17.12.2012 Views

the Ultimate 10 Gb/s Solution

the Ultimate 10 Gb/s Solution

the Ultimate 10 Gb/s Solution

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Finisar<br />

XFP<br />

The <strong>Ultimate</strong> <strong>10</strong><strong>Gb</strong>/s <strong>Solution</strong><br />

Lew Aronson<br />

October 17, 2002


Outline<br />

■ Background on Fiberoptic Transceivers and XFP<br />

■ XFP Multisource Agreement (MSA)<br />

�� Membership, Goals, Status<br />

�� Concept Model<br />

�� Mechanical/Thermal Design<br />

�� Signal Integrity, SONET Jitter Issues<br />

�� EMI Issues<br />

■ Finisar Results<br />

■ Critical Modeling Issues for XFP<br />

■ Summary<br />

Finisar<br />

Lew Aronson October 17, 2002


Fiberoptic Transceivers and Transponders<br />

Transceiver<br />

Serial<br />

Electrical<br />

Transponder<br />

Parallel<br />

Electrical<br />

RX -<br />

RX +<br />

I2C<br />

RX 0<br />

RX n<br />

TX +<br />

TX -<br />

Management<br />

TX 0<br />

TX n<br />

.<br />

.<br />

Serial ID<br />

and<br />

Diagnostics<br />

Demux<br />

Serial ID/<br />

Diagnostics<br />

Mux<br />

Postamp<br />

Laser Driver<br />

Postamp<br />

Laser Driver<br />

ROSA<br />

PIN/TIA<br />

TOSA<br />

Laser<br />

ROSA<br />

PIN/TIA<br />

TOSA<br />

Laser<br />

Finisar<br />

Opt In<br />

Opt Out<br />

Opt In<br />

Opt Out<br />

Lew Aronson October 17, 2002


What do Datacom Customers Want?<br />

■ Transceivers in Industry Standard Form-Factors<br />

�� Generally developed as Multisource Agreements, Multiple Vendors<br />

�� Mechanically and Electrically Interoperable<br />

■ Receptacle based Ra<strong>the</strong>r than Pigtailed<br />

■ Low Cost – Obtained through VERY high volume<br />

■ Small Footprint – Maximize Transceivers on Card Edge<br />

Finisar<br />

■ Low Power – Typ. < 1W per port for 1 – 2G Enables High Port Density<br />

■ Hot Pluggable Through Panel<br />

�� Allows Systems to be Configured to Customer Needs just before Shipping.<br />

�� Mix and Match Link Lengths<br />

�� Allows Easy Field Upgrades<br />

■ Most Customers Have Very Strict Reliability Requirements<br />

�� Integrated Monitoring Becoming Popular<br />

Lew Aronson October 17, 2002


Fiber Optic Link Standards<br />

■ E<strong>the</strong>rnet for Local Area Networks (LANs)<br />

�� <strong>10</strong>, <strong>10</strong>0 Mb/s – Not in Finisar Product Family<br />

�� Gigabit E<strong>the</strong>rnet – 1.25 <strong>Gb</strong>/s<br />

�� <strong>10</strong>G E<strong>the</strong>rnet – <strong>10</strong>.3 <strong>Gb</strong>/s – In initial deployment<br />

■ Fibre Channel for Storage Area Networks (SANs)<br />

�� FC1x–1.06<strong>Gb</strong>/s<br />

�� FC 2x – 2.125 <strong>Gb</strong>/s<br />

�� <strong>10</strong>GFC – <strong>10</strong>.5 <strong>Gb</strong>/s – In development<br />

Finisar<br />

■ Multimode and Singlemode Fiber and Copper, Many Reaches<br />

■ SONET<br />

�� OC-3,12,48,192 (155Mb/s, 622Mb/s, 2.5<strong>Gb</strong>/s, <strong>10</strong><strong>Gb</strong>/s)<br />

