14.12.2012 Views

Role of Ocean Waves in the Coupled Atmosphere-Ocean ... - ecmwf

Role of Ocean Waves in the Coupled Atmosphere-Ocean ... - ecmwf

Role of Ocean Waves in the Coupled Atmosphere-Ocean ... - ecmwf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Update on parameterisation <strong>of</strong> major<br />

source functions, <strong>in</strong>clud<strong>in</strong>g extreme<br />

conditions.<br />

Wave climate and wave coupled effects<br />

Alex Baban<strong>in</strong><br />

<strong>in</strong> atmosphere and ocean<br />

Centre for <strong>Ocean</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Science and Technology<br />

Sw<strong>in</strong>burne University, Melbourne, Australia<br />

Read<strong>in</strong>g, England<br />

25 June 2012


Fur<strong>the</strong>r Motivation<br />

<strong>Waves</strong> and wea<strong>the</strong>r, extreme wea<strong>the</strong>r,<br />

ocean circulation, climate<br />

Saturation <strong>of</strong> <strong>the</strong> sea drag<br />

Powel et al., Nature, 2003<br />

Sea surface temperature changes<br />

due to waves<br />

Ghantous and Baban<strong>in</strong>, <strong>Ocean</strong> Modell<strong>in</strong>g,<br />

submitted


W<strong>in</strong>d Input<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

follow<strong>in</strong>g <strong>the</strong> waves<br />

Young et al., JAOT, 2005, Donelan et al., JAOT, 2005, JPO, 2006,<br />

Baban<strong>in</strong> et al., JPO, 2007<br />

tot<br />

� S<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

�S<br />

bf


The full separation<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

� S<br />

bf


The parameterisation<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

� S<br />

bf


Flow separation due to break<strong>in</strong>g<br />

��f) = � 0(f)(1+b T)<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

� S<br />

bf


W<strong>in</strong>d Input – S <strong>in</strong><br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

Donelan, Baban<strong>in</strong>, Young and Banner (Part I, JTEC, 2005; Part II,<br />

JPO, 2006, Part III, JPO, 2007)<br />

• a new parameterisation <strong>of</strong> <strong>the</strong> w<strong>in</strong>d <strong>in</strong>put function, based on field<br />

measurements, is suggested.<br />

• <strong>the</strong> parameterisation <strong>in</strong>cludes very strongly forced and steep wave<br />

conditions, <strong>the</strong> w<strong>in</strong>d <strong>in</strong>put for which has never before been directly<br />

measured <strong>in</strong> field conditions.<br />

• new physical features <strong>of</strong> air-sea exchange have been found:<br />

- full separation <strong>of</strong> <strong>the</strong> air flow at strong w<strong>in</strong>d over steep waves<br />

- leads to <strong>the</strong> sea drag saturation<br />

- <strong>the</strong> exchange mechanism is non-l<strong>in</strong>ear and depends on <strong>the</strong><br />

wave steepness<br />

- enhancement <strong>of</strong> <strong>the</strong> w<strong>in</strong>d <strong>in</strong>put over break<strong>in</strong>g waves<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

� S<br />

bf


Break<strong>in</strong>g Dissipation S ds<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

two passive acoustic methods to study spectral dissipation<br />

- segment<strong>in</strong>g a record <strong>in</strong>to break<strong>in</strong>g and non-break<strong>in</strong>g segments<br />

- us<strong>in</strong>g acoustic signatures <strong>of</strong> <strong>in</strong>dividual bubble-formation events<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

� S<br />

bf


Whitecapp<strong>in</strong>g Dissipation S ds<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl


White Cap Dissipation S ds<br />

1) Segment<strong>in</strong>g <strong>the</strong> record<br />

Directional dissipation<br />

f p<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

f p<br />

2f p<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl


White Cap Dissipation S ds<br />

2) Individual bubble formation<br />

frequency distribution <strong>of</strong> break<strong>in</strong>g probability b T<br />

