />

0 0 1 0<br />

A’B’C’<br />

0 1 0 0<br />

0 1 1 1<br />

1 0 0 1<br />

1 0 1 1<br />

1 1 0 1<br />

1 1 1 0<br />

Truth table<br />

A’BC<br />

AB’C’<br />

AB’C<br />

ABC’<br />

F = AB’ + AC’ + B’C’ + A’BC


K-Map solution from Boolean Expression<br />

F = A’B’C’ + ABC’ + AB’C’<br />

+ A’BC + AB’C<br />

Allocate in digital logic:<br />

000 + 110 + 100 +<br />

011 + 101<br />

F = AB’ + AC’ + B’C’ + A’BC


Simplify Boolean expression using K-Map<br />

F = BD + AB’CD + ABC<br />

Represent the hidden variable (don’t care<br />

condition)<br />

è<br />

BD = ABCD, A’BCD, ABC’D, A’BC’D<br />

è<br />

ABC = ABCD, ABCD’<br />

Thus, the expression will become as:<br />

F = ABCD + A’BCD + ABC’D + A’BC’D +<br />

AB’CD + ABCD + ABCD’<br />

AB\CD 00 01 11 10<br />

00 0 0 0 0<br />

01 0 1 1 0<br />

11 0 1 1 1<br />

10 0 0 1 0<br />

Output = BD + ACD + ABC


A B C D F<br />

0 0 0 0 0<br />

0 0 0 1 0<br />

0 0 1 0 1<br />

0 0 1 1 0<br />

0 1 0 0 0<br />

0 1 0 1 1<br />

0 1 1 0 0<br />

0 1 1 1 1<br />

1 0 0 0 1<br />

1 0 0 1 0<br />

1 0 1 0 1<br />

1 0 1 1 0<br />

1 1 0 0 1<br />

1 1 0 1 1<br />

1 1 1 0 0<br />

1 1 1 1 0


K-Map solution from FUNCTION<br />

SOP


POS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!