�� Reaches from 600m – 80 km<br />

Lew Aronson October 17, 2002


Standard Form-Factors for 1 – 2.5 <strong>Gb</strong>/s<br />

■ 1x9<br />

■ GBIC<br />

� Soldered, ~1” Pitch, SC Connectors<br />

� Popular for Multimode <strong>Gb</strong>E, In Decline<br />

Finisar<br />

� Hot Pluggable, ~1.5” Pitch, SC Connectors<br />

� Available for Many Link Standards<br />

� Single 5V Supply. 1.5W max<br />

■ Small Form Factor (SFF) – 3.3V Supply<br />

� Soldered, ~0.55” Pitch, LC Connectors<br />

� Available in 2x5 and 2x<strong>10</strong> (Analog Monitoring)<br />

■ Small Form Factor Pluggable (SFP) – 3.3V Supply<br />

� Hot Pluggable, ~0.65” Pitch, LC Connectors<br />

� Most Popular in New Designs<br />


Evolution of 1G Systems<br />

GLM <strong>Solution</strong><br />

GBIC <strong>Solution</strong><br />

SFP <strong>Solution</strong><br />

<strong>Ultimate</strong> SFP <strong>Solution</strong><br />

<strong>10</strong><br />

8<br />

1G<br />

Optics<br />

SERDES <strong>10</strong> 8B/<strong>10</strong>B 8 ASIC<br />

1G<br />

Optics<br />

1G Optics<br />

.<br />

1G Optics<br />

8B/<strong>10</strong>B<br />

SERDES<br />

Quad<br />

SERDES<br />

1G Optics ASIC w/<br />

.<br />

1G Optics<br />

1G Serial<br />

Outputs<br />

8<br />

8<br />

32<br />

32<br />

ASIC<br />

ASIC<br />

Lowest Cost<br />

Least Power<br />

Finisar<br />

Minimum Board Space<br />

Lew Aronson October 17, 2002


Evolution of <strong>10</strong>G Systems<br />

SONET<br />

Transponder<br />

XENPAK<br />

Transponder<br />

Module<br />

(X2, XPAK?)<br />

XFP: <strong>Ultimate</strong><br />

Serial Interface<br />

<strong>Solution</strong><br />

<strong>10</strong>G<br />

Optics<br />

<strong>10</strong>G<br />

Optics<br />

<strong>10</strong>G Optics ASIC w/<br />

.<br />

<strong>10</strong>G Optics<br />

Mux<br />

DeMux<br />

Mux<br />

DeMux<br />

16<br />

16<br />

XBI<br />

622M<br />

XAUI to<br />

64/66<br />

Scrambler ASIC<br />

<strong>10</strong>G Serial<br />

Output(s)<br />

4<br />

4<br />

XAUI<br />

3.1G<br />

16<br />

16<br />

Lowest Cost<br />

Least Power<br />

Finisar<br />

ASIC<br />

w/ XAUI<br />

Interface<br />

Minimum Board<br />

Space<br />

Lew Aronson October 17, 2002


Motivation for <strong>10</strong>G Serial Interface<br />

Finisar<br />

■ Advantages of a Transceiver with a <strong>10</strong>G Serial Interface<br />

are Overwhelming<br />

�� Eliminates Large Amount of Circuitry<br />

• MUX and DeMUX on Transceiver<br />

XAUI Interface (both ends)<br />

�� 50% or More of <strong>the</strong> Power of Parallel Interface Transponders<br />

is Related to <strong>the</strong> Internal Parallel-Serial Conversion<br />

�� A Transceiver with a Serial Interface is MUCH Smaller;<br />

Approximately 25% <strong>the</strong> size of XENPAK<br />

Lew Aronson October 17, 2002


Customer Concerns with XFP<br />

■ Host PCB Concerns<br />

�� Need up to 8 – 12” on FR-4 Substrates with Buried Stripline<br />

�� Fears of Routing <strong>10</strong>G Traces.<br />

■ PCI Card Compliance (Limits Device Height)<br />

■ Difficulty of One Form Factor for All Reachs<br />

�� Up to 40km (datacom) or 80 km (telecom)<br />

■ Thermal <strong>Solution</strong> to Support Proposed High Density<br />

■ Difficulty of Suppressing Electromagnetic Emissions (EMI)<br />

■ Overall SONET Jitter Compliance for Telecom<br />

■ Availability of ICs with <strong>10</strong>G Serial Interface<br />

Finisar<br />

Lew Aronson October 17, 2002


XFP Multisource Agreement (MSA)<br />

Finisar<br />

■ XFP MSA Group Founded in Late 2001 to Define <strong>10</strong>G Serial Transceiver<br />

�� Founding Members: Broadcom, Brocade, Emulex, Finisar, ICS (Sumitomo),<br />

JDSU (form. IBM), Maxim, Ciena, Tyco Electronics, Velio<br />

�� Currently Over 60 Companies – Optics, IC and Host System Companies<br />

■ What Does a Transceiver MSA Do?<br />

�� Defines Specs to Ensure Mechanical, Thermal and Electrical Interoperability.<br />