- L<strong>in</strong>ear dependence at <strong>the</strong> peak<br />

- Cumulative effect at small scales<br />

- Direct dependence on <strong>the</strong> w<strong>in</strong>d at strong forc<strong>in</strong>g<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl


White Cap Dissipation S ds<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

• spectral dissipation was approached by two <strong>in</strong>dependent means<br />

based on passive acoustic methods<br />

• if <strong>the</strong> wave energy dissipation at each frequency were due to<br />

whitecapp<strong>in</strong>g only, it should be a function <strong>of</strong> <strong>the</strong> excess <strong>of</strong> <strong>the</strong><br />

spectral density above a dimensionless threshold spectral level,<br />

below which no break<strong>in</strong>g occurs at this frequency. This was found to<br />

be <strong>the</strong> case around <strong>the</strong> wave spectral peak. dom<strong>in</strong>ant break<strong>in</strong>g<br />

• dissipation at a particular frequency above <strong>the</strong> peak demonstrates<br />

a cumulative effect, depend<strong>in</strong>g on <strong>the</strong> rates <strong>of</strong> spectral dissipation<br />

at lower frequencies<br />

S ( f ) � a � f ( F(<br />

f ) � F ( f )) A(<br />

f ) � b ( F(<br />

g)<br />

� F ( g))<br />

A(<br />

g)<br />

dg<br />

ds<br />

• dimensionless saturation threshold value <strong>of</strong><br />

thr<br />

should be used to obta<strong>in</strong> <strong>the</strong> dimensional spectral threshold F thr(f) at<br />

each frequency f<br />

• dependence on <strong>the</strong> w<strong>in</strong>d at strong w<strong>in</strong>d forc<strong>in</strong>g<br />

f<br />

�<br />

f<br />

p<br />

thr<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl<br />

� thr( f ) � 0.035<br />

� S<br />

bf


Balance <strong>of</strong> dissipation <strong>in</strong> <strong>the</strong> water<br />

column and <strong>the</strong> w<strong>in</strong>d <strong>in</strong>put<br />

�<br />

( z)<br />

�<br />

�const<br />

� �1<br />

� z<br />

� � 2<br />

� z<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

z<br />

z<br />

z<br />

�<br />

�<br />

�<br />

0.<br />

4<br />

0.<br />

4<br />

0.<br />

4<br />

H<br />

H<br />

H<br />

s<br />

s<br />

s<br />

U<br />

U<br />

<strong>in</strong><br />

� S<br />

�<br />

�<br />

� 7.<br />

5�<br />

� 7.<br />

5�<br />

�<br />

ds<br />

� S<br />

nl


The approach<br />

• Traditional approach (ie. Komen et al. (1984)): reproduce known<br />

growth curves – i.e. model <strong>the</strong> balance <strong>of</strong> <strong>the</strong> source functions<br />

ra<strong>the</strong>r than <strong>the</strong> functions <strong>the</strong>mselves<br />

• Constra<strong>in</strong>t approach: follow<strong>in</strong>g suggestion at WISE-2004 (Read<strong>in</strong>g,<br />

England) by Mark Donelan<br />

• Ma<strong>in</strong> constra<strong>in</strong>t: <strong>in</strong>tegral w<strong>in</strong>d momentum <strong>in</strong>put must be equal to<br />

<strong>the</strong> total stress less viscous stress:<br />

f<br />

�<br />

�<br />

0<br />

f<br />

�<br />

m k<br />

S<strong>in</strong> ( f ) df � � S<strong>in</strong><br />

( f ) df � �<br />

�<br />

• experimental dependencies for total stress and viscous stress<br />

are used<br />

• experimental dependencies for ratio ot total <strong>in</strong>put and total<br />

dissipation are used<br />

f<br />

�<br />

�<br />

0<br />

S<br />

ds<br />

( f ) df<br />

0<br />

�<br />

f<br />

�<br />

�<br />

0<br />

S<br />

<strong>in</strong><br />

( f ) df<br />

w


<strong>Waves</strong> and air-sea <strong>in</strong>teractions<br />

• <strong>in</strong> air-sea <strong>in</strong>teraction and ocean-mix<strong>in</strong>g models, <strong>the</strong><br />

w<strong>in</strong>d stress is usually parameterised to directly drive<br />

<strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> upper ocean<br />

• ~90% <strong>of</strong> <strong>the</strong> flux, however, first <strong>in</strong>put <strong>in</strong>to <strong>the</strong> waves<br />

