13.12.2012 Views

Genetic Molecular Techiniques - Part V - RNAi, Human Disease

Genetic Molecular Techiniques - Part V - RNAi, Human Disease

Genetic Molecular Techiniques - Part V - RNAi, Human Disease

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Amy Pasquinelli, Office Phone: 858-822-3006<br />

apasquin@ucsd.edu, Subject: BIMM100<br />

Wed., April 28, 5-6PM, Bonner Hall 4146<br />

MIDTERM EXAM - TUESDAY, MAY 4<br />

6:30-8PM, SOLIS 107 (this room and time)<br />

Emergencies regarding exam - Submit in writing + full<br />

documentation. Make-up is oral exam by Dr. Niwa.<br />

You need a pen for the exam and nothing else -<br />

personals can be kept in the front of the room.<br />

There is ZERO tolerance for cheating.<br />

Exams will be returned when Dr. Niwa gets back.<br />

Double stranded RNA (dsRNA) can interfere with<br />

gene function by targeting mRNA for destruction<br />

Caenorhabditis elegans<br />

m7G 5’<br />

5’<br />

m 7 G<br />

3’<br />

3’<br />

Translation of<br />

mRNA into Protein<br />

3’<br />

5’<br />

Antisense RNA inhibition<br />

of Translation<br />

9.5 - Inactivating the Function of Specific<br />

Genes in Eukaryotes - Continued (p387-394)<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

KEY CONCEPTS:<br />

1. Deduce gene function by mutant phenotype<br />

2. Gene disruption in yeast by homologous recomb.<br />

3. Control of inactivation (GAL1 promoter shuts<br />

off when yeast are transferred to glucose)<br />

4. Knockout (KO) mice by homologous recombination<br />

5. Tissue specific KO using loxP-Cre<br />

6. Dominant negative alleles to KO wildtype<br />

gene function<br />

7. RNA interference (<strong>RNAi</strong>)<br />

BUT, sense RNA also inhibited???<br />

5’<br />

m 7 G<br />

m7G 5’<br />

3’<br />

5’<br />

3’<br />

5’<br />

Antisense RNA inhibition<br />

of Translation<br />

3’<br />

3’<br />

Sense RNA inhibition?


The Solution: dsRNA directs mRNA Degradation!<br />

input dsRNA<br />

in vitro transcription<br />

of dsRNA<br />

RNA interference (<strong>RNAi</strong>)<br />

processing<br />

RNase<br />

~22nt siRNAs<br />

5’ 3’<br />

3’ 5’<br />

target<br />

recognition<br />

mRNA<br />

5’ 3’<br />

3’ 5’<br />

degradation<br />

Fig. 9-43a<br />

injection of dsRNA<br />

degradation of target<br />

mRNA in progeny - “KO”<br />

-specific<br />

-almost any mRNA can be<br />

targeted<br />

-defense against RNA viruses<br />

-works in human cells<br />

-high throughput screening<br />

of gene function with <strong>RNAi</strong><br />

“libraries”<br />

Analysis of Gene Function by <strong>RNAi</strong> KO<br />

1. Synthesize dsRNA in vitro<br />

2. Inject parent worm with dsRNA<br />

3. Test effect on mRNA expression by in situ<br />

4. What is the phenotype?<br />

Fig. 9-43b<br />

mex-3 mRNA present mex-3 mRNA absent<br />

9.6 Identifying and Locating <strong>Human</strong> <strong>Disease</strong> Genes<br />

KEY CONCEPTS:<br />

1. Patterns of inheritance: Autosomal dom.,<br />

Autosomal recessive, X-linked rec.<br />

2. Recombinant genotypes by crossing over<br />

3. Mapping - cosegregation with markers<br />

4. <strong>Molecular</strong> markers - polymorphisms<br />

5. RFLPs, SNPs, SSRs<br />

6. Expression analysis, DNA sequencing<br />

7. <strong>Genetic</strong> heterogeneity and polygenic traits


3 Major Patterns of <strong>Disease</strong> Inheritance<br />

1. Autosomal dominant<br />

- at least one parent is a carrier<br />

- usually post-reproductive<br />

- Huntington’s (1 mutant HD allele)<br />

2. Autosomal recessive<br />

- both parents must be carriers<br />

- cystic fibrosis (defective chloride channel<br />

gene (CFTR)<br />

3. X-linked recessive<br />

- mother is carrier on X chromosome<br />

- males get X from mom - 50% chance of mutant<br />

allele (X M /Y)<br />

- Duchenne muscular dystrophy (DMD)<br />

3 Major Patterns of <strong>Disease</strong> Inheritance<br />

25%<br />

50%<br />

50%<br />

How do you find the disease causing gene?<br />

Recombinational analysis<br />

Fig. 9-45<br />

1. pairs of homologous<br />

chromo. align<br />

2. crossing over<br />

3. the closer the genes,<br />

the less frequent<br />

they will crossover,<br />

i.e. the more tightly<br />

they are linked<br />

The ordering of genes along a chromosome is a genetic map, or linkage map


DNA Polymorphisms - variations in DNA sequence<br />

RFLPs - restriction fragment length polymorphisms<br />

SNPs - single nucleotide polymorphisms<br />

SSRs - simple sequence repeats or microsatellites<br />

Pedigree based on RFLP analysis<br />

Fig. 9-46b<br />

Experimental Detection of RFLPs<br />

WT<br />

M<br />

Fig. 9-46a<br />

How do you find the disease causing gene (cont.)?<br />

1. Comparison of gene expression from genomic region<br />

a. Northern blotting<br />

b. in situs<br />

2. Sequence candidate genes from region<br />

Example: Sickle Cell Anemia<br />

Chromosome 11<br />

collagen<br />

ribosome<br />

hemoglobin<br />

iron transporter<br />

LOC139168


Many <strong>Disease</strong> genes result from<br />

multiple genetic defects<br />

1. Monogenetic traits - defect in 1 gene<br />

Examples - see Table 9-3<br />

2. <strong>Genetic</strong> heterogeneity - defects in a variety<br />

of different genes produce same disease<br />

Example - Retinitis pigmentosa can be caused<br />

by mutation in more than 60 genes!<br />

3. Polygenic traits - defects in multiple<br />

different genes contribute to the disease<br />

Examples - diabetes, heart disease...<br />

GOOD LUCK STUDYING<br />

FOR YOUR EXAM!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!