■ Goals of <strong>the</strong> XFP MSA<br />

�� Support of <strong>10</strong>G E<strong>the</strong>rnet, <strong>10</strong>G Fiber Channel and SONET OC-192<br />

Ideally in a Common Device for Same Reach<br />

�� Support Reaches to 40 km (recently extended to 80 km)<br />

�� Allow High Port Density (up to 16 Ports on Typical 19” Line Card<br />

�� Should work on Host PCBs with 8 – 12” Traces on FR-4<br />

�� Support PCI Height Applications<br />

�� Provide Good EMI <strong>Solution</strong><br />

Lew Aronson October 17, 2002


XFP Dimensions<br />

78.0<br />

Finisar<br />

18.4<br />

Module pitch: 23.5 mm<br />

Allows 16 Ports in 15”<br />

8.5<br />

Lew Aronson October 17, 2002


XFP MSA – Present Mechanical Design<br />

PCI compliant Riding<br />

Heatsink Shown<br />

.570” pin height<br />

Bail Latch<br />

Module Shown<br />

in Cage Without<br />

Riding Heatsink<br />

Compliant Gasket Seals<br />

Cage Against Bezel<br />

Finisar<br />

Large heat sink<br />

contact area<br />

Flat cage top supports<br />

heat sink when<br />

module is not installed<br />

Lew Aronson October 17, 2002


XFP MSA – Present Mechanical Design<br />

■ Riding Heatsink Concept Solves Major Thermal Issues<br />

EMI Fingers<br />

Cage Without<br />

Riding Heatsink<br />

Cage with<br />

Riding Heatsink<br />

Finisar<br />

�� PCI Systems have Tight Height Requirements, But Low Total Thermal Load<br />

�� Switch Systems Have Large Thermal Load but More Vertical Space<br />

�� Heatsink is Part of Cage and Adaptable to Different Applications<br />

�� Tested for Thermal Conductivity with Multiple Insertions with Contamination<br />

EMI Gasket<br />

Lew Aronson October 17, 2002


Form Factor Comparison<br />

XENPAK<br />

XFP<br />

300-pin XBI<br />

Finisar<br />

Lew Aronson October 17, 2002


XFP MSA – Thermal Considerations<br />

■ MSA Defines 4 Power Classes<br />

�� 1.5W Max – Likely Future Technology for < <strong>10</strong> km Parts<br />

�� 2.5W Max – Likely Initial <strong>10</strong> km Parts<br />

Finisar<br />

�� 3.5 W Max and > 3.5W – Long Haul XFP with Cooled Optics and APD<br />

■ Thermal Modeling Studies<br />

�� Simulations indicate Acceptable Performance in Datacom Environment<br />

8 Ports of 2.5W with Careful but no Exotic Cooling<br />

16 Ports Possible at 1.5W or with Front to Back Airflow<br />

�� Telecom System Thermal Modeling in Progress<br />

Lew Aronson October 17, 2002


XFP Pinout<br />

■ Uses 30-pin Version of Present SFP Connector<br />

Finisar<br />

� � +3.3 and +5V and +1.8V Supply (optional –5V for Long Haul)<br />

� +3.3V I2 � +3.3V I C Communication<br />

2C Communication<br />

30<br />

Gnd<br />

Gnd<br />

1<br />

29<br />

TD+<br />

-5V<br />

2<br />

28<br />

TD-<br />

MOD_Desel<br />

3<br />

27<br />

Gnd<br />

INTERRUPT<br />

4<br />

26<br />

Gnd<br />

TX_DIS<br />

5<br />

25<br />

REFclk-<br />

+5V<br />

6<br />

24<br />

REFclk+<br />

Towards ASIC<br />

Gnd<br />

7<br />

23<br />

Gnd<br />

+3.3V<br />

8<br />

22<br />

+1.8V<br />

Towards Bezel<br />

+3.3V<br />

9<br />

21<br />

P_Down<br />

I2C - SCL<br />

<strong>10</strong><br />

20<br />

+1.8V<br />

I2C - SDA<br />

11<br />

19<br />

Gnd<br />

MOD_ABS<br />

12<br />

18<br />

RD+<br />

MOD_NR<br />

13<br />

17<br />

RD-<br />

RX_LOS<br />

14<br />

16<br />

Gnd<br />

Gnd<br />

15<br />

Pinout still subject to change<br />

Lew Aronson October 17, 2002


XFP MSA – Electrical Reference Model<br />

Finisar<br />

■ Previous Transceiver Designs Will Not Meet Optical Jitter Specs<br />

�� Host Board Jitter Contribution at <strong>10</strong> <strong>Gb</strong>/s is Too Large<br />