• air-sea coupl<strong>in</strong>g is usually parameterised <strong>in</strong> terms <strong>of</strong><br />

<strong>the</strong> drag coefficient C d<br />

� � � �<br />

u<br />

2<br />

� C<br />

a * a d<br />

• <strong>the</strong> parameterisation relies on <strong>the</strong> concept <strong>of</strong> <strong>the</strong> constant flux<br />

layer<br />

• C d is rout<strong>in</strong>ely parameterised <strong>in</strong> terms <strong>of</strong> w<strong>in</strong>d speed U 10<br />

U<br />

2<br />

10<br />

• scatter has not improved over some 30 years<br />

• coupl<strong>in</strong>g with wave models is necessary


Gust<strong>in</strong>ess


Dependence<br />

on break<strong>in</strong>g<br />

Baban<strong>in</strong>, 2011<br />

Break<strong>in</strong>g and Directional<br />

Spread<strong>in</strong>g<br />

Dependence on directional spread<strong>in</strong>g<br />

T<strong>in</strong>g et al., JGR, <strong>in</strong> press<br />

K(U/c p,f,µ)=A(U/c p,f)cos 2s(U/cp,f)(µ-µ 0/2)<br />

U/c p= 1, 3, 5


T<strong>of</strong>foli et al., JGR, <strong>in</strong> press<br />

Humidity<br />

Based on Lake George data, C D versus humidity


W<strong>in</strong>d Input and W<strong>in</strong>d Stress<br />

� �<br />

� �<br />

u<br />

2<br />

� C<br />

a * a d<br />

U<br />

2<br />

10<br />

Turbulent fluxes are not constant <strong>in</strong> WBL


W<strong>in</strong>d: What do we need most?<br />

• Directional distribution <strong>of</strong> <strong>the</strong> w<strong>in</strong>d <strong>in</strong>put<br />

• Fluxes: momentum flux, heat flux, moisture,<br />

spray<br />

• Surface stress versus mean w<strong>in</strong>d speed<br />

elevated<br />

• Advanced sea-drag parameterisations


White Cap Dissipation S ds<br />

2) Individual bubble formation<br />

bubble size is related to <strong>the</strong> break<strong>in</strong>g severity<br />

dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<br />

dt<br />

<strong>in</strong><br />

� S<br />

ds<br />

� S<br />

nl


Dissipation: what do we need most?<br />

• More direct measurements <strong>of</strong> <strong>the</strong> dissipation rates<br />

across <strong>the</strong> spectrum<br />

• Measurements and parameterisation <strong>of</strong> <strong>the</strong> break<strong>in</strong>g<br />

severity<br />

• Whitecapp<strong>in</strong>g coverage versus break<strong>in</strong>g severity<br />

• Dependence <strong>of</strong> <strong>the</strong> whitecapp<strong>in</strong>g coveraged<br />

environmental properties, i.e. w<strong>in</strong>d, wave age,<br />

surface temperature, biological surfactants etc.<br />

• Directional distribution <strong>of</strong> <strong>the</strong> dissipation


Air-sea <strong>in</strong>teractions at extreme w<strong>in</strong>d forc<strong>in</strong>g<br />

• At w<strong>in</strong>d speeds<br />

U>32m/s<br />

dynamics <strong>of</strong> <strong>the</strong> atmospheric boundary layer, <strong>of</strong> <strong>the</strong> ocean<br />

wave surface and <strong>of</strong> <strong>the</strong> upper ocean layer – all change<br />