■ Design Assumes A Signal Conditions (CDR) in bothTX and RX Paths<br />

■ Goal is support of 8 – 12” on FR-4 host boards.<br />

Electrical<br />

Compliance<br />

Points<br />

Host<br />

ASIC<br />

D<br />

A<br />

Host Board<br />

<strong>10</strong> <strong>Gb</strong>“XFI”<br />

Interface<br />

8–12”FR-4<br />

C’<br />

B’<br />

C<br />

B<br />

30 pin TYCO SFP<br />

Style Connector<br />

RX<br />

CDR<br />

TX<br />

CDR<br />

XFP Module<br />

PA ROSA<br />

LDR<br />

TOSA<br />

Optical<br />

Interface<br />

Lew Aronson October 17, 2002


XFI Interconnect Signal Integrity<br />

■ Amplitude and Eye Masks Specified at All Interfaces<br />

�� Transmission Swings of 200 – 350 mV p-p Single Ended<br />

�� Min Receiver Sensitivity of 62.5 mV Single Ended<br />

�� Loss Budget Corresponds to Connector + 8-12” FR-4<br />

Finisar<br />

■ Eye Masks + Jitter Specs Define CDR and Host ASIC Requirements<br />

■ Return Loss Specs at All Compliance Points Limit Reflection Induced Jitter<br />

�� Generates Critical Design Issues at Host Board IC, Module I/O<br />

�� Assumes Limited Discontinuities Along Host Board<br />

Via Design for Transistion to Buried Stripline Becomes Critical<br />

Lew Aronson October 17, 2002


XFP MSA – SONET Jitter Issues<br />

Finisar<br />

■ Specifying Host and Module Properties to Meet SONET Jitter a Major Concern<br />

■ Largest Issue is Transmitter Jitter Generation:<br />

�� Main Approach: Host and Module Share Jitter Generation Requirements<br />

Host Meets Low Frequency Jitter Gen. Spec < 60 mUIp-p for 50 kHz – 4 MHz<br />

XFP Filters High Frequency Jitter, < 60 mUI Gen. from 50 kHz – 80 MHz<br />

Ability of Host to Meet Spec is Controversial<br />

�� Alternate Approach: Module May Use Clock Multipler Unit (CMU) on TX Path<br />

Replaces Host Jitter Gen. with Need for Tight Control of Clock Spectrum<br />

■ Jitter Peaking Probably not Hard to Meet But Hard to Measure.<br />

■ O<strong>the</strong>r Questions on Jitter Tolerance Complex When Divided between Host and Module<br />

Lew Aronson October 17, 2002


XFP MSA – EMI Considerations<br />

■ Minimizing EMI in Specifications<br />

�� XFI Swing is Relatively Small (350 mV S.E. Max)<br />

�� LimitsonRisetime(>24ps20–80%)<br />

�� Transmit Preemphasis Not Allowed by Eye Mask<br />

■ Cage Design<br />

Finisar<br />

�� Early Cage Design Simulations Showed Significant Leakage into Host Chassis<br />