• Strong correlation <strong>of</strong> wave asymmetry As with w<strong>in</strong>d forc<strong>in</strong>g,<br />

asymmetry saturates (Leik<strong>in</strong> et al., 1995, NPG) at<br />

U10~34m/s Change <strong>of</strong> <strong>the</strong> wave break<strong>in</strong>g mechanism to, perhaps, break<strong>in</strong>g due<br />

to direct w<strong>in</strong>d forc<strong>in</strong>g<br />

• Drag saturates (Powel et al., 2003, Nature) at<br />

U10=32-33m/s • additional mechanism <strong>of</strong> air <strong>in</strong>jection due to bubbles <strong>of</strong> 1mm<br />

diameter transported down to 20m below <strong>the</strong> surface and<br />

dissolved due to <strong>the</strong> hydrostatic compression (McNeil & D’Asaro,<br />

2007, J. Mar. Scie.) at<br />

U10 > 35m/s


Tropical Cyclone Yasi – setup & observations<br />

wave data<br />

w<strong>in</strong>d data<br />

best track<br />

altimeter<br />

tracks<br />

1600x2000km


Yasi – along-track comparison<br />

• deep water track: ENVISAT – 1 Feb 23:36 UTC<br />

• w<strong>in</strong>ds (top) and wave height (bottom)


Yasi – <strong>in</strong> situ waves<br />

• observed waves next to Townsville (ADCP) and Cape Cleveland<br />

(DERM) for all three w<strong>in</strong>d fields


Baban<strong>in</strong>, A.V., T.-W. Hsu, A. Roland, S.-H. Ou, D.-J. Doong, and Y.-M. Fan,<br />

2010: Spectral modell<strong>in</strong>g <strong>of</strong> Typhoon Krosa, Natural Hazards and<br />

Earth System Sciences, 2011<br />

• highest ever waves are<br />

measured <strong>of</strong>f <strong>the</strong> coast<br />

<strong>of</strong> Taiwan<br />

• spectral models cannot<br />

reproduce <strong>the</strong>m<br />

• <strong>the</strong> only property <strong>the</strong><br />

wave height responds <strong>in</strong><br />

<strong>the</strong> models – is <strong>the</strong><br />

bottom-<strong>in</strong>duced<br />

break<strong>in</strong>g formulation


What we need<br />

• At w<strong>in</strong>d speeds<br />

U>32m/s<br />

dynamics <strong>of</strong> <strong>the</strong> atmospheric boundary layer, <strong>of</strong> <strong>the</strong><br />

ocean wave surface and <strong>of</strong> <strong>the</strong> upper ocean layer<br />

– all change<br />

• Details are vague, physics is unknown<br />

• Any field observations are helpful: fluxes, sea<br />

drag, wave spectra and wave statistics,<br />

whitecapp<strong>in</strong>g and dissipation, bottom-<strong>in</strong>duced<br />

break<strong>in</strong>g <strong>of</strong> extreme waves


Swell attenuation due to wave<br />

turbulence<br />

3.<br />

0�1.<br />

0<br />

� � 300�<br />

a<br />

b1=0.004 Dissipation<br />

• volumetric<br />

• per unit <strong>of</strong><br />

surface<br />

• per unit <strong>of</strong><br />

propagation<br />

distance


1=0.004<br />

asterisks<br />

Swell attenuation due to wave<br />

turbulence<br />

b 1=0.002<br />

circles


W<strong>in</strong>d/Wave Climate


W<strong>in</strong>d and waves as climate <strong>in</strong>dicators<br />

Young et al., Science, 2011


W<strong>in</strong>d Trends, by SSM/I


W<strong>in</strong>d Trends, by SSM/I


W<strong>in</strong>d Trends, by SSM/I


Summary<br />

> wave physics, what is needed<br />

– perhaps, 4 physics: swell, light w<strong>in</strong>ds, moderate w<strong>in</strong>ds, extreme<br />

– long-term observations, statistics, e.g. freak waves<br />

– w<strong>in</strong>d stress, sea drag, fluxes across <strong>in</strong>terface<br />

– wave dissipation, <strong>in</strong>clud<strong>in</strong>g swell, <strong>in</strong>teraction with bottom,<br />

currents<br />

– directional distributions <strong>of</strong> energy sources/s<strong>in</strong>ks<br />