�� New Design Proposed and Simulated Showed 20 – 30 dB Improvement<br />

■ Remaining Issues<br />

�� Determine EMI from Stripline on Host Board with Worst Case XFI Signals<br />

�� Industry Standards on Test Patterns and Associated Spectrum<br />

Lew Aronson October 17, 2002


Comparing EMI for Different Cage Designs<br />

Finisar<br />

Original Cage Design Improved Cage Design<br />

Leakage Areas Extra Contact<br />

Points<br />

Compliant Casket<br />

Flush to Board<br />

Compliant<br />

Gasket to<br />

Host Board<br />

Compliant Wiping<br />

Contact to Raised<br />

Skirt Edge (Not<br />

Shown)<br />

Lew Aronson October 17, 2002


EMI Simulation Measurement Points<br />

Finisar<br />

Lew Aronson October 17, 2002


Mean E Field (dB V/m)<br />

Results – Average Field Value vs Frequency<br />

(Average of All Points of Array in Each Case)<br />

140.00<br />

130.00<br />

120.00<br />

1<strong>10</strong>.00<br />

<strong>10</strong>0.00<br />

90.00<br />

80.00<br />

70.00<br />

60.00<br />

50.00<br />

Baseline Imp Cage Shield<br />

Finisar<br />

0.00 5.00 <strong>10</strong>.00 15.00 20.00 25.00 30.00 35.00 40.00<br />

Frequency (GHz)<br />

Assumed Source<br />

w/ Equal Power vs<br />

Frequency<br />

Lew Aronson October 17, 2002


Finisar Recent XFP Results<br />

Finisar<br />

Lew Aronson October 17, 2002


TX Optical Output Eye – <strong>10</strong><strong>Gb</strong>E<br />

Finisar<br />

Lew Aronson October 17, 2002


RX Electrical Output Eye from XFP<br />

Loopbacked output through 30pin conn., 2” FR4, SMA, and cables<br />

– Passes 50% mask margin<br />

Finisar<br />

Lew Aronson October 17, 2002


Interoperability Results<br />

Finisar<br />

■ XBI to Serial MUX/DEMUX Sets on 300 pin – Serial SMA Coupons Tested.<br />

�� Broadcom (BCM8120/8121)<br />

�� Infineon (FOA4<strong>10</strong>01B1 / FOA5<strong>10</strong>01B1)<br />

■ Connected to XFP Eval Board with SMF Fiber Loopback<br />

■ No Errors Detected in Ei<strong>the</strong>r Case for 5 min Run.<br />

Finisar “Lotus”<br />

300 Pin Tester<br />

300<br />

Pin<br />

Conn<br />

Demux<br />

Mux<br />

FTRX-1409<br />

XFP Eval Board<br />

<strong>10</strong> km<br />

SMF<br />

Lew Aronson October 17, 2002


First Generation Reference Board<br />

Finisar<br />

Dual XFP modules on FR-408 eval board, SMA on one module, SERDES on o<strong>the</strong>r<br />

8” trace version, 12 layers , 62 mil thickness<br />

Buried stripline on layer 9, ground plane on 8 and <strong>10</strong><br />

In Preliminary Testing<br />

Lew Aronson October 17, 2002


XFP Host System – Via Designs<br />

■ Buried Stripline Important for Minimizing EMI<br />

Finisar<br />

■ Vias for Transition from ASIC to Stripline and Stripline to XFP Connector<br />