– extreme conditions, tropical cyclones<br />

> waves provide feedback<br />

– to <strong>the</strong> atmospheric boundary layer<br />

– to <strong>the</strong> upper ocean (usually overlooked)<br />

– to <strong>the</strong> large-scale air-sea <strong>in</strong>teractions<br />

– to wea<strong>the</strong>r, ocean circulation and climate<br />

> Wave/w<strong>in</strong>d climate also changes<br />

- waves can serve as a climate <strong>in</strong>dicator, gradual and non-uniform<br />

36


● Numerical<br />

Modell<strong>in</strong>g<br />

● Sediment<br />

Mobility<br />

● Roughness –<br />

Bedforms &<br />

Sediment<br />

Gra<strong>in</strong> Size<br />

● Sediment<br />

Suspension<br />

● Sediment<br />

Transport<br />

● Conclusions<br />

Bedforms: Sand Ripples<br />

• Ripples can occur under certa<strong>in</strong> conditions<br />

that are determ<strong>in</strong>ed by Nielsen (1992)<br />

• Ripples create a higher friction coefficient<br />

• Can be determ<strong>in</strong>ed empirically by us<strong>in</strong>g <strong>the</strong><br />

follow<strong>in</strong>g parameters:<br />

– Orbital Velocity at seabed<br />

– Excursion amplitude at seabed<br />

– Gra<strong>in</strong> Size<br />

– Specific Gravity


Swan Output<br />

Accuracy – Time Series & Scatter Plot<br />

Significant Wave Height (Green = Observed Data, Blue = Modeled Data)<br />

Observed Data


● Numerical<br />

Modell<strong>in</strong>g<br />

● Sediment<br />

Mobility<br />

● Roughness –<br />

Bedforms &<br />

Sediment<br />

Gra<strong>in</strong> Size<br />

● Sediment<br />

Suspension<br />

● Sediment<br />

Transport<br />

● Conclusions<br />

What if ripples don’t occur?<br />

• No ripples occur when conditions too<br />

low <strong>in</strong> energy (seabed isn’t mobile)<br />

• Ripples get washed out dur<strong>in</strong>g large<br />

storm events<br />

• Roughness dependent on gra<strong>in</strong> size only<br />

• Test case: Lakes Entrance, Lake George


Conclusions<br />

► The SWAN wave model was modified to <strong>in</strong>clude an<br />

additional friction rout<strong>in</strong>e to evaluate roughness due to<br />

ripples.<br />

► Increased dissipation due to bottom friction from<br />

ripple bedforms had a positive effect on <strong>the</strong> accuracy<br />

<strong>of</strong> modell<strong>in</strong>g shallow depths with <strong>the</strong> existence <strong>of</strong><br />

ripples.<br />

► Roughness due to gra<strong>in</strong> size also provided an<br />

acceptable roughness coefficient <strong>in</strong> <strong>the</strong> absence <strong>of</strong><br />

ripples.


Motivation<br />

Propagation <strong>of</strong> waves through spatially and temporally<br />

variable currents is a frequent occurrence <strong>in</strong> coastal areas<br />

Port Phillip, Australia<br />

Wadden Sea, Holland<br />

navigation coastal defense<br />

<strong>Waves</strong> on currents is perhaps <strong>the</strong> last loose physics <strong>in</strong> wave<br />

forecast models


Measurements, adverse currents<br />

stronger velocity gradients, U>c g/4<br />

gradual irreversible downshift<br />

beyond lower sideband<br />

• waves propagate from right to left<br />

• circles signify downshift<strong>in</strong>g observed, dashed l<strong>in</strong>e <strong>the</strong> sideband<br />

• probes 7-5 are over <strong>the</strong> bottom elevation<br />

gc<br />

Shoal top


Young, I.R., Baban<strong>in</strong>, A.V., Stiassnie, M.A., Greenslade, D.J. (Australian<br />

Bureau <strong>of</strong> Meteorology), “Numerical modell<strong>in</strong>g <strong>of</strong> extreme waves<br />

generated by tropical cyclones”, Australian Research Council,<br />

Discovery Grant, 2010-2012<br />

Young, 2006, J. Geophys. Res.<br />

new S nl term is to be developed


Dissipation Sds dE(<br />

k,<br />

f , �,<br />

x,<br />

t)<br />

� S<strong>in</strong><br />

� Sds<br />

� Snl<br />

� The <strong>in</strong>duced dissipation can be caused by forced break<strong>in</strong>g <strong>of</strong> shorter waves due<br />

to <strong>the</strong> dom<strong>in</strong>ant break<strong>in</strong>g, or modulation <strong>of</strong> short waves by longer waves, or by<br />

enhanced turbulent viscosity due to <strong>the</strong> dom<strong>in</strong>ant break<strong>in</strong>g, or both.<br />

S ( f ) � a � f ( F(<br />

f ) � F ( f )) A(<br />

f ) � b ( F(<br />

g)<br />

� F ( g))<br />

A(<br />

g)<br />

dg<br />

ds<br />

thr<br />

f<br />

�<br />

f<br />

p<br />

dt<br />

� importance <strong>of</strong> <strong>the</strong> cumulative<br />

dissipation is evident<br />

thr


Cyclone Wave Modell<strong>in</strong>g<br />

• Change <strong>of</strong> <strong>the</strong> physical regime at extreme w<strong>in</strong>ds<br />

• Cyclone Yasi<br />

• Typhoon Krosa


Saturation <strong>of</strong> Sea Drag<br />

Powel et al., 2003, Nature<br />

• Extensive research field s<strong>in</strong>ce<br />

2003, dozens <strong>of</strong> papers<br />

• field and laboratory<br />

experiments<br />

• <strong>the</strong>ories:<br />

- spray <strong>the</strong>ories, 4 classes<br />

- hydrodynamic <strong>the</strong>ories, 2<br />

classes<br />

- <strong>in</strong>stability <strong>of</strong> ripples (KH and<br />

modulat<strong>in</strong>al)<br />

-turbulence <strong>the</strong>ory: 2D<br />

turbulence suppresses 3D<br />

vortexes<br />

- comb<strong>in</strong>ation <strong>of</strong> those<br />

Drag saturates at<br />

U 10=32-33m/s


Shats, M., Baban<strong>in</strong>, A.V., Marusic, I., Young, I.R., Punzmann, H., Xia, H,<br />

T<strong>of</strong>foli, A., Chalikov, D., Klewicki, J., Hutch<strong>in</strong>gs, N., Monti, J., “W<strong>in</strong>d pr<strong>of</strong>iler<br />

network for planetary boundary layer research”, , Australian Research<br />

Council, Large Equipment and Infrastructure Facilities Grant, 2012


Wave asymmetry at<br />

extreme w<strong>in</strong>d forc<strong>in</strong>g<br />

• Leik<strong>in</strong> et al., 1995, Nonl<strong>in</strong>ear Proc. Geophys., laboratory<br />

experiment with w<strong>in</strong>d-forced waves<br />

• Strong correlation <strong>of</strong> asymmetry A s with w<strong>in</strong>d forc<strong>in</strong>g, no<br />

correlation for skewness and steepness<br />

• Broad range <strong>of</strong> u * which converts <strong>in</strong>to U 10=8-48m/s<br />

• Asymmetry saturates at u */c p~1.2, i.e. at<br />

U 10~34m/s<br />

• This <strong>in</strong>dicates change <strong>of</strong> <strong>the</strong> wave break<strong>in</strong>g mechanism<br />

to, perhaps, break<strong>in</strong>g due to direct w<strong>in</strong>d forc<strong>in</strong>g


Air-Sea Gas Exchanges <strong>in</strong> Extreme<br />

Conditions<br />

• McNeil & D’Asaro, 2007, J. Mar. Scie.<br />

• cross-<strong>in</strong>terface gas fluxes measured dur<strong>in</strong>g<br />