�� Good Via Design is Critical to Meet XFI Specs<br />

■ Via Tradeoffs<br />

�� Blind Vias Offer Minimum Parasitics – Most Expensive<br />

�� Through Vias are Standard Technology but Result in Via Stub<br />

■ Design Balances Via Inductance with Capacitance to Ground Planes<br />

■ Fullwave Analysis by Ansoft Resulted in Practical Via Designs Used in<br />

Finisar Reference Board.<br />

Lew Aronson October 17, 2002


Ansoft Reference Via Design<br />

Finisar<br />

De-embedded<br />

S-parameter<br />

22 mil<br />

12 mil<br />

20.5 mil<br />

31.5 mil<br />

31.5 mil<br />

31.5 mil<br />

20.5 mil<br />

Lew Aronson October 17, 2002


Via Structure<br />

Finisar<br />

Ground<br />

Vias<br />

Ground Plane<br />

Cutouts<br />

Short Microstrip<br />

to SERDES<br />

Stub Beyond<br />

Stripline Layer<br />

Lew Aronson October 17, 2002


SMA – XFP Connector Section<br />

SMAs<br />

62 mil Board,<br />

12 layer stackup,<br />

FR-408<br />

Ansoft G-S-S-G Via<br />

Design<br />

Buried Stripline<br />

on Layer 9<br />

200mm<br />

XFP<br />

Conn<br />

Finisar<br />

SMAs<br />

XFP<br />

Test<br />

Coupon<br />

50Ω Term<br />

or Scope<br />

50Ω Term<br />

Lew Aronson October 17, 2002


TDR Measurement from SMA End<br />

SMA<br />

Vias<br />

SMAs<br />

XFP Conn<br />

Test Coupon<br />

Buried Stripline<br />

on Layer 9<br />

200mm<br />

XFP<br />

Conn<br />

Finisar<br />

Diff TDR<br />

<strong>10</strong>0 Ω<br />

~±5Ω<br />

XFP<br />

Test<br />

Coupon<br />

50Ω Term<br />

or Scope<br />

50Ω Term<br />

Lew Aronson October 17, 2002


TDR Measurement- SMA and Vias<br />

SMA<br />

Vias<br />

SMAs<br />

Vias<br />

Buried Stripline<br />

on Layer 9<br />

200mm<br />

XFP<br />

Conn<br />

Finisar<br />

Diff TDR<br />

XFP<br />

Test<br />

Coupon<br />

50Ω Term<br />

or Scope<br />

50Ω Term<br />

Lew Aronson October 17, 2002


Eye Diagram Transmission<br />

Input: ~ 3<strong>10</strong> mV p-p Single Ended<br />

<strong>10</strong>.3G, 2^31 Pattern<br />

SMAs<br />

Buried Stripline<br />

on Layer 9<br />

200mm<br />

XFP<br />

Conn<br />

Finisar<br />

Output: ~ 1<strong>10</strong> mV p-p Eye Opening<br />

(XFP spec 62.5 mV, CDR sensitivity <strong>10</strong> mV)<br />

XFP<br />

Test<br />

Coupon<br />

50Ω Term<br />

or Scope<br />

50Ω Term<br />

Lew Aronson October 17, 2002


Internal 2^31 PRBS<br />

Generation<br />

XBI Mux<br />

Demux<br />

SERDES – XFP Connector<br />

Buried Stripline<br />

on Layer 9<br />

200mm<br />

XFP<br />

Conn<br />

Finisar<br />

Output: ~ 150 mV p-p<br />

Eye Opening<br />

(XFP spec 62.5 mV)<br />

XFP<br />

Test<br />

Coupon<br />

50Ω Term<br />

or Scope<br />

50Ω Term<br />

Lew Aronson October 17, 2002


Interoperability Results – Quake XBI – Mux/Demux<br />

Finisar<br />

■ Quake QT2011 on Reference Design Board Provides PRBS31 Pattern<br />

■ 8” of Buried Stripline<br />

■ XFP Transceiver Loopbacked over <strong>10</strong> km Fiber<br />

■ No Errors Detected by Quake PRBS Error Detectors<br />

Internal 2^31 PRBS<br />

Generation<br />

Quake<br />

QT2011<br />

XBI Mux<br />

Demux<br />

Buried Stripline<br />

200mm<br />

XFP Conn<br />

Finisar XFP<br />

<strong>10</strong> km<br />

SMF<br />

Lew Aronson October 17, 2002


Finisar Ref<br />

Board<br />

SONET Jitter Measurement<br />

Acterna SONET<br />

Jitter Tester<br />

Quake SERDES<br />

with 2^31 PRBS<br />

Generator<br />

Epson 1 ps<br />

RMS Clock<br />

Finisar<br />

XFP<br />

Module<br />

Measured RMS<br />

Jitter (Spec<br />

0.01 UI)<br />

Measured p-p Jitter<br />

(Spec 0.<strong>10</strong>0 UI)<br />

Finisar<br />

Lew Aronson October 17, 2002


Critical Modeling Issues for XFP<br />

■ Host Board Design<br />

�� Via Structures, Transmission Lines<br />

■ Host Board ASIC<br />

�� I/O Return Loss from Package Design and IC Circuit Combination<br />

■ XFP Connector<br />

�� Presently Very Significant Source of Reflections (but good enough)<br />

�� Improved Connector Designs will Increase Margins<br />

■ XFP Module<br />

�� Return Loss of CDR I/O<br />

�� Many Internal Modeling Problems.<br />

�� New Issues Associated with Very Small Optoelectronic Packages<br />

■ EMI Issues<br />

�� Potential Host Board Design, Cage, and Module Details Affect EMI<br />

�� Compliance Always More Difficult at Higher Frequencies<br />

Finisar<br />

Lew Aronson October 17, 2002


Summary of XFP Advantages<br />

■ Smaller Size<br />

� � >4x reduction in transceiver footprint relative to XENPAK<br />

�� Allows minimum width transceivers<br />

Finisar<br />

�� 16 ports per linecard will be supported at 1.5W or 2.5W each<br />

■ Lower Power<br />

� � >2x reduction in power dissipation in some cases<br />

(2.5W vs. 6W transponders)<br />

�� Elimination of XENPAK board cutout requirement<br />

Greater Board Density<br />

Lew Aronson October 17, 2002


Summary of XFP Advantages<br />

■ Significant Cost Reduction<br />

Finisar<br />

�� Elimination of Mux/Demux and XAUI ICs from <strong>the</strong> Transceiver<br />

�� Protocol independence allows Volume Consolidation<br />

�� Eventual Multiport Host ASICs Much Easier<br />

■ Datacom Economics<br />

�� Lower cost driven by Standardization and High-volume Production<br />

�� Receptacle Optics and Hot-pluggability allow Flexible System Design<br />

Lowest Overall System Cost<br />

Lew Aronson October 17, 2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!