Hurricane Frances <strong>in</strong> 2004<br />

• U 10 up to 55m/s<br />

• fluxes still grow, but at a slow rate if<br />

U 10 > 35m/s<br />

• additional mechanism <strong>of</strong> air <strong>in</strong>jection due to<br />

bubbles <strong>of</strong> 1mm diameter transported down to<br />

20m below <strong>the</strong> surface and dissolved due to <strong>the</strong><br />

hydrostatic compression


Yasi – <strong>in</strong>ner grid<br />

• DOUBLE HOLLAND parametric w<strong>in</strong>ds (left) and<br />

WRF w<strong>in</strong>ds (right) for 2 Feb 2011 10:00UTC


Yasi – <strong>in</strong>ner grid<br />

• wave height from DOUBLE HOLLAND parametric<br />

w<strong>in</strong>ds (left) and WRF w<strong>in</strong>ds (right) for 2 Feb<br />

2011 10:00UTC


Baban<strong>in</strong>, GRL, 2006<br />

Hypo<strong>the</strong>sis <strong>of</strong> <strong>the</strong> Wave<br />

Reynolds Number<br />

η(x,t) = a 0cos(ωt+kx)<br />

a(z) = a 0exp(-kz)<br />

It is <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> a-based Reynolds number<br />

2<br />

aV a �<br />

Re � �<br />

� �<br />

where V=ωa is orbital velocity, and ν is k<strong>in</strong>ematic viscosity <strong>of</strong> <strong>the</strong> ocean water,<br />

<strong>in</strong>dicates transition from lam<strong>in</strong>ar orbital motion to turbulent<br />

Critical Reynolds Number for <strong>the</strong> Wave-Induced<br />

Motion, and Depth <strong>of</strong> <strong>the</strong> Mixed Layer<br />

�<br />

Re( z)<br />

� a<br />

�<br />

2<br />

0<br />

�<br />

exp( �2kz)<br />

� a<br />

�<br />

2<br />

0<br />

�<br />

exp( �2<br />

g<br />

2<br />

1 Re cr � g a0�<br />

zcr � � ln( ) � ln( )<br />

2<br />

2<br />

2k<br />

a � 2�<br />

Re �<br />

0<br />

cr<br />

2<br />

z)<br />

Re cr=3000


Potential role <strong>of</strong> <strong>the</strong> wave-<strong>in</strong>duced mix<strong>in</strong>g<br />

Baban<strong>in</strong> et al., 2009, <strong>Ocean</strong> Modell<strong>in</strong>g<br />

Wave turbulence<br />

Langmuir circulation<br />

H L=4U 2 10/g


Dai et al., JPO, 2010<br />

no waves<br />

time scale: hours<br />

Laboratory Experiment <strong>in</strong> <strong>the</strong> First<br />

Inst. <strong>of</strong> <strong>Ocean</strong>ography, Ch<strong>in</strong>a<br />

Mix<strong>in</strong>g <strong>the</strong> stratified fluid<br />

experiment (left), model (right)<br />

non-break<strong>in</strong>g waves<br />

time scale: m<strong>in</strong>utes


Laboratory Experiment at ASIST, RSMAS,<br />

University <strong>of</strong> Miami<br />

turbulence is highly <strong>in</strong>termittent, most frequent at rear wave face<br />

� � 300�<br />

a<br />

3.<br />

0<br />

�<br />

1.<br />

0<br />

This is close to <strong>the</strong><br />

expectation: s<strong>in</strong>ce <strong>the</strong><br />

force due to <strong>the</strong><br />

turbulent stresses is<br />

proportional to a 2 , <strong>the</strong><br />

energy dissipation rate<br />

should be ~a 3 .<br />

Baban<strong>in</strong> and Haus, 2009


Baban<strong>in</strong> & Chalikov, JGR, submitted<br />

Model <strong>of</strong> generation <strong>of</strong><br />

turbulence by nonl<strong>in</strong>ear waves<br />

Model is based on exact 2-D (x-z) model <strong>of</strong> surface waves coupled<br />

with 3-D LES (x-y-z) model <strong>of</strong> vortical motion based on Reynolds<br />

equation with parameterised subgrid turbulence.


�K<br />

�T<br />

s<br />

mean<br />

�U<br />

i<br />

CURR<br />

�K<br />

�X<br />

i<br />

t<br />

�<br />

P � P � � M<br />

M � �ui<br />

/ �<br />

x<br />

j<br />

D<br />

TKE evolution equation<br />

TKE production<br />

shear frequency<br />

K<br />

� P<br />

2<br />

CURR<br />

P � ( � ��<br />

)( M � M<br />

s<br />

CURR<br />

Pleskachevski et al., JPO, 2010<br />

wave<br />

Field observations, North Sea,<br />

sediment suspension<br />

S<br />

� G � E<br />

2 AM 2<br />

CURR wave<br />

)<br />

K


T<strong>of</strong>foli et al., JGR, submitted<br />

Field observations, North Rank<strong>in</strong><br />

mixed layer deepen<strong>in</strong>g<br />

Wave height<br />

MLD:<br />

dark – wave <strong>in</strong>duced<br />

grey - measured


Ghantous et al., <strong>Ocean</strong> Modell<strong>in</strong>g, submitted<br />

Modell<strong>in</strong>g SST and MLD at <strong>the</strong> scale <strong>of</strong><br />

tropical cyclone


Implement<strong>in</strong>g wave-<strong>in</strong>duced mix<strong>in</strong>g <strong>in</strong> CLIMBER<br />

• Seasonal trend <strong>of</strong> <strong>the</strong> global<br />

zonally averaged SST. Panels shown:<br />

25, 35, 45 and 55 degrees North<br />

(from top to bottom). L<strong>in</strong>es shown:<br />

default version <strong>of</strong> CLIMBER (blue),<br />

variable MLD (red) and observations<br />

based on Levitus data (black).<br />

• effect is essential outside <strong>the</strong><br />

tropical areas<br />

• both magnitudes and phases <strong>of</strong><br />

SST are imporved


Implement<strong>in</strong>g wave-<strong>in</strong>duced mix<strong>in</strong>g <strong>in</strong> CLIMBER<br />

Global distribution ( Nor<strong>the</strong>rn<br />

summer)<br />

• temperature (degrees)<br />

• pressure (mbar)<br />

• precipitation (mm per day)


Wave-Induced Turbulence <strong>in</strong> ocean models<br />

Qiao et al., 2010, <strong>Ocean</strong> Dynamics<br />

Correlation coefficients between <strong>the</strong> model outcomes and <strong>the</strong> World <strong>Ocean</strong> Atlas for vertical<br />

temperature distributions at 35N latitude (darker areas correspond to higher correlation. The left<br />

panel demonstrates <strong>the</strong> transect across <strong>the</strong> Pacific (left) and Atlantic (right) oceans without wave<strong>in</strong>duced<br />

turbulent stresses accounted for, and <strong>the</strong> right panel – with <strong>the</strong> respective Reynolds stresses<br />

added.


Qiao at al., 2010 Globally averaged SST<br />

Upper 100m globally averaged<br />

ROMS 0.62-0.79<br />

POM 0.58-0.76<br />

0.68 0.93<br />

Much Improved except tropical area


Motivation<br />

<strong>Waves</strong> <strong>in</strong>fluences <strong>the</strong> climate, climate affects<br />

<strong>the</strong> waves<br />

W<strong>in</strong>ds and waves change<br />

Observations<br />

Young et al., Science, 2011<br />

Sea surface temperature changes due to<br />

waves<br />

Model<br />

MLD , Sou<strong>the</strong>rn<br />

Pacific <strong>in</strong> Feb.<br />

MLD, Nor<strong>the</strong>rn<br />

Atlantic <strong>in</strong> Aug<br />

Qiao et al., <strong>Ocean</strong> Dynamics, 2010<br />

With<br />

waves<br />

Without<br />

waves<br />

World <strong>Ocean</strong><br />

Atlas